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Abstract
Deformable image registration is usually performed manually by clinicians,
which is time-consuming and costly, or using optimization-based algorithms,
which are not always optimal for registering images of different modalities. In
this work, a deep learning-based method for MR-CT deformable image regis-
tration is presented. In the first place, a neural network is optimized to register
CT pelvic image pairs. Later, the model is trained on MR-CT image pairs to
register CT images to match its MR counterpart.

To solve the unavailability of ground truth data problem, two approaches were
used. For the CT-CT case, perfectly aligned image pairs were the starting point
of our model, and random deformations were generated to create a ground
truth deformation field. For the multi-modal case, synthetic CT images were
generated from T2-weighted MR using a CycleGAN model, plus synthetic
deformations were applied to the MR images to generate ground truth de-
formation fields. The synthetic deformations were created by combining a
coarse and fine deformation grid, obtaining a field with deformations of dif-
ferent scales.

Several models were trained on images of different resolutions. Their perfor-
mance was benchmarked with an analytic algorithm used in an actual registra-
tion workflow. The CT-CT models were tested using image pairs created by
applying synthetic deformation fields. The MR-CT models were tested using
two types of test images. The first one contained synthetic CT images and MR
ones deformed by synthetically generated deformation fields. The second test
set contained real MR-CT image pairs. The test performance was measured
using the Dice coefficient. The CT-CT models obtained Dice scores higher
than 0.82 even for the models trained on lower resolution images. Despite
the fact that all MR-CT models experienced a drop in their performance, the
biggest decrease came from the analytic method used as a reference, both for
synthetic and real test data. This means that the deep learning models out-
performed the state-of-the-art analytic benchmark method. Even though the
obtained Dice scores would need further improvement to be used in a clinical
setting, the results show great potential for using deep learning-based methods
for multi- and mono-modal deformable image registration.
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Sammanfattning
Bildregistrering görs vanligtvis för hand eller med optimeringsbaserade al-
goritmer, vilket är tidskrävande och kostsamt. I detta arbete presenteras en
djupinlärningsbaserad metod för icke-linjär registrering av MR bilder mot CT
bilder. Först optimeras ett neuralt nätverk för att registrera par av CT-bilder av
bäcken. Senare tränas modellen på MR-CT-bildpar för att registrera CT-bilder
mot dess MR-motsvarighet.

Lämplig ground-truth data för detta problem saknas vilket löses med två till-
vägagångssätt. I fallet med par av CT-bilder var utgångspunkten identiska bil-
der där en av dessa sedan deformeras med ett slumpmässigt genererat de-
formationsfält innan bilderna matades till nätverket. I det multimodala fallet
genererades syntetiska CT-bilder från T2-viktad MR med användning av en
CycleGAN-modell. Dessutom applicerades syntetiska deformationer på MR-
bilderna för att generera deformationsfält för ground-truth. De syntetiska de-
formationerna skapades genom att kombinera ett grovt och fint deformations-
nät, vilket gav ett fält med deformationer i olika skalor.

Flera modeller tränades på bilder med olika upplösningar. Deras resultat jäm-
fördes med en analytisk algoritm som används i ett faktiskt arbetsflöde för
bildregistrering. CT-CT-modellerna testades på bildpar skapade med synte-
tiska deformationsfält. MR-CT-modellerna testades på två typer av testbilder.
Den första innehöll syntetiska CT-bilder ochMR-bilder deformerade av synte-
tiska deformationsfält. Den andra testuppsättningen innehöll riktiga MR-CT-
bildpar. Testprestanda mättes med hjälp av Dice-koefficienten. Resultaten vi-
sade att CT-CT modellerna erhöll Dice-koefficient högre än 0,82 även för mo-
dellerna tränade på bilder med lägre upplösning. Trots det faktum att prestan-
da minskade för alla MR-CT-modeller, kom den största minskningen från den
analytiska metoden som användes som referens, både för syntetisk och verk-
lig testdata. Detta innebär att djupinlärningsmodellerna överträffade den ana-
lytiska benchmarkmetoden. Även om de erhållna Dice-koefficienterna skulle
behöva förbättras innan användning i en klinisk miljö, visar resultaten att dju-
pinlärningsbaserade metoder för multi- och monomodal bildregistrering har
stor potential.
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Chapter 1

Introduction

According to theAmerican Cancer Society (ACS), themost predominant types
of cancer among American men aged over 55 years old are prostate and blad-
der cancer. The 5-year survival rate for patients diagnosed with prostate cancer
is 100% if the disease is only in the prostate and nearby organs. However, this
figure drops to 30% if the cancer has spread to other parts of the body. Simi-
larly, the 5-year survival rate for bladder cancer is 77%. If the tumor is invasive
but has not yet spread outside the bladder the 5-year survival rate is 69%, but
if the cancer has extended to the surrounding tissue or to nearby lymph organs
this survival rate drops to 35% [5] [3]. These figures highlight the importance
of obtaining an early diagnose of the disease and perform an accurate treat-
ment plan.

The main imaging modality for radiation therapy planning and dose computa-
tion is computed tomography (CT) scan. The poor contrast that characterizes
CT images makes it very challenging to obtain an accurate segmentation of
target structures and tumors. On the other hand, magnetic resonance (MR)
images show excellent soft-tissue contrast but do not provide the electron den-
sity information needed for dose computation. Therefore, MR images are used
together with CT images to achieve target and tumor delineation. An accurate
delineation of these images is crucial for a correct radiotherapy plan and dose
delivery [29].

Image registration is used in the medical field to match images acquired from
different viewpoints, at different times, containing physiological variations
and/or obtained using different scanning modalities [16]. Combining multiple
images in this way can be used to quantify changes in organ shape, size, and
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2 CHAPTER 1. INTRODUCTION

position, providing physicians a better understanding of the patient’s anatomy
and organ function [19]. Moreover, the establishment of the correspondence
between images is critical to a wide variety of clinical tasks such as image fu-
sion, organ atlas creation, and tumor growthmonitoring [16]. Additionally, the
application of deformable registration in image-guided radiotherapy provides
improved geometric and dosimetric accuracy of radiation treatments [19].

Traditionally, cross-modality image registration is performedmanually by clin-
icians. As a consequence, the final registration is highly dependent on the
expertise of the user and very costly. Automatic methods based on analytic al-
gorithms have also been developed. A commonly used cost function is mutual
information (MI) which measures the reduction in uncertainty of one image
given the knowledge of another [9]. The main problem faced when registering
CT to MR images is that the later ones do not possess a calibrated intensity
scale. This means that images obtained from different scanners usually have
different intensity scales and probability distributions, resulting in MI getting
stuck in local maximawhen the images’ intensity scales are very different [29].

The arrival of deep learning methods has allowed to obtain state-of-the-art
results in many computer vision tasks including image registration. However,
most results for deformable image registration using deep learning are recent
and in practice the problem is still solved by analytic methods.

1.1 Aims
Deformable image registration plays a key role for accurate treatment planning.
It is used by clinicians to propagate contours and map dose definitions be-
tween image sets. This task is important for an efficient workflow and to avoid
manually contouring of regions of interest. As stated in Section 1, automated
algorithms using analytical methods are not always optimal when performing
deformable registration between multi-modal images [8] [16]. Therefore there
is a need to find a better solution.

The main aim of the study is to assess the viability of a deep learning model
to perform the deformable registration task. Later, the obtained results will be
compared with an analytic method that is being used in an actual registration
workflow.

One of the main challenges that will be faced along this project is the lack of
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available image registration ground truth data. Correct ground truth registra-
tions are usually not available since they have to be created by hand, which is
a time consuming and expensive process. This problem has been addressed in
the literature in two different ways. The first one is using a similarity metric as
loss function during training [14]. However, this approach is not completely
adequate for multi-modal registration as the similarity metric can converge to
a local maximum. The second approach is to generate synthetic ground truth
deformation fields [12]. In this project, the second approach is being imple-
mented.

The main goal of the project is to develop a deep learning-based model for
multi-modal deformable image registration for the male pelvic region. In the
literature, deep learning has been mostly used to solve the deformable registra-
tion problem for images of the same modality. Thus, this work is considered
as a study on the viability of using a neural network for multi-modal image
registration. In order to achieve this goal two subgoals are set:

• Develop a model to register CT images to synthetically deformed CT
images. This model is going to be evaluated on synthetic test deforma-
tion fields.

• Train amodel to register synthetic CT images tomatchMR images based
on the results obtained in the previous step. This model is going to be
evaluated both on synthetic test deformations and real images.



Chapter 2

Methods

Themethod for image registration being investigated in this project follows the
work of [12]. A convolutional neural network is used to predict a deformation
field given a reference and a target image. The network is a modified 3D U-
net [27] with two input channels, one for each 3D image, and three output
channels for the x-, y- and z-components of the deformation field. Synthetic
deformations are generated to create reference and target image pairs for train-
ing since, as previously mentioned, ground truth deformation fields are not
available. More precisely, random synthetic deformation fields are applied
to training images, yielding pairs of reference and target images. The image
pairs are then fed through the network which results in predicted deformation
fields. The predictions are compared with the synthetic deformations and a
loss is computed. A graphic representation of the method is presented in Fig-
ures 2.1 and 2.2. The network is trained by minimizing a loss function. The
method has a number of interesting hyperparameters:

• Resolution of input images.

• Method for generating synthetic deformation fields.

