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Abstract—Dementia is a syndrome of illnesses resulting in
cognitive decline, severely impacting the lives of those afflicted
as well as their loved ones. The most common form of dementia
is Alzheimer’s disease, with roughly 10 million new cases each
year. In this study we examine different machine learning
models and approaches aimed to aid healthcare professionals in
early diagnosis of Alzheimer’s disease, potentially automating
parts of the diagnostic process. We evaluate our models on the
Pitt corpus of the DementiaBank dataset, using 10-fold cross
validation. We compare the BERT and RoBERTa transformer
models, and find that both models achieve high accuracy,
precision, and specificity. The highest accuracy is achieved by
RoBERTa, reaching an accuracy of 86.72%, a precision of
90.69% and a specificity of 90.53%. Furthermore, we explore
the viability of using automated speech recognition for automatic
transcription of audio samples from patient meetings. ROBERTa
achieves an accuracy of 83.59% using transcripts generated by
Google’s automatic speech recognition, suggesting such methods
may be viable for antomating certain parts of the diagnostic
process.

In addition to the exploration of transformer models and
their viability for dementia diagnostics, this paper provides
a market analysis of a potential automated diagnostics tool
utilizing transformer models. The analysis is based on a
literature study and on two interviews; one with the CEQ of
a start-up providing automated dementia tests for healthcare
professionals, and one with a psychologist researching dementia
as well as potential methods of early diagnosis of dementia.
With the interviews and literature study as a basis, we use the
SWOT framework, and PEST analysis along with Porter’s five
forces framework to analyse the current market potential for
such an automated tool. Despite detecting several obstacles and
difficulties prior to market entry, we find significant potential
for such a product given the current state of the market.

I. SAMMANFATTNING

Demens ir ett syndrom av sjukdomar som orskar kognitiv
nedsiittning och paverkar bade de drabbade och deras familjer.
Den vanligaste typen av demens ir Alzheimers sjukdom, med
cirka 10 miljoner nya fall per ar. I denna studie undersiker
vi olika maskininlirningsmodeller och tillvigagangssitt i syfte
att underliitta fir sjukviardspersonal att stilla en tidig diag-
nos, och mdjligtvis att dven kunna automatisera vissa delar
av diagnosprocessen. Vi utviirderar vara modeller pa Pitt-
corpuset i DementiaBank-datasetet och anviinder 10-delad ko-
rsvalidering. Vi jimfor tva transformer-modeller: BERT och
RoBERTa, och finner att bada modeller astadkommer goda
resultat avseende noggrannhet, precision, specificitet och sen-
sitivitet. Den higsta noggrannheten uppnis av RoBERTa, pa
86.72%, en precision pa 90.69%, och en specificitet pia 90.53%.
Vidare undersoker vi gamgbarheten i att anvinda automatisk
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taligenkanning for automatiserad transkribering av ljudinspel-
ningar fran patientmiten. RoOBERTa uppnar da en noggrannhet
pa 83.59% niir den anviinder transkriberad text fran Googles
automatiska taligenkiinningstjinst, vilket tyder pa att sadana
metoder kan vara gangbara for att automatisera vissa delar av
den diagnostiska processen.

Forutom undersokning av transformermodeller bidrar detta
verk dven med en marknadsanalys av marknadspotentialen
for ett verktyg for automatiserad demensdiagnostik. Analysen
baseras pa en litteraturstudie och tva intervjuer; en med en VD
for en start-up som erbjuder liknande tjinster, och en intervju
med en forskare inom demens. Med litteraturstudien och de
tva intervjuerna som grund analyserar vi marknadspotentialen
med tre ramverk: Porters fem krafter, PEST-analys och SWOT-
analys. Vi fastslar att det trots flertal hinder och svarigheter for
marknadsintriide finns det stor potential och en stor efterfragan
pa en sadan produkt.

