
INOM EXAMENSARBETE DATATEKNIK,
GRUNDNIVÅ, 15 HP

, STOCKHOLM SVERIGE 2020

Mainframes and media
streaming solutions
How to make mainframes great again

FELIX STÅHL

LINUS BERG

KTH
SKOLAN FÖR ELEKTROTEKNIK OCH DATAVETENSKAP

| i

Abstract
Mainframes has been used for well over 50 years and are built for processing
demanding workloads fast, with the latest models using IBM’s z/Architecture
processors. In the time of writing, the mainframes are a central unit of the
world’s largest corporations in banking, finance and health care. Performing,
for example, heavy loads of transaction processing. When IBM bought
RedHat and acquired the container orchestration platform OpenShift, the IBM
lab in Poughkeepsie figured that a new opportunity for the mainframe might
have opened. A media streaming server built with OpenShift, running on a
mainframe. This is interesting because a media streaming solution built with
OpenShift might perform better on a mainframe than on a traditional server.
The initial question they proposed was ’Is it worth running streaming solutions
on OpenShift on a Mainframe?’. First, the solution has to be built and tested
on a mainframe to confirm that such a solution actually works. Later, IBM
will perform a benchmark to see if the solution is viable to sell.

The authors method includes finding the best suitable streaming software
according to some criterias that has to be met. Nginx was the winner, being
the only tested software that was open-source, scalable, runnable in a container
and supported adaptive streaming. With the software selected, configuration
with Nginx, Docker and OpenShift resulted in a fully functional proof-of-
concept. Unfortunately, due to the Covid-19 pandemic, the authors never got
access to a mainframe, as promised, to test the solution, however, OpenShift
is platform agnostic and should, theoretically, run on a mainframe. The
authors built a base solution that can easily be expanded with functionality, the
functionality left to be built by IBM engineers is included in the future works
section, it includes for example, live streaming, and mainframe benchmarking.

Keywords
IBM, Mainframe, OpenShift, Media streaming, Video on demand, Nginx

ii |

Sammanfattning
Stordatorer har använts i över 50 år och är byggda för att snabbt kunna bearbeta
krävande arbetsbelastningar, med de senaste modellerna som använder IBMs
z/Architecture processorer. I skrivande stund är stordatorerna en central enhet i
världens största företag inom bank, finans och hälsovård. De utför, till exempel,
väldigt stora mängder transaktionsbehandling. När IBM köpte RedHat och
förvärvade container-hanteringsplattformen OpenShift, tänkte laboratoriet i
Poughkeepsie att en ny möjlighet för stordatorn kanske hade öppnats. En
mediaströmningsserver byggd med OpenShift, som körs på en stordator. Detta
är intressant eftersom en mediaströmningslösning byggd med OpenShift kan
fungera bättre på en stordator än på en traditionell server. Den initiala frågan
som ställdes var ’Är det värt att köra strömningslösningar på Openshift på en
Mainframe?’. Först måste lösningen byggas och testas på en stordator för att
bekräfta att en sådan lösning faktiskt fungerar. Senare kommer IBM att utföra
ett riktmärke för att se om lösningen är lämplig att sälja.

Författarnas metod inkluderar att hitta den bästa strömningsprogramvaran
enligt vissa kriterier som måste uppfyllas. Nginx var vinnaren samt den enda
testade programvaran som var öppen källkod, skalbar, körbar i en container och
stödde adaptiv strömning.Med den valda programvaran resulterade konfigurationen
av Nginx, Docker och OpenShift i en fullt funktionell konceptlösning. På
grund av Covid-19-pandemin, fick författarna aldrig tillgång till en stordator,
som utlovat, för att testa lösningen. OpenShift är dock plattformsagnostisk och
ska teoretiskt sett kunna köras på en stordator. Det som författarna lämnade åt
framtida ingenjörer att utforska är en studie som inkluderar fler mjukvaror,
även betalversioner, eftersom den här studien endast innehåller öppen källkod.
Samt en utvidgning av den befintliga lösningens funktionensuppsättning.

Nyckelord
IBM, Stordator, OpenShift, Mediaströmning, Video on demand, Nginx

CONTENTS | iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem . 2
1.3 Purpose . 2
1.4 Goals . 2
1.5 Methodology . 3
1.6 Delimitations . 3
1.7 Reflections . 3

2 Background 5
2.1 Background . 5
2.2 Mainframe . 6
2.3 Internet Media Streaming . 8
2.4 Related work area . 10
2.5 Summary . 13

3 Method 15
3.1 Process . 15
3.2 System documentation . 17

4 Evaluation Process & Implementation 19
4.1 Pre-study . 19
4.2 Software Evaluation . 20

4.2.1 Red5 . 21
4.2.2 Kurento . 22
4.2.3 Nginx . 23
4.2.4 Final Verdict . 24

4.3 Implementation . 25
4.4 Experimental design . 27

4.4.1 Test environment . 27

iv | Contents

4.4.2 Hardware/Software to be used 28
4.5 Nginx & Dockerfile . 29

5 Conclusion 33
5.1 Conclusions . 33
5.2 Limitations . 34
5.3 Discussion . 35
5.4 Future work . 35

References 35

LIST OF FIGURES | v

List of Figures

2.1 The IBM z15 [1] . 7
2.2 Bitmovin 2017 & 2018 surveys [2] [3] 10
2.3 Containers vs Virtual Machines 10
2.4 OpenShift vs Kubernetes[4] 12

3.1 The project process from start to finish 15

4.1 Functional requirement matrix 25
4.2 Non-functional requirement matrix 26
4.3 Overview of the concept . 26
4.4 In-depth model of the components inner workings 27

vi | LIST OF TABLES

List of Tables

4.1 The score of each software 24
4.2 Test environment . 29

5.1 Nginx criteria result . 33

LISTINGS | vii

Listings

4.1 Nginx configuration . 29
4.2 Docker configuration . 30

viii | List of acronyms and abbreviations

List of acronyms and abbreviations
3GPP 3rd Generation Partnership Project

CDN Content Delivery Network

CP Central Processor

CPC Central Processor Complex

CPU Central Processing Unit

DRM Digital Rights Management

HLS HTTP Live Streaming

ICF Integrated Coupling Facility

IFL Integrated Facility for Linux

MPEG Moving Picture Experts Group

MPEG-DASH Dynamic Adaptive Streaming over HTTP

P2P Peer-to-Peer

PU Processing Units

RAS Reliability, Availability, Serviceability

RTMP Real-Time Messaging Protocol

SAP System Assistance Processor

TeamSD Team Solution Design

VM Virtual Machine

VOD Video On Demand

zAAP System z Application Assist Processor

zIIP System z Integrated Information Processor

Introduction | 1

Chapter 1

Introduction

The area in which the authors are to conduct a study within is media streaming
solutions, in particular for media streaming solutions running in containerised
environments on IBM mainframes (Z13 & Z15). Traditionally streaming
solutions are run on x86 processors, for price, availability, and software
support. This thesis investigates the possibility of running a horizontally
scalable streaming server on mainframes using OpenShift as the container
orchestration platform. The authors will also be deep diving into different
streaming file formats and different existing tech-stacks for streaming.

1.1 Background
IBM has been in the media sector for a long time, building software for
automated highlighting, assisted directing, and many others using artificial
intelligence [5]. Due to the increasing usage of media streaming platforms,
Netflix, HBO, and many others, IBM has decided to expand its arsenal within
the media space and also revitalise traditional mainframe computer usage, one
of the sectors of focus is media streaming and content delivery.

IBMpurchasedRedHat during 2019, thus obtaining theOpenShift container
orchestration platform. The platform itself is built upon Kubernetes adding
several additional features on-top of the existing platform acting as an extra
layer.

