DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING,

@m SECOND CYCLE, 30 CREDITS
o T Ry

FKTHS

STOCKHOLM, SWEDEN 2020

VETENSKAP
28 OCH KONST 2%

s

Finding anomalies in software
licensing logs using unsupervised
methods

ARTEM LOS

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Finding anomalies in
software licensing logs using
unsupervised methods

ARTEM LOS

Master in Computer Science

Date: May 28, 2020

Supervisor: Mathias Ekstedt

Examiner: Robert Lagerstrém

School of Electrical Engineering and Computer Science
Host company: Cryptolens AB

Swedish title: Detektering av anomalier i
mjukvarulicensieringsloggar med odvervakadde metoder

Abstract

Cryptolens is world leading software licensing platform. As a result, it has
large amounts of data that is generated when each end user application at-
tempts to verify a license key. Being able to differentiate between normal and
anomalous data can provide software vendors with a way to detect fraud and
other abnormal behaviour, allowing them to save time on analyzing all the
data themselves and increase revenues. It is found that an effective way to find
anomalies in software licensing logs is to use the reconstruction error as the
anomaly score from either an LSTM or TCN based autoencoder, where the
decision boundary is decided by the largest error in the error histogram on the
training set.

Sammanfattning

Cryptolens ar en virldsledande mjukvarulicensieringslosning. Tack vare detta
har den stor tillgdng till data som dr genererad nir varje slutanvindare forso-
ker verifiera en licens. Att kunna sirskilja mellan normal och anomalisk data
ger mjukvaruforetag ett sitt att detektera bedridgerier och annan typ av avvi-
kande anviandning, som tillater dem att spara tid pa att analysera data:n sjdlva
och Oka sina intidkter. Det konstateras att ett effektivt sétt att hitta anomalier
i mjukvarulicensieringsloggar dr genom att anvinda antingen en autoencoder
som bygger pd LSTM eller TCN, dir beslutsgrinsen sitts med hjélp av det
storsta felet i histogrammet som &r skapat frin triningsdatan.

Contents

1 Introduction 1
1.1 Why outlier detectionisneeded 1

1.2 Projectgoal 2

1.3 Evaluation 3

2 Background 5
2.1 Software licensing concepts 5
2.1.1 Terminology 5

2.1.2 Amount of data per licensing model 7

2.2 Anomaly detection in time-series 7
2.2.1 Whatisananomaly? 7

2.2.2 Typesofanomalies 7

2.2.3 Howtoclassifyananomaly 8

2.3 Methods to detect anomalies 9
2.3.1 Autoencoder for anomaly detection 9

2.3.2 Using LSTM/TCN based autoencoder 10

2.3.3 Finding the classification threshold 11

2.3.4 Encoder together with a clustering method 11

24 Clusteringmethods, 12
241 kmeanso e 12

2.4.2 Gaussian Mixture Models 12

3 Methods 13
3.1 Data 13
3.1.1 Datasource 14

3.1.2 Pre-processing 14

3,13 Testcases 16

3.2 Privacy measureso e 16

33 Models 17

vi CONTENTS
3.3.1 Autoencoder-basedmodels 17
3.3.2 Finding the threshold 17
3.3.3 Autoencoder with clustering 17
3.4 Assessing performance 18
4 Results & Discussion 19
4.1 Decision thresholdmethod 20
4.2 Autoencoder with or without clustering 21
43 LSTMvs. TCN et 21
44 Recommendedmodel 23
4.5 FEthics and sustainability 23
46 Futurework 24
5 Conclusions 30
Bibliography 31
A Code to find the threshold 34
Al Method1l 34
A2 Method2o 35
A3 Method3 35
B Architecture 36
B.1 LSTM based autoencoders 36
B.1.1 LSTM_AE 36
B.1.2 LSTM_AE Small 36
B.1.3 LSTM_AE Deep 37
B.1.4 LSTM_AE Deep2 37
B.2 TCN based autoencoders 38
B2.1 TCN_AE 38
B22 TCN_AE2 38
B23 TCN_AE Small 39

B24 TCN_AE Small2. 40

Chapter 1

Introduction

An important component when a software company wants to monetize their
applications is a software licensing system. Such system is needed because
of the following reason. First, it allows them to ensure that license entitle-
ments are enforced, for example, to ensure that their customers can only use
the features/modules they have paid for and that if a license has expired, the
application will no longer work (more details about these are provided in the
Background). Secondly, a licensing system helps to automate software deliv-
ery when combined with a payment gateway. Oftentimes, a software licensing
system can be seen as customer relations management system (CRM) for soft-
ware vendors (this is especially relevant for B2C sales), as most of the licensing
systems provide some degree of customer management. Finally, a licensing
system provides a way to gather analytics data about the usage, for example,
geographical information, popular features, etc, which can aid in strategical
decisions. An illustration of how a licensing system interacts with other sys-
tems in shown in Figure 1.1.

In most scenarios, end user application instances will attempt to connect
to a license verification server (assuming the application is not completely of-
fline), in order to obtain the recent version of a license. These verifications are
a source for log data, which can be analysed to check for possible anomalies.
The amount of data available differs significantly depending on the licensing
model used and how verifications are set up in the application.

1.1 Why outlier detection is needed

Using the log data from license verifications can allow us to learn the normal
behaviour and subsequently detect anomalous behaviour. There are a couple

2 CHAPTER 1. INTRODUCTION

vr | strjpe P

system PayPal
/7

N\ | /

\ | /

\ | /

CRYPTOLENS>

<~
/l\
/ AN

, | \

Iy I Gy |

Figure 1.1: An example of how Cryptolens interacts with other systems. Cryp-
tolens ensures that end user application instances can verify license status and
for other systems, such as payment providers and CRMs, to update license
information (for example, during license extension).

of reasons why the ability to find outliers is useful. First, it can help vendors
to detect fraudulent behaviour (for example, user trying different license key
string combinations). This may be more applicable to the B2C case. However,
since most users have good intentions (especially B2B cases), finding outliers
can help vendors to detect when a customer might be experiencing problems
and reach out to them. Moreover, it can give insights on if there are any changes
in the way the application is being used.

Currently, a majority of software vendors without a dedicated data scientist
need to go through all the logs themselves in Excel, which is inefficient. If a
model can be created that would narrow down the amount of data that needs
to be analyzed, it would already solve a large problem.

1.2 Project goal

To the best of our knowledge, there is to date no research in the field of anomaly
detection in software licensing data. Therefore, our goal is to, first and fore-
most, investigate whether it is possible to find anomalies in software licens-
ing data with unsupervised methods. We will examine this by attempting to
develop a classifier that can aid vendors in finding outlying behaviour in the

CHAPTER 1. INTRODUCTION 3

3
Input Output
CRYPTOLENS> ————8{\ 0 Ay Log
w@ User 1
0N) /e
bl V(D ha’
Store (Id, Productld, Key, IP, A X XA
Time, State, MachineCode) 5%
’ *
, 3 5 User 2

Iy N oy L

User 1 User 2 User 3 User 3

Each device attempts to verify the license key

Figure 1.2: The goal of the project consists of three steps: process the data,
train an anomaly detection model and display which time-frames are anoma-
lous.

large amount of data generated from license-related operations (e.g. license
verifications) using latest unsupervised machine learning methods. The final
model will be assessed based on its characteristics during training and infer-
ence phases. In the end, we want to produce a vendor-specific model that
requires minimal maintenance. A summary of the process is shown in Figure
1.2.

1.3 Evaluation

The criteria below will be used as a guide when evaluating the models:

Training phase

e Speed — How quickly can a model be trained?

e Stability — How stable is the training? For example, does the training
error explode at some point?

e Performance — How well does the model learn the underlying distribu-
tion of the data?

Inference phase

e Speed — How quickly can we infer the anomaly score or a binary label?

4 CHAPTER 1. INTRODUCTION

e Performance on unseen data — Does the model find anomalous sam-
ples correctly, i.e. is it worth for the vendor to take an extra look at
them?