Part1
Transformer models for
early diagnosis of dementia

I. INTRODUCTION
A. Background

1) Dementia: Dementia is a syndrome which results in
cognitive decline, affecting areas such as thinking, memory,
language, judgement and orientation. It is the result of several
diseases, including Alzheimer’s disease (AD), dementia with
Lewy bodies and frontotemporal dementia. AD is believed to
constitute roughly 60-70% of all cases worldwide. A total
of 50 million people are believed to suffer from dementia
worldwide, with roughly 10 million new cases each year, 10
000 - 15 000 of these being in Sweden. Somewhere between
5-8% of the worldwide population aged above 60 suffer from
dementia. The economic implication of dementia is believed
to be around $1 trillion, or roughly 1.1% of the world’s
gross domestic product. The prevalence is expected to increase
significantly in the near-future considering the world’s rapidly
aging population and low birth-rates [30].

Unfortunately, there are few treatments available against
dementia. However, the potential medication and remedies that
do exist have been shown to be most effective if implemented
early (Posner et al., 2017). As a consequence, it is of high



Fig. 1. Cookie Theft Picture, adopted from Goodglass et al. [6]

importance that there are cost-effective screening methods
that can detect and diagnose dementia from early-signs. The
current methods used for diagnose dementia early uses either
positron emission tomography (PET) or magnetic resonance
imaging (MRI). Both are expensive but non-invasive (Nensa
et al., 2014).

2) Dementia’s effect on speech: There is considerable ev-
idence that dementia, specifically of the Alzheimer’s type,
affects speech. Alzheimer’s disease patients score significantly
lower than the controls in the areas of verbal expression,
auditory comprehension, repetition, reading, and writing [10].
Szatloczki et al. connects speech tempo, pauses in speech, and
speech length to early stages of the disease [25]. This shows
that speech could be analyzed in order to diagnose the disease
early.

Hesitations, silences and filler words such as “"ehm” and
“uh” are more likely to occur during conversations for persons
with dementia, as they more frequently forget details and
context of the conversation. Khodabakhsh et al evaluated
both linguistic and prosodic features for Alzheimers detection
in speech [15]. They conclude that prosodic features are
superior to linguistic features when it comes to detection [15].
Khodabakhsh et al found features such as silence to utterance
ratio, response time, average word count, word rate, and filler
word rate to be useful features for classification [15].

Analysing the speech output of patients could therefore be
a potential tool for creating effective diagnostics tools. One
such test that uses the speech of patients in order to screen
for Alzheimer’'s disease is the Boston Cookie Theft Picture
Description Task 1. In the Cookie Theft test, the patient is
asked to describe everything occurring in the picture. The
picture itself includes details and information of various levels,
containing different semantic categories as well as causal
and temporal relations between objects. The complexity of
the depicted situation allows for thorough verbal and speech
analysis of the patient describing it.

This test currently requires the expertise of specialised med-
ical doctors. However, with the advent of natural language of
processing there is the possibility to automate this test. Such an
automation would speed up current waiting times, and lessen

the burden of the health care system in general. Furthermore,
democratising an early diagnose could potentially extend the
life-span of millions of dementia patients. Numerous research
groups have worked on automating this test, with varied results
(191 [3].

3) Transformers and Natural Language Understanding:
The publication of “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding” brought forth a
new paradigm for natural language processing [9]. It presented
a new architecture for natural language processing that uses
transformers and it has surpassed the state of the art results in
all major text classification tasks. The main benefit is that the
model can be pre-trained on large amounts of data and then
fine-tuned to fit the specific task. This is possible because the
new models are bidirectional, i.e. they can incorporate context
from both directions at the same time.

In this paper, we apply the new transformer architecture
to the Cookie Theft picture task. We want to investigate
whether the transformer architecture can improve the current
results and achieve a state of the art accuracy for diagnosing
Alzheimer’s disease using language form the Cookie Theft
picture task.

In RoBERTA: A Robustly Optimized BERT Pretraining
Approach researchers at Facebook Al and University of Wash-
ington show that BERT was severely undertrained [17]. They
propose a new ftraining method for a new model referred
to as RoBERTa. They modified the BERT training process
in several ways, including increased training time, larger
batches and data sets, changing masking pattern during train-
ing dynamically and using longer sequences for training. They
also skipped the objective of next sentence prediction during
training. With these modifications they were able to achieve
SoTA results on a variety of tasks, outperforming the original
BERT on several of them.