• Architecture of the convolutional neural network.

• Resolution of the predicted deformation field.

The resolution of input images and the network architecture will be discussed
in Section 3.1 and 3.2, and the method for generating synthetic deformation
fields in Section 2.4. The method presented here uses the same resolution for
the predicted fields as for the input images since this simplifies the network
architecture. The same choice is made in [12].

4
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Compared to the work of [12], which is concerned with the registration of pul-
monary CT images, this work faces the additional difficulty presented by cross-
modality registration. Applying the method of [12] to register MR and CT
images requires perfectly aligned image pairs as training data. Such aligned
data is normally not available and therefore synthetically generated CT images
will be used for training the network. The generation of synthetic CT images
is described in Section 2.4.

Firstly, a CT to CT registration model is created and evaluated to make sure
that the results from [12] can be transferred to CT images of the pelvic region.
Secondly, the MR-CT registration model is investigated.

Figure 2.1: Representation of the implemented method for CT-CT registra-
tion. Two identical images are the starting point of the pipeline. A ground
truth synthetic deformation vector field is generated and applied to the image
in channel 1 to generate a reference image from which the deformation field
to obtain is known. Then, both images, reference and target are fed to the net-
work and a deformation field is predicted. Finally, the loss is calculated by
comparing the ground truth and the predicted deformation fields.

Throughout the project, the terms reference and target images are going to be
used. The term reference image refers to the stationary image, while by target
image it is meant the image to be transformed to be mapped to the reference
image.
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Figure 2.2: Representation of the implemented method for MR-CT registra-
tion. Two perfectly aligned images are the starting point of the pipeline: a T2
MR image and a synthetic CT. A ground truth synthetic deformation vector
field is generated and applied to the image in channel 1 to generate a reference
image and a ground truth deformation field. Then, both images, reference and
target are fed to the network and a deformation field is predicted. Finally, the
loss is calculated by comparing the ground truth and the predicted deformation
fields.

2.1 Dataset
To train, test and validate our model two different datasets were used, both
containing MR and CT images of the male pelvic region. The first one is
from Iridium Kankernetwerk, Antwerp, Belgium, and was used for training,
validating and testing the models. The second one, the Gold Atlas research
dataset from [25] was used as test set for the MR-CT models.

2.1.1 Iridium
The iridium dataset has a total of 425 anonymized patients containing different
MR sequences, CT and Cone Beam CT examinations of the male pelvic re-
gion. The CT exams contain clinically approved and peer-reviewed contours,
that were used in delivered radiotherapy plans. In order to get the images that
fit the purpose of the project, only patients with CT and T2 MR examinations
were selected. T2-weightedMR images are used for radiation therapy because
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(a) CT contoured image. (b) T2 MR image.

Figure 2.3: Sample patient data from Iridium database.

they brighten tissues containing fat and water which allows to detect patholo-
gies [15]. On top of that, the CT examinations were required to have contours
for the bladder, right and left femur, prostate, and rectum. These regions of
interest (ROIs) will be used to monitor training and evaluate the model. Addi-
tionally, patients that had a hip prosthesis were removed from the dataset. After
this selection, a total of 186 patients were left. To ensure a homogeneous dis-
tribution of the data in the training, validation, and test sets, the samples were
randomly split into 38 test samples, 20 validation samples, and 128 training
samples. An example of the image data can be seen in Figure 2.3.

2.1.2 Gold Atlas
The Gold Atlas dataset is presented in [25] as a way to provide a dataset for the
training and validation of segmentation algorithms. The dataset contains T1-
and T2-weighted MR images as well as CT images of 19 patients in the same
positions with multi-observer and expert consensus delineations of relevant
organs of themale pelvic region. The contours relevant for our purposes are the
bladder, rectum, prostate, and femur bones. Since the CT images did not have
any delineations in this dataset, such were created with an existing automatic
segmentation tool: the deep learning model Iridium PelvicMale of RayStation
system was used. This dataset was only used to test the accuracy of the multi-
modal deep learning registration models. An example of the available data in
the Gold Atlas dataset can be found in Figure 2.4.

2.2 Data Preprocessing
The original images from both datasets had varying image shapes and voxel
sizes. For this reason, all images were resampled to a predetermined resolution
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(a) CT with deep learning based seg-
mentations.

(b) T2 MR image with consensus seg-
mentations.

Figure 2.4: Sample patient data from Gold Atlas database.

and size before being presented to the neural network. This was done both
during training and at inference. In most experiments, the input images were
cropped to a physical size of (23.0, 15.0, 20.0) cm. This size was chosen
to ensure that most of the bladder, rectum, prostate, and most of the femoral
heads would fit in the image for a typical patient. The reason for keeping a
smaller image size was that there was a limit on the total number of voxels
that the neural network could operate on, so a smaller image size enabled the
use of a higher resolution. The limit on the number of voxels is due to the fact
that the neural network had to fit into GPU-memory. It is worth mentioning
that parts of the femoral heads often ended up outside of the images as seen
in Figure 2.5. The voxel sizes for the different models trained in this work are
presented in Table 2.1. The model IridiumMR-CT complete (see Table 2.1) is
using an image resolution of (0.25, 0.25, 0.25) cm to be able to use the images’
complete field of view.

Figure 2.5: Example of cropped CT Image of the Iridium database.
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Test Voxel Size (cm) Image Shape (voxels)
Iridium CT-CT (0.3, 0.107, 0.107) (76, 140, 186)
Iridium CT-CT (0.3, 0.144, 0.144) (160, 104, 138)

Iridium CT-CT/ MR-CT (0.25, 0.25, 0.25) (92, 60, 80)
Iridium CT-CT (0.5, 0.5, 0.5) (46, 30, 40)
Iridium MR-CT (0.4, 0.084, 0.084) (58, 176, 236)

Iridium MR-CT all image (0.25, 0.25, 0.25) (82, 80, 146)
Gold Atlas (0.25, 0.097, 0.097) (92, 154, 204)

Table 2.1: Data resolution and corresponding image shapes.

2.3 Data Augmentation
Data augmentation was used to increase the amount of training data. Every
time that a data sample was fed to the network, it was transformed by applying
a set of deformations on the fly. In this way, the network never saw the same
input twice. Data augmentation is a type of regularization and prevents overfit-
ting. The applied augmentations were combinations of rotations, translations,
and elastic deformations. Translation and rotation values were picked from
a uniform random distribution with boundaries +/- a given value. The elas-
tic deformations were created by picking random displacement vectors from a
normal distribution on a coarse grid and creating intermediary displacement
vectors by spline interpolation. The distributions used for creating data aug-
mentations are shown in Table 2.2.

Parameter Value
Translation (cm) 0.5
Rotation (deg) 2

Grid spacing (cm) (10, 10, 10)
Deformation scale (cm) (0.1, 0.1, 0.1)

Table 2.2: Values for the random translation, rotation and deformation scale
used for data augmentation.
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2.4 Synthetic ground truth and CT genera-
tion

Due to the lack of available ground truth data for the registration task, synthetic
data was used. In the following section, the methods and choice of parameters
for generating synthetic data are presented.

2.4.1 Ground Truth Generation
As mentioned earlier, the models were trained using perfectly aligned image
pairs, where the reference image was created by applying a known deformation
field to one of the images in the pair. Such reference-target image pairs can be
easily generated if a large pool of deformation fields are available. One of the
assumptions in this project is that suitable deformation fields can be generated
by a fairly simple process and that there is no need for them to be anatomically
correct.

The pelvic region is characterized by having organs that can experience com-
pletely different types of deformations. On one hand, the bones only suffer
from rigid-body transformations, while the rectum and the bladder can expe-
rience a great increase in size in a very short time. Accordingly, it was decided
to concatenate a coarse and a fine deformation grid to train the network with
fields of different characteristics. This was also the approach used in [12].
The coarse grid allows the network to learn how to register big deformations,
while the fine grid allows the network to learn smaller ones. To generate a de-
formation field, a grid spacing parameter was chosen at random from a given
interval of values. The set of deformation vectors of each deformation field
was obtained from a random uniform distribution having boundaries at +/-
a determined deformation scale parameter. The choice of parameters used
to generate the ground truth fields can be found in Table 2.3. Also, Figure
2.6 is a representation of deformation parameter’s meaning. These parame-
ters were chosen after testing different kinds of deformations and selecting the
ones which resembled examples of real deformations. To avoid translations,
the resulting field was normalized. Once the coarse and fine fields were ob-
tained, they were concatenated and the resulting deformation field was saved
as ground truth, applied to the channel 1 input and its corresponding label map.
An example of a generated deformation field can be found in Figure 2.7.

The choice of parameters of the synthetic deformation fields are very impor-



CHAPTER 2. METHODS 11

tant given that they have a great influence on the network’s learning and its
capability to perform well when seeing real data.

Parameter Fine Grid Coarse Grid
Grid spacing (cm) [2,3] [7,15]

Deformation scale (cm) 0.2 1.5

Table 2.3: Choice of parameters to generate the ground truth vector fields.

Figure 2.6: Graphic representation of the deformation parameters and its
meaning.

Figure 2.7: Example of generated ground truth deformation field.
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(a) T2 MR image. (b) Synthetic CT image.

Figure 2.8: Example of resulting synthetic CT image from a T2 MR image
using CycleGAN.