2 | Introduction

1.2 Problem
The IBM lab in Poughkeepsie recognised that there is currently no packaged
ready-to-go solution for media streaming available via OpenShift. The initial
problem stated by the lab was ’Is it worth running streaming solutions
in OpenShift on a Mainframe?’, however, the scope of this project is to
determine suitable software and creating a proof-of-concept that works on
OpenShift.
The authors split the problem into sub-problems:

Is it possible to run a media streaming solutions in OpenShift?
Is it reasonable to run streaming solutions in OpenShift? (Cost wise,
complexity, etc...)
COVID-19: Due to the 2020 Coronavirus outbreak, the authors never received
access to a Mainframe, thus the final solution was never able to be tested on a
mainframe.

1.3 Purpose
IBMwants to regain the media streaming market space. If the authors manage
to develop a proof-of-concept and IBM fulfils a benchmark that proves this
solution being effective, an opportunity for selling this solution to media
streaming companies has opened. Furthermore, this degree project will
provide future engineers with a good base of background information and test
results, regardless of the outcome of the proof-of-concept, to continue develop
the effectiveness of streaming solutions.

1.4 Goals
The goal of this project is to implement a proof-of-concept streaming solution.
This has been divided into the following two sub-goals:

1. Identify the correct product to utilise to build such a solution.

2. Implementing a working proof-of-concept that runs in OpenShift.

On top of the initial theoretical problem, certain requisites has to be met by
the final software solution.

• Scalable

Introduction | 3

• Runs on OpenShift (containerised)

• Open-Source

The solution should if possible also support the following.

• DRM / Encryption

• Broadcasting / Live Streaming

1.5 Methodology
The authors first performed a pre-study, reading about the background of the
industry and how big media streaming companies work today, what hardware
and software that is used. The project then entered the evaluation phase, where
different media streaming softwares were briefly tested locally to see which
one fit their needs the best, following certain criteria that had to be met in order
for it to be proven useful and brought forth into the next part of the project.
The evaluation was followed by the implementation stage which includes an
in-depth study of the selected software and configuration for deployment in
OpenShift.

1.6 Delimitations
This thesis will not include the official benchmark of the test. It will also not
include enterprise versions of open-source software in the study.

COVID-19: Due to the situation, collaborating was difficult, especially with
other IBMers as the social distancing measures and the hectic work situation
that ensued lead to no mainframe being available and limited testing and
implementation capabilities.

1.7 Reflections
Themain focus of this project is not to solve anymajor environmental problem.
However, because of the z/Architecture processors having better processing
power than x86, the mainframes are more energy efficient. Companies
utilising mainframes will not only lower their energy consumption, but also
their infrastructure footprint, because less space is needed to achieve the same
processing power as a traditional data center [6].

4 | Introduction

Background | 5

Chapter 2

Background

2.1 Background
Since broadband became widely available at high speeds around the 2000s
media streaming has become the dominant way for people to consume media,
such as films, music, and TV. This is leading to an increased demand in
computer performance and processing power to accommodate the consumers.
Currently this performance is delivered typically by x86 processors and
custom-built hardware from companies, such as Netflix [7].

X86 processors are widely spread due to the price-performance ratio
compared to other architectures available, for example, POWERor z/Architecture.
Both POWERand the z/Architecture are fundamentally designed to accommodate
virtualisation and allow you to scale vertically without having to increase
your hardware footprint, however, the price-point may be significantly higher
on a per machine basis [8]. POWER and x86 type processors are often
implemented as a Central Processing Unit (CPU) due to the fact there is a
single central processor for all computations. Mainframes utilise a completely
different concept aptly named Central Processor Complex (CPC). The CPC
structure does not utilise a single processing unit as typical servers or computers
do, instead, multiple processing units exist with different purposes [9]. The
CPC is a distinct hardware architecture of mainframes and it is of interest how
media streaming would perform due to the extra processing units available for
offloading specific tasks.

6 | Background

2.2 Mainframe
IBM built its first general purpose automatic digital computer in 1944, though,
large scale computers has been developed for years before that. The first large
computer that is considered a mainframe is the IBM 701, released in 1952
[10]. The progress following the 50+ years has been outstanding; with the
latest model, IBM z15, released in 2019.
Just about everyone has used a mainframe at some point in their life, often
without even thinking about it. For example, if you have ever used an ATM
to interact with your bank, you have used a mainframe. Today, mainframes
are a central unit of the world’s largest corporations in banking, finance,
health care and many other industries. Performing heavy loads of transaction
processing (thousands of transactions per second), handling thousands of users
concurrently accessing numerous resources or manage copious amounts of
information in databases [11].

Why IBM’s mainframes are leading in these industries is because of its
unbeatable design strengths, such as Reliability, Availability, Serviceability
(RAS), security and scalability. A computer with RAS characteristics, in
short, means that the system shall remain in service as much as possible. The
system has extensive self-checking and self-recovery, which makes it reliable,
thanks to broad testing and quick updates for detected problems.

Availability is the time the system is running and available for usage.
The system can recover from faults happening without crashing or causing
problems for other components in the system, which results in high availability.

Serviceability is self explanatory, the system is easy to maintain. This is
because the system can determine why an error occurred and notifies what
hardware or software that needs to be replaced [11].

With data breaches on the rise IBM has a lot of its focus on security. Big
improvements regarding security comes with the new IBM z15 model, such
as ’IBM Data Privacy Passports’ which encrypts everything the mainframe
touches into objects that is securely moved between environments. Encrypted
objects are displayed with different views, depending on what access the user
has [1].

Scalability is the ability to scale up or scale down the CPU usage for a
workload depending on the size, without affecting overall performance; one
of the most important aspects considered when developing the mainframe.

Background | 7

Figure 2.1: The IBM z15 [1]

Mainframe Central Processing Complex
A personal computer consist of one single processor, also known as a CPU.
The early mainframes also only had a single processor, that however, was a
long time ago. Today, the mainframes have a Central Processing Complex
(CPC), which is a multitude of processors that may be of the same or different
z/Architecture types depending on the use case [9].

The processors in the CPC are created as Processing Units (PU) that
has not yet been characterised, during installation (or at a later time) they
are configured for their purpose. The different characterisations are Central
Processor (CP), System Assistance Processor (SAP), Integrated Facility for
Linux (IFL), System zApplicationAssist Processor (zAAP), System z Integrated
Information Processor (zIIP) and Integrated Coupling Facility (ICF). There are
also "Spare" processors that are PUs that has not yet been configured, ready
to replace a failing CP or SAP without interruption.

The CP is the functional hardware unit that interprets program instructions,
it is typical to have several of these.

Every mainframe has at least one SAP (larger system can have several)
executing internal code to provide the I/O subsystem, translating device
numbers and control unit addresses.

The IFL is a processor specifically designed to handle Linux workloads.
The optimisation results in reduced software costs, operational efforts, energy
usage when Linux is deployed on the IFL instead of on a x86.

The zAAP processor has a number of functions disabled, for example,
interrupt handling. Because of this, no operating system can run on this
processor, instead, the z/OS can detect the presence of the zAAP and use it

8 | Background

to execute Java code. In the same sense as IFL processors are running Linux
workloads more efficiently than a general-purpose processor, zAAP execute
Java code more efficiently than a general-purpose processor.

The zIIP was initially introduced to offload the CP from DB2 workloads,
but is currently processing workloads in a more wider range than the IFL
and zAAP. The workloads varies from business intelligence to specific XML
parsing. Also, the IBM z13 model merged zAAP functionality with zIIP, so
that zIIP now also handles previously zAAP-eligible work.

Lastly, the ICF, which allows multiple logical partitions (all running z/OS)
to handle data and distribute workloads in a cluster of mainframes working
together as one system [9] [12].

2.3 Internet Media Streaming
Video on demand has a long history, being almost a 30 year old concept,
however, during the 1990s when it first started appearing via cable and
traditional television providers, it achieved little success due to limited bandwidth
and processing power available at the time. In the early 2000s, Video On
Demand (VOD) services took off rapidly due to the cost of bandwidth and
computing power had dramatically decreased. Most providers were still
traditional cable and television companies. Continuing into the mid to late
2000s VOD delivery services continued expanding. This time by allowing
viewers to rent videos online, by companies such as Netflix, Microsoft and
Sony, through their own web and console platforms [13].