II. PREVIOUS WORK

The papers that use machine learning in order to diagnose
AD with dementia bank differ in a few ways. First, some use
the transcripts from the dataset while others apply automatic
speech recognition to transcribe the speech audio into text.
Second, the studies use different language models. Thirdly,
some include the data from those with mild cognitive im-
pairments and others do not. Finally, they have a variety of
evaluation metrics.

While there are many papers published using Dementia
Bank, we will discuss four papers using different methods
for making an automatic dementia diagnose with Dementia
Bank: Zhou et al. used a SVM classifier from text features
[31], Wankerl] et al. utilizes a n-gram model [28], Herndndez-
Dominguez et al. applied a SVM and random forrest classifer
with phonetic and linguistic features [13], Guo et al. created an
algortihm that uses the perplexity feature of a n-gram model
[11]. Now we will give an overview of the main differences
between them.

A key difference is whether to use the provided transcripts
or to use automatic speech recognition in order to transcribe



speech into audio. The results seem to be better when using the
transcripts, which makes sense intuitively since the transcripts
will be more accurate than anything generated with automatic
speech recognition. However, using transcripts outside of the
lab is prohibitively expensive. Therefore, it would be more
interesting to use automatic speech recognition in our study.

Another important aspect is which models the papers use.
Two studies use n-gram models [28] [11]. Wankerl et al
uses two trigram models using the transcriptions and they
derive a single feature by calculating the difference between
the perplexities in the two models [28]. Guo et al. uses a
two-dimensional perplexity feature which is combined with
some baseline features [11]. Herndndez-Dominguez et al. has
an SVM and a Random Forest Classifier, where the Random
Forest Classifier performs the best [13]. Zhou et al. also uses
an SVM [31]. No study has so far applied the new transformer
models, such as BERT, to the DementiaBank corpus.

It is difficult to precisely define the state of the art since
each paper uses its own evaluation metric. Zhou et al. uses 10-
fold-cross-validation but never explicitly states the diagnostic
accuracy, instead, they focus on the word error rate of their
automatic speech recognition [31]. Herndndez-Dominguez et
al also uses 10-fold-cross-validation with a division of 10%
test data [13]. They report an average accuracy of 87%;
however, it is unclear whether they divide the data between
individuals. Thus, they might be training on data samples of
the same individuals which means they overfit to the data.
Wankerl et al. evaluate their results with leave-one-out-cross-
validation, which means that the data is divided into one
part for every person [28]. The model is trained on all data,
except for the data from one person and then the model is
tested on that person. They use an equal-error-rate which gives
them an accuracy of 77.1%. Furthermore, since some studies
choose to not use the data from subjects with mild cognitive
impairments while others keep them, it is difficult to determine
the actual state of the art accuracy. A final point which further
complicates the comparison between papers is whether they
use the provided transcripts or not. Using the transcripts most
likely increases the accuracy.

ITI. THEORY

A. Dementia and speech

1) Cookie Theft Picture: The Cookie Theft test is a com-
mon part of dementia evaluations and consists of the patient
describing the Cookie Theft Picture 1. The picture was first
included in the Boston Diagnostic Aphasia Examination [6],
and level of detail in a person’s description of the picture varies
greatly depending on the person’s cognitive abilities.

The Cookie Theft picture is a widely used task in clinical
settings for evaluating cognitive and verbal abilities of patients
suspected of having cognitive disorders. The patient is asked to
describe everything occurring in the picture. The picture itself
includes details and information of various levels, containing
different semantic categories as well as causal and temporal
relations between objects. The complexity of the depicted

situation allows for thorough verbal and speech analysis of
the patient describing it.

B. Transformers and Natural Language Understanding

With the publication of “BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding”, a new
paradigm for natural language processing was unleashed [9].
They presented a new architecture for natural language pro-
cessing that uses transformers and it has surpassed the state of
the art results in all major text classification tasks. The main
benefit is that the model can be pre-trained on large amounts
of data and then fine-tuned to fit the specific task. This is
possible because the new models are bidirectional, i.e. they
can incorporate context from both directions at the same time.