¢ Interpretability — How easily can the result be interpreted from a ven-
dor’s perspective? For example, the less the vendor needs to do the bet-
ter. If we can give a binary label to a sample is better than a score.

Chapter 2

Background

In this chapter, we cover the relevant theory that will be used for anomaly
detection.

2.1

Software licensing concepts

2.1.1 Terminology

License server — License server allows customers to verify licenses.
Each end user application instance will contact a license server to verify
the status of a license or to synchronize changes.

B2B — Refers to business-to-business sales, i.e. when a software vendor
sells to a company that typically has 1000+ employees.!

B2C — Refers to business-to-customer sales, when a software vendor
sells to a consumers or SMEs.

License — A license is an object that contains information about what
an end user is permitted to do, for example, which features can be ac-
cessed, when the license will expire and on how many machines it can
be used on. From an end user perspective, it is represented as a string,
eg. EENFJ-PXGWT-HZDIY-UKIPL.

End user — An end user is an actual user of the application (some sys-
tems refer to this as a seat). In the B2C case, a license typically belongs

"Note: from a licensing perspective, the number of employees should not be seen as a hard
bound; companies with fewer employees may still have the same licensing needs as larger
enterprises.

CHAPTER 2. BACKGROUND

to one physical person and the end users are the devices that belong
to that person. In the B2B case, when one license is typically given
to the entire company, an end user is usually a specific employee. In
Cryptolens, a license key can have a set of machine codes assigned to it,
which can be seen as an end user. Note, the way an end user is defined is
up to the software vendor. All examples use the device fingerprint as the
definition of the end user (which means end users are the devices), but
the software vendor is free to set this to something else. For example,
in some scenarios, it can be set to a network name, device fingerprint
combined with the processor id (in case multiple instances running on
the same machine should be seen as separate end users) or a random
string (when there is no easy way to identify an instance, especially in
the case of docker containers, virtual environments or applications that
keep turning on and off, such as lambda functions).

Vendor — The software vendor is the one who will monetize the software
application.

Customers — The customers that will use the application that the soft-
ware vendor has developed.

Node-locked license — a node-locked license is when there is a limit
of how many end users (in Cryptolens, it is the limit on the number of
machine codes) that can be associated with a license. For example, if the
vendor wants to restrict the maximum number of devices that can use
the license key, node-locking can be used. In order to free up unused end
users (for example, when employees leave), they need to be deactivated.
The deactivation of an end user requires a separate method call.

Floating licensing — a floating license is similar to node-locked licenses
in the sense that it sets a limit for the number of end users, with the
difference that unused end users are freed up automatically after a period
of inactivity. The end user application instance, in contrary to node-
locked licenses, needs to send periodic requests (aka. heartbeats) to the
license server to remain active. If it fails to do so, it will automatically
be deactivated and other end users will be able to use the license. As
a result, customers can have the application installed on any number of
computers but be limited to a certain number of concurrent end users.
The time-window within which a application instance needs to send a
request can be defined by the vendor.

CHAPTER 2. BACKGROUND 7

e Usage-based licensing — The usage-based model allows vendors to charge
customers based on an accumulated usage. For example, in the case of
an accounting software, vendors could charge extra for generation of
yearly reports. Customers could either get a fixed number of credits (i.e.
on a pre-paid basis) or be charged for the actual number of credits used
(i.e. on a post-pay basis) [1].

2.1.2 Amount of data per licensing model

Depending on the licensing model used, there will be different amount of data
logged, which can affect how well a model can learn the data. The least amount
of data will be for licenses using the node-locked model. Some customers will
verify the license each time the application starts whereas others will verify it
periodically, for example, once a year. Both usage-based and floating licenses
will have more data since the user needs to be online to synchronize changes
with the license server. The floating license model will generate most of the
data.

2.2 Anomaly detection in time-series

This section is based on the recent survey from Cook, Misirli, and Fan [2]
and describes the foundation needed to understand anomaly detection in time-
series.

2.2.1 What is an anomaly?

Before we go in depth on how to find anomalies in a data set, we need to define
what an anomaly is. A couple of definitions have been suggested. Cox [3]
define it as "an observation which deviates so much from other observations as
to arouse suspicions that it was generated by a different mechanism". In more
general terms, an anomaly is "the measurable consequences of an unexpected
change in state of a system which is outside of its local or global norm" [2]. In
this study, we will assume that most of the data is normal and that anomalous
data only constitutes a small fraction of it.

2.2.2 Types of anomalies

There are three types of anomalies: point anomalies, contextual anomalies and
collective/pattern anomalies.

8 CHAPTER 2. BACKGROUND

Point anomaly

A point anomaly is when a point suddenly goes beyond the normal range of
values and later returns back to normal, i.e. if a time series contains the values
{0.5,0.3,0.7,0.1,100,0.7,0.9}, the value 100 is a point anomaly since the
normal state are values between zero and one.

Contextual anomaly

A contextual anomaly is when a collection of points or a sequence deviates
from the expected pattern. On its own, the collection of points may still con-
form to the normal range of values, but when put into the context of other data
points, it is clearly an anomaly. For example, if the normal state follows the
sine curve, then if we suddenly get a point that is not on the sine curve, this
would be a contextual anomaly, although on its own, the point would not be a
point anomaly if it is within the range of a sine curve.

Collective/pattern anomaly

A collective anomaly is when a collection of points differs significantly from
the rest of the data points. On their own, the points may not constitute an
anomaly, only when they are viewed as a group. For example, we have the
sequence {0,0,0,0,1,0,1,1,1,0,0,1}. If we split it into groups of 3 each,
we get {0,0,0},{0,1,0},{1,1,1},{0,0, 1}, it can be clearly seen that the 3rd
groups differs significantly from the other groups since it consist of only ones.
If we would view the points in isolation, we would not have detect this outlying
behaviour.

2.2.3 How to classify an anomaly

Depending on the method, there are different way to classify anomalies: either
using an anomaly score or binary labels.

Anomaly score

An anomaly score is a values that specifies to what extent a point (or a group
of points) constitute an anomaly. The way this value is computed depends on
the method. For example, if an autoencoder is used, then the reconstruction
error could serve as a basis for the anomaly score.

CHAPTER 2. BACKGROUND 9

Binary labels

Some methods can assign a binary label to a point (i.e. if it is an anomaly or
not). For example, if a clustering method such as KMeans or Gaussian Mixture
Models are used, they can provide us with a label automatically. In other cases,
a threshold needs to be introduced, which is then used to determine the labels.
For example, in the case of an autoencoder, we can set a threshold ¢ on the
reconstruction loss, so that points above 6 are classified as anomalies.

2.3 Methods to detect anomalies

A common method to detect anomalies is to use an autoencoder network.
There are two approaches an autoencoder network can be utilized, either by
only using the autoencoder or combining it with a clustering method. In the
first case, the reconstruction error is used as the basis for an anomaly score.
An existing problem with this approach is a way to decide the threshold. In
the second case, only the encoder part is used to reduce the dimension of the
data, so that this new representation can be analyzed by a clustering method.
In both cases, the goal is to first train an autoencoder that attempts to learn the
"normal" distribution of the data set.

2.3.1 Autoencoder for anomaly detection

An autoencoder is a neural network whose goal is to reconstruct the input with
minimal loss metric. It can be thought of as an identity function, i.e. we want
to train a network so that f(z) ~ . The network is designed so that each

Figure 2.1: An example of an autoencoder that takes in an input vector of size
4 and attempts to compress it into a vector of size 2. The bottleneck layer
contains the nodes b1 and b2.

10 CHAPTER 2. BACKGROUND

subsequent hidden layer has lower dimension than the input until a bottleneck
layer is reached, after which the number of nodes is increased again until it
is of the same dimension as the original input. The part of the network from
the input vector to the bottleneck layer is referred to as the encoder and the
decoder is the network from the bottleneck to the output.

