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Abstract: Due to the increased use of variable renewable energy sources, more capacity for reserves is required. Non-generating
resources such as thermostatically controlled loads (TCLs) can arbitrage energy prices and provide reserves due to their thermal
energy storage capacity. The quantity of reserves depends not only on the aggregate power capacity, but also on information
and communication technology, exogenous parameters, and system operator requirements. Specifically, the practical limitations
origin from (i) communication constraints, (ii) ambient temperature, and (iii) the dispatch time of the activation signal. This paper
explores the impact of these parameters on the amount of reserves that an aggregator of TCLs can provide to the system operator
based on centralized control of a TCL population. We propose a decision support tool that can be used by aggregators to decide
on maximum dispatchable reserve bids. The method can accommodate the specific control algorithm and TCL population of an
aggregator and is based on offline computation. It constitutes a powerful reserve bid library to be used when optimization tools
become computationally intractable due to the increased number of decentralized flexible loads.

Nomenclature

Indexes and Sets
θ ∈ Θ Ambient temperature Θ = {−50,−45, . . . , 15}oC
i ∈ I Index of TCL, i = 1, ..., NTCL

j ∈ J Index of bins, j = 1, ..., Nbin

PR ∈ ΨReserve power bid Ψ = {0, 0.1, . . . , 1} MW
0.1 Hz

t ∈ T Simulation time step [-], t = t0, ..., tN
v ∈ V Index of moving average error window v = t− 95, ..., t
Control Parameters and Matrices
A(θ) State space matrix at ambient temperature θ
B State space matrix
C State space matrix
ubc Down-sampled input vector broadcast to the TCL population
ut Control input vector at time t
xfb Down-sampled state vector as feedback to the aggregated

model
xt State bin vector at time t
yt Output vector at time t
P
R

Reserve power bid, and also the gain in the droop control
F ex Extreme worst-case frequency signal
F pr Pre-qualification frequency signal
F re Real historical frequency signal
ft System frequency measurement at time t
P base

Θ Baseline aggregate power at ambient temperature Θ
Pmeas
t Measured aggregate power at time t
P

pred
t Predicted aggregate power at time t
P ref
t Reference power signal at time t
T bc Broadcast down-sampling time [s]
T fb Feedback down-sampling time [min]
TCL Parameters
δi Indoor temperature deadband of TCL i
ηi Thermal efficiency, coefficient of power, of TCL i
θi, θi Upper and lower indoor temperature threshold of TCL i at

time t
θ Ambient temperature measurement
θin
t,i Indoor temperature of TCL i at time t
θset
t,i Indoor temperature setpoint of TCL i at time t
c Average specific thermal capacitance

Ci TCL thermal capacitance of TCL i
mi On/off state of TCL i
P eli Electric power rating of TCL i
P thi Thermal power rating of TCL i
r Average specific thermal resistance
Ri TCL thermal resistance of TCL i
Zi room surface area of room with TCL i
Performance Metrics
ê Moving average RMS tracking error
e RMS tracking error of TCL population
P

disp
θ,T Actual, practically limited maximum reserve power at tem-

perature θ for maximum dispatch time T calculated by
iterative method

P
symm
θ Ideal, theoretical maximum symmetric reserve power calcu-

lated by baseline power and maximum power capacity
TP R,θ Maximum dispatch time of reserve power PR at ambient

temperature θ

1 Introduction

An increasing use of variable renewable energy sources requires
more flexible resources that can provide reserve capacity and
respond in real-time to system imbalance. To this end, thermo-
statically controlled loads (TCLs) have been proposed for energy
arbitrage [1, 2] and reserve provision [3–9]. TCLs can provide
reserves due to their thermal energy storage capacity constituted
by their thermal capacity and indoor temperature dead bands. The
amount of available TCL reserves depends not only on the aggregate
power capacity, but also on ambient temperature [1], practical com-
munication constraints [6], as well as uncertainty in the real-time
activation signal [9].