C. Transformer architecture and Attention Mechanisms

For a long time recurrent neural networks (RNNs), with var-
ious architecture including long short-term memory (LSTM)
and gated recurrent units (GRU) were the dominating ar-
chitecture within natural language processing, sequence and
language modeling. These were able to achieve state-of-the-
art results on various tasks, but performance is oftentimes
lowered for longer sequences. Bengio et al have previously
demonstrated the difficulty of RNNs to capture long-term
dependencies [14]. Consider a sentence such as ”The blue
ball rolled across the field as it slowly made its way towards
the goal”. In this sentence it is easy relatively simple for an
RNN to capture that "it” refers to the ball, but for longer
sequences containing several sentences, such dependencies are
tricky to capture. Several attempts were made to improve the
performance, such as was the LSTMs and GRUs, which both
are RNNs modified to capture longer-term dependencies.

Another attempt to has been through the mechanism of
Attention, which enabled models to take more context and
dependencies into account, regardless of their distances within
the sequence. Attention mechanisms were typically incorpo-
rated into RNNs. RNNs are sequential in nature, and require
sequential computations, which can be time consuming and
do not allow for higher degrees of parallelization.

In above sentence with the ball, the self-attention mecha-
nism allows the transformer to model the relationship between
every token in the sequence, and thus deducing that the word
“ball” refers to spherical ball, as in football, rather than a
masquerade ball. [1]

In their seminal paper “Attention Is All You Need”, re-
searchers at Google introduced a novel architecture for sequen-
tial modeling, free from recurrence, relying instead solely on
attention mechanisms, which allow for more parallelization
than RNNs and previous architectures. Below follows an
overview and description of the architecture. [27]

D. Architectural Overview

Transformers can be used for a wide variety of tasks,
including next-sentence prediction, named entity recognition,
classification tasks such as sentiment analysis, and neural
language translation. This section describes the transformer
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Fig. 2. Transformer Architectural Overview, adopted from Vaswani et al. [27]

architecture for language translation, as it is presented in the
seminal paper Attention is All You Need. The architectures
for other tasks are similar, but the final layer after the decoder
stacks may differ. Fig. 2 displays the overall architecture.

The input sequence is transformed into a sequence of
embedding vectors. These are then fed to the first out of 6
encoders. The first encoder’s output is fed into the second
encoder and so on and so forth, until it reaches the 6th and
final encoder. Each enconder consists of a self-attention layer
and a feed forward layer.

There are 6 decoders in total, each consisting of a self-
attention layer, followed by an encoder-decoder attention layer,
and finally a feed forward layer. Following the last layer there
is a fully-connected layer and a SoftMax layer, finally yielding
an output token. The input sequence is fed only once to the
encoder stack, and the outputs of the encoder stack are then
fed to the decoder stack every time step. The output of the
decoder stack is also fed to the bottom decoder for each time
step. This process is performed until the transformer finally
outputs an end-of-sequence token. [27]

We will now more thoroughly examine each component of
the architecture.

1) Word Embeddings: Each word is transformed into a
word embedding vector, representing semantic features.

2) Encoder and Decoder: Like many other successful
architectures, the Transformer uses an encoder stack, and a
decoder stack, each consisting of 6 identical layers.

3) Attention and Self-Attention: Attention can be described
as a function which maps a query and a set of key-value pairs
to an output. [27]

From the vector embedding of each input token in the
sequence, a Query vector, Key vector, and Value vector is
created. These are generated by multiplying the word embed-

ding vector by one matrix (whose weights are learned during
training) each. These have a dimensionality of 64, while the
embedding vectors have a dimensionality of 512. The self-
attention itself is a vector.

Assume that the input consists of a sequence of 3 tokens.
Let @, g, ki, v; represent the word embedding, query, key, and
value vectors of token 7 in the sequence. To calculate the self-
attention vector z; of the first token, the following calculations
are performed. First, the dot-product between ¢; and k; is
calculated for every token : in the sequence. This score is then
divided by the square root of the dimensionality of the g, k,v
vectors, in this case 8. This is done in order avoid the values
becoming too large, which could result in low gradients due
to pushing the score far to the edges of the softmax function.
After dividing the score, the softmax function is applied to
each score. This new score is then multiplied by the v; for each
token in the sequence. Finally these value vectors multiplied
by softmax are added together, resulting in 2.