The bottleneck forces the autoencoder to find a compressed representation
of the input. In fact, the compressed representation (i.e. the output of the en-
coder) was proven to be related to principle component analysis in [4]. Thus,
an autoencoder can be viewed as a dimensionality reduction method. An ex-
ample of an autoencoder network is shown in Figure 2.1, where the network
attempts to compress the input of size 4 into a vector of size 2. If the network
is able to find an optimal representation, the reconstruction error will be small.

Early attempts

An early attempt to tackle anomaly detection in an unsupervised manner using
autoencoders was described in [5], where Replicator Neural Network (RepNN)
was proposed. The RepNN in [5] is an autoencoder that has three hidden lay-
ers that are fully connected, whose goal is to learn to reconstruct each sample
with a small mean square error (MSE). The number of neurons in each hidden
layer is decreased until we reach the bottleneck layer, after which the number
of neurons in the hidden layers is increased. The last layer contains the same
number of nodes as the input layer (see Figure 2.1). Thanks to the bottleneck
layer, the network is forced to find a compressed representation of the data. As
a result, normal data will have a small MSE whereas outliers will have a large
MSE. An anomaly is defined to be a sample that has an error greater than a
certain threshold. In order to improve the performance of a RepNN, [6] has
suggested to use dropout layers and [7] to divide training into several stages
where data is first split into two sets, normal and anomalous, in an unsuper-
vised manner, and later train another model only on the normal data in order
to avoid underfitting.

2.3.2 Using LSTM/TCN based autoencoder

We can build on the idea with autoencoders for anomaly detection so that it is
better suited for time-series. Recurrent neural networks (RNNs) offer a way
to capture relationships in data over a period of time [2]. Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRUs) are preferred over vanilla
RNNs that suffer from the vanishing gradient problem [2]. When LSTMs are
used in an autoencoder, it has been shown to be effective at finding anomalies

CHAPTER 2. BACKGROUND 11

in both univariate and multivariate time-series [8, 9]. In [9], it is shown that
anomalies can be found in multivariate time series with the length between 30-
500. To achieve better performance, several LSTMs can be stacked together
so that more temporal information can be learned [8, 10].

Recently, temporal convolutional neural networks (TCNs) have been sug-
gested as an improvement over RNN based methods [11, 12]. TCNs are both
faster to train and have been shown in [12] to outperform canonical LSTMs in
a wide range of tasks. A TCN, as Bai, Kolter, and Koltun [12] put it is

TCN = 1D Fully-convolutional network (FCN) + causal convolu-
tions

The use of 1D fully convolutional network ensures the size of the output is the
same as the input and the causal convolutions ensure that there is no leakage
from the future to the past [12]. In [13], there is an example how TCN based
autoencoder can be used in anomaly detection.

2.3.3 Finding the classification threshold

A problem with unsupervised anomaly detection using purely the autoencoder
approach is finding a suitable threshold. In most studies where this method was
used, it is assumed that we either have labels or that a certain percentage of the
data is anomalous. Ferndndez-Satco et al. [14] suggests an automated method
that has been shown to find a threshold close to the correct one on two datasets
(see Appendix A for the pseudo code implementation). In [6], the threshold is
based on the largest reconstruction error on the training set when outliers are
removed. However, there does not seem to be a general way of determining
the threshold. Thus, it may help to use an autoencoder in combination with
another method, as described in the next section.

2.3.4 Encoder together with a clustering method

Since autoencoders reduce the dimensionality of the data in the bottleneck
layer, we can use the encoder as a feature extractor and combine it with a
clustering method, such as k-means, T-SNE [15] or Gaussian mixture models
(GMMs). A description of how they work is available in the next chapter. For
example, in [16], they first train a TCN so that it can be used to extract features
in a lower dimension and then train a GMM based on the new representation.
If an autoencoder is able to learn to reproduce normal samples correctly, we
anticipate that its representation in the lower dimension will differ significantly

12 CHAPTER 2. BACKGROUND

from the corresponding representation of anomalous samples, as was shown
in [17].

2.4 Clustering methods

Clustering methods offer a way to group data points in an unsupervised man-
ner. Since they can be combined with the autoencoder and provide us with
a more convinient way of classifying anomalies, a couple of methods will be
described.

2.4.1 k-means

k-means is a distance-based clustering method that aims to minimize within-
cluster sum-of-squares [18], i.e.

n
: 2

ggégmxi = 51) @.1)
where X = {z;...x;} are the data points and C' = {y; ... y1;} are the cluster
means. The method works by first initializing & clusters, preferably far away
from each other, and then two steps are performed in a loop. First, data points
are assigned to the nearest cluster using Euclidean distance. After that, the
centroid of each cluster is re-computed as a mean of the points in the cluster.
This procedure can be repeated until the cluster means remain stable. Conver-
gence is guaranteed, but it may not be optimal.[18]

2.4.2 Gaussian Mixture Models

Gaussian mixture model is a probabilistic method that assumes that "all points
are generated from a finite number of Gaussian distributions with unknown pa-
rameters" [19]. It can be thought of as a generalization of the k-means method,
since it also takes into account the covariance structure of the data [19]. It uses
the Expectation-Minimization method to find which point belongs to which
cluster.

Chapter 3
Methods

In this section we will go through the data processing pipeline (Section 3.1),
the privacy measures taken throughout the project (Section 3.2), methods used
to detect anomalies (in Section 3.3) and the evaluation metrics to assess the
quality of the anomalies (in Section 3.4).

3.1 Data

In the following section the data processing pipeline is described. A summary
of the steps is shown in Figure 3.1. In sum the steps are as follows. First, the
raw data for a specific user is retrieved. Secondly, most columns are normal-
ized and additional columns are added that can be derived from the raw data
(for example, the country from the IP address). Thirdly, the data is split up
into chunks of 100 requests each. After that, the time column is normalized
and the chunks are split into a training and test sets with the 80:20 ratio.

Chunk 1

Train set

Chunk 2 .
Get Web API Log . Normalize Time
Web API Log for a user —| Pre-processing |—p|] ——| rela;l}:/jniach >

Test set
20%

(Time, Success, I_P, Key, Chunk N
Productld, Action,
MachineCode)

(Id, Productld, Key, IP,
Time, State, MachineCode)

Train/test split

Split into equal-sized chunks

Figure 3.1: Overview of the data preparation pipeline.

13

14 CHAPTER 3. METHODS

3.1.1 Data source

The source of the data to be analyzed comes from the Web API Log [20].
Each request that is related to a license key is logged, for example license key
activation, deactivation, change of a dataobject associated with a license, etc.
The structure of each log entry is shown in Figure 3.3. The way the raw data
is gathered is shown in Figure 3.2.

CRYPTOLENS> Web API Log

Store (Id, Productld, Key, IP,
Time, State, MachineCode)

I Gy Ny

User 1 User 2 User 3

Each device attempts to verify the license key

Figure 3.2: Explains how data is gathered in the Web API Log. When a device
attempts to verify the license, Cryptolens stores the result in the Web API Log.

3.1.2 Pre-processing

Before the data can be used to train the models, it needs to be preprocessed.
This is done for three reasons. First, LSTMs and TCNs require a numerical
value as input and preferably normalized. Secondly, the state column contains
compressed information about the status of the request, which have different
degrees of importance. Thus, it may be better to split it into separate columns
so that the model can determine their importance. Finally, the IP address can
provide us with geographical information, which can be useful for the model
to know. For example, even if IP addresses change frequently, it may not be a

CHAPTER 3. METHODS 15

Id A unique identifier of the event.
Productld The id of the product.
Key The license key string.
P An anonymized IP of the device that triggered this log.
Time The time when this log was created.
State Contains more information about the method
that was called and if it was successful or not.
MachineCode | The machine code of the device, if applicable.

Figure 3.3: The information stored inside the Web API Log.

root of concern assuming that the country is the same. However, if the country
changes as well, we want the model to take that into account too.