Extensive effort has been devoted to the modeling, optimization
and control of TCLs. A single node lumped capacitance model of
indoor temperature change due to individual TCL operation has been
developed in [10–13] based on physical building properties. In [2],
a state-queuing model is developed to analyze the price response of
aggregated TCLs. Reference [3] develops a model that accurately
predicts changes in load resulting from changes in thermostat tem-
perature set points based on an exact solution to the Fokker-Planck
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equations. Reference [4] develops a coordination approach for TCLs
that allows a large group of devices to track a setpoint trajectory with
its aggregated power consumption, while the individual temperature
bounds of the appliances are not violated. The authors of [5] use the
Markov transition matrix in a state bin transition (SBT) model to
manage real-time energy imbalance with a homogeneous TCL pop-
ulation and propose a thermal battery model in [1] that models a
large population of heterogeneous TCLs efficiently. Similar to the
SBT, reference [14] uses a bin state transition model, where the
state equation is built using time constants which limits the model
to a homogeneous population. A similar approach is developed in
the design of a controller for secondary reserves in [15]. Reference
[16] proposes an extension to the model that considers heteroge-
neous populations by adding a new dimension to the state equation
that captures the dynamics of each TCL.

An aggregator has to decide on a reserve bid ahead of opera-
tion, e.g., on the day-ahead, given a known TCL population and
ambient temperature. The maximum reserve bid depends on (i) the
communication constraints of the control system, (ii) ambient tem-
perature, and (iii) the maximum duration of the real-time activation
signal which is specified by the system operator. Ambient tempera-
ture affects the duty cycle and availability of TCLs. Communication
constraints such as broadcast and feedback time affect the accuracy
of the control. The magnitude of the real-time activation signal deter-
mines the amount of TCLs to be switched, and its duration affects
the time after which the TCLs reach saturation, i.e., when indoor
temperatures skew towards one side of the temperature dead band.

(i) The above literature has shown that a TCL population can
successfully be controlled to provide reserves. Commonly, the stud-
ies assume a control strategy with instantaneous feedback of states
and continuous broadcast of control signals. Only one of the above
reference [6] has conducted a sensitivity analysis on the impact of
response delays on the load following capability of TCLs and one
reference [5] conducts sensitivity analysis with respect to the num-
ber of bins. In reality, there exist several further practical limitations
like communication constraints or limited server capacity. The com-
putational tractability of instantaneous feedback decreases with the
number of TCLs and thus becomes impractical for real applica-
tions with current communication technology. To the authors’ best
knowledge, none of the references investigate the impact of commu-
nication constraints on the bidding problem of the TCL aggregator.
Therefore, we consider communication constraints on feedback and
broadcast time in order to obtain a more realistic estimate of the
reserve capacity that an aggregator can successfully sustain. These
communication constraints are modeled by down-sampling of the
control signal and the state vector.

(ii) Another common assumption in the literature [1–5, 14–16] is
a fixed ambient temperature which allows for a fixed state matrix.
However, in reality, ambient temperature is changing and this
dynamic dependency should be taken into account in the modelling.
Therefore, we include this property with a temperature dependent
state matrix.

(iii) Furthermore, it has been observed in [17] that the magnitude
of the reserve capacity and the time for which it can be sustained are
related. Here, we investigate this relation in detail.

The academic literature has shown that it is theoretically possible
to control a population of TCLs for frequency reserve applications.
Moreover, several references have studied the provision of frequency
reserves in connection to pilot projects, such as Pecan Street [18–
22]. In the Nordics, the system operators Svenska kraftnät [23] in
2018 and Statnett [24] in 2019 have started pilot projects in col-
laboration with retailers Fortum, Tibber and BKK that use TCLs
for reserve provision. In practice, the aggregator often provides a
type of financial, gamification, and/or visualization incentive to con-
sumers in return for allowing the remote control of their TCLs. These
examples show the advanced stage of the implementation of the TCL
control for reserves and emphasize the need for timely market access
requirements. The requirements for reserve provision may need to
adapt to the decentralized nature of TCLs and accommodate the
uncertainties of TCL operation.

In this paper, we develop a decision support tool that can be
used by TCL aggregators to compute maximum reserve bids when

ambient temperature forecasts are available. Using an aggregate
TCL model, we first conduct an impact analysis of (i) communi-
cation constraints, (ii) ambient temperature, and (iii) the real-time
activation signal. We first demonstrate how the capability of the
TCL population to track a control signal deteriorates when com-
munication constraints are introduced and expanded. In a numerical
example, the down-sampling rates of broadcast and feedback time
are varied in order to determine the impact of communication con-
straints on the tracking error. Next, we show how the maximum
reserve bid directly depends on ambient temperature. We then show
how the TCL population skews towards one end of their temperature
dead band when the activation signal extends beyond a certain time,
as observed in [17]. We extend this analysis by proposing a method
to explicitly compute this maximum dispatch time. Given a discrete
choice of reserve bids, we build a library of maximum reserve bids
for a given dispatch time and ambient temperature. In a case study
with 2000 electric heaters we show how this library can be used by
an aggregator to determine their reserve bid.