Netflix was arguably a revolutionary force to the way we as a society
consume media. By 2007, Netflix launched their streaming service as a
computer-based app, where users could consume thousands of films at what
was considered high quality at the time. The company quickly grew in
triple digits every year and made multiple deals with electronic manufacturers
to embed the Netflix software into all kinds of consumer devices. Netflix
continued growing and started implementing algorithms to gather data on
it’s users to learn patterns and preferences, which allowed the company to
accurately provide user suggestions and make a more personalised experience
than traditional television [14]. Since 2010Netflix has consistently been one of
the largest sources of internet streaming traffic in North America, and during
the 2020 Covid-19 pandemic Netflix was among the list of companies that
decided to lower their streaming quality, due to the massive toll it took on the
global network infrastructure in both Europe and North America [15].

Background | 9

Technology
Streamingmedia’s successwould not have been possiblewithout the development
of HTTP-based adaptive streaming by a company named Move Networks in
2007. Previously most protocols had been proprietary and not been able to
keep up with demand, thus this was the saving grace of the streaming industry.
Adaptive streaming works by delivering media in small chunks of data, it
monitors the current connection (bandwidth) and then adjusts the quality of the
soon-to-be requested chunks of data appropriately. Depending on how good
the network connection is, it utilises the HTTP protocol to request the chunks
and it can be configured to acquire the files in different ways, for example files
split into segments or via the HTTP byte range header [16]. Sudden drops
or spikes in network usage does not equate to buffering and allows for the
application to adapt to the conditions available [17].

The adaptive streaming technology was quickly picked up by companies
such as Microsoft, Netflix, Adobe and Apple, each developing their own
proprietary streaming technology. Upon fearing the same fate for adaptive
streaming as the early proprietary protocols, the 3rd Generation Partnership
Project (3GPP) set out to create a standardised streaming protocol. All of
the previously mentioned companies partook, including many more. By 2012
a new standard had been formed, Dynamic Adaptive Streaming over HTTP
(MPEG-DASH).MPEG-DASH containsmany useful features formedia streaming
companies, namely, Digital Rights Management (DRM) and being codec
agnostic. Today, all major browsers supportMPEG-DASH streaming (with the
exception of Safari), and it is utilised by Netflix among many others [17]. As
mentioned, Apple also developed their own less proprietary protocol, HTTP
Live Streaming (HLS), it is functionally similar to MPEG-DASH, utilising the
same form of adaptive streaming. However, HLS being developed far earlier,
it has a wider adoptation than MPEG-DASH. According to the company
Bitmovin in 2017, HLS had a 78% utilisation, while MPEG-DASH was only
at 56% as seen in figure 2.2, the next, far less popular, adaptive streaming
protocol, Smooth Streaming, is only at 26% [2]. At the time of writing the
2019 report was not available, however, the 2018 report shows an increased
usage in both HLS and MPEG-DASH and a decrease for almost every other
protocol [3]. This paper will focus only on the two major adaptive streaming
protocols currently in use, HLS and MPEG-DASH.

10 | Background

Figure 2.2: Bitmovin 2017 & 2018 surveys [2] [3]

2.4 Related work area

Figure 2.3: Containers vs Virtual Machines

Background | 11

Containerisation
Making the end result scaleable is a big part of the solution, without scalability
it’s pointless, to achieve this the solution will utilise containerisation. A
container is a form of virtualisation, but instead of virtualising the entire
operating system, a container runs on-top of a single operating system [18].
Each container is completely stand-alone and the process running inside is
isolated from the rest of the world, as can be seen in figure 2.3. The container
technology has existed for many years, beginning in 1979 with the emergence
of chroot, however, during the container technologies lifespan between 1979
and 2013 it never saw much traction. It was not until the company Docker
first released their complete ecosystem for management of containers that it
started becoming widely implemented as small containers used for smaller
parts of the program, instead of the monolithic monstrosities currently being
deployed [19].

Container Orchestration

As the application or solution that is being developed grows, the requirement
to manage the containers grow, this is called container orchestration. When
talking about container orchestration technology, as of this paper there are only
two big names for enterprise containerisation, Apache Mesos and Kubernetes.

This paper will focus on Kubernetes as it is the underlying technology for
RedHat OpenShift. The origin of Kubernetes comes from Google Borg [20],
which is Google’s internal proprietary cluster management system. In 2014
as the container technology evolved due to Docker, Google released an open-
source version of the Borg project calledKubernetes. Moving forward to 2017,
Kubernetes had started achieving success in the enterprise world, with many
companies attached to the project, such as GitHub, IBM, Google. At this time
Docker began embracing the Kubernetes management system. Kubernetes
allowed load balancing, scaling, and interconnecting each container via virtual
networks, it had become a must to manage large-scale container clusters [21].

OpenShift

OpenShift is RedHat’s layer implemented on-top ofKubernetes, while Kubernetes
itself is a great underlying technology for container orchestration. It quickly
becomes complex for a developer to deploy an application, even more so if
the developer has to deploy an entire Kubernetes cluster and manage it. On-
top of the complexity issues Kubernetes suffers from many missing pieces in

12 | Background

it’s base form to achieve a manageable enterprise development environment,
namely dividing containers into project groups and user management. A more
comprehensive view of what OpenShift adds on-top of Kubernetes can be
seen in figure 2.4. OpenShift also ensures that the Kubernetes environment
is enterprise ready with security features and bugs being implemented with
the shipped version of the platform [22]. The reason for chosing OpenShift is
due to the IBM acquisition of RedHat and it is of interest for IBM to utilise
the OpenShift platform for future endevours [23]. IBM has a concept called
Cloud Paks, these include bundled applications in container formats to quickly
enable an enterprise to get up and running with a cloud environment, these also
utilise OpenShift [24].

Figure 2.4: OpenShift vs Kubernetes[4]

Background | 13

2.5 Summary
Broadband has been available at high speeds since the early 2000 and media
streaming has been on a rise ever since, continuously topping the charts of
global downstream internet traffic usage around the world [25]. Currently
the media streaming industry is built upon x86-based servers and custom-
built hardware [7], due to its all around performance and price-performance
ratio compared to other architectures, such as POWER or z/Architecture.
Both of these architectures are designed to accommodate virtualisation and
vertical scaling, without increasing the hardware footprint, however, the price
may be significantly higher on a per machine basis [8]. POWER and x86
processors are often implemented as CPU due to the fact that there is a
single central processor for all computations. Mainframes utilise a CPC,
which consist of a multitude of different z/Architecture processors. These
z/Architecture types are designed for different purposes, for example, one is
designed for only executing Java code [9]. Mainframes are central units of the
world’s largest corporations in banking, finance, health care and many other
industries. Performing heavy loads of transaction processing, thousands of
users concurrently accessing numerous resources or manage copious amount
of information in databases [11]. Mainframes are leading in these industries
because of their unbeatable design strengths, such as RAS, security and
scalability. With these characteristics and the extra processing units available,
offloading specific tasks, it is of interest how media streaming would perform
on a mainframe.

The success of media streaming would not have been possible without
the development of HTTP-based adaptive streaming by a company named
Move Networks in 2007. Previously, most protocols had not been able to
keep up with the demand until adaptive streaming became the mainstream.
It works by delivering media in small chunks of data. By monitoring the
bandwidth it adjusts the quality of the requested chunks depending on how
good of a connection is established. The adaptive streaming technology
was quickly picked up by companies, such as Microsoft, Netflix, Adobe and
Apple, each developing their own protocol. In fear of the future of adaptive
streaming, the 3GPP created a standardised streaming protocol with support
by the companies mentioned above, including many more. By 2012 a standard
was formed, MPEG-DASH. Today all major browsers support MPEG-DASH,
except Safari, and it is utilised by Netflix among many others [17]. As
mentioned, Apple developed their own adaptive streaming protocol called
HLS. It functions similarly to MPEG-DASH, however, being developed far

14 | Background

earlier, it has a much wider adaptation than MPEG-DASH. According to
Bitmovin in 2017, HLS had a 78% utilisation while MPEG-DASH only had
56% [2].