2.4.2 Synthetic CT generation
In order to tackle the multi-modal deformable image registration (DIR) prob-
lem it is necessary to have MR-CT image pairs with a corresponding ground
truth deformable registration. In the case of this study, this data is not avail-
able, therefore synthetic CT images were generated to solve the problem. Us-
ing synthetic images for DIR in this way has been previously done by [29] and
[11]. The procedure implies to use a CycleGAN architecture [18] previously
trained to generate synthetic CT (sCT) images from T2-weighted MR. In our
case, there was no need to train a CycleGAN network as it was already done
as part of another project. The benefit of generating the input images in such
a way is that the resulting image pair is already perfectly aligned and ready
to be fed into the network. On the other hand, it also implies the risk that the
network may not generalize when facing real data. The T2 MR images to be
transformed are part of the Iridium dataset. An example of a resulting image
is presented in Figure 2.8.

2.5 Neural Network architecture
The network architecture proposed in this project is based on the one presented
in [12]. It is a modified version of U-net used to solve the problem of mono-
modal deformable registration field estimation. In their work, four main mod-
ifications were introduced to the original network. The first one was to feed
the network with two inputs: the target and the reference images. Secondly,
the architecture was deepened one more level. Also, the activation functions
were changed from ReLU to Leaky ReLU. Finally, the output convolutional
layer of the network was changed to have three feature maps, one for each di-
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mension (x,y,z) of the vector field to be predicted. The graphic representation
of the network architecture proposed in [12] can be found in Figure A.5. In
[12], the neural network was optimized to solve the registration problem for
lung images. Thus, a set of hyperparameter optimization has been conducted
to improve the performance of the network when facing images of the pelvic
region. More details about the hyperparameter optimization can be found in
Sections 2.6 and 3.1.

2.6 Hyperparameter optimization
In order to find the best hyperparameter configuration that allowed the network
to obtain the greatest performance on validation data, a grid search was con-
ducted. The learning rate, number of epochs, optimizer, loss function, number
of convolutions per block, number of layers and their number of filters, the us-
age of residual connections, and the input image resolution were the parame-
ters to be tuned during the optimization. The different hyperparameter config-
urations tested during the search can be found in Table 2.4. For all the tests an
image patch size of (23.0, 15.0, 20.0) cm was used as described in Section 2.2.
The different tests were ordered depending on their run time. In this way, tests
with (0.5, 0.5, 0.5) image resolution were performed in the first place due to
its lower computation time. After, the 3 best performing configurations were
tested on (0.25, 0.25, 0.25) resolution images. From these results, the best
performing configuration was selected and tested on (0.144, 0.144, 0.144) and
(0.3,0.107, 0.107) resolution images. The approximate training time to com-
plete 2000 epochs was different for each model. The 0.5 resolution models
lasted about a day, the 0.25 resolution ones about 4 days, and the higher reso-
lution ones about 3 weeks.

The addition of residual connections in the network architecture is presented in
Figure 2.9. The residual connection adds the input of the convolutional block
to the result of batch normalization before the last activation function of the
convolutional block. This arrangement is depicted in Figure 2.10.
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Parameter Configurations
Learning Rate 1, 0.1, 0.5, 0.05, 0.001

Epochs 150, 700, 1500, 5000
Optimizer Adagrad, Adam, Adadelta

Loss Function MSE, L2, MAE
Convolutions per block 4, 2

Filters per layer (32,64,128,256,512), (32,64,128,256,512,1024)
Residual True, False
Resolution (0.5,0.5,0.5), (0.25,0.25,0.25), (0.144,0.144,0.144),

(0.3, 0.107,0.107)

Table 2.4: Hyperparameter optimization configurations, where MSE is mean
squared error and MAE mean absolute error.

Figure 2.9: Network architecture implemented in this project. It is based in
the network presented in [12], but it has been deepened one more layer and
residual connections have been added in each convolutional block.
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Figure 2.10: Residual block architecture used in the neural network. This
diagram represents in greater detail the meaning of the green, red and purple
arrows of Figure 2.9

2.7 Training and Evaluation metrics
In this section, the training and evaluation metrics used in the neural network
are going to be presented as well as its formulas. The notation used in the
equations is the following: a represents the ground truth deformation field, b
the predicted vector field, i, j ,k are the vector components for each dimension
and n is the total number of training samples.

After performing the hyperparameter grid search and testing the model perfor-
mance for different loss functions the one which provided better results was
L2 loss. Its formula is stated in Equation 2.1.

L2loss =
n∑
i=1

(a− b)2 (2.1)

To monitor the evolution of the accuracy of the predicted vector fields dur-
ing training, three main measures were used. In the first place, the mean eu-
clidean error between the ground truth and the predicted deformation field is
monitored throughout the epochs. Its formula can be found in 2.2. The sec-
ond metric that was monitored during training was the mean error relative to
the average displacement of the deformation field. It is calculated as stated in
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Equation 2.4 and 2.3.

EuclideanError =
√

(ai − bi)2 + (aj − bj)2 + (ak − bk)2 (2.2)

Displacement =
√

(ai)2 + (aj)2 + (ak)2 (2.3)

RelativeError =
EuclideanError

Displacement
(2.4)

Additionally, to evaluate the performance of the registration on specific regions
of interest during training, the Dice coefficient was also monitored. The Dice
coefficient is an overlap measure often used to quantify the similarity between
two binary regions. The classical Dice coefficient is defined as in Equation
2.5 [26].

DC =
2 |A ∩B|
|A|+ |B|

(2.5)

This coefficient was used to compare the ground truth labels with the deformed
ones by applying the predicted deformation field. This way, the accuracy of
the prediction can be sensed in a more reliable way. The Dice coefficient was
monitored during training, validation, and testing for the following ROIs: right
femoral head, left femoral head, bladder, rectum, and prostate.

2.8 Implementation
Themodel was implemented using Python as programming language and Ten-
sorflow 1.12 as themachine learning library to build the neural network. CUDA
9.0 was used as the parallel computing platform. The trainings have been ex-
ecuted on a GPU-server with NVIDIA Tesla V100-SXM2-32GB GPUs.
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Experiments & Results

3.1 Hyperparameter optimization
The best performing hyperparameters are shown in Table 3.1. Also, in Ta-
ble 3.2, a comparison of the Dice scores and standard deviations between the
baseline and the optimized model are presented. The baseline model is an
implementation of the neural network presented in [12].

Parameter Configurations
Learning Rate 0.1

Epochs 4000
Optimizer Adagrad

Loss Function L2
Convolutions per block 2

Filters per layer (32, 64, 128, 256, 512, 1024)
Residual True

Table 3.1: Best performing hyperparameters.

17
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Model Metric R Femur Bladder Rectum L Femur Prostate

Baseline Dice 0.85 0.92 0.85 0.85 0.84
Std 0.06 0.02 0.03 0.07 0.07

Optimized Dice 0.88 0.95 0.89 0.83 0.89
Std 0.05 0.01 0.03 0.09 0.04

Table 3.2: Average Dice score and standard deviation comparison between the
baseline architecture from [12] and the best model from the hyperparameter
search on validation data.

Additionally, different interpolation schemes for synthetic deformations were
investigated. To apply a deformation, the image was resampled using an inter-
polation method. Spline interpolation of first order resulted in more blurred
images compared to applying third-order splines. Accordingly, three different
strategies were considered:

1. Always interpolate with splines of order 3.

2. Switch at random between first and third-order splines.

3. Deform 90% of training images applying first and third-order interpo-
lation at random, and fed the remaining non-deformed 10% mixed in-
between the deformed samples.

The three strategies were evaluated at the end of the hyperparameter search
being the third the most successful one. The results of all the different config-
urations tested during the grid-search can be found in Table B.1.

3.2 Experiments
After obtaining the results of the hyperparameter search, there was one more
parameter that needed to be explored. This was the training image resolu-
tion. Therefore, several models were trained on images of different resolu-
tions for CT-CT and MR-CT registration to assess the one that provided a
better performance. For all the experiments, the test data was also registered
using ANACONDA algorithm to be able to benchmark the results from the
deep learning-based models. ANACONDA algorithm is the analytic method
that is used nowadays in RayStation software (RaySearch Laboratories AB,
Stockholm, Sweden), it is described in more detail in Section A.3.
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Firstly, the tests on CT-CT image registration are presented in Section 3.2.1.
After, the test on MR-CT image registration are presented in Section 3.2.2.

3.2.1 CT - CT models
To asses the influence of the image resolution during training, four different
models were trained. These had the same network configuration but were
trained on images of different resolutions. In this case, the image resolution
was also considered a hyperparameter. The resolutions in which the models
were trained are:

• (0.5, 0.5, 0.5) cm

• (0.25, 0.25, 0.25) cm

• (0.144, 0.144, 0.144) cm

• (0.3, 0.107, 0.107) cm

The reason behind the choice of resolutions was to see how the performance
of the model was affected when the information in the images was reduced.
It was interesting to see how the anisotropy of the resolution would affect the
learning of the network for each dimension. During these tests, the output de-
formation vector field was resampled to meet full image resolution (0.3, 0.107,
0.107) cm. In this way, the performance of themodel was tested on the original
image resolution. The metric used to compare the results between the different
models was the Dice coefficient per organ. The results are presented in Figure
3.1, where the Dice distribution between the reference and target images is
represented in blue, the Dice after registering the images with ANACONDA
is represented in orange and labeled as RS, the registrations from the model
trained on full image resolution is labeled as 0107, the results from the model
trained on isotropic full image resolution is named 0144, and the registrations
from themodels trained on isotropic image resolutions 0.25 and 0.5 are labeled
as 025 and 05 respectively. An example of the resulting deformations can be
found in Figure 3.2. The learning curves for the 0107 model are presented in
Figure 3.3.
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Figure 3.1: Resulting Dice coefficient score per organ of the different CT-
CT trained models on test images. RS represents the results obtained with
ANACONDA algorithm, 0107 is the model trained on full resolution images,
0144 is the model trained on isotropic full resolution images, 025 is the model
trained on 0.25cm resolution images, and 05 is the model trained on 0.5cm
resolution images.