Specifically, our contributions are the following:

•We model the practical limitations of TCL control by including com-
munication constraints into the control algorithm. Communication
constraints include down-sampling of the control signal (broadcast
time) and the state vector signal (feedback time) with realistic com-
munication sampling rates. We assess the impact of communication
constraints and show in a case study how it affects the performance
of the TCL aggregate power.
•We show the impact of ambient temperature and dispatch time on

the capability of a TCL aggregator to successfully provide reserve
capacity. We quantify the impact with a moving average tracking
error.
•We propose a decision support tool for an aggregator that facilitates

decisions on reserve bids, depending on ambient temperature and
maximum dispatch time. This tool is based on offline computation of
a reserve library from which the aggregator can obtain the maximum
dispatchable reserve.

The paper is structured as follows. The modeling framework is
summarized in Section 2 and the control algorithm is detailed in
Section 3 with sensitivity analyses on communication constraints.
The decision support tool is detailed in Section 4 with a case study.
The results are discussed in Section 5 and conclusions are presented
in Section 6.

2 Modeling Framework

We assume that the aggregator is capable of dynamically controlling
a TCL population and has perfect foresight of ambient temperatures.
The indoor temperature measurements θt,i at time t of TCL i are
automatically collected by the aggregator with feedback time T fb.
The aggregator is capable of sending a control signal in the form
of on/off control, with broadcast time T bc. We assume that TCLs
have a constant efficiency that relates the thermal and electric power
capacity with P th

i = P el
i ηi. The ith TCL can physically be described

by the thermal resistance Ri and capacitance and Ci in room i.
We introduce first an individual model that represents the physical
behavior of a TCL, and then an aggregate model for centralized con-
trol that has been proposed to efficiently control a large population
[5].

In both models, a rule-based short-cycling constraint is used to
ensure that each TCL does not switch more than once in a given time
period. This maximum switching frequency is limited by technical
restrictions of the compressor (for heat pumps) or annoyance level
(for direct electric heaters). A higher switching frequency increases
ageing of the mechanical relays and may cause annoyance on the
end user side.
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2.1 Individual TCL Model

The evolution of the indoor temperature θin
t,i at time t = t0, . . . , tN

can be derived from a differential equation and discretized over
time step ∆t by the model developed in [10–12] and extended to
heterogeneous populations in [13],

θin
t+1,i = ai · θin

t,i + (1− ai) ·
(
θat,i +mt,iRiP

th
i

)
+ εt,i (1)

where ai = exp(− ∆t
RiCi

) and the noise term εt,i is commonly
neglected [3]. The indoor temperature set point θset

i and bounds
θi, θi are specified by the user and can be communicated to the
aggregator. The uncontrolled operation is defined by the on/off state
mt,i where

mt,i =


1, if θin

t,i < θi = θset
i −

δi
2 ,

0, if θin
t,i > θi = θset

i + δi
2 ,

mt−1,i, otherwise.
(2)

We assume that all rooms are independent and ignore noise from
disturbances εt,i [3].

2.2 Aggregated TCL Model

Aggregate models for centralized control have been proposed in [2–
5, 14–16] and are computationally more tractable. Here, we use the
SBT model proposed by [5] as an efficient way of simulating a
large population of TCLs by sorting them into bins. The temperature
dead band of each TCL normalized and divided into N bin

2 equally
spaced temperature bins. The centralized control framework can be
represented by the state space model

xt+1 =A(θ)xt +But (3a)

yt =Cxt. (3b)

The state vector xt contains the fraction of TCLs in each state
bin with dimension Nbin × 1. The state matrix A(θ) of dimension
Nbin ×Nbin contains the transition probabilities of each bin. A(θ)
can be derived as the transpose of the Markov Transition Matrix by
computing transition probabilities from/to each bin [5]. While there
exist different ways to obtain the A-matrix, we conduct a system
identification with knowledge of TCL parameters, ambient temper-
atures, and dead-bands. We define ut to be a N bin

2 × 1 input vector
and the input matrix B defines the switching from on to off states
and vice versa. The output vector C contains N bin

2 zeros and N bin

2
entries of the total power consumption

∑
i P

el
i of TCLs in powered

mode. The output yt becomes a scalar and predicts the aggregate
power P pred

t .

B =



−1 0
. . .

0 −1
0 1

. .
.