As a result, we will add three new columns: success (whether the request
was successful or not), the action (a number specifying what action was in-
voked) and country (a numerical representation of the country). Since the Id
does not contribute any useful information about the state of an action, it will
be disregarded.

The first step in the pre-processing pipeline of user data is to ensure that
it only contains normalized numerical value. In order to convert all values to
an integer, each value, no matter if it is a string or an integer, is mapped to
an index inside a dictionary. This is performed for all data since the creation
of the account. In other words, if a user has only activated three devices with
machine codes AAA, BBB and CCC, they would be mapped to values 0, 1 and
2, respectively. Once the data is in numerical form, we normalize it by dividing
by the size of the dictionary (i.e. the number of distinct values in a column).
Going back to the three machine codes, they would be represented as 0.33,
0.66 and 1, respectively. Since the time column will always contain different
values for each row, we do not normalize it in this step. The list of all columns
used in the analysis is illustrated in Figure 3.4.

The next step is to split the data into equally-sized chunks. Our choice was
to split it into chunks of size 100. The splitting phase can be accomplished in
two ways: with or without overlap. Once we have split the data into chunks,
the time column is normalized relative to each chunk. In other words, it will
always start at zero and end with 1 in each chunk.

Finally, once the time-series is split into equally-sized chunks, they are
shuffled and split into a training and test set with the ratio of 80 : 20.

16 CHAPTER 3. METHODS

Time The time relative to each chunk.

Success Whether the request was successful (0 or 1).

P An anonymized IP in normalized form.

Key Normalized license key.

Productld Normalized id the of the product.

Action Normalized integer representing details of the request.
MachineCode | Normalized machine code.

Country Normalized country derived from the IP.

Figure 3.4: The information that will be analyzed by the model. Note, all
columns but time are normalized relative to all values observed since the cre-
ation of the account.

3.1.3 Test cases

Models will be evaluated on three cases so that the performance can be as-
sessed for different types of licensing models. A summary is shown in Figure
3.5.

Case | Licensing model Training size | Test size
1 Standard (node-locked) 32 8

2 Usage-based licensing (mostly) | 80 20

3 Floating licensing 19004 4751

Figure 3.5: The different cases that will be tested. Each case represents a
customer, which is why it may contain requests using other licensing model.
Each sample is a set of 100 consecutive requests.

3.2 Privacy measures

In order to safeguard privacy, only the information necessary to perform the
experiment was used. All IP addresses were anonymized, notes field and cus-
tomer ids were removed. During testing, I[P addresses, product and key ids
were scrambled further so that they did not convey any more information than
that of a change of the content in a field. Moreover, there was no way to link a
certain case to a specific customer. Analysis was performed on a computer in
Sweden and all files were removed after the experiment.

CHAPTER 3. METHODS 17

3.3 Models

Anomalies can be found in two ways: either using the reconstruction error in
the autoencoder or by using the latent representation of a trained autoencoder
in combination with a clustering method. When using the first approach, a
method is needed to set the threshold, which is described in a separate section.

3.3.1 Autoencoder-based models

Two different types of autoencoders will be evaluated, based on LSTM and
TCN layers. In both cases, we will test different number of hidden layers and
the size of the bottleneck layer. The TCN autoencoder implementation is based
on the one in [13] and the LSTM autoenconder is based on the implementa-
tion from [21]. The exact definition of the networks used is documented in
Appendix B.

3.3.2 Finding the threshold

We will use three methods to find the classification threshold for anomalies
given the reconstruction error. The first method uses the algorithm suggested
in [14]. The second method uses the largest reconstruction error observed on
the training set, which was used in [6]. The third method is to use the largest
error obtained using a histogram of errors. Implementation of these methods
is available in Appendix A.

3.3.3 Autoencoder with clustering

When an autoencoder has been trained, a clustering method will be trained
the compressed representation of the test data. To obtain the compressed rep-
resentation, the encoder network will be used. KMeans and GMM will be
used as the clustering method. We will use the sk1earn! implementation of
KMeans and GMM. Given that we have extracted the encoder in enc, they
can be called as shown below:

from sklearn.mixture import GaussianMixture
from sklearn.cluster import KMeans

kmeans= KMeans (n_clusters=2)

s pred = kmeans.fit_predict (enc.predict (test))

"More information can be found here: https://scikit—-learn.org/stable/

18 CHAPTER 3. METHODS

7 gmm = GaussianMixture (n_components=2)
8 pred2 = gmm.fit_predict (enc.predict (test))

3.4 Assessing performance

Since there is no objective metric to assess the performance of a model (be-
cause there are no "correct" labels), it needs to be performed manually. To
aid in this comparison, we need to first summarize the data and compare the
summary of a normal sample with the one the model classifies as anomalous.

To summarize the data, we can compute the number of unique items in each
column, which will result in a 1-dimensional vector. For example, given three
log items with three columns each, {(0, 1,1), (0,2,1), (0, 3, 2)}, the summary
vector would be (1,3,2). We can then compare the difference between the
number of unique items for normal and anomalous samples.

Note, in this analysis, the distribution of time will not be taken into account
and is solely based on the method described above.

Chapter 4

Results & Discussion

Four types of results were collected to evaluate the models. The quality of the
samples that were classed as anomalies are summarized in Figures 4.1, 4.2 and
4.3. The distribution of the errors is shown in Figure 4.4. The speed of each
model is illustrated in Figure 4.5. The evolution of the training and validation
loss across the epochs is available in Figures 4.6, 4.7 and 4.8.

The model name refers to the architecture of the network, which are de-
scribed in more detail in Appendix B. The bottleneck is the shape of the last
layer in the encoder before the size of subsequent layers starts to increase. The
depth is defined in two ways, depending on if it is an LSTM or a TCN net-
work. For an LSTM network, it is the number of hidden LSTM layers and
for the TCN network it is the the number of convolutional layers. Using each
of the networks, five experiments were performed. Method 1 (M1), Method
2 (M2) and Method 3 (M3) refer to the different methods to find a decision
threshold, so the result is the number of anomalies given the threshold. In the
last two columns, GMM and KMeans is when the autoencoder network is first
trained and later the encoder is used in combination with a clustering method.
GMM and KMeans will attempt to find two classes and we will treat the class
with fewest members as the anomaly class.

In Figures 4.1, 4.2 and 4.3, different colours are used as a way to convey
the quality of the found anomalies, using the method in Section 3.4.
values mean the samples were clearly an anomaly, is when it is unclear
or on the border line and red is when it was clearly not an anomaly.

The rest of the results section will focus on evaluating the decision thresh-
old method (Section 4.1), whether it is better to use the reconstruction error
of an autoencoder or let a clustering method take the decision (Section 4.2),
which model architecture performs better (Section 4.3), which model is bet-

19

20 CHAPTER 4. RESULTS & DISCUSSION

ter given the constraints (Section 4.4), ethical implications and sustainability
(Section 4.5) and future work (Section 4.6).

Model name Bottleneck | Depth | M1 | M2 | M3 | GMM | KMeans
LSTM_AE (16,) 1 7

LSTM_AE_Small | (3,) 1 na 4 1
LSTM_AE_Deep | (8,) 2 6 1 1

LSTM_AE_Deep2 | (4,) 3 na

Model name Bottleneck | Depth | M1 | M2 | M3 | GMM | KMeans
TCN_AE (12,6) 4 na 8

TCN_AE2 @3, 4 na 4
TCN_AE_Small | (6,3) 5 na

TCN_AE_Small2 | (3,) 5 na

Figure 4.1: The number of anomalies detected in case 1 (node-locking licens-
ing). The test size is 8 (see Figure 3.5). values mean it is clearly an
anomaly, is when it is unclear or on the border line and red is when it
was clearly not an anomaly. "M1", "M2" and "M3" refer to methods to find
the threshold, which are described more in detail in Appendix A. "na" is when
the method was unable to find a threshold.