In Table 3.3 the mean Dice scores of every model per organ are presented as
well as the results obtained from ANACONDA algorithm (RS) for the same
dataset. For comparison, Dice scores from a deep learning segmentationmodel,
also trained on the Iridium dataset, are included. The model was validated in
[7] and its segmentations were found to be acceptable with no or minor cor-
rections in the majority of the cases. These Dice scores will be referred to as
benchmark scores from now on. When comparing these scores to the ones ob-
tained from our model, it can be seen that the femoral heads’ scores are slightly
lower than the benchmark ones. As mentioned before, it can be explained by
the fact that in some images these ROIs are cropped which increases the dif-
ficulty of its registration. Nevertheless, for the bladder, rectum, and prostate
regions the obtained Dice scores are very similar or higher to the benchmark
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(a) Deformation result from ANA-
CONDA

(b) Deformation result from 0107

(c) Deformation result from 0144 (d) Deformation result from 025

(e) Deformation result from 05

Figure 3.2: Comparison of the final registrations obtained by the different CT-
CT models on the same test patient of the Iridium dataset. The background
image is the deformed target image. In red the initial non-deformed masks, in
green the reference masks, and in yellow the predicted deformed masks. The
masked organs that appear in the images are both femoral heads, the rectum
and the prostate.

ones even for the models trained on low-resolution images.

3.2.1.1 Error Analysis

To better understand how the differences in the initial deformations can influ-
ence the outcome of the network, the relationship between the ground truth
displacement size and the prediction error is analyzed. Further analysis of the
behavior of the models when facing different kinds of deformation fields can
be found in Section B.2. In Figure 3.4 the relationship between the prediction
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Figure 3.3: Training and validation curves of the CT-CT model trained on full
resolution images. The training is monitored with the loss, euclidean error
between the predicted and ground truth deformation fields, relative error to the
average displacement, and Dice scores per organ. Blue represents the metrics
for training data, while orange represents the metrics for validation data. The
dashed lines depict the initial Dice scores.

Model Metric R Femur Bladder Rectum L Femur Prostate

0107 Dice 0.87 0.94 0.89 0.82 0.88
Std 0.07 0.01 0.04 0.1 0.07

0144 Dice 0.85 0.93 0.88 0.84 0.86
Std 0.08 0.04 0.05 0.09 0.09

025 Dice 0.86 0.93 0.88 0.84 0.87
Std 0.08 0.05 0.08 0.09 0.09

05 Dice 0.84 0.91 0.85 0.82 0.82
Std 0.09 0.06 0.08 0.1 0.12

RS Dice 0.89 0.95 0.92 0.87 0.92
Std 0.07 0.03 0.07 0.14 0.05

Benchmark scores Dice 0.94 0.93 0.90 0.94 0.82

Table 3.3: Average Dice scores and standard deviations per model per organ
for the CT-CT experiments. The benchmark scores are from a deep learning
segmentation model trained on the same dataset [7]

error and the average displacement for 100 randomly selected image voxels is
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presented. From this figure, it can be seen that the greater the displacement the
more likely it is to obtain a greater prediction error, yet, there is not a straight
linear relationship.

Figure 3.4: Error-Displacement analysis. In this figure, the relationship be-
tween the displacement of the ground truth field and the error of the predic-
tion is presented. In the plot, a 100 randomly selected voxels of the model’s
0107 test results are analyzed. This means that individual voxels are being
evaluated. The minimum and maximum error measurements are colored in
orange.

In the same way, the error map showing the average prediction error over all
test samples is presented in Figure 3.5. The error presents 3 main interesting
behaviors. In the first place, there are low error regions creating awavy pattern.
Secondly, a moderate source of error is located in the middle of the region
where the bladder, prostate, and rectum are most likely to be located. Finally,
the left and bottom image borders present a high source of errors.

3.2.2 MR - CT models
For the multi-modality model no hyperparameter optimization was performed
due to time constraints. Nevertheless, different training image configurations
were tested to see which one gave a better outcome. Therefore, 3 models were
trained:

• Full MR resolution (0.4, 0.084, 0.084) with cropped images.

• Low isotropic resolution (0.25, 0.25, 0.25) with cropped images.

• Low isotropic resolution (0.25, 0.25, 0.25) with complete images.
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Figure 3.5: Average prediction error per voxel of the 0107 CT-CT model. The
value of each image pixel is the average error over all the test set. The contours
state the probability that a ROI is outside the stated region. On top of the image
the overall average error is stated.

The later image configuration was proposed to see the effect of using all the
image information in the learning process. However, as the available training
space was limited, the image resolution was lowered. The training evolution
of the full resolution model can be found in Figure 3.6.
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Figure 3.6: Training and validation curves of theMR-CTmodel trained on full
image resolution. The training was monitored with the loss, euclidean error
between the predicted and ground truth deformation fields, relative error to the
average displacement, and Dice scores per organ. Blue represents the metrics
for training data, while orange represents the metrics for validation data. The
dashed lines depict the initial Dice scores.

To test the generalization capability in the multi-modality case two experi-
ments were designed. The first one used the Iridium dataset by synthetically
deforming the reference image and obtaining a ground truth deformed segmen-
tation mask. The second experiment evaluated the capability of the models to
generalize when facing real MR and CT images using the Gold Atlas dataset
[25]. Both examples were benchmarked by comparing its performance with
the one of ANACONDA algorithm.

3.2.2.1 Test on Iridium dataset

This experiment uses the test data samples from the Iridium dataset. This
experiment was designed to test the generalization capability of the MR-CT
models when facing new synthetic data. The resulting Dice coefficient scores
per ROI can be found in Table 3.4 and the comparison of its Dice score dis-
tributions in Figure 3.7. Examples of resulting deformed images can be found
in Figure 3.8.

The previous results show that the deep learning-basedmodels learn to register
the images improving the Dice scores after applying the predicted deformation
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Model Metric R Femur Bladder Rectum L Femur Prostate

Full res Dice 0.83 0.87 0.76 0.78 0.76
Std 0.07 0.06 0.1 0.07 0.09

025 Dice 0.82 0.89 0.82 0.82 0.79
Std 0.06 0.04 0.06 0.06 0.10

025 complete Dice 0.93 0.93 0.89 0.87 0.87
Std 0.01 0.02 0.03 0.04 0.06

RS Dice 0.65 0.77 0.67 0.7 0.62
Std 0.16 0.08 0.16 0.10 0.14

Benchmark scores Dice 0.94 0.93 0.90 0.94 0.82

Table 3.4: MR-CT experiments’ average Dice scores and standard deviation
per model per organ on the Iridium dataset. The benchmark scores are from a
deep learning segmentation model trained on the same data set [7].

fields. Yet, compared to the benchmark Dice scores, ours are still a little bit
lower. From the comparison plot, it can be observed that the 025 complete
model is the one that performs better. Nevertheless, it is still needed to test its
performance on real images.
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Figure 3.7: MR-CT model comparison of Dice coefficient scores per organ on
Iridium synthetic data.

3.2.2.2 Test on Gold Atlas dataset

In this experiment, the capability of the multi-modal models to generalize on
real T2 MR and CT data was tested using the Gold Atlas dataset. In the same
way, as in previous tests, the performance of the models was compared to the
results of applying ANACONDA algorithm on the same data samples. The
resulting Dice coefficient distributions are presented in Figure 3.9 and the ex-
amples of deformed test images can be found in Figure 3.10. The resulting
Dice coefficient scores per ROI can be found in Table 3.5.

As it was expected, the performance of the model on real images was quite
lower than when facing synthetic images. More precisely, the 025 complete
model is not able to improve the Dice scores in all the ROIs. However, the Full
and 025 models overperform the analytic algorithm on all the ROIs.
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(a) Deformation result full resolution
model

(b) Deformation result 0.25cm image
resolution model.

(c) Deformation result 0.25cm im-
age resolution model trained on non-
cropped images.

(d) Deformation result of applying
ANACONDA algorithm.

Figure 3.8: Comparison of the final registrations obtained by the differentMR-
CT models on the same test patient of the Iridium dataset. The background
image is the deformed target image. In red the initial non-deformed masks,
in green the reference masks, and in yellow the predicted deformed masks.
Subfigure 3.8c has a different deformation because the deformations on the
complete image sets were created separately from the ones for the cropped
image set. Yet, they all have the same distribution.

3.2.3 Runtime Analysis
Another aspect in which deep learning-based methods can provide a potential
improvement compared to its analytical counterparts is the execution time. It
is claimed that once a model is trained, its prediction time is way lower than
computing a registration by means of optimization algorithms. Therefore, the
runtimes at inference for the different models are presented in Table 3.6.
After comparing the runtimes of the deep learning models at inference to the
ones of ANACONDA algorithm it can be concluded that the deep learning-
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Figure 3.9: MR-CT models’ comparison of Dice coefficient score per organ
on the Gold Atlas dataset.