1 0


, C =

∑
i

P el
i



0
...
0
1
...
1



>

(4)

As TCLs move through the temperature bins, the time that it takes
for them to keep moving up increases. This leads to a higher fraction
of TCLs towards the end of the dead band on steady state.

3 Control Strategy & Communication
Constraints

This section first revisits the requirements of the TCL aggregate
response for frequency reserves, then shows centralized control

strategy based on [5] and illustrates the impact of communication
constraints in a case study.

3.1 Reserve Signal and Performance Metrics

We refer to reserve capacity as the symmetric power capacity
offered to the system operator for primary reserve. Specifically, we
design the control strategy for the ENTSO-e definition of frequency
containment reserve in normal operation (FCR-N) and its imple-
mentation by the Swedish system operator [25]. In Sweden, this
reserve capacity is procured until 18:00 on the day-ahead (D-1) with
a minimum bid size of 0.1 MW

0.1Hz . The procured reserve is activated
by a droop control based on the system frequency in the range of
50± 0.1 Hz. The activated reserve power P ref

t is a linear function of
the deviation of the real-time frequency ft from its nominal value.

Since the frequency changes continuously, the reserve activation
should not be immediate in order to avoid oscillatory response and
instability. The reserve activation should thus be following the fre-
quency with a lag in order to maintain stability. The real-time reserve
power must reach 63% of the bid within 60 s and 100% within 180 s
[25]. The reserve activation must have a critically damped response
in order to avoid instability. In order for a resource to participate in
the reserve market, a pre-qualification test is mandated by the system
operator where the resource is subjected to a step signal of 50.1 Hz
and 49.9 Hz. For relay-activated reserves, which includes two-state
TCLs, a step response is accepted [25]. Such a step response must
have at least 10 steps into each direction, i.e., steps of ≤0.01Hz.

3.2 Centralized Control Strategy

The centralized control strategy to provide reserves is illustrated in
the block diagram in Fig. 1 which is designed for the FCR-N require-
ments in Sweden. A centralized approach is considered, where an
aggregator controls a population of TCLs in real-time to provide
reserves. The aggregator needs to receive a feedback signal of the
aggregate power consumption Pmeas

t . However, for a large scale
implementation, an aggregator would need to accept constraints in
feedback and broadcast signals to maintain computational tractabil-
ity. Instead of power measurements, an aggregated model such as
the model in (3) and (4) can be used to predict the power consump-
tion P pred

t . This way, the aggregator does not need to keep track of
indoor temperatures, on/off status and power consumption of indi-
vidual TCLs at all times. Measurements are only received with a
given feedback time T fb to update the indoor temperatures and on/off
states.

Droop Control The real-time frequency ft within 50± 0.1 Hz is
measured and the moving average (Avg) over 95 s is computed. A
95 s average ensures that the requirements regarding activation time
in Section 3.1 are fulfilled. The linear droop block is limited within
50± 0.1 Hz. The droop gain is dictated by the committed reserve bid
in unit MW

0.1Hz . The resulting linear power activation is discretized into
equidistant steps of 0.01 Hz to determine the relay activated reserve
power reference P ref

t . It should be noted that a higher number of
frequency discretization steps would result in a higher amount of
switching actions. Consequently, TCLs would become unavailable
more quickly due to short-cycling constraints. It is therefore in the
interest of an aggregator to decrease the number of switching actions,
as long as the system operator requirements can be fulfilled. Addi-
tionally, the mechanical relays may cause irritation on the end user
side.

Baseline Power The baseline power P base depends on the ambi-
ent temperature θ which is assumed constant for simplicity. It can
be computed as the steady state power in uncontrolled operation or
approximated by methods such as in, e.g, reference [1]. The baseline
power is computed offline for a relevant range of ambient tempera-
tures. For heating TCLs, a decrease in ambient results in increased
baseline power consumption, and opposite for cooling TCLs.
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Avg Priority Stack

T bc

T fb

TCL Population

Aggregated Model

T fb

ft +P ref
t

+
xt

Pmeas
t

θin
t,iθfb

+

P
pred
t−P baseθ xfb

ut ubc

Fig. 1: Block diagram of the centralized control strategy. In blue we highlight those parameters (including communication constraints/down-
sampling) that we subject to sensitivity analysis. The dashed lines indicate the information which is not continuously transmitted and subject
to communication constraints.