4.1 Decision threshold method

Based on Figures 4.1, 4.2 and 4.3, out of the three methods that were tested
to decide the decision threshold, method 1 performed the worst. It took long
time for the method to converge and once it did the result gave mostly false
positives. Method 2 was restrictive in what was classified as anomaly (since
few anomalies were found, as can be seen in Figures 4.1, 4.2 and 4.3), but the
quality of the result was good (since most of the anomalies had green value).
Method 3 found more anomalies than method 2 and the quality was equally
good. As a result, we would recommend to use method 3 as a way to find the
decision threshold since it is fast and gives high quality anomalies. Moreover,
method 3 can be tuned by changing which error is used from the histogram.
An example of an error histogram is available in Figure 4.4.

CHAPTER 4. RESULTS & DISCUSSION 21

Model name Bottleneck | Depth | M1 | M2 | M3 | GMM | KMeans
LSTM_AE (16,) 1 14 9 9
LSTM_AE_Small | (3,) 1 20 2 7
LSTM_AE_Deep | (8,) 2 na

LSTM_AE_Deep2 | (4,) 3 na

Model name Bottleneck | Depth | M1 | M2 | M3 | GMM | KMeans
TCN_AE (12,6) 1 na

TCN_AE2 (3, 4 na

TCN_AE_Small | (6,3) 5 na

TCN_AE_Small2 | (3,) 5 na

Figure 4.2: The number of anomalies detected in case 2 (usage-based licens-
ing). The test size is 20 (see Figure 3.5). values mean it is clearly an
anomaly, is when it is unclear or on the border line and red is when it
was clearly not an anomaly. "M1", "M2" and "M3" refer to methods to find
the threshold are described more in detail in Appendix A. "na" is when the
method was unable to find a threshold.

4.2 Autoencoder with or without clustering

When deciding whether to use the reconstruction error of an autoencoder or
combine the encoder network with a clustering method, it appears, based on
the results in Figures 4.1, 4.2 and 4.3, that the first approach using the recon-
struction error is better. There are three reasons for that. First, the clustering
methods are inflexible since their tolerance cannot be adjusted. Secondly, what
clustering methods classified as an anomaly was either wrong or on the bor-
der line (because the anomalies had either red or yellow value). Finally, for
shallower networks, clustering methods performed worse than when using a
method based on the reconstruction error. As a result, our recommendation is
to use the approach based on the reconstruction error for all types of networks.
Encoder network with a clustering network may work but requires deeper au-
toencoder network.

4.3 LSTMvs. TCN

When comparing LSTM vs TCN based autoencoder, it seems that the LSTM
based autoencoder was able to find more anomalies that were of good quality
in comparison to the TCN based autoencoder (which still found anomalies, but
not all of them). This can be seen by comparing the number of green values in

22 CHAPTER 4. RESULTS & DISCUSSION

Model name Bottleneck | Depth | M1 | M2 | M3 | GMM | KMeans
LSTM_AE (16,) 1 na 1131 | 2361
LSTM_AE_Small | (3,) 1 na 213
LSTM_AE_Deep | (8,) 2 na

LSTM_AE_Deep2 | (4,) 3 na

Model name Bottleneck | Depth | M1 | M2 | M3 | GMM | KMeans
TCN_AE (12,6) 4 na

TCN_AE2 @3, 4 na

TCN_AE_Small | (6,3) 5 na

TCN_AE_Small2 | (3,) 5 na

Figure 4.3: The number of anomalies detected in case 3 (floating licensing).
The test size is 4751 (see Figure 3.5). values mean it is clearly an
anomaly, is when it is unclear or on the border line and red is when
it was clearly not an anomaly. "M1", "M2" and "M3" refer to methods to find
the threshold are described more in detail in Appendix A. "na" is when the
method was unable to find a threshold.

column M3 in Figures 4.1, 4.2 and 4.3, since more green value anomalies were
found with the LSTM based models. In Figures 4.1 and 4.2 that were trained on
a small dataset, the TCN is restrictive in what it classifies as anomaly. Only the
LSTM based methods seem to find most of the anomalies. When the dataset is
large (as in Figure 4.3 does the TCN find more anomalies (but not as many as
the LSTM based models). For both LSTM and TCN networks, it appears that
the deeper the network, the more quality anomalies are found. The network
depth also affects the performance of the clustering methods (the deeper the
network, the better the clustering method performs), if the encoder is used as
a dimensionality reduction tool. The amount of data in the training set does
seem to affect the performance too. In Figure 4.4, when the training set is
large (as in case 3, floating licensing) most normal samples have the same
error whereas anomalies are the small number of samples with a large error.
In other cases where the training set is small, it is not as clear what should be
regarded as an anomaly.

When comparing the speed of LSTM and TCN based autoencoders, TCN
based autoencoders are clearly faster (by a factor of 5-10), as can be seen in
Figure 4.5. As the dataset increases in size, the training time of the deepest
LSTM network is 10 times slower than the deepest TCN network.

The convergence of models, shown in Figures 4.6, 4.7 and 4.8, seems to
occur faster for LSTM based methods when the dataset is small. On the con-

CHAPTER 4. RESULTS & DISCUSSION 23

trary, when the amount data is large, there does not seem to be any difference
in the time to converge. A reason to prefer a TCN based model is because
the loss curve is smoother. With LSTM based models, the loss curve has sud-
den spikes. In some cases, we had to restart training because the error would
suddenly increase and not improve over time. For smaller datasets, the LSTM
seems to be better at learning the data.

4.4 Recommended model

The goal of the project was to find the best model for anomaly detection given
the criteria defined in Section 1.3. In the training phase, the criteria were
the speed, stability and performance and in the test phase it was the inference
speed, performance on unseen data and interpretability.

If the training speed is important, a TCN based autoencoder is a better
choice. It is more picky on what it considers an anomaly in comparison to
LSTM based autoencoder, so it may not find all anomalies, but those that it
finds are clearly anomalies. TCN models are also more stable to train. They
do not have spikes in the loss curve as the LSTM models and the evolution of
the loss over the epochs is smooth. It may take longer to converge for a TCN
model but, since they are fast to train, this is not a problem.

In the inference phase, the speed was affected by whether an LSTM or TCN
based autoencoder was used. When comparing the performance of different
methods to find the threshold vs. using a clustering method, we found method
3 (the histogram method) on the reconstruction error to be better. Combining
the autoencoder with a clustering method is better for interpretability, but since
the quality of the anomalies they found was not as good, we do not recommend
it. More research is needed to determine if clustering methods can be a good
alternative. Instead, we recommend to either base the decision on the largest
error in the histogram or present the user the reconstruction error and the error
histogram so that they can analyse it on their own.

4.5 Ethics and sustainability

The project was executed with privacy in mind, making sure that no end user
can be determined and ensuring that there is no way to link the data to a certain
customer. The results can have both positive and negative ethical implications.
A downside is that using the created models, there will be less work for those
who normally analyzed the data in house. On the positive side, the results from

24 CHAPTER 4. RESULTS & DISCUSSION

the model will allow companies to be more efficient and empower the SMEs
who would not normally be able to afford in house data analyst or outsource
it.

4.6 Future work

Recently, a paper was published about an improved version of an LSTM, mo-
grifier LSTM (see [22]), which we think could be interesting to evaluate on li-
censing data. Moreover, we suggest to test if Generative Adversarial Networks
could be an alternative to the autoencoder network. Furthermore, a couple of
additional experiments can be performed with the existing models, for exam-
ple, use different chunk sizes (we used 100 log entries per chunk) as well as
allow overlapping between chunks (which can be helpful when the amount of
user data is small).