Model Metric R Femur Bladder Rectum L Femur Prostate

Full res Dice 0.68 0.69 0.55 0.65 0.57
Std 0.14 0.16 0.07 0.07 0.10

025 Dice 0.62 0.66 0.56 0.66 0.53
Std 0.14 0.18 0.08 0.09 0.13

025 complete Dice 0.28 0.41 0.38 0.26 0.21
Std 0.11 0.27 0.12 0.12 0.17

RS Dice 0.63 0.51 0.54 0.62 0.48
Std 0.20 0.27 0.11 0.18 0.18

Benchmark scores Dice 0.94 0.93 0.90 0.94 0.82

Table 3.5: MR-CT experiments’ average Dice scores and standard deviation
per model per organ on the Gold Atlas dataset. The benchmark scores are from
a deep learning segmentation model trained on the same data set [7].

based models are much quicker, having a nearly constant runtime regardless
of the difficulty of the registration. Additionally, their runtime is proportional
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(a) Deformation result full resolution
model

(b) Deformation result 0.25cm image
resolution model.

(c) Deformation result 0.25cm im-
age resolution model trained on non-
cropped images.

(d) Deformation result of applying
ANACONDA algorithm.

Figure 3.10: Comparison of the final registrations obtained by the different
MR-CT models on the same test patient of the Gold Atlas dataset. The back-
ground image is the deformed target image. In red the initial non-deformed
masks, in green the Reference masks, and in yellow the predicted deformed
masks.

to the input image resolution. On the other hand, ANACONDA’s runtimes are
higher and very dependant on the type, difficulty of the registration task and
the algorithm parameters.
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Model Average Time (s)
CT-CT 0107 2.74
CT-CT 0144 2.74
CT-CT 025 2.07
CT-CT 05 2.00

MR-CT Full res 3.37
MR-CT 025 2.47

MR-CT complete 2.4
RS CT-CT 8.69
RS MR-CT 5.13

RS MR-CT complete 5.30

Table 3.6: Average runtimes at inference for the deep learning based models
compared to the ones for ANACONDA algorithm (RS).
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Discussion

In this project, a supervised registration algorithm based on aU-net like convo-
lutional neural network has been proposed. Our approach follows the steps of
[12], where ground truth data is generated to train a neural network in a super-
vised manner. Other approaches like the one in [8] proposed to train a deep
similarity metric to be used in an optimization-based registration workflow.
This approach was not suitable for our problem as one of the main motivations
was to avoid the time cost of optimization algorithms. On the other hand, in
[14], a method similar to the one implemented in the project was published,
a neural network was trained to predict a deformation field but the loss func-
tion was defined as the similarity between the wrapped target image and the
reference one. This semi-supervised approach does not suit the multi-modal
registration task, being the method presented in [12] the most adequate for our
purpose.

Following the procedure in [12], the lack of available ground truth registra-
tion data was overcome by generating synthetic deformation fields. For the
MR-CT case, synthetic CT images were generated using a CycleGAN net-
work from T2-MR images. This allowed to have perfectly aligned input image
pairs. Furthermore, in most models, the images were cropped to a smaller
patch to make sure that the network parameters would fit the memory require-
ments and focus on the important regions of interest: femoral heads, bladder,
rectum, and prostate.

In the first place, the architecture presented in [12] was tailored to solve CT-
CT registration of lung images, therefore a grid search was performed to op-
timize the baseline model to solve the task of registering CT-CT male pelvic
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images. With the resulting optimization, only a small improvement of 0.03
was obtained compared to the architecture used in [12], suggesting that fu-
ture improvements of this approach will not come from further fine-tuning
of the U-net architecture. To see the effect of the image resolution during
the network’s learning process, four models were trained on different image
resolutions, both an- and isotropic. Despite the results showed that the deep
learning models trained on higher resolution images had a better performance
than those trained on lower image resolutions, all models obtained Dice scores
higher than 0.82 on synthetic test images. The averageDice score for themodel
trained on isotropic higher image resolution (1.44mm) was 0.87 and the aver-
age Dice score for the model trained on lower image resolution was 0.84. This
is a surprisingly small difference considering that the high-resolution model
uses 42 times as many voxels. Therefore, the resolution of the training images
did not have a major impact on the models’ performance.

All CT-CT models performed well and showed a similar performance to the
clinically validated segmentation model (Table 3.3) trained on the same data.
This comparison is interesting since the problem of image registration is strongly
related to the problem of image segmentation, and a reasonable guess is that
an optimally trained registration model would perform equal to or better than
the segmentation. However, this result is valid only for synthetic registrations
and the performance on real data has not been tested.

Secondly, three MR-CT models were trained with different input information:
cropped images with full image resolution, 0.25 resolution cropped images,
and 0.25 resolution complete images. The results showed that the two first
models outperformed the optimization-based algorithm when being tested on
both synthetic and real images. However, the obtained Dice scores from the
synthetic images were slightly lower compared to the CT-CT model. This in-
dicates, as expected, that multi-modal image registration is more difficult to
learn than mono-modal. The difference was quite small though, 0.88 for the
best CT-CT model and 0.82 for the MR-CT case. This should be compared
with the much larger decrease in performance of the analytic algorithm ANA-
CONDA, with average Dice scores of 0.91 for CT-CT registration and 0.68 for
MR-CT registration. This demonstrates that deep learning is well suited for
multi-modal registration and does not suffer from the same problems as analyt-
ical methods that rely on mutual information as similarity metric. In addition,
the performance of the deep learning models drops when tested on real data.
Yet, the models trained on cropped images still outperform the state-of-the-art
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analytical algorithms, here represented by the ANACONDA implementation
in RayStation. The average Dice scores of the best performing deep learning
model and ANACONDA were 0.63 and 0.55 respectively. Even though it is
questionable if the model performs well enough to be useful in practice, we
consider this a promising result and a stepping stone for developing highly ac-
curate multi-modal registration models.

After analyzing the results it is clear that the proposed method has certain
limitations. On one hand, the choice of parameters and method used to create
ground truth deformation fields needs to be carefully chosen given that it needs
to be as realistic as possible. The pelvic region is a part of the body that suffers
deformations that are difficult to simulate artificially. It has organs such as the
bladder and the rectum that can change of shape and filling at any time, while
the hip and femur bones may only suffer from translations. When designing
the synthetic deformations for this project, it was assumed that deforming im-
age regions that would not be deformed in a real case would not affect the
registration capability of the network on real data. This assumption was made
to simplify the difficulty of the initial problem. Additionally, in most cases,
the images were cropped to ensure the model parameters fitted the available
memory space, and to focus on relevant regions such as the femoral heads, the
bladder, the prostate and the rectum. As each patient is different and, there-
fore, each image is different, the cropping of the images caused the femoral
heads to appear cropped in some images, affecting the network performance
in these areas.
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Conclusions and Future Work

A supervised architecture for deformable registration of pelvic images has
been presented. The architecture is based on a U-net like neural network
trained to estimate the deformation vector field to register a target CT im-
age onto a T2-MR reference one. In this project, the architecture has been
trained on CT-CT images for mono-modal image registration and on MR-CT
images for the multi-modality case, using synthetic deformations to generate
the ground truth deformation vector fields. Combined with initial rigid-body
registration, the model could accurately register the synthetic test data for both
the mono-modal and multi-modal case. For the multi-modal case, the network
was able to improve the Dice scores when compared to the initial ones on real
data and overperform the optimization-based benchmark method. This sug-
gests a great potential of using deep learning for deformable image registration
bringing advantages such as a lower time and cost of image registration in the
clinics.

Given the 5 months scope of this project several aspects were kept for future
research. The first one is to investigate a way of generating realistic synthetic
deformations. In this project, a combination of a fine and a coarse grids were
used to generate a random deformation field, yet, due to its randomness, it may
not be realistic. This may have led to a decrease in the performance of the
model when facing real images. In terms of the neural network architecture,
a natural future work step is to implement a stacked architecture where the
intermediate network’s output is the input for the next network. Additionally, it
would be interesting to investigate intomore detail the effect of scheduling data
presentation to the network and how would that affect its learning as presented
in [17]. All in all, this was only a preliminary study about the viability of
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using deep learning for deformable image registration, and there is still plenty
to explore.
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Appendix A

Background

A.1 Image Registration
Image registration is defined in [16] as the act of mapping the content of two
images to the same coordinate system. The difference between the images may
be due to its acquisition at different times, from different angles or modalities
(multi-modality). Within the pair of images to be registered one will be the
reference image, R, and the other the one to be transformed, target imageM.
Yet, the original images must contain information about the same object or
structure. Both images are related by a transformation. The goal of image
registration is to estimate the transformation that optimizes a cost function of
the form of Equation A.1 in order to obtain a more accurate lineup mapping
between the reference and target image.