Priority Stack The priority stack determines the amount and indexes
of TCLs to be toggled. The priority is organized using an indexing
system i = 1, . . . , NTCL where the TCLs with the highest turn-off
priority are those closest to the upper temperature bound in the on
stack. Analogously, the TCLs with the highest turn-on priority are
those closest to the lower temperature bound in the off stack. This
stack is updated with indoor temperatures θfb with a given feedback
time T fb, i.e., when (tmodT fb =0). This is implemented by down-
sampling of the indoor temperature feedback, illustrated by the blue
sampling switches in Fig. 1. To avoid short cycling, every time a
TCL is toggled, it is placed at the bottom of the respective priority
stack. Furthermore, a short-cycling constraint prevents TCLs from
being toggled more than once in 3 min. The control signal ubc is
broadcast to the TCL population when (tmodT bc =0), where T bc

defines the broadcast time. This is implemented by down-sampling
of the state vector, illustrated by the blue sampling switch in Fig. 1.

TCL Population The population is constituted by controllable TCLs
in reality. In this study, we use the individual TCL model is to repre-
sent the physical behavior of real TCLs. The individual TCLs receive
a control signal with broadcast time T bc. The measurements of the
TCL population are the state vector xt and indoor temperature vec-
tor θ∈t , which are also subject to communication constraints and can
not be transmitted continuously. Instead, the feedback signal xfb and
θfb is sent with feedback time T fb, i.e., when (tmodT fb =0). The
aggregate power Pmeas

t is only used for evaluation of the control
strategy and not required as a feedback signal.

Aggregated Model The aggregate power is calculated from the esti-
mated number of TCLs in the on state xt with the SBT model. The
SBT model with 20 bins per state is updated with a given feedback
time T fb, which depends on the technical constraints of the commu-
nication infrastructure. The predicted power P pred

t is then used to
compute the deviation from the baseline power and ultimately added
to the power reference to obtain the input to the priority stack.

3.3 Communication Constraints

Here, we investigate the sensitivity to the parameters that are
highlighted in blue in Fig. 1.

3.3.1 Numerical Example: We conduct a case study of an
aggregator that controls 2000 TCLs and has perfect forecast of ambi-
ent temperature. The physical parameters of the TCL population are
summarized in Table 1. Common thermal parameters for houses in
USA are given in [3] per square meter as c=0.015 . . . 0.065

oC
kWh·m2 ,

1
r =0.001 . . . 0.003 kWh

oC·m2 . In Sweden, surface areas of single- and
multiple-family dwellings range between 70 . . . 130m2 [26]. For the
considered size of 1 kW heaters, however, it is common practice
to place one heater per room. Therefore, the thermal parameters

Table 1 TCL Parameters (Direct Electric Space Heaters)
Parameter Meaning Value∗

NTCL number of TCLs 2000
θset temperature setpoint 20oC
δ temperature dead-band width 2oC
Zi ∈ (α, β) room surface of room i with TCLi 10 - 35m2 ∗

1
r inverse specific thermal resistance 0.002 kW

oC·m2

∗

c specific thermal capacitance 0.065 kWh
oC·m2

∗

P el
i rated electric power of TCL in room i 1 kW
ηi efficiency of TCL in room i 0.99
∗ Values fitted to average room characteristics in Sweden

must to be designed for a common size. We represent the room size
distribution by a truncated Gaussian distribution around the mean
value µ = 22.5m2 with variance σ. The probability density function

(PDF) ϕ is defined by ϕ(z) = 1√
2π
e−

z2

2 . Let Φ(µ, σ2; z) be the
cumulative density function. Formally, the truncated normal proba-
bility density function can be symbolized by φ(µ, σ, α, β; z), where
α and β specify the truncation interval. The truncated PDF may be
evaluated by the equation

φ(µ, σ, α, β; z) =
ϕ(µ, σ2; z)

Φ(µ, σ2;β)− Φ(µ, σ2;α)
(5)

and represents the distribution of room surface z. The thermal room
parameters are then calculated by scaling the specific resistance and
capacitance from Table 1 with the surface area sample Zi of room i.

1

Ri
= Zi ·

1

r
, Ci = Zi · c (6)

3.3.2 Impact of Communication Constraints on Tracking
Error: The shorter the broadcast and feedback of the control
strategy, the lower the tracking error. Due to technology and cost
limitations, however, the aggregator needs to decide on a trade-off
between investment in communication infrastructure and accuracy
of the control strategy. Here, we analyse this tradeoff in terms of the
RMS tracking error e. The normalized RMS tracking error is defined
by the capability of the population to follow the reference as:

e =
1

N

tN∑
t=t0

√(
P base + P ref

t − Pmeas
t

)2∑
i P

el
i

. (7)

Fig. 2 shows the tracking error over broadcast and feedback time.
The error increases more rapidly with increasing broadcast time, and
is less sensitive to increasing feedback time until 30 min.
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Fig. 3: Dependence of the steady state aggregate baseline power
consumption, symmetric reserve capacity and discretized reserve
capacity of the TCL population to ambient temperature.