Making the end result scalable is amust, without it the solution is pointless.
To achieve this the solution will utilise containerisation. A container is a form
of virtualisation, however, instead of virtualising the entire operating system,
a container runs on-top of an operating system [18]. Each container is stand-
alone and the process running inside is isolated from the rest of the system. The
container technology has been around for a long time, but did not gain traction
until the company Docker released their complete ecosystem for management
of containers in 2013. As an application or solution grows, the requirement
to manage the containers grows, this is called container orchestration. As of
writing this paper, there are only Kubernetes and ApacheMesos as the two big
names for enterprise containerisation. This paper will focus on Kubernetes,
as it is the the underlying technology in RedHat OpenShift. Kubernetes
started as a project called Google Borg [20] and was later released as open-
source under the name Kubernetes in 2014, due to Docker evolving the
container technology. As of 2017, Kubernetes had started achieving success
in the enterprise world, with many companies attached to the project, such as
GitHub, IBM, Google. At this time Docker began embracing the Kubernetes
management system [21]. OpenShift is RedHat’s layer implementation on
top of Kubernetes. While Kubernetes itself is a great underlying technology
for container orchestration, it quickly becomes complex for a developer to
deploy an application, even more so if the developer has to deploy an entire
Kubernetes cluster and manage it. On top of complexity issues Kubernetes
suffers from many missing pieces in it’s base form to achieve a manageable
enterprise development environment, namely dividing containers into project
groups and user management. Apart from relieving some of the complexity,
OpenShift also ensures that the Kubernetes environment is enterprise ready
with security features and bugs implemented with the shipped version of the
platform [22].

Method | 15

Chapter 3

Method

3.1 Process

Figure 3.1: The project process from start to finish

The project is split into three major stages, pre-study, evaluation & testing, and
implementation. The authors designed this pipeline of evaluation to ensure
each software is tested to a standard criteria and allowing streamlining of the
evaluation process. The authors feel this pipeline is a suitable solution for
testing the software and will produce a table of data that will be easy to analyse
and use as a basis for the decisions made during the process.

16 | Method

Pre-study
During the pre-study the authors will read about the area and gather relevant
information going into the project, for example, the background of the media
streaming industry, information about different protocols, pros and cons of
different media streaming software and the inner workings of a mainframe.

To allow the final solution to be seamlessly integrated into existing infrastructures
the authors will base most of the solution on architectures by proven large
streaming solutions, such as Netflix, Hulu and Twitch.

Streaming Protocols

The authors will have to decide on a media streaming protocol, the two major
protocols in the media streaming space is HLS and MPEG-DASH. HLS is
developed by Apple and MPEG-DASH is developed by the Moving Picture
Experts Group (MPEG) [26] [27]. Functionally they are similar, but the
support differs between web browsers and devices.

The authors will prioritise technology stacks which utilise open-source
software, for example, Nginx. Because Nginx appears as a pivotal component
in most technology stacks as it allows MPEG-DASH and HLS streaming.

Evaluation
The evaluation stage includes testing different media streaming software
locally and compare them against each other, to see which one fits the need
best and to bring forth to the third stage of the project.

During the testing process the authors had certain criteria to accommodate,
such as scalability and ability to be containerised. As stated previously,
the authors also have a requirement to utilise open-source software instead
of closed-source products. In figure 3.1 the process of software selection
can be seen. Following the pre-study of each software, a decision pipeline
was followed. If the software fails or is considered ’unreasonable’ by the
authors standards at any step (or sub-step) the process is restarted with the
next software in the queue. Once all the discovered software has been studied
and evaluated, all of the ’passed’ software which meet the set requirements are
implemented in a basic configuration to test the capabilities and viability for
containerisation on the OpenShift platform. Once that is completed the best
option is chosen based on the outcome of the evaluation stage.

Method | 17

Implementation
The deep-dive implementation of the final software chosen includes conducting
further study into the software to get a better understanding of it’s capabilities
and discovering more about the current enterprise implementations of the
software. Once the deeper study is complete, an optimised implementation
including a more thorough configuration of the individual software is done
and configured to run on OpenShift. By the end of this process a working
solution for media streaming that is horizontally scalable via the OpenShift
container platform should be present.

3.2 System documentation
The documentation that will be made available upon project completion
includes architecture diagrams and configuration scripts. The authors will
also be outlining risks and/or problems involved in the given solution. The
documentation made available upon project completion will allow future
engineers to understand the scope of the project and quickly get up to speed
on future work needed to be conducted and understand the interconectivity
between components.

The architecture diagrams will follow a scaled-down version of IBM’s
Team Solution Design and thus include system context, functional & non-
functional requirement matrix, architectural overview, and component model.
If applicable, risks and problemswill be outlined in the architectural documents,
for example, maximum clients a single container instance can handle.

Configuration scripts for the solution includes the OpenShift/Kubernetes
configuration file, Dockerfile, and any configuration file needed to configure
the software chosen.

18 | Method

Evaluation Process & Implementation | 19

Chapter 4

Evaluation Process& Implementation

4.1 Pre-study
During the pre-study phase the authorsmanaged to establishmultiple technology
stacks in use by todays larger players within the media streaming sector,
namely Netflix, Hulu, Twitch.

Netflix

The case of Netflix is the most interesting to the authors as they utilise
mostly open-source software. The authors have studied their Netflix Tech
Blog posts to get a better understanding of their architectures; among other
resources, such as their Open Connect website. This does not just give a better
understanding of both their hardware and software stacks running on each of
their streaming servers, but also, confidence that the correct stack has been
chosen. Simply because Netflix is one of the most used large-scale streaming
platform to date.

Identified streaming solution: Nginx

Hulu

Hulu is also amajor player within the streaming space, however, less information
was available to at the time of the study. The company appears less inclined
to share their technology stack publicly compared to Netflix, which does it
via blogs and other mediums. There was some information available on
Stackshare, which seems to imply the company utilises a similar stack to
Netflix.

Identified streaming solution: Nginx

https://netflixtechblog.com/
https://netflixtechblog.com/
https://openconnect.netflix.com/sv_se/
https://stackshare.io/hulu/hulu

20 | Evaluation Process & Implementation

Twitch

This study is mostly focused on VODs and not live streamed / broadcasted
content, however, the solution would also be tested within those boundaries,
thus a smaller study was conducted into the technology stack of Twitch. The
company is also open to sharing with the public their underlying software
through blog posts at their Engineering Blog. The live streaming solution was
put on the back burner as it is not as applicable in the VOD solution, however,
understanding the differences and software used in the different applications
is an important concept of engineers to ensure a solid knowledge foundation
within the area and especially since the two areas (live streaming and video on
demand) are closely related.

Identified streaming solution: Nginx

IBM

Due to all of the above utilising the same streaming solution (Nginx) the
authors decided to include two software suggestions given by IBM, Red5 and
Kurento. They utilise WebRTC which may be more suited for low-latency
streaming, however, to add diversity to the study they were included to ensure
Nginx is tested against other solutions to solidify the final choice.

4.2 Software Evaluation
The software are graded on a scale of 3: - (Not possible), / (Possible, with
caveats), + (Possible). It was clear from the start that most platforms to
date utilise Nginx extensively as the pre-study showed, however, the authors
chose to evaluate multiple software solutions to establish a baseline, it quickly
became apparent that Nginx was the clear winner. While all of the tested
software could be containerised succesfully, Red5 and Kurento quickly started
failing multiple criterias.

https://blog.twitch.tv/en/?tag=engineering

Evaluation Process & Implementation | 21

4.2.1 Red5
Open-Source (/)

Red5 was quickly dismissed as the open-source version is severely limited
compared to the enterprise solution Red5 Pro. Therefor it received a medium
grade in the open-source section.

Scalable (-)

The Red5 solution contains clustering functionality, however, during the pre-
study period the authors have come to the conclusion that the current version
of Red5 open-source clustering is deprecated and is only supported in the Pro
version [28]. This was also stated by another article on Dzone comparing
open-source solutions to paid versions [29]. Due to this limitation and the
monolithic/stateful design the authors decided Red5 is most likely not suitable
for horizontal scaling in a container environment.