S(R,MoT ) + λ(T ) (A.1)

Equation A.1 presents an objective function where S denotes the similarity
metric which quantifies the level of alignment between the reference and target
images. T denotes the transformation applied to the target image. λ represents
the regularization term added to the transformation to encourage specific prop-
erties in the solution. Both reference and target images are defined in the image
domain Ω as well as T which maps homologous locations from the reference
image to the target image [6]. The basic image registration flowchart consists
of four basic steps. The first one is to choose a random set of starting param-
eters. Secondly, apply the transformation based on the previous parameters to
the target image by means of an interpolator to lineup the reference image to
the target one. Thirdly, evaluate the cost function based on the chosen simi-
larity metric between the target and reference image. Next, the convergence
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criteria must be checked. If the convergence criteria has been met, the regis-
tration procedure is finished. Otherwise, the optimizer should find a new set
of parameters for the transformation and iterate throughout the process again.
The overall flowchart of the process is depicted in Figure A.1.

Figure A.1: Image registration flowchart.

A.1.1 Nature of Transformation
In order to select properly the registration method to be used, it is necessary to
consider the type of deformation that the images have faced. In the following
subsections the four main types of transformations will be explained in further
detail.

A.1.1.1 Rigid-Body Transformation

Rigid-Body transformations are based on translation and rotation operations
to the original images. This means that two images of equal dimensions are
registered by means of a pixel-wise transformation consistent along the image
space. Equation A.2 shows the application of rotation R and translation t to
the original image x to obtain the registered result x’ [10].

x′ = Rx+ t (A.2)
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A.1.1.2 Affine Transformation

Affine transformations can be considered a type of Rigid-Body transforma-
tions as it also includes translation and rotation operations in addition to scal-
ing and shearing. This kind of transformation is used to register pairs of im-
ages in different scales, preserving parallel lines but not their lengths or angles.
In this case, a scaling and shearing factor is added to each image dimension
increasing the degrees of freedom of the transformation [30]. Affine transfor-
mations can be expressed following Equation A.3, where A is the affine matrix
which includes rotation, translation, scaling and shearing transformation pa-
rameters [10].

x′ = Ax (A.3)

A.1.1.3 Projective Transformation

Projective transformations are used when the image appears tilted. This kind
of transformation preserves straight lines but parallel ones converge towards
a vanishing point. Mapping in this way parallel lines from the target image
to the reference one. This transformation is sometimes used as a "constrained
elastic" transformation when the optimizer is unable to find a solution for the
elastic registration [30].

A.1.1.4 Non-Rigid-Body Transformation

Contrarily to the previously presented transformation types, non-rigid trans-
formations create a mapping between pixels through nonlinear dense transfor-
mations or spatially varying deformation fields [6]. This means that non-rigid
transformations are capable of expressing nonlinear relations, being able to
map lines on to curves [20]. Therefore, they are also called elastic or de-
formable registrations. When performing deformable registrations, a dense,
non-linear correspondence is established between a pair of n-dimensional vol-
umes. Most image registration methods solve this problem by optimizing a
similarity function for each voxel pair, which aligns voxels having a similar
appearance and enforces smoothing constraints when computing the registra-
tion mapping [14]. Most of the deformable registration methods presented in
the literature follow a two-step workflow performing, in the first place, rigid
registration followed by a deformable registration.
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A.1.2 Similarity Metrics
One of the most important parts of the image registration pipeline is to deter-
mine an appropriate similarity metric to asses the quality of the registration. In
this section, the most relevant similarity metrics related to deformable image
registration are going to be described. In the following subsections the for-
mulas of the similarity metrics are also presented, in these A is the reference
image, B is the wrapped target image, a is a pixel of A and b is a pixel of B.
Finally, N represents the total number of pixels in the image.

A.1.2.1 Dice Coefficient

Dice Coefficient is a very widely used similarity metric for image segmen-
tation. This measures the overlap between the calculated segmentation and
the ground truth one. Dice Coefficient is calculated as the double of the in-
tersection between the segmentations divided by the sum of the total number
of pixels of both masks [4]. Its values range from 0 to 1, being 1 a perfectly
overlapping segmentation. Its formula can be found in Equation A.4.

Dice =
2× (A ∩B)

A+B
(A.4)

A.1.2.2 Jaccard Coefficient

This similarity metric measures the overlap between the predicted segmenta-
tion image over the ground truth mask divided by the area of union between
the computed and the ground truth segmentations. The jaccard coefficient val-
ues range from 0 to 1, being 1 a perfectly overlapping segmentation [4]. The
jaccard coefficient formula is stated in Equation A.5.

JC =
A ∩B
A ∪B

(A.5)

A.1.2.3 Normalized Cross Correlation (NCC)

Normalized Cross Correlation measures the amount of correlation between
the two images. Its normalized version is used to avoid the dependence of the
covariance on the amplitude of the compared images [22]. Its mathematical
expression can be found in Equation A.6.

NCC =
A×B
|A| |B|

(A.6)
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A.1.2.4 Mutual Information (MI)

This metric estimates the joint probability that a pixel in the reference image
has the same intensity value as the same pixel in the target image. The metric
is described in the Equation A.7. Where pA(a) is the probability a pixel in A
has an intensity value a, pB(b) is the probability a pixel in B has an intensity
value b, and pAB(a,b) is the joint probability a pixel in A has an intensity value
a that is the same as b in image B [24]. Its formula is stated in Equation A.7.

MI(A,B) =

∫ ∫
pAB(a, b)log2

pAB(a, b)

pA(a)pB(b)
dxdy (A.7)

A.1.2.5 Normalized Mutual Information (NMI)

Normalized Mutual Information is introduced as an improvement to MI. The
problem of MI is that the integral is taken over the pixels which are common
to both A and B. Therefore, if the common number of pixels between A and
B changes the MI(A,B) metric will also change. Even if these changes may
be small they may lead to inaccuracies in the registration algorithm. To avoid
that, normalized mutual information is used in place of MI [24]. The equation
of NMI is described in Equation A.8.

NMI(A,B) =



MI(A,B)
H(A)+H(B)

MI(A,B)
min(H(A)+H(B))
MI(A,B)
H(A,B)
MI(A,B)√
H(A)H(B)

(A.8)

where the entropies are calculated as follows:

H(A) = −
∫ ∫

pA(a)log2pA(a)dxdy

H(B) = −
∫ ∫

pB(b)log2pB(b)dxdy

H(A,B) = −
∫ ∫

pAB(a, b)log2pAB(a, b)dxdy

(A.9)

A.1.2.6 Mean Squared Error (MSE)

Mean Squared Error is one of themost widely used as a loss functionmetric for
regression problems. However, it can also be used to calculate mean squared
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differences between the wrapped target image and the reference one [2]. Its
formula can be found in Equation A.10.

MSE =
1

N

N∑
(a− b)2 (A.10)

A.1.2.7 Mean Absolute Error (MAE)

Mean Absolute Error is usually applied as a loss function metric for regression
problems. However, it can also be used to calculate the differences between
the wrapped target image and the reference one [1]. Its formula can be found
in Equation A.11.

MAE =
1

N

N∑
|a− b|2 (A.11)

A.1.2.8 Hausdorff Distance

Hausdorff Distance is a distance metric used to compare two objects and find
themaximumdistance between them [28]. Its formula is described in Equation
A.12.

H(A,B) = max(h(A,B), h(B,A)) (A.12)

were
h(A,B) = sup

a∈A
inf
b∈B
||a− b|| (A.13)

A.2 Deep Learning for Image Registration
Deep Learning (DL) methods are defined as a class of machine learning al-
gorithms that make use of many layers of nonlinear processing units to create
representations and transformations to map the input values to the output ones.
The architecture uses the output from the previous layers as input, creating a hi-
erarchical representation that can be obtained by different levels of abstraction
[32]. DL algorithms can be trained in a supervised or unsupervised fashion
depending on its application and availability of data. Supervised methods in-
volve the designation of a ground truth output for the neural network. Whereas
unsupervisedmethods draw inferences given the probability distribution of the
given data without any defined ground truth label. This field has experienced a
rapid development thanks to the recent availability of data, powerful electronic
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devices that ease consuming computations and the development of novel al-
gorithms.
Given the time, computational, and economic constraints of traditional im-
age registration methods, automatic deep learning methods have been applied
to find solutions to the image registration task. Image registration is highly
needed in many fields, but one of the most important applications is to reg-
ister medical images. Therefore, from now onwards this chapter is going to
focus on medical image registration methods. In an early stage of DL-based
registrationmethods, DLwas applied tomedical images to augment the perfor-
mance of iterative, intensity-based registration pipelines. Later, reinforcement
learning approaches were researched to perform image registration. Given the
demand for faster registration methods, deep-learning-based one-step transfor-
mation estimation techniques were developed. Nevertheless, the unavailability
to obtain ground truth data has motivated the development of unsupervised al-
gorithms for one-step transformation estimation [16]. The field of DL based
image registration is evolving at a quick peace given that there is a need for
quick and high-quality image registration. Figure A.2 shows a visual represen-
tation of the rapid evolution of the field extracted from [16]. These different
methods are going to be explained in the following section.

Figure A.2: Overview of the evolution of deep learning based medical image
registration methods from [16].
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A.2.1 Methods
In this section, the three main approaches for medical image registration that
are present in the literature are going to be explained in further detail.

A.2.1.1 Deep Iterative Registration

This group of methods is characterized by repeating the same operation along
several iterations to obtain a better result. In this category two sub-methods
can be found [16]:

• Deep Similarity-based Registration: This set of methods use deep learn-
ing to learn a similarity metric to be inserted into the basic intensity-
based registration framework with a defined interpolator, transformation
model and optimization algorithm. The results stated in the literature
suggest that deep learning is capable of learning a similarity metric for
the multi-modal registration case.