4 Reserve Bid Library

This section investigates the impact of ambient temperature and dis-
patch time on the maximum dispatchable reserve capacity of the
TCL population. In order to include the dependence of the reserve
on these two parameters at the time of day-ahead bidding, a decision
support tool is proposed based on offline computation of a reserve
bid library.

4.1 Temperature Dependence

As ambient temperature decreases, the baseline power of heating
TCLs increases. Thus, the symmetric reserve capacity P symm also
increases until the baseline power exceeds half of the installed
capacity, and then drops again, as expressed in equation (8).

P symm =

{
P base, if P base ≤ 1

2

∑
i P

el
i∑

i P
el
i − P

base, if P base > 1
2

∑
i P

el
i .

(8)

The relationship of the maximum symmetric reserve capacity and
ambient temperature is illustrated in Fig. 3. The highest symmetric
reserve capacity is available at −15oC with the given TCL popula-
tion. For simplicity, the results in the remaining figures will mainly
be illustrated at −15oC. Since market participants can only place
bids in increments of 0.1 MW

0.1 Hz , the figure also shows the discretized
bid at the respective temperature. To obtain the discrete bid, we
simply round the continuous symmetric bid down to the nearest
0.1 MW

0.1 Hz .

P discrete = 0.1 · floor (10 · P symm MW
0.1 Hz

) (9)

However, this discrete bid depends only on ambient temperature
and does not consider the maximum dispatch time of the activation
signal.
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W
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Fig. 4: Pre-qualification test. Top: Test signal and its 95 s mov-
ing average. Bottom: Power reference and aggregate power with a
1 MW

0.1Hz bid. T bc =10 s, T fb =5 min, θ=−15oC.
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Fig. 5: Power reference and aggregate power with a 1 MW
0.1Hz bid in

response to real frequency during 1 h. T bc = 10 s, T fb = 5 min, θ =
−15oC.

4.2 Signal Type and Duration

The real-time activation signal of reserves is determined by the
system frequency. Since the real-time system frequency is highly
stochastic, we limit our analysis to three selected frequency trajec-
tories. The three cases of interest are represented by the following
frequency trajectories:

•F pr: The pre-qualification frequency signal
•F re: A real historical frequency trajectory
•F ex: Extreme worst-case frequency trajectory

Pre-qualification Test Signal F pr During the pre-qualification test, a
positive and negative step of the frequency are simulated, as shown
in the top plot of Fig. 4. The control algorithm first computes the
moving average signal. The bottom plot of Fig. 4 shows the dis-
cretized power reference and the aggregate power response. It can be
seen that the pre-qualification test can be passed with the presented
control algorithm. The tracking error is 1.23% with a T bc =10 s
broadcast time and T fb =5 min feedback time.

Real Frequency F re A real frequency scenario is selected from July
20th 2018, starting at 1:00am and displays approximately zero net
energy content throughout 1 h. Net energy content refers to the sum
of areas under the positive and negative activated reserves over time.
Fig. 5 shows the power reference and response of the population for
a real frequency scenario. The tracking error is 1.07% for the 1 h
simulation.
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Fig. 6: Power consumption during 1 h with extreme worst case
scenarios 50.1 and 49.9 Hz and different reserve bids. T bc = 10 s,
T fb = 5 min, θ = −15oC.

Extreme Frequency F ex Since the signals F pr and F re can be fol-
lowed by the TCL population, we now investigate extreme signals.
The worst-case frequency trajectories are defined by a set of con-
tinuous full positive (50.1 Hz) and negative (49.9 Hz) activation
respectively. Fig. 6 shows the response to extreme frequencies with
varied bid sizes. It can be observed that the TCL population is not
capable of following the reference for an entire hour with a bid of
0.8 or 1 MW

0.1Hz . The reason for the inability to sustain reserve activa-
tion is connected to the indoor temperature deadbands of the TCLs.
For instance, at a frequency of 49.9 Hz (when the system requires
up-regulation) with a 0.8 MW

0.1Hz bid (bottom green line), almost all
heaters would need to switch off. Even though the priority stack in
the control algorithm gives priority to heaters with colder indoor
temperatures (if the bid is less than the maximum capacity), the
indoor temperatures would decrease and would eventually violate
the lower deadband of the comfort level.