Adaptive Streaming (-)

The open-source versions also do not support any form of adaptive streaming,
at this point the authors chose to abandon the solution completely [30] [31].

22 | Evaluation Process & Implementation

4.2.2 Kurento
Open-Source (+)

The Kurento solution is completely open-source which gave the authors a
better outlook from the start regarding the solution, it is released under LGPL
v2.1 which means the software has to remain free in all distributions of said
software [32] [33].

Scalable (/)

Kurento appears to contain no built-in solution for clustering / horizontal
scaling [29], however, the authors discovered an article written by Luis López
Fernández, an expert within the WebRTC field. It discusses horizontal scaling
of Kurento and WebRTC media servers, as Chad Hart, the editor, states in
the article ’Putting WebRTC media servers in the cloud and reliably scaling
them is even harder’, following was a thorough explanation of the challenges
involved and the issues that would arise. This dissuaded the authors from
pursing the solution due to the time constraints of the project [34].

Adaptive Streaming (-)

Unfortunately, Kurento does not support HLS or MPEG-DASH. It only
supports WebRTC, which is a way for web browsers and applications to
communicate via sockets. Instead of utilising TCP it uses UDP and thus allows
for higher throughput, similar to that of Google QUIC [35]. WhileWebRTC is
an emerging technology (meaning compatibility is not always a guarantee), it’s
use cases is typically aimed towards high bandwidth, low-latency streaming,
such as live video chatting, conference calls, or broadcasting, however, Akamai
and similiar Content Delivery Networks (CDNs) are exploring solutions that
involve WebRTC for Peer-to-Peer (P2P) networking to distribute content [36].

Evaluation Process & Implementation | 23

4.2.3 Nginx
Open-Source (+)

Nginx implements a similar concept to RedHat, they provide support for their
products via a service called Nginx Plus, which also includes several pre-
compiled libraries built into the distribution, such as Real-Time Messaging
Protocol (RTMP) live streaming, however, like RedHat, they also provide
an open-source distribution just as capable as the paid solution. With the
open-source solution modules, such as RTMP, live streaming can be added
and compiled into it without much effort. As Nginx is easily extensible via
modules this lends itself for custom implementations and further development
on top of the platform should such a need arise in the future The authors
consider this an incredibly useful feature. The open-source solution is released
under a ’2-clause BSD-like’ license [37].

Scalable (+)

Nginx showed promise right out of the gate due to the fact it already exists
as a horizontally scalable container solution widely available in, for example,
Docker or Kubernetes, and also in the OpenShift platform via templates. Since
Nginx distributes content typically via HTTP, and HTTP being a stateless
protocol [38], it lends it self to be containerised perfectly. MPEG-DASH and
HLS are inherently stateless (as far as the server is concerned) due to the usage
of HTTP protocols [16], the client retains the current playback state.

Adaptive Streaming (+)

Since MPEG-DASH and HLS utilise a basic HTTP request structure, any
HTTP server would support serving such content. This means Nginx is a
perfect alternative to serving Adaptive streaming content. Nginx is also highly
configurable meaning the solution can be expanded to easily integrate other
software, such as ffmpeg or MP4box, to transcode and create MPEG-DASH
or HLS content on the fly.

24 | Evaluation Process & Implementation

4.2.4 Final Verdict

Evaluation Red5 Kurento Nginx
Container + + +
Open-Source / + +
Scalable - / +
Adaptive Streaming - - +
Live Streaming - / +

Table 4.1: The score of each software

As can be seen in table 4.1, the other solutions had multiple limitations
partially due complexity of integration or lack of any such capabilities. Nginx,
as expected, supports all requirements, including Live Streaming which is an
extra feature included for future expansion based on this paper.

Due to the statelessness nature of HTTP content means Nginx is far
easier to scale compared to the other solutions, leading to less complex
implementations in OpenShift. Kurento and Red5 did not come close in this
regard.

Since Nginx was the only software to support Adaptive Streaming, the
others naturally did not meet expectations. Since MPEG-DASH and HLS
utilise the HTTP protocol, one can conclude that any HTTP server could be
used, which is true, however, since August 2019 Nginx is the most common
HTTP server in use at 32% with Apache coming in a close second at 29%,
either could theoretically be utilised for the solution. With the previously
established knowledge that most current large-scale streaming enterprises
utilise Nginx and the steady decline in Apache usage since 2012, the authors
chose Nginx [39].

The two drawbacks of Nginx that the authors concluded are as follows.

• To receive enterprise support one must pay for such a service, however,
this is considered reasonable.

• Implementing anything outside the scope of the basic features of the pre-
compiled binary of the open-source version one must add and compile
such modules, however, for basic MPEG-DASH / HLS streaming this is
not required.

Evaluation Process & Implementation | 25

4.3 Implementation

Architecture
Basic architectural documentationwas created to allow for an easier understanding
of the authors design once the project is finished. It contained a system context,
a requirement matrix, a non-functional requirements and a component model.

The beginning of the implementation started with an architectural design
that followed IBM’s Team Solution Design (TeamSD) framework. Most focus
was put on the component model to give the reader the best comprehensive
view and understanding of the authors final solution. Below are the resulting
architectural documentation.

Functional Requirement Matrix

Functional Requirement System Supported By Component Priority

Horizontally Scalable Nginx Openshift Very High

DASH Support Nginx HTTP Server Very High

HLS Support Nginx HTTP Server High

Broadcasting Support Nginx RTMP Server
(Nginx RMTP module)

Medium

On-the-fly DASH/HLS
Generation

Nginx ffmpeg Low

DRM Support Unspecified - Very Low

Figure 4.1: Functional requirement matrix

26 | Evaluation Process & Implementation

Non-functional Requirement Matrix

Non-functional requirement Description Supported by component Priority

Connectivity Network must support high
bandwidth for streaming

Low

FOSS Software must be available as
Open Source

High

Compatability Only widely supported streaming
formats

High

Figure 4.2: Non-functional requirement matrix

Architectural Overview
Users

Viewer

Delivery Channels

TV

Telephone

Computer

Media Streaming Solution

DRM

Broadcasting

Video On
Demand

Broadcaster

Live Production Gear
(Blackmagic, …)

Resources

IBM
Mainframe

Storage
Solution

OpenShift

Green – Parts of the architecture implemented and tested
Yellow – Parts for future work, however not implemented or tested yet.

Figure 4.3: Overview of the concept

Evaluation Process & Implementation | 27

Component Model

DRM

Broadcast
Ingestion (RTMP)

Nginx

IBM Mainframe

Storage Solution

OpenShift

Green – Parts of the architecture implemented and tested
Yellow – Parts future work will include, however not implemented or tested yet.

Deploys

Video On Demand
Delivery (HTTP)

Cluster hosted on

DAS (Direct Attached Storage) CDN (Content Delivery
Network)

Viewer

Broadcaster

(FFMPEG)
Real-time VOD

Creation
(DASH/HLS)

NginxNginx

Pods / Containers

On-the-fly repackaging of
MP4 files to DASH / HLS

Worker Node
Worker Node

Worker Node

Master Node
Master Node

Cluster

(Limited Testing Done)

Load Balancer
(OpenShift Built-in)

RTMP

HTTP

DASH / HLS Streaming

Writes ToReads From

Figure 4.4: In-depth model of the components inner workings

The connections in represent communication and relationships, for example
the ’Viewer’ communicates to theNginx server viaHTTP and the ’Broadcaster’
via RTMP, this in turn leads to internal communication between Nginx and
its components. In terms of Openshift and Mainframes it describes the
relationship between Openshift, Nginx, and the Mainframe.

4.4 Experimental design
This chapter describes the environment and design the authors decided to
utilise to implement the final solution, this allows future works to replicate
the environment of the authors to ensure the base solution works as intended.