• Reinforcement Learning based Registration: Thesemethods use a trained
agent to perform the registration task as opposed to a defined optimiza-
tion algorithm. These methods normally involve a rigid transformation
model but it is still possible to use a deformable one.

A.2.1.2 Supervised Transformation Estimation

This method significantly speeds up the registration process when compared
to the aforementioned given that it uses a neural network for the registration
task and not an iterative optimizer. Its main goal is to perform a single-step
method to estimate the transformation parameters directly. This method can
be divided into two different approaches:

• Fully Supervised Transformation Estimation: This approach uses full
supervision and ground truth labels for the one-step transformation es-
timation task. The advantage of this kind of methods is that the perfor-
mance of deformable registration does not add extra constraints when
compared to rigid registration methods. Yet, it also has its drawbacks.
When using this method, the quality of the registrations depend directly
on the quality of the ground truth registrations. This data can be created
synthetically however it is important to ensure that it is similar to the
real case clinical data.
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• Dual/Weakly Supervised Transformation Estimation: Thismethodmakes
use of both ground truth data and a similarity metric to quantify the simi-
larity to train the model. Contrarily, weak supervision refers to the usage
of overlapped segmentations of corresponding anatomical structures to
design the loss function.

A.2.1.3 Unsupervised Transformation Estimation

This method issued from the difficulty of acquiring reliable ground truth labels
for the registration task. An architecture that has enabled the development of
these techniques is the spatial transformer network (STN). The STN has been
used to perform deformations associated with the registration applications.
This approach can be divided into two major methods:

• SimilarityMetric-BasedUnsupervised Transformation Estimation: This
set ofmethods use a similaritymetric with common regularization strate-
gies to define the loss function. This approach has received a lot of atten-
tion from the research community as it avoids the need of expert labels
and the performance of the model is not dependent on the expertise of
the practitioner. Given that it is still difficult to quantify the image simi-
larity of multi-modal registration applications, this approach is reserved
for the mono-modal case.

• Feature-Based Unsupervised Transformation Estimation: This set of
methods does not require ground truth data as it learns the representation
of the features from the data and uses it to train the neural network.

A.2.1.4 GAN-based methods

Generative Adversarial Networks were first introduced by [13] as a framework
for estimating generative models via an adversarial process by training two
models simultaneously: a generativemodel which learns the distribution of the
data, and a discriminative model in charge of estimating the probability that a
sample comes from the dataset rather than being generated by the generative
model. The aim of the network for the generative model is to maximize the
probability that the discriminator is wrong. This architecture has been used for
medical image registration for two main reasons. In the first place, it has been
used as a regularization method of the predicted transformation, preventing
this way unrealistic transformations by promoting smoothness, anti-folding,
and inverse consistency constraint. GANs have also been used for multi-modal
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image registration to transform the multi-modality problem to mono-modality
by mapping images from one domain to another [33].

A.2.1.5 Summary

Different approaches have been taken to tackle the problem of image registra-
tion during the research of deep-learning-based methods. Firstly, Deep Itera-
tive Registration methods were used. These, estimate either a similarity metric
to perform image registration or train an agent to develop the registration task.
The problem that this approach presents is that as the registration is performed
throughout a number of iterations it is very time-consuming. To continue, Su-
pervised Transformation Estimation methods use ground truth data in order
to help the neural network to learn the wanted transformation. The advantage
of this set of methods is that they can learn how to perform rigid-body and
deformable registration without adding constraints to the network. Yet, their
performance depends on the quality of the ground truth data. By exploring Un-
supervised Transformation Estimation algorithms, new methods that needed
few ground truth data or no data at all are introduced. This eliminates the de-
pendency on ground truth data to train the model. Finally, GAN-based meth-
ods have helped to regularize the predicted transformation preventing folding
and other unrealistic changes as well as to convert multi-modality problems to
mono-modality. The method that is going to be used in the project is Fully Su-
pervised Transformation Estimation as the goal is to solve the multi-modality
problem having ground truth data. In Table A.1 a summary of the different
presented methods can be found.

Deep Learning Methods Summary
Method Need Ground

Truth
Estimate Simi-
larity

Estimate
Transforma-
tion

Time

Deep Iterative Registra-
tion

Yes/No Yes No High

Supervised Transfor-
mation Estimation

Yes No Yes Low

Unsupervised Transfor-
mation Estimation

No/Sparse Yes Yes Low

GAN-based methods Yes/No No Yes Low

Table A.1: Deep learning based methods for image registration summary.
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A.2.2 Important Architectures
In this section, two neural network architectures are going to be presented: Cy-
cleGAN and U-Net. Both architectures have been used in the field of medical
image registration and introduced major improvements to the field.

A.2.2.1 CycleGAN Architecture

The CycleGAN architecture was first presented in [18] as a framework for
learning to translate an image from a source domain X to a target domain
Y when no paired ground truth images are available. The main goal of the
network is to learn the mapping function G so that G : X → Y in a way that
the distribution ofG(X) is indistinguishable from the distribution of Y using an
adversarial loss. In order to constrain the previousmapping, the loss is coupled
with an inverse mapping F : Y → X to introduce the cycle consistency loss
and enforce that F (G(X)) ≈ X and vice-versa. The main idea behind the
cycle consistency losses is to capture the intuition that if one image is translated
from one domain to the other and back to the first one, the result should be the
same as the input image. This procedure is explained graphically in Figure
A.3.

Figure A.3: Figure from [18] c© 2017 IEEE. (a) CycleGAN model mapping
functions G and F, and the associated discriminators DY and DX . Where DY

encourages G to translate X into outputs of the form of the domain Y, and
the other way round forDX and F. (b) and (c) show the forward and backward
cycle-consistency loss respectively that capture the intuition that if we translate
from one domain to the other and back again the output should be of the same
domain as the first input.

In the field of healthcare images, the unavailability of coupled ground truth im-
ages is even a greater problem. Given this, CycleGAN architecture has been
adapted to perform image to image translation between medical images of dif-



52 APPENDIX A. BACKGROUND

ferent modalities. This has been presented in [21], where CycleGAN architec-
ture has been adapted to perform PET-CT translation and MR motion correc-
tion. The proposed neural network architecture is called Cycle-MedGAN and
it is characterized by the inclusion of non-adversarial losses.

A.2.2.2 U-Net Architecture

One of the most popular DL architectures present in the literature to perform
image registration is called U-net, introduced in [27]. This network was first
introduced as amodification of a fully convolutional network to perform image
segmentation, cell segmentation to be more precise. Its architecture is char-
acterized by two main components. The first one is a contracting path that
allows to extract relevant information from the input. This is followed by an
expanding path which is symmetrical to the contracting one. This is important
because features from the contracting path are combined with the up-sampled
version of the expanding path allowing to localize high-resolution features.
Moreover, the expanding path has a large number of feature channels allowing
to propagate context information to higher resolution layers.
Another characteristic of U-net is that it relies on a very small amount of train-
ing samples, relying heavily on data augmentation. During training, elastic
deformations are applied to the data samples, allowing the network to learn
invariance to such deformations without having them in the original training
set. In their case, this strategy is very useful for cell segmentation as realistic
cell deformations can be simulated efficiently.
The architecture proposed in the original paper consists of a contracting and an
expansive path. Firstly, the contractive path consists of two 3x3 unpadded con-
volutions followed by a rectified linear unit (ReLU), Equation A.14, and 2x2
max pooling with stride 2 for downsampling. At each downsampling step, the
number of feature channels is doubled. On the other hand, a step of the expan-
sive path consists of an upsampling of the feature map followed by a 2x2 up-
convolution. The previous will halve the number of feature maps of the layer.
However, this is later concatenated with the corresponding downsampled fea-
ture map from the contracting path and followed by two 3x3 convolutions that
finish with a ReLU activation function. Finally, a 1x1 convolution is used at
the final layer to map each feature vector component to the desired number of
classes. The overall network architecture is represented in Figure A.4.

y = max(0, x) (A.14)
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Figure A.4: U-net architecture from [27].

A.2.3 U-Net for Image Registration
The U-net architecture was originally created for semantic image segmenta-
tion. Yet, given its capability to extract context information, the network ar-
chitecture has evolved to be used in different image analysis fields such as
image registration. In [12], a modified version of U-net is presented to solve
the problem of mono-modal deformable registration field estimation. In their
work, four main modifications are introduced to the original network. The
first one is to feed the network with two inputs: the target and the reference
images. Secondly, the architecture is deepened one more level. Then, the ac-
tivation function is changed from ReLU to Leaky ReLU, Equation A.15. And
finally, the output convolutional layer of the network is changed to have three
feature maps, one for each dimension of the displacement field to be predicted.
To train the network, L1 norm of the absolute error between the ground truth
deformation field and the predicted one is used as the loss function.

y = 0.01x; when x < 0 (A.15)

One of the main issues when performing image registration is the availability
of data. It is very difficult to obtain registered ground truth images and in the
case that these can be obtained they are very expensive. In [12], this issue is
addressed by synthetically generating a deformation field and applying it to an
image, this way a ground truth field is obtained as well as the two input images.
Additionally, when dealing with clinical data it is often quite difficult to obtain
a large extension of images to work within the first place. As it was done in
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the original U-net publication, Eppenhof K.A.J. et al. use data augmentation
to generate new data samples. The graphic representation of the proposed
network architecture in [12] can be found in Figure A.5.