The time from the start of reserve activation until the failure
to provide the committed reserves with less than 5% error is here
defined as the maximum dispatch time T . In Section 4, this dis-
patch time is investigated in detail. In this paper, we define that
the TCL population is not capable of sustaining the reserve capac-
ity any longer once the 90 s moving average of the tracking error
exceeds 5%, Note that the error criterion is here defined for illustra-
tive purposes only. There are currently no clear criteria on the error
evaluation during activation [25].

4.3 Decision Support Tool

An aggregator needs to know the dispatchable reserve P disp which
depends on the ambient temperature (θ), communication constraints
(T bc, T fb), maximum dispatch time (T ) of the activation signal
(F ). Here, we assume that the aggregator decides on the con-
trol implementation with communication constraints as a long-term
strategy with fixed T bc =10 s and T fb =5 min. We define P disp =
f(θ, T, F ) as the maximum dispatchable reserve capacity that can
be provided by the aggregator in practice for a duration of at least T
at ambient temperature θ with activation signal F . In a conservative
approach, this activation signal corresponds to the worst-case sce-
nario F ex. In a more realistic approach, a real frequency trajectory
F re should be used, the selection of which is outside the scope of
this paper.

The core of the method is based on the block diagram in Fig. 1,
where the aggregated and individual models are run simultaneously.
We assume that the aggregator does not strategically pre-heat or cool
the TCLs and start the simulation with a randomized initialization of
TCL states and indoor temperatures. Fig. 7 illustrates the method
used to compute P disp numerically by iterating through ambient

TCL Population

Bid: PR ∈ Ψ

Temperature:
θ ∈ Θ

Run

Individual
Model

Aggregate
Model

Pmeas

Moving
Average

P base
θ

P ref

ê ≥ 5%?

TP R,θ = t

Stop

feedback

broadcast

yes

no

t = t+ 1

Fig. 7: Method to compute the dispatch time T for reserve bids.

temperatures Θ and theoretical reserve bids Ψ. The set Θ contains
relevant ambient temperatures and set Ψ contains discrete reserve
capacity bids. For each iteration, the control is simulated until the
moving average error exceeds a specified threshold. The moving
average RMS error is here computed by ê = 1

90

∑t
v=t−90 ev . When

the error exceeds a 5% threshold the simulation is stopped and the
time step t is saved. The dispatch time TP R,θ = t is the time at which
the reserve bid PR can not be sustained any longer, given ambient
temperature θ.

The entries of T can be transformed into the reserve bid library
P disp(θ, T ) of dispatchable reserve capacities. With this library, the
aggregator can select the temperature forecast and the market spe-
cific dispatch time requirement in order to extract the corresponding
maximum dispatchable reserve capacity P disp

θ,T to bid to the system
operator. Note that some system operators may not specify this min-
imum dispatch time explicitly, such as in Sweden. In that case, the
dispatch time can be interpreted as a measure of conservativeness of
the aggregator in its ability to follow the activation signal.

4.4 Numerical Example of Reserve Bid Library

We apply the decision support tool on the TCL population intro-
duced in Table 1. We vary θ from -50oC to 15oC with a resolution of
5oC and vary PR from 0.1 to 1 MW

0.1Hz with a resolution of 0.1 MW
0.1Hz .

In a conservative approach, we use the worst-case frequency sig-
nal F ex to obtain the corresponding reserve bid library. The results
are shown in Fig. 8 with three selected ambient temperatures. As
expected, the longer the reserves need to be provided, the less reserve
capacity can be bid to the system operator. Additionally, the effect
of ambient temperature on the maximum reserve bids is clearly visi-
ble. With the studied TCL population, the highest reserve bid can be
provided at −15oC.
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Fig. 9: Reserve library of maximum reserve bids with worst-case
frequency activation signal F ex, T bc=10 s, T fb=5 min.
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The color maps in Figs. 9 and 10 illustrate the dependence on
both ambient temperature and maximum dispatch time, with worst-
case and real frequency activation signal respectively. It can be seen
that the maximum reserve capacity is generally highest at−15oC for
the studied TCL population and decreases towards both higher and
lower ambient temperatures. Exceptions occur due to the random
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Fig. 11: Maximum symmetric reserve bid (dashed), conservative
dispatchable reserves for 1 h based on worst-case frequency signal
F ex (dash dotted) and less conservative dispatchable reserves for 1 h
based on real frequency signal F re (dotted), T bc=10 s, T fb=5 min.