4.4.1 Test environment
RedHat provides most of their commercial enterprise software as open-source
distributions, for example, RedHat Enterprise Linux as CentOS. This is also

28 | Evaluation Process & Implementation

true for OpenShift. RedHat provides a distribution of OpenShift called
OKD [40]. OKD is the same as OpenShift, however, it does not provide
enterprise support provided by RedHat. OKD is suitable for cost saving,
test environments and local development. Installing OKD is the same as
OpenShift, however, a Virtual Machine (VM) or containerised solution is
provided called MiniShift [41]. MiniShift is perfect for local development
and testing, it provides a single master and worker node locally.

The authors chose to utilise MiniShift for local testing and implementation
because of how easy it is to install and use. Limitations in performance were
not relevant (due to the power available by utilising a single master and worker
node via VM), as benchmarking is not part of the project. The MiniShift
configuration used is standard and no custom configuration was made to the
cluster.

4.4.2 Hardware/Software to be used
The hardware used for testing and implementing the solution is a x86 based
PC, due to the fact that OpenShift is platform agnostic, anything deployable
on a traditional PC should theoretically be deployable via containers on any
other platform running OpenShift. In this case, a Z15 mainframe.

The video used is "Big Buck Bunny", the authors found this to be
a commonly used video created by the Blender foundation to test video
streaming and standards. It is available in multiple formats (4K, 1080, ...), this
makes it easy to create multi-bitrate, framerate and resolution MPEG-DASH
versions of the video [42]. In case a different video combination is required,
ffmpeg is used to transcode it to the needed resolution, bitrate and framerate,
however, this should not be needed.

Evaluation Process & Implementation | 29

Test Environment
Processor Architecture x86
Operating System Linux
Container Platform OpenShift (OKD/MiniShift for testing)
Adaptive Streaming MPEG-DASH & HLS
Video Player VLC
Transcoding ffmpeg
MPEG-DASH
Generator

MP4box

HLS Generator ffmpeg
Video Big Buck Bunny [43]

Table 4.2: Test environment

4.5 Nginx & Dockerfile
Since OpenShift can deploy a Dockerfile straight from source, and load
balancing did not need to be configured, the implementation of Nginx was
fairly straight forward. Only a little custom configuration was needed, which is
one of the benefits of OpenShift (the ease of use for developers). No extensive
knowledge of Kubernetes or container deployment is needed.

Nginx

1 e v e n t s {
2 wo r k e r _ c onn e c t i o n s 1024 ;
3 }
4 h t t p {
5 s e r v e r {
6 l i s t e n 8081 ;
7 l o c a t i o n / dash {
8 # Serve DASH f r a gmen t s
9 r o o t / u s r / s h a r e / ng inx / h tml / v i d s ;

10 add_heade r Cache−Con t r o l no−cache ;
11 }
12 }
13 }

Listing 4.1: Nginx configuration

30 | Evaluation Process & Implementation

The Nginx config file is very basic. It creates an HTTP server on port 8081
(OpenShift standard listening port), it then serves theMPEG-DASH fragments
from the default Nginx HTML folder, these fragments were created using
MP4Box. A benefit of MPEG-DASH and HLS is that it is a simple protocol
without much custom configuration of a web server needed, as can be seen on
row 10 in listing 4.1, the only ’custom’ configuration needed is the removal of
caching.

Dockerfile

1 FROM twalter/openshift-nginx
2 USER 0
3
4 COPY ./config/nginx.conf /etc/nginx
5 RUN mkdir -p /usr/share/nginx/html/vids/dash/
6 ADD https://.../bb.mpd /.../vids/dash/bb.mpd
7 ADD https://.../video_dashinit.mp4 /.../vids/dash/video_dashinit.mp4
8 RUN chmod +rwx /usr/share/nginx/html/vids/dash/*
9

10 EXPOSE 8081

Listing 4.2: Docker configuration

The Dockerfile contains slightly more interesting concepts. Since OpenShift
does not run containers as root, which is typically standard practice in
Dockerfiles, normal images available on Dockerhub usually do not work out
of the box. The authors configuration uses a custom image of Nginx built to
run on OpenShift, it modifies folder permissions among other things to allow
Nginx to run under OpenShift.

On row 2 in listing 4.2, the authors chose to run the container as root even
though this is considered bad practice by OpenShift standards. This is simply
due to the fact that security was not a concern during this project. The usage
of root simplified the docker image configuration immensely, and from the
authors perspective, getting a prototype ready rapidly was of more concern.

The configuration copies the previously listed Nginx config into the
default config directory, it then creates a directory to host the MPEG-DASH
fragments. In the future this would be replaced by a storage solution hosted
in any number of ways. Again, for rapid prototyping the authors simply
downloaded the files needed and hosted them in the image.

On row 6 & 7 in listing 4.2, the downloading of the files can be seen,
the URL and directories have been truncated, the .mpd file contains metadata

Evaluation Process & Implementation | 31

for the MPEG-DASH video file (video_dashinit.mp4). When requesting a
video file the ’Viewer’ would request the bb.mpd file via a player, for example,
http://example.com/dash/bb.mpd. This file informs the client how requests for
fragments or sections of the video should be conducted, for example naming,
HTTP range headers or if the file is split into multiple smaller files.

The resulting Dockerfile allows the container to scale horizontally without
any issues, however, the image size is large due to hosting the files within itself,
this would be resolved by utilising a separate storage solution.

Scalability Test
To test and ensure the scalability of the solution, the Nginx configuration
was scaled up to multiple pods on the Openshift (Minishift) platform and
consequently multiple VLC instances were opened on the local computer, each
client started requesting video files from the server, upon requesting the server
logs were observed to ensure requests were being properly balanced between
containers/pods.

32 | Evaluation Process & Implementation

Conclusion | 33

Chapter 5

Conclusion

5.1 Conclusions
The authors successfully managed to implement a video on demand / Media
Streaming system and applied engineering methods to solve the problem at
hand, as the final solution achieved all requisites given by IBM. DRM and
Broadcasting / Live streaming was not implemented, however, it is supported
by the solution and future work can easily be conducted to expand the current
feature set.

Requisite Nginx
Containerised X
Scalable X
Open-Source X
DRM /
Broadcasting /

Table 5.1: Nginx criteria result

Is it possible to run a media streaming solutions in OpenShift?

The authors conclude that it is absolutely possible to run a media streaming
solution in OpenShift. Since MPEG-DASH and HLS utilise the HTTP
protocol it is an excellent fit for containerisation. Streaming via a web server
is a great way to utilise containers and the built-in load balancer and scaling,
thanks to the HTTP protocol being stateless in itself.

34 | Conclusion

Is it reasonable to run streaming solutions in OpenShift? (Cost wise,
complexity, etc...)

The authors believe that it is reasonable to deploy such a solution viaOpenShift,
the complexity of the solution was, to dismay of the authors, quite low. The
authors believed before beginning the project that the end-result would require
more configuration and be significantly more complex, however, this acts to
prove a point of the ease of use for developers to deploy via OpenShift.

The cost of the solution can be debated as OpenShift is available open-
source and as an enterprise edition, however, barringmonetary cost, containerisation
leads to less performance and resource overhead compared to fully virtualised
operating systems, thus should provide a significant boost in resource utilisation.
OpenShift itself does add slight overhead in terms of computing power but it
is negligible.

The authors also conclude that currently most media streaming solutions
are not built to be runnable and scalable in a container out-of-the-box. The
authors both agree that most of the purpose built streaming solutions, such as
Red5 and Kurento, would have to be shoehorned into a container for it to be
deployed via OpenShift, which often is not a reasonable thing to do.

The usage of DRM systems and live streaming could render the solution
far more complex due to load balancing issues, however, the authors have
no conclusive result or knowledge regarding how complex or configuration
needed to load balance such a solution.

5.2 Limitations
Unfortunately, due to the Covid-19 pandemic the project suffered a bit. IBM
closed their offices around the world, KTH closed the campus and it was
recommended all over Sweden to stay away from all unnecessary meetings.
The situation made it harder for the authors to cooperate, as all of the
communication, both with each other, KTH and IBM, had to take part over the
internet or phone. The authors also never got access to a mainframe because
of the closed IBM offices.