CHAPTER 4. RESULTS & DISCUSSION 25

2.0
179

150

125

3 1.00

075

050

I 025

0 0.00
00 005 010 015

IS

o

ul
0.20 025 030 035 040 000 0.05 o010 015 020 025 030 035 040

8
]
4
o L
00 005 010 015 020 025 030 00 @05 010

0
0. 035 040 0.

w

S

013 0.20 025 030 035 040

1500
6000
1250
000 1000
750
2000 500
250
. N . W

0.00 0.05 010 015 020 025 0.30 035 040 0.00 0.05 010 015 020 025 0.30 035 040

Figure 4.4: Histograms of the errors for the three data sets using
LSTM_AE_Deep?2 (error on the x-axis and the number of samples on the y-
axis). The left graphs are the training error distribution and the right ones are
the test error distribution. The top graphs are case 1, the middle ones are case
2 and the bottom ones are case 3, as defined in Figure 3.5. As can be seen
in the bottom row, when the model was able to learn the normal cases, most
of the errors are the same and only a few samples have a large error, which is
what we consider an anomaly. With smaller training set size, it is not as clear
what an anomaly is.

26

CHAPTER 4. RESULTS & DISCUSSION

Model name Dataset Bottleneck | Depth | Time (10 epochs) [s]
LSTM_AE standard (case 1) (16,) 1 16
LSTM_AE_Small | standard (case 1) 3, 1 7.9
LSTM_AE_Deep | standard (case 1) (8,) 2 12.7
LSTM_AE_Deep2 | standard (case 1) 4, 3 15.7
TCN_AE standard (case 1) 3, 4 2.8
TCN_AE2 standard (case 1) 3, 4 2.7
TCN_AE_Small standard (case 1) (6,3) 5 3
TCN_AE_Small2 | standard (case 1) 3, 5 3.8
LSTM_AE usage-based (case 2) | (16,) 1 12.7
LSTM_AE_Small | usage-based (case 2) | (3,) 1 11.1
LSTM_AE_Deep | usage-based (case 2) | (8,) 2 16.2
LSTM_AE_Deep2 | usage-based (case 2) | (4,) 3 21.6
TCN_AE usage-based (case 2) | (3,) 4 3
TCN_AE2 usage-based (case 2) | (3,) 4 3.1
TCN_AE_Small usage-based (case 2) | (6,3) 5 3.8
TCN_AE_Small2 | usage-based (case 2) | (3,) 5 3.8
LSTM_AE floating (case 3) (16,) 1 1067.8
LSTM_AE_Small | floating (case 3) 3, 1 938.1
LSTM_AE_Deep | floating (case 3) (8, 2 1627.3
LSTM_AE_Deep2 | floating (case 3)) 3 2000.5
TCN_AE floating (case 3) 3, 4 214.4
TCN_AE2 floating (case 3) 3, 4 216.2
TCN_AE_Small floating (case 3) (6,3) 5 202.8
TCN_AE_Small2 | floating (case 3) 3, 5 217.8

Figure 4.5: Summary of the time it took to train the model for 10 epochs.

0.5

0.4

0.3

Ioss

[

0.2

01

0.0

0.5

04

0.3

loss

0z

0.1

0o

30

25

20

loss

05

00

3.0

25

20

loss

0.5

0.0

CHAPTER 4. RESULTS & DISCUSSION

LSTM_AE standard (case 1)

—— train loss
— wval loss

o
2

100 150 200 250 300
epoch

LSTM_AE_Deep standard (case 1)

— frain
— val
1] 50 100 150 200 250 300
gpoch
TCMN_AE standard (case 1)
—— frain
— val
] 50 100 150 200 250 300

epoch

TCN_AE_Small standard (case 1)

I
g

— val

o
2

100 150 200 250 300
epoch

lbss

loss

loss

loss

0.5

0.4

0.3

0.2

01

0.0

0.5

0.4

0.3

0z

0.1

0o

30

25

20

27

LSTM_AE_Small standard (case 1)

—— fain
— wal
(1] 50 100 150 200 250 300
epoch
LSTM_AE_Deep2 standard (case 1)
= Train
— val
(1] 50 100 150 200 250 300
epoch
TCN_AE? standard (case 1)
—— fain
— wval
1] 50 100 150 200 250 300

epoch

TCN_AE_Smali2 standard (case 1)

0 50 100 150 200 250 300

Figure 4.6: The evolution of the training and validation loss across the epochs
for the standard (case 1) dataset (as defined in Figure 3.5). The loss metric is
MAE.

28

05
0.4

03

bss

0.2

01

0.0

05

04

03

loss

f

0z

01

oo

30

25

20

S5
w

05

0o

30

25

20

loss

05

0.0

CHAPTER 4. RESULTS & DISCUSSION

LSTM_AE usagebased (case 2)

—— frain
— wval
o 50 100 150 200 250 300
epoch
LSTM_AE_Deep usagebased (case 2)
= frain
— val

o
2

100 150 200 250 00
apoch

TCN_AE usagebased (case 2)

—— frain
— val
0 20 100 150 200 250 300
epoch
TCN_AE_Small usagebased (case 2)
—— frain
— val
o 50 100 150 200 250 300

epoch

lbss

loss

loss

loss

0.5

04

03

0.2

01

0.0

0.5

04

0.3

02

01

00

30

25

20

0.5

0o

3.0

25

20

0.5

0o

LSTM_AE_Small usagebased (case 2)

—— tain
— val
1] 50 100 150 200 250 300
epoch
LSTM_AE_DeepZ usagebased (case 2)
= Train
— val
1] 50 100 150 200 250 300
epoch
TCN_AE? usagebased (case 2)
—— tain
— al
1] 50 100 150 200 250 300
epoch
TCN_AE_Small2 usagebased (case 2)
—— tain
— val
1] 50 100 150 200 250 300

epoch

Figure 4.7: The evolution of the training and validation loss across the epochs
for the usage-based (case 2) dataset (as defined in Figure 3.5). The loss metric
is MAE.

CHAPTER 4. RESULTS & DISCUSSION 29

05 LSTM_AE floating (case 3) 05 LSTM_AE_Small floating (case 3)
—— frain —— fain
— val — wal
04 04
03 03
@ o
W @
o o
02 02
o Ll .
00]
o 2 4 6] (1] 2 4] 8
epoch epoch
o5 LSTM_AE_Deep floating (case 3) 05 LSTM_AE_Deep2 floating (case 3)
= frain = ftrain
— val — val
04 0.4
03 0.3
[@
W 0
Q o
02 02
o —
01 01
00 oo
1] 2 4 6] (1] 2 4 -] a8
gpoch epoch
05 TCN_AE floating (case 3) 05 TCMN_AE2 floating (case 3)
—— frain —— fain
— val — wal
04 04
03 03
@ o
W @
2 2
0z 02
01 01
00 oo
] 2 4 6 8 1] 2 4 6 8
epoch epoch
s TCN_AE_Small floating (case 3) s TCN_AE_Smali2 floating (case 3)
— frain —— train
— val — val
04 04
03 03
[@
W 0
Q o
0.2 02
01 01
0.0]
o 2 4 6 8 (1] 2 4 -] a8
epoch epoch

Figure 4.8: The evolution of the training and validation loss across the epochs
for the floating (case 3) dataset (as defined in Figure 3.5). The loss metric is
MAE.

Chapter 5

Conclusions

In this thesis, we tested different unsupervised methods based on an autoen-
coder architecture to detect anomalies in software licensing data. The reason
such analysis is needed is to aid software vendors to find anomalous behaviour,
which can be fraud or a user who has issues with the software. In both cases,
the goal is to allow vendors to automatically detect such behaviour without
having to analyse all of the data themselves. As a result, it can minimize loss
of revenue due to fraud and contribute to a better customer experience.

In sum, we found that the best performing model is when the threshold
of reconstruction error of an autoencoder is determined by the largest error
in the histogram of errors on the train set (method 3). Both LSTM and TCN
based models can be used, where LSTM models tend to work better on smaller
datasets and also find more anomalies, whereas TCNs are more stable during
training and also faster than LSTMs. We would recommend to have a dataset
of at least 10k samples for better performance.

30

Bibliography

Usage-based licensing. Mar. 9,2020. urL: https://help.cryptolens.
io/licensing-models/usage-based.