initialization and stochastic inaccuracies in the binning of indoor
temperatures. Furthermore, we find that a reserve bid of 0.1 MW

0.1Hz
can be followed at the analyzed ambient temperatures for up to at
least 6 h, even in the worst-case frequency activation scenario. In the
real frequency scenario, an edge is clearly visible after 2 hours and
45 minutes. After this time, a maximum bid of 0.3 MW

0.1Hz can be sus-
tained. On the other hand, a bid of, e.g., 0.7 MW

0.1Hz can be sustained at
temperatures between−30 and 5oC for at least 2 h 45 min. The rea-
son for the clear edge is due to the high switching frequency that will
eventually reach the short-cycling limit of a majority of TCLs. The
time at which the short-cycling constraints are hit depends less on
the ambient temperature, and instead significantly on the volatility
of the frequency signal. When other, less volatile, historical fre-
quency trajectories are used, the edge occurs after more than 6 h.
For this reason, the extreme frequency trajectory F ex is preferable
for a conservative approximation of the maximum dispatch time.

Assume that an aggregator bids into an hourly reserve market
where the reserve needs to be dispatchable for at least 1 h. With the
computed reserve bid library, the aggregator can select this system
operator requirement of T =1 h and obtain the maximum reserve
bid as a function of only ambient temperature. The conservative
dispatchable 1 h-reserve capacity is illustrated in Fig. 11. As a com-
parison, the symmetric reserve capacity from Fig. 3 is plotted as
well. Additionally, we plot the dispatchable 1 h-reserve capacity in
case of a real frequency signal (F re).

While the worst-case frequency signal results in a conservative
approximation below the symmetric reserve capacity, the real fre-
quency signal yields a reserve capacity that is even higher than
the symmetric capacity. The reason is the frequency rarely hits the
bounds for a long time in reality.

5 Discussion

Here, we calculate the baseline consumption purely based on the
ambient temperature. In reality, the calculation of the baseline is
often more complex. It is inherently impossible to calculate the base-
line consumption ex-post if the actual consumption involved reserve
activation. Therefore the separation of reserve activation from power
consumption poses challenges to system operators. In Sweden, there
is therefore only a pre-qualification test to validate the response of
the resource for future dispatch.

One course of action is to demand high resolution measurements
from all decentralized loads under the aggregator control. How-
ever, such measures would dramatically increase the communication
burden. As a result, due to such high reporting requirements, aggre-
gators may chose to not enter this type of market. Therefore, system
operator need to reflect on their requirements if they aim to open the
reserve markets to aggregators.

An interesting topic for future work consists in the combined
problem of real-time control and day-ahead bidding of both reserve

IET Research Journals, pp. 1–8
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capacity and energy consumption. The day-ahead bidding problem
would need to accommodate uncertainty from ambient temperatures,
energy and reserve prices. In reality, temperature forecasts are not
deterministic and the uncertainty in ambient temperature forecasts
would further limit the maximum reserve power that can be commit-
ted on the day-ahead. A second topic for future work is therefore to
accommodate the uncertainty that limits the deterministic day-ahead
planning. The uncertainty of ambient temperature forecasts would
propagate into the real-time control problem and may further limit
the dispatchable reserve capacity.

6 Conclusion

In this paper, we investigate the impact of (i) communication con-
straints, (ii) ambient temperature, and (iii) the maximum dispatch
time on the dispatchable reserve capacity of a load aggregator.
While the control strategy with its communication constraints can
be defined by the aggregator, and the requirement for dispatch time
is specified by the system operator, the temperature and frequency
are stochastic parameters. We illustrate the impact of the above
parameters numerically with a case study of 2000 electric heaters
participating in the Swedish reserve market. The case study shows
that the pre-qualification test in Sweden can be passed with the pro-
posed control algorithm, even when communication constraints are
present. While the theoretical, symmetric reserve capacity can be
obtained in a straightforward manner, the maximum dispatchable
reserve depends on practical constraints.

In order to address this research gap, we propose a decision sup-
port tool that can support aggregators in determining their maximum
dispatchable reserve bid ahead of operation. We apply the decision
support tool to construct an offline reserve bid library for an aggre-
gator in the Swedish reserve market. The reserve bid size depends
on temperature and dispatch time. While the impact of temperature
is approximately linear, dispatch time decreases the maximum dis-
patchable reserve in a non-linear fashion. This decision support tool
can be used by aggregators that have to decide on reserve bids ahead
of operation.
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