Conclusion | 35

5.3 Discussion
The authors found themselves reasonably pleased with the result. The solution
itself was implemented successfully, and engineeringmethodology and knowledge
which has been acquired over the past three years was utilised. Though, the
software solution itself proved less challenging and complex than initially
expected. If time allowed live streaming and DRM features would have been
interesting to implement in the solution, however, since those requisites were
optional, the authors chose to focus on the report rather than continuous
tinkering with the solution.

The authors were also disappointed that nomainframewas available during
the course of the project. This would have helped to establish a better andmore
conclusive result, as minor benchmarking could have been achieved to give the
project a more data-driven result.

Validity & Reliability

The solution should theoretically work in the targeted environment but because
of it never being tested in it, the validity and reliability of the resulting solution
can not be one hundred percent certain until implemented on a mainframe.

5.4 Future work
There are a couple of paths that future engineers can take as an extension of
this thesis. The authors would like to see a paper that also include enterprise
versions in the study. Another interesting extension would be a deeper analysis
of the mainframe processing performance; a study on what z/Architecture
processors to use and how many of each, in order to build the perfect media
streaming mainframe for large scale media streaming companies. Also,
a comparison of performance between VM and containerisation for media
streaming on a mainframe is an interesting aspect to analyse.

36 | REFERENCES

References

[1] “IBMData Privacy Passports - Overview - Sweden.” [Online]. Available:
https://www.ibm.com/se-en/marketplace/data-privacy-passports

[2] “(No Title).” [Online]. Available: https://bitmovin.com/whitepapers/
Bitmovin-Developer-Survey.pdf

[3] “(No Title).” [Online]. Available: https://cdn2.
hubspot.net/hubfs/3411032/Premium%20Content%20PDF%
20Files%20-%20whitepaper,%20case%20study,%20report,%20/
Bitmovin-Video-Developer-Report-2018.pdf

[4] “The Differences Between Kubernetes and Openshift - Levvel -
Medium.” [Online]. Available: https://medium.com/levvel-consulting/
the-differences-between-kubernetes-and-openshift-ae778059a90e

[5] “AI Video Solutions and Services | IBM Watson Media.” [Online].
Available: https://www.ibm.com/watson/media

[6] “Why Mainframes are Key to Green IT & Environmentally
Sustainable Computing – BMC Blogs.” [Online]. Available:
https://www.bmc.com/blogs/mainframe-sustainability-green-it/
?fbclid=IwAR0EvoWwp0Gyz0Rc9kheSfIsCTZ57Wexx4Arf76nux_
_Q_qVf4u1RRDjcdM

[7] “Netflix | Open Connect-enheter.” [Online]. Available: https:
//openconnect.netflix.com/sv_se/appliances/

[8] “IBM POWER vs. x86: The Key Differences - Syncsort
Blog.” [Online]. Available: https://blog.syncsort.com/2018/08/
data-availability/ibm-power-vs-x86-the-key-differences/

[9] “Mainframe hardware: Processing units.” [Online].
Available: https://www.ibm.com/support/knowledgecenter/zosbasics/
com.ibm.zos.zmainframe/zconc_mfhwPUs.htm

https://www.ibm.com/se-en/marketplace/data-privacy-passports
https://bitmovin.com/whitepapers/Bitmovin-Developer-Survey.pdf
https://bitmovin.com/whitepapers/Bitmovin-Developer-Survey.pdf
https://cdn2.hubspot.net/hubfs/3411032/Premium%20Content%20PDF%20Files%20-%20whitepaper,%20case%20study,%20report,%20/Bitmovin-Video-Developer-Report-2018.pdf
https://cdn2.hubspot.net/hubfs/3411032/Premium%20Content%20PDF%20Files%20-%20whitepaper,%20case%20study,%20report,%20/Bitmovin-Video-Developer-Report-2018.pdf
https://cdn2.hubspot.net/hubfs/3411032/Premium%20Content%20PDF%20Files%20-%20whitepaper,%20case%20study,%20report,%20/Bitmovin-Video-Developer-Report-2018.pdf
https://cdn2.hubspot.net/hubfs/3411032/Premium%20Content%20PDF%20Files%20-%20whitepaper,%20case%20study,%20report,%20/Bitmovin-Video-Developer-Report-2018.pdf
https://medium.com/levvel-consulting/the-differences-between-kubernetes-and-openshift-ae778059a90e
https://medium.com/levvel-consulting/the-differences-between-kubernetes-and-openshift-ae778059a90e
https://www.ibm.com/watson/media
https://www.bmc.com/blogs/mainframe-sustainability-green-it/?fbclid=IwAR0EvoWwp0Gyz0Rc9kheSfIsCTZ57Wexx4Arf76nux__Q_qVf4u1RRDjcdM
https://www.bmc.com/blogs/mainframe-sustainability-green-it/?fbclid=IwAR0EvoWwp0Gyz0Rc9kheSfIsCTZ57Wexx4Arf76nux__Q_qVf4u1RRDjcdM
https://www.bmc.com/blogs/mainframe-sustainability-green-it/?fbclid=IwAR0EvoWwp0Gyz0Rc9kheSfIsCTZ57Wexx4Arf76nux__Q_qVf4u1RRDjcdM
https://openconnect.netflix.com/sv_se/appliances/
https://openconnect.netflix.com/sv_se/appliances/
https://blog.syncsort.com/2018/08/data-availability/ibm-power-vs-x86-the-key-differences/
https://blog.syncsort.com/2018/08/data-availability/ibm-power-vs-x86-the-key-differences/
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc_mfhwPUs.htm
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc_mfhwPUs.htm

REFERENCES | 37

[10] “IBM Archives: IBM Mainframes.” [Online]. Available: https://www.
ibm.com/ibm/history/exhibits/mainframe/mainframe_intro.html

[11] “Who uses mainframes and why do they do it?” [Online].
Available: https://www.ibm.com/support/knowledgecenter/zosbasics/
com.ibm.zos.zmainframe/zconc_whousesmf.htm

[12] “Specialty processors.” [Online]. Available: https:
//www.ibm.com/support/knowledgecenter/SSB27U_6.4.0/com.ibm.
zvm.v640.hcpa0/hcpa083.htm

[13] “Video-on-demand | Britannica.” [Online]. Available: https://www.
britannica.com/technology/video-on-demand

[14] “Streaming Television | Britannica.” [Online]. Available: https:
//www.britannica.com/topic/Streaming-Television-2006900

[15] “YouTube joins Netflix in reducing video quality in Europe - The Verge.”
[Online]. Available: https://www.theverge.com/2020/3/20/21187930/
youtube-reduces-streaming-quality-european-union-coronavirus-bandwidth-internet-traffic

[16] T. Stockhammer, “MPEG’s Dynamic Adap2ve Streaming over HTTP
(DASH)--An Enabling Standard for Internet TV,” Tech. Rep.

[17] “A history of media streaming and the future of connected
TV | Media Network | The Guardian.” [Online]. Available:
https://www.theguardian.com/media-network/media-network-blog/
2013/mar/01/history-streaming-future-connected-tv

[18] “What is a Container? | App Containerization | Docker.” [Online].
Available: https://www.docker.com/resources/what-container

[19] “A Brief History of Containers: From the 1970s
Till Now.” [Online]. Available: https://blog.aquasec.com/
a-brief-history-of-containers-from-1970s-chroot-to-docker-2016

[20] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” 2015.