Andrew Cook, Goksel Misirli, and Zhong Fan. “Anomaly Detection for
IoT Time-Series Data: A Survey”. In: IEEE Internet of Things Journal
(2019), pp. 1-1. 1ssN: 2327-4662.

D.M Cox D. R.;Hawkins. Identification of Outliers. Dordrecht: Springer
Netherlands, 1969. 1sBN: 9789401539968.

R Hecht-Nielsen. “Replicator neural networks for universal optimal source
coding.” In: Science (New York, N.Y.) 269.5232 (1995), pp. 1860—1863.
1ssN: 0036-8075. urRL: http://search.proquest.com/docview/
733233332/.

S. Hawkins et al. “Outlier detection using replicator neural networks”.
In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 2454. 2002, pp. 170-180. 1sBN: 35404412309.

Carlos Garcia Cordero et al. “Analyzing flow-based anomaly intrusion
detection using Replicator Neural Networks”. In: 2016 14th Annual
Conference on Privacy, Security and Trust (PST). IEEE, 2016, pp. 317—-
324. 1sBN: 9781509043798.

Gaku Kotani and Yuji Sekiya. “Unsupervised Scanning Behavior De-
tection Based on Distribution of Network Traffic Features Using Robust
Autoencoders”. In: 2018 IEEE International Conference on Data Min-
ing Workshops (ICDMW). Vol. 2018-. IEEE, 2018, pp. 35-38. 1sBN:
9781538692882.

Pankaj Malhotra et al. “Long short term memory networks for anomaly
detection in time series”. In: ESANN 2015 proceedings, European Sym-
posium on Artificial Neural Networks, Computational Intelligence and
Machine Learning, Bruges (Belgium). Vol. 89. 2015.

31

32 BIBLIOGRAPHY

[9] PankajMalhotra et al. “LSTM-based Encoder-Decoder for Multi-sensor
Anomaly Detection”. In: ICML 2016 Anomaly Detection Workshop.
2016. arXiv: 1607.00148 [cs.AI].

[10] Michiel Hermans and Benjamin Schrauwen. “Training and Analysing
Deep Recurrent Neural Networks”. In: Advances in Neural Informa-
tion Processing Systems 26. Ed. by C. J. C. Burges et al. Curran Asso-
ciates, Inc., 2013, pp. 190-198. urRL: http://papers.nips.cc/
paper/5l66-training—-and-analysing—deep-recurrent-—
neural—-networks.pdf.

[11] C. Lea et al. “Temporal convolutional networks: A unified approach to
action segmentation”. In: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). Vol. 9915. Springer Verlag, 2016, pp. 47-54. 1sBN:
9783319494081.

[12] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. “An Empirical Evalu-
ation of Generic Convolutional and Recurrent Networks for Sequence
Modeling”. In: CoRR abs/1803.01271 (2018). arXiv: 1803 .01271.
URL: http://arxiv.org/abs/1803.01271.

[13] Sridhar Alla. Beginning anomaly detection using Python-based deep
learning : with Keras and PyTorch. 1st ed. 2019.. 2019. 1sBN: 1-4842-
5177-6.

[14] I.A. Fernandez-Sauco et al. “Computing anomaly score threshold with
autoencoders pipeline”. In: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). Vol. 11401. Springer Verlag, 2019, pp. 237-244.
1sBN: 9783030134686.

[15] Tejas Khot. “Visualizing high-dimensional data”. In: XRDS: Crossroads,
The ACM Magazine for Students 23.2 (2016), pp. 66—67. 1ssN: 15284972.

[16] J.Liuetal. “Anomaly detection for time series using temporal convolu-
tional networks and Gaussian mixture model”. In: Journal of Physics:
Conference Series. Vol. 1187. 4. Institute of Physics Publishing, 2019.

[17] Mayu Sakurada and Takehisa Yairi. “Anomaly Detection Using Au-
toencoders with Nonlinear Dimensionality Reduction”. In: Proceedings
of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory
Data Analysis. MLSDA’14. Gold Coast, Australia QLD, Australia: As-
sociation for Computing Machinery, 2014, pp. 4—11. 1sBN: 9781450331593.

BIBLIOGRAPHY 33

por: 10.1145/2689746.2689747. urRL: https://doi.org/
10.1145/2689746.2689747.

K-Means. Feb. 19, 2020. urL: https://scikit—-learn.org/
stable/modules/clustering.html#k-means.

GMM. Feb. 19, 2020. urRL: https : / / scikit — learn . org/
stable/modules/mixture.html#gmm.

Web API Log. Jan. 26, 2020. urL: https://app.cryptolens.
io/docs/api/v3/model /WebAPILog.

LSTM Autoencoder for Anomaly Detection. Mar. 17,2020. URL: https:
//towardsdatascience.com/lstm—autoencoder—for—
anomaly-detection-elfd4f2ee’cct.

Gabor Melis, Tomas Kocisky, and Phil Blunsom. “Mogrifier LSTM”.
In: International Conference on Learning Representations. 2020. URL:
https://openreview.net/forum?id=SJe5P6EYVS.

1

Appendix A

Code to find the threshold

A.1 Method 1

Implementation of the anomaly threshold algorithm from [14].

def find_threshold (data,

model_name, params) :

Uses source N algorithm to find the optimal

threshold,

"Computing Anomaly Score Threshold with

Autoencoders Pipeline"

nonon

train, test

st_assigned = False

while True:

ae 1is our autoencoder.

ae.fit (train
shuffle=True)

Data.train_test_split (data, 0.5)

, train, epochs=50, verbose=0,

errors = compute_errors (ae, test)
if not st_assigned:
st = np.min(errors)
st_assigned = True
si = 0.01l*(np.max (errors)

anomalies =

if anomalies

- np.min(errors))

test [errors>st+si]

.shape [0]

34

test .shape [0]:

APPENDIX A. CODE TO FIND THE THRESHOLD 35

26 # all samples are anomalies ->
terminate

27 st = 0.5 * (st + np.min(errors))

28 return st

29 elif anomalies.shape[0] == 0 and test.shape
[0] != O0:

30 # terminate if samples contains values
but no anomalies

31 return -1

32 else:

33 train = np.concatenate ((train,
anomalies))

34 test = test[errors <= st + si]

35 st = st + si

A.2 Method 2

Given that we have the training errors in errors_train, we can use the ap-
proach suggested in [6] and treat the largest error in the train set as the decision
boundary:

I np.max (errors_train)

A.3 Method 3

Given that we have the training errors in errors_train, we can find the
largest error using a histogram in NumPy as follows:

I np.histogram(errors_train) [1][-2]

Appendix B

Architecture

The following chapter lists the network architectures used in the experiments.

B.1 LSTM based autoencoders

B.1.1 LSTM_AE

Layer (type) Output Shape Param #
input_1 (InputLayer) (None, 100, 8) 0
lstm_1 (LSTM) (None, 100, 32) 5248
lstm_2 (LSTM) (None, 16) 3136
repeat_vector_1 (RepeatVecto (None, 100, 16) 0
lstm_3 (LSTM) (None, 100, 16) 2112
lstm_4 (LSTM) (None, 100, 32) 6272
time_distributed_1 (TimeDist (None, 100, 8) 264

Total params: 17,032
Trainable params: 17,032
Non-trainable params: 0

B.1.2 LSTM_AE_Small

Layer (type) Output Shape Param #
input_2 (InputLayer) (None, 100, 8) 0
lstm_5 (LSTM) (None, 100, 32) 5248
lstm_6 (LSTM) (None, 3) 432
repeat_vector_2 (RepeatVecto (None, 100, 3) 0
lstm_7 (LSTM) (None, 100, 3) 84
lstm_8 (LSTM) (None, 100, 32) 4608