Figure A.5: Network architecture from [12] c© 2018 IEEE.

Additionally, another U-net like architecture to approach the challenge of im-
age registration is presented in [14]. In the publication, two architectures are
proposed for solving the challenge of MRI elastic registration. These archi-
tectures are called VoxelMorph-1 and VoxelMorph-2, where the difference
between them relies on the number of channels at the outer layers and the
number of final convolutional layers. These architectures are shown in Figure
A.6.
In addition, a different training approach is presented. Their network architec-
ture receives the reference and target images as input and outputs a deforma-
tion field. Yet, this deformation field is applied to the target image, and the loss
of the network is calculated as the cross-correlation between the transformed
target image and the reference one.

A.2.4 The multi-modality problem
All the approaches presented in Section A.2.3 are used to face the problem
of mono-modal image registration. This means that both reference and target
images are of the same type, MR-MR, CT-CT, PET-PET, etc. When dealing
with multi-modal image registration there are two main issues to overcome.
The first one is to use an appropriate similarity measure. Different modality
images have different pixel intensity scale and have different intensity values
for the same representation of the feature. This causes some similarity metrics
that measure the overlap or the similarity between pixel values to not be suit-
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Figure A.6: Network architectures from [14], where gθ(F,M) represents the
transformation function to be applied on the target image c© 2018 IEEE.

able for the deformable registration task. The standard metric for multi-modal
registration is mutual information (MI) [23]. This method compares the sta-
tistical relationship among single pixels from the different image modalities.
Although it has been widely used to solve the multi-modal registration prob-
lem, to simply measure pixel statistics may not be efficient enough to capture
all the information of the images [8]. Moreover, MR modality intensity does
not have an accepted calibrated intensity scale. This means that the overall im-
age intensity distribution can vary from scan to scan. This can be a problem as
MI depends on the joint histogram of the images [29]. Therefore, another ap-
proach proposed in the literature is to develop a neural network to learn a deep
similarity metric to be used during the multi-modal image registration[8][23].
The second main issue to be faced when performing multi-modal image reg-
istration is the availability of data. As multi-modality implies that the images
are acquired at different times and normally by different acquisition machines,
its lineup is never guaranteed. Additionally, in order to have ground-truth data,
registrations produced by experts are needed, making them expensive and very
dependant on the expertise of the professional. To overcome this second prob-
lem synthetic images are produced. As a first step before building the registra-
tion network architecture, a CycleGAN network is built and trained to generate
synthetically images from one domain to the other. An example of this method
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can be found in [29] and [11] where synthetic CT images are generated from
MR ones. Then, as it has also been introduced in Section A.2.2.2, synthetic
deformation fields are applied to the input images to augment the available
data. The risk of taking this approach is that the final model may not general-
ize when facing real data as presented in [34].

A.3 ANACONDA Deformable Image Registra-
tion

ANAtomically CONstrained Deformation Algorithm (ANACONDA) [31] is
an analytic registration method that combines image information with anatom-
ical information provided by contoured image sets. In this method, the objec-
tive function to minimize during optimization is a linear combination of non-
linear terms: image similarity, grid regularization, shape-based regularization,
and a penalty term added when controlling structures are used to compute the
registration. Each term has its own contribution to the registration task. The
image similarity term measures the similarity between the reference and the
target after applying the computed deformation. The grid regularization term
keeps the deformed image grid smooth and invertible. The shape-based regu-
larization term works to keep the resulting deformation anatomically reason-
able when regions of interest are present in the reference image. Finally, the
penalty term added when using controlling structures aims to deform the se-
lected structure in the reference image to the corresponding one in the target
image. The ANACONDA algorithm is available in the commercial treatment
planning system RayStation (RaySearch Laboratories AB, Stockholm, Swe-
den). The algorithm can be used for many body sites and it is capable of hav-
ing a good performance even in cases were image intensity alone is not enough
to solve the problem thanks to the usage of the anatomical information of con-
toured image sets. The image similarity metric that uses ANACONDA is the
correlation coefficient and can be applied to an image set of CT and CBCT
(Cone Beam Computed Tomography).



Appendix B

Experiments & Results

B.1 Hyperparameter search table
The following table shows the different grid search configurations tested. For
some runs, the values of the loss and Dice coefficients do not appear or are very
close to 0. This is because for that test the residual connection configuration
resulted in the model not learning at some times. Therefore, it was modified in
other tests and this modification is stated as TRUE-MOD. Finally, for the loss
column, the 5 lowest values are highlighted in green. For the Dice coefficient
columns, the 5 models with the highest Dice scores are highlighted in green.
It is important to keep in mind that these validation results are obtained on
images of the same image resolution as the training images.
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Figure B.1: Results of the hyperparameter search.

B.2 CT-CT Displacement Analysis
To better understand the behavior of the neural network and be able to detect
in which cases it is failing, further experiments needed to be executed. The
analysis of the performance of the 0107 CT-CT registration model on different
kind of displacements is presented in this section.
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B.2.0.1 Dice-Displacement Analysis

Once obtained the resulting Dice scores it was interesting to see the relation-
ship between the average displacement of the ground truth deformation field
and the resulting Dice scores per region of interest. For this analysis, the av-
erage displacement is calculated as the average Euclidean distance of the de-
formation field vectors. In Figure B.2 the Dice-displacement analysis of the
CT-CT 0107 model is presented. Our expectation was to see a linear relation-
ship between the increase of displacement and a decrease of the obtained Dice
score. Yet, this is not the case. This is because when generating the ground
truth deformation field, the deformation vectors are generated randomly as a
combination of a finer and coarser grid. In this way, the deformation field
affects in a different manner each ROI, deforming some regions with greater
deformations than others. Similarly, the same trends can be seen in Figure
B.3 where the Dice-displacement analysis for ANACONDA algorithm is pre-
sented. Surprisingly, both the deep learning model and ANACONDA work in
a similar way against different magnitudes of average displacement. In both
figures, each orange dot represents the Dice coefficient of the corresponding
ROI of a test sample. In the same way, the blue dots represent the initial Dice
score of each test sample and ROI before any registration was performed.

Figure B.2: Ground truth displacement-dice analysis. In this figure the rela-
tionship between the initial ground truth displacement and the obtained ground
truth score is presented for the CT-CT full resolution model.
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Figure B.3: Ground truth displacement-dice analysis. In this figure the rela-
tionship between the initial ground truth displacement and the obtained ground
truth score is presented for CT-CT ANACONDA results.

B.2.0.2 Deformation Analysis

In order to test which kind of deformations can affect the model performance,
new test data was created by generating deformation vector fields in the same
way as presented in Section 2.4, and multiplying it by a factor of 0.25, 0.5, 2,
and 4. In this way, fields containing the same distribution of deformations as
the ones used in the previous tests are obtained. The goal of this experiment
was to test the robustness of the model when facing fields with greater and
smaller deformation scales. The model performance was analyzed by com-
paring the improvement of the Dice coefficient, shown in Figure B.4 where
the blue boxes represent the initial Dice scores and the orange ones represent
the distribution of Dice scores after applying the predicted deformation field.
Additionally, the prediction error is analyzed in Figure B.5 where the blue
boxes are the distributions of the ground truth field average displacement, and
the orange ones are the distributions of the prediction error. For both plots,
factor 1 is the ground truth displacement distribution of the training images.
The results show that the model is able to predict the right deformation when
facing images containing lower or equal distributions than the training ones.
Yet, the model is not able to predict deformations with higher deformation
scales than the training ones.
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Figure B.4: Dice score analysis from testing the 0107 CT-CT model with de-
formed images deformed by fields scaled by a factor of 0.25, 0.5, 2, and 4.
The initial Dice scores are represented in blue. The orange boxes represent
the final Dice scores after applying the model.
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Figure B.5: Displacement-error analysis from testing the 0107 CT-CT model
with deformed images with fields scaled by a factor of 0.25, 0.5, 2, and 4. The
blue boxes represent the average ground truth displacement, while the orange
boxes represent the prediction error per each scale factor .

Given that the model was only trained on deformable deformations, its per-
formance when facing only translations was tested. Test data containing only
translations of 0.1, 0.2, 0.5, 1, 1.5, and 3 cm were generated. The resulting
Dice scores per translation factor are presented in Figure B.6, where the blue
boxes represent the initial Dice scores and the orange ones represent the Dice
scores after applying the predicted field. In Figure B.7, the prediction error
was analyzed for each translation factor. The initial translation scale is rep-
resented in blue, while the prediction error is depicted in orange. The model
was able to predict the deformation direction for all tested translation scales
but as previously, it could not predict transformations of a higher scale than
the ones used for training.
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Figure B.6: Comparison of resulting Dice scores from testing the 0107 CT-
CT model with images being translated 0.1, 0.2, 0.5, 1, 1.5, and 3 cm. The
blue boxes represent the distribution of the initial Dice scores. The orange
boxes represent the distribution of the Dice scores obtained after applying the
predicted deformation field.
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Figure B.7: Dispacement-error analysis from testing testing the 0107 CT-CT
model with images being translated 0.1, 0.2, 0.5, 1, 1.5, and 3 cm. The blue
boxes represent the distribution of the ground truth deformation fields’ average
displacement. The orange boxes represent the average prediction error.
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