[21] “The History of Kubernetes on a Timeline | @RisingStack.” [Online].
Available: https://blog.risingstack.com/the-history-of-kubernetes/

[22] “What is OpenShift - Red Hat OpenShift.” [Online]. Available:
https://www.openshift.com/learn/what-is-openshift

https://www.ibm.com/ibm/history/exhibits/mainframe/mainframe_intro.html
https://www.ibm.com/ibm/history/exhibits/mainframe/mainframe_intro.html
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc_whousesmf.htm
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc_whousesmf.htm
https://www.ibm.com/support/knowledgecenter/SSB27U_6.4.0/com.ibm.zvm.v640.hcpa0/hcpa083.htm
https://www.ibm.com/support/knowledgecenter/SSB27U_6.4.0/com.ibm.zvm.v640.hcpa0/hcpa083.htm
https://www.ibm.com/support/knowledgecenter/SSB27U_6.4.0/com.ibm.zvm.v640.hcpa0/hcpa083.htm
https://www.britannica.com/technology/video-on-demand
https://www.britannica.com/technology/video-on-demand
https://www.britannica.com/topic/Streaming-Television-2006900
https://www.britannica.com/topic/Streaming-Television-2006900
https://www.theverge.com/2020/3/20/21187930/youtube-reduces-streaming-quality-european-union-coronavirus-bandwidth-internet-traffic
https://www.theverge.com/2020/3/20/21187930/youtube-reduces-streaming-quality-european-union-coronavirus-bandwidth-internet-traffic
https://www.theguardian.com/media-network/media-network-blog/2013/mar/01/history-streaming-future-connected-tv
https://www.theguardian.com/media-network/media-network-blog/2013/mar/01/history-streaming-future-connected-tv
https://www.docker.com/resources/what-container
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://blog.risingstack.com/the-history-of-kubernetes/
https://www.openshift.com/learn/what-is-openshift

38 | REFERENCES

[23] “IBM Closes Landmark Acquisition of Red Hat for $34
Billion; Defines Open, Hybrid Cloud Future.” [Online].
Available: https://www.redhat.com/en/about/press-releases/
ibm-closes-landmark-acquisition-red-hat-34-billion-defines-open-hybrid-cloud-future

[24] “IBM Cloud Paks | IBM.” [Online]. Available: https://www.ibm.com/
cloud/paks/

[25] “Report: Where Does the Majority of Internet Traffic
Come From? | NCTA — The Internet & Television
Association.” [Online]. Available: https://www.ncta.com/whats-new/
report-where-does-the-majority-of-internet-traffic-come

[26] “HTTP Live Streaming - Wikipedia.” [Online]. Available: https:
//en.wikipedia.org/wiki/HTTP_Live_Streaming

[27] “Dynamic Adaptive Streaming over HTTP - Wikipedia.”
[Online]. Available: https://en.wikipedia.org/wiki/Dynamic_Adaptive_
Streaming_over_HTTP

[28] “Clustering - How to Seamlessly Scale Red5 Pro
Servers.” [Online]. Available: https://www.red5pro.com/blog/
clustering-how-to-scale-red5-pro/

[29] “Open Source vs. Commercial Video Streaming Servers - DZone
Open Source.” [Online]. Available: https://dzone.com/articles/
open-source-vs-commercial-video-streaming-servers

[30] “Comparison of streaming media systems - Wikipedia.” [Online].
Available: https://en.wikipedia.org/wiki/Comparison_of_streaming_
media_systems

[31] “GitHub - Red5/red5-server: Red5 Server core.” [Online]. Available:
https://github.com/Red5/red5-server

[32] “Kurento.” [Online]. Available: https://www.kurento.org/

[33] “GNU Lesser General Public License v2.1 - GNU Project - Free
Software Foundation.” [Online]. Available: https://www.gnu.org/
licenses/old-licenses/lgpl-2.1.en.html

[34] “WebRTC media servers in the Cloud: lessons learned (Luis López
Fernández) - webrtcHacks.” [Online]. Available: https://webrtchacks.
com/webrtc-media-servers-in-the-cloud/

https://www.redhat.com/en/about/press-releases/ibm-closes-landmark-acquisition-red-hat-34-billion-defines-open-hybrid-cloud-future
https://www.redhat.com/en/about/press-releases/ibm-closes-landmark-acquisition-red-hat-34-billion-defines-open-hybrid-cloud-future
https://www.ibm.com/cloud/paks/
https://www.ibm.com/cloud/paks/
https://www.ncta.com/whats-new/report-where-does-the-majority-of-internet-traffic-come
https://www.ncta.com/whats-new/report-where-does-the-majority-of-internet-traffic-come
https://en.wikipedia.org/wiki/HTTP_Live_Streaming
https://en.wikipedia.org/wiki/HTTP_Live_Streaming
https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP
https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP
https://www.red5pro.com/blog/clustering-how-to-scale-red5-pro/
https://www.red5pro.com/blog/clustering-how-to-scale-red5-pro/
https://dzone.com/articles/open-source-vs-commercial-video-streaming-servers
https://dzone.com/articles/open-source-vs-commercial-video-streaming-servers
https://en.wikipedia.org/wiki/Comparison_of_streaming_media_systems
https://en.wikipedia.org/wiki/Comparison_of_streaming_media_systems
https://github.com/Red5/red5-server
https://www.kurento.org/
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://webrtchacks.com/webrtc-media-servers-in-the-cloud/
https://webrtchacks.com/webrtc-media-servers-in-the-cloud/

REFERENCES | 39

[35] “QUIC - Wikipedia.” [Online]. Available: https://en.wikipedia.org/
wiki/QUIC

[36] “The State of WebRTC and Streaming Media 2018.” [Online].
Available: https://www.streamingmedia.com/Articles/ReadArticle.
aspx?ArticleID=124068

[37] “nginx.” [Online]. Available: http://nginx.org/en/

[38] “Why is it said that "HTTP is a stateless protocol"? - Stack
Overflow.” [Online]. Available: https://stackoverflow.com/questions/
13200152/why-is-it-said-that-http-is-a-stateless-protocol

[39] “August 2019 Web Server Survey | Netcraft News.”
[Online]. Available: https://news.netcraft.com/archives/2019/08/15/
august-2019-web-server-survey.html

[40] “OKD - The Community Distribution of Kubernetes that powers Red
Hat OpenShift.” [Online]. Available: https://www.okd.io/

[41] “Minishift - Containerized OKD Cluster.” [Online]. Available: https:
//www.okd.io/minishift/

[42] “Big Buck Bunny 3D - Download.” [Online]. Available: http:
//bbb3d.renderfarming.net/download.html

[43] “Big Buck Bunny 60fps 4K - Official Blender Foundation Short Film
- YouTube.” [Online]. Available: https://www.youtube.com/watch?v=
aqz-KE-bpKQ

https://en.wikipedia.org/wiki/QUIC
https://en.wikipedia.org/wiki/QUIC
https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=124068
https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=124068
http://nginx.org/en/
https://stackoverflow.com/questions/13200152/why-is-it-said-that-http-is-a-stateless-protocol
https://stackoverflow.com/questions/13200152/why-is-it-said-that-http-is-a-stateless-protocol
https://news.netcraft.com/archives/2019/08/15/august-2019-web-server-survey.html
https://news.netcraft.com/archives/2019/08/15/august-2019-web-server-survey.html
https://www.okd.io/
https://www.okd.io/minishift/
https://www.okd.io/minishift/
http://bbb3d.renderfarming.net/download.html
http://bbb3d.renderfarming.net/download.html
https://www.youtube.com/watch?v=aqz-KE-bpKQ
https://www.youtube.com/watch?v=aqz-KE-bpKQ

40 | REFERENCES

For DIVA
{
"Author1": { "name": "Linus Berg"},
"Author2": { "name": "Felix Ståhl"},
"Degree": {"Educational program": "Degree Programme in Computer Engineering"},
"Title": {
"Main title": "Mainframes and media streaming solutions",
"Subtitle": "How to make mainframes great again",
"Language": "eng" },
"Alternative title": {
"Main title": "Stordatorer och mediaströmningslösningar",
"Subtitle": "Hur man gör stordatorer bra igen",
"Language": "swe"
},
"Supervisor1": { "name": "Johan Montelius" },
"Examiner": {
"name": "Anders Sjögren",
"organisation": {"L1": "School of Electrical Engineering and Computer Science" }
},
"Cooperation": { "Partner_name": "IBM Svenska AB"},
"Other information": {
"Year": "2020", "Number of pages": "viii,41"}
}

TRITA-EECS-EX-2020:226

www.kth.se