36

APPENDIX B. ARCHITECTURE

time_distributed_2 (TimeDist (None, 100, 8) 264
Total params: 10,636

Trainable params: 10,636

Non-trainable params: 0

B.1.3 LSTM_AE_Deep

Layer (type) Output Shape Param #
input_1 (InputLayer) (None, 100, 8) 0
lstm_1 (LSTM) (None, 100, 32) 5248
lstm_2 (LSTM) (None, 100, 16) 3136
lstm_3 (LSTM) (None, 8) 800
repeat_vector_1 (RepeatVecto (None, 100, 8) 0
lstm_4 (LSTM) (None, 100, 8) 544
lstm_5 (LSTM) (None, 100, 16) 1600
lstm_6 (LSTM) (None, 100, 32) 6272
time_distributed_1 (TimeDist (None, 100, 8) 264
Total params: 17,864

Trainable params: 17,864

Non-trainable params: 0

B.1.4 LSTM_AE_Deep2

Layer (type) Output Shape Param #
input_2 (InputLayer) (None, 100, 8) 0
lstm_7 (LSTM) (None, 100, 32) 5248
lstm_8 (LSTM) (None, 100, 16) 3136
lstm_9 (LSTM) (None, 100, 8) 800
1stm_10 (LSTM) (None, 4) 208
repeat_vector_2 (RepeatVecto (None, 100, 4) 0
lstm_11 (LSTM) (None, 100, 4) 144
lstm_12 (LSTM) (None, 100, 8) 416
lstm_13 (LSTM) (None, 100, 16) 1600
lstm_14 (LSTM) (None, 100, 32) 6272
time_distributed_2 (TimeDist (None, 100, 8) 264
Total params: 18,088

Trainable params: 18,088

Non-trainable params: 0

37

38 APPENDIX B. ARCHITECTURE

B.2 TCN based autoencoders

B.2.1 TCN_AE

Layer (type) Output Shape Param #
input_4 (InputLayer) (None, 100, 8) 0
convld_1 (ConvlD) (None, 100, 100) 1700
max_poolingld_1 (MaxPoolingl (None, 50, 100) 0
convld_2 (ConvlD) (None, 50, 50) 10050
max_poolingld_2 (MaxPoolingl (None, 25, 50) 0
convld_3 (ConvlD) (None, 25, 25) 2525
max_poolingld_3 (MaxPoolingl (None, 12, 25) 0
convld_4 (ConvlD) (None, 12, 12) 612
dense_4 (Dense) (None, 12, 6) 78
up_samplingld_1 (UpSamplingl (None, 24, 6) 0
convld_5 (ConvlD) (None, 24, 12) 156
up_samplingld_2 (UpSamplingl (None, 48, 12) 0
convld_6 (ConvlD) (None, 48, 25) 625
up_samplingld_3 (UpSamplingl (None, 96, 25) 0
convld_7 (ConvlD) (None, 96, 50) 2550
zero_paddingld_1 (ZeroPaddin (None, 100, 50) 0
convld_8 (ConvlD) (None, 100, 100) 10100
time_distributed_4 (TimeDist (None, 100, 8) 808

Total params: 29,204
Trainable params: 29,204
Non-trainable params: 0

B.2.2 TCN_AE2

Layer (type) Output Shape Param #
input_4 (InputLayer) (None, 100, 8) 0
convld_9 (ConvlD) (None, 100, 100) 1700
max_poolingld_4 (MaxPoolingl (None, 50, 100) 0
convld_10 (Convl1D) (None, 50, 50) 10050
max_poolingld_5 (MaxPoolingl (None, 25, 50) 0
convld_11 (ConvlD) (None, 25, 25) 2525
max_poolingld_6 (MaxPoolingl (None, 12, 25) 0
convld_12 (ConvlD) (None, 12, 12) 612
reshape_1 (Reshape) (None, 144) 0
dropout_1 (Dropout) (None, 144) 0

dense_5 (Dense) (None, 3) 435

APPENDIX B. ARCHITECTURE

dense_6 (Dense) (None, 144) 576
reshape_2 (Reshape) (None, 12, 12) 0
up_samplingld_4 (UpSamplingl (None, 24, 12) 0
convld_13 (ConvlD) (None, 24, 12) 300
up_samplingld_5 (UpSamplingl (None, 48, 12) 0
convld_14 (ConvlD) (None, 48, 25) 625
up_samplingld_6 (UpSamplingl (None, 96, 25) 0
convld_15 (ConvlD) (None, 96, 50) 2550
zero_paddingld_2 (ZeroPaddin (None, 100, 50) 0
convld_16 (ConvlD) (None, 100, 100) 10100
time_distributed_4 (TimeDist (None, 100, 8) 808
Total params: 30,281

Trainable params: 30,281

Non-trainable params: 0

B.2.3 TCN_AE_Small

Layer (type) Output Shape Param #
input_5 (InputLayer) (None, 100, 8) 0
convld_17 (ConvilD) (None, 100, 100) 1700
max_poolingld_7 (MaxPoolingl (None, 50, 100) 0
convld_18 (ConvlD) (None, 50, 50) 10050
max_poolingld_8 (MaxPoolingl (None, 25, 50) 0
convld_19 (ConvlD) (None, 25, 25) 2525
max_poolingld_9 (MaxPoolingl (None, 12, 25) 0
convld_20 (ConvlD) (None, 12, 12) 612
max_poolingld_10 (MaxPooling (None, 6, 12) 0
convld_21 (ConvlD) (None, 6, 6) 150
dense_8 (Dense) (None, 6, 3) 21
up_samplingld_7 (UpSamplingl (None, 12, 3) 0
convld_22 (ConvlD) (None, 12, 6) 42
up_samplingld_8 (UpSamplingl (None, 24, 6) 0
convld_23 (ConvlD) (None, 24, 12) 156
up_samplingld_9 (UpSamplingl (None, 48, 12) 0
convld_24 (ConvlD) (None, 48, 25) 625
up_samplingld_10 (UpSampling (None, 96, 25) 0
convld_25 (ConvlD) (None, 96, 50) 2550
zero_paddingld_3 (ZeroPaddin (None, 100, 50) 0
convld_26 (ConvlD) (None, 100, 100) 10100
time_distributed_5 (TimeDist (None, 100, 8) 808

39

40 APPENDIX B. ARCHITECTURE

Total params: 29,339
Trainable params: 29,339
Non-trainable params: 0

B.2.4 TCN_AE_Small2

Layer (type) Output Shape Param #
input_6 (InputLayer) (None, 100, 8) 0
convld_27 (ConvlD) (None, 100, 100) 1700
max_poolingld_11 (MaxPooling (None, 50, 100) 0
convld_28 (ConvlD) (None, 50, 50) 10050
max_poolingld_12 (MaxPooling (None, 25, 50) 0
convld_29 (ConvlD) (None, 25, 25) 2525
max_poolingld_13 (MaxPooling (None, 12, 25) 0
convld_30 (ConvlD) (None, 12, 12) 612
max_poolingld_14 (MaxPooling (None, 6, 12) 0
convld_31 (ConvlD) (None, 6, 6) 150
dense_10 (Dense) (None, 6, 3) 21
reshape_3 (Reshape) (None, 18) 0
dense_11 (Dense) (None, 3) 57
dense_12 (Dense) (None, 18) 72
reshape_4 (Reshape) (None, 6, 3) 0
up_samplingld_11 (UpSampling (None, 12, 3) 0
convld_32 (ConvlD) (None, 12, 6) 42
up_samplingld_12 (UpSampling (None, 24, 6) 0
convld_33 (ConvlD) (None, 24, 12) 156
up_samplingld_13 (UpSampling (None, 48, 12) 0
convld_34 (ConvlD) (None, 48, 25) 625
up_samplingld_14 (UpSampling (None, 96, 25) 0
convld_35 (ConvlD) (None, 96, 50) 2550
zero_paddingld_4 (ZeroPaddin (None, 100, 50) 0
convld_36 (ConvlD) (None, 100, 100) 10100
time_distributed_6 (TimeDist (None, 100, 8) 808

Total params: 29,468
Trainable params: 29,468
Non-trainable params: 0

TRITA -EECS-EX-2020:223

	kth-cover3756210760185575886
	masterthesis
	kth-cover3756210760185575886