In summary:

— VN i Ky
z = Ej=050ftma,a:( NG ) ® vy
where N is the length of the sequence, and dj. is the dimen-
sionality of the ¢, k, v vectors.
This process is made computationally efficient by using
matrix multiplication as follows [27] [24]:

T

: QK
Attention(Q, K, V) = softmazx
(Q'-‘ 7 ) f ( ﬁ

4) Multi-headed attention: The model contains several sets
of Query, Key and Value matrices for every encoder and
decoder, allowing for several representation subspaces. The
multi-headed attention mechanisms increases the model’s ca-
pacity to attend different representational subspaces at several
positions of the sequence, in parallel.

The encoder/decoder layer however requires a single matrix,
not several from each attention head. Thus, the matrices
Ziy .y £y, are concatenated so that Z;,..., Z,, = Z, and then
multiplied by a matrix W© whose weights are also learned
during training.

In matrix format, it can be formulated as follows:

W

MultiHeadAtn(Q, K, V) = Concat(head,, ..., head, )W
head; = Attentim&{QWiQ, KwE vwY)

where n is the number of heads, set to 8 in the original
paper [27] [24].

5) Positional Encoding: As mentioned previously, the
transformer does not use recurrence nor convolution, so in
order to account for the order of the tokens in the input,
information regarding absolute as well as relative positions
of the tokens is added.

This information is stored in a positional encoding vector,
of the same dimensionality as the word embedding vectors,
ie. 512, in order to be able to add them together. The idea
is that meaningful information regarding positions is provided



by adding them to the embeddings, by altering the distances
between the word embedding vectors when they are used to
obtain the attention, as well as when they are projected onto
the query, key, and value vectors.

The transformer uses a sine and cosines as positional
encodings. The formula is given by
pos

Postional Encodingpes 2i = sin W)
. .y o pos
Postional Encodingpes 2i+1 = Los(m

where i is the dimension, while pos is the position. [24]
[27]

6) Residuals: Each sub-layer in the encoders and decoders
contains residual connections as well as normalization steps.

For encoding layer 1, the procedure would be as follows:

x1 + positionalencoding(z1) = z

This is then fed +to the
Sel f Attention(z)) = 2

These are then added, normalized, and fed to the feed forward
layer:

self-attention  layer:

FF(normlayer(z + z}))

The output of the first layer-norm and the feed forward layer
are then added together and normalized before being passed
on to the next encoder [24] [27].

7) Layer Normalization: Layer normalization helps speed
up training time and is similar to batch normalization, with
a few key differences. While batch normalization calculates
mean and variance in order to normalize the input values to a
neuron over a batch of training samples, reducing the training
time of the neural network, this is not applicable to RNNs.
Layer normalization calculates the mean and variance not over
a batch of training sample, but of the summed inputs to a single
layer during on one training sample. Also, layer normalization
performs the same computation during training as well as
during testing. Furthermore, it can be applied effectively to
RNNs [4].

8) Decoder: The decoders are similar to the encoders, but
there are a few differences. The encoder is used only once,
while the decoder is used for several time steps until an end-
of-sequence token is outputted. For each time step, the output
of the encoder is used as input to the encoder-decoder attention
layer of every decoder in the stack.

Each decoder contains a self-attention layer, an encoder-
decoder layer, and finally a feed forward layer (and also
residual connections and norm-layers).

The final encoder in the sequence is transformed into two
vectors K, and V, which are fed into the encoder-decoder
attention layer of each and every decoder layer. This allows
the decoder to pay attention to the relevant positions in the
input sequence. The final decoder layer passes its output into
a linear fully-connected layer, which is then softmaxed and
produces an output (described further in a later section).

The decoding process continues for several time steps. The
output of every time is embedded, and positional encoding

is added, and the product is concatenated to previous outputs
(positions not yet seen are masked with —oc), and the product
is fed into the first decoder. This process continues until the
final layer outputs an end token, signifying the end of the
sequence [24] [27].

9) Final layer, Softmax: The final decoder layer yields a
vector containing floating-point values, which are fed into a
fully-connected layer which produces a large logits vector. The
logits vector has the same dimensionality as the number of
tokens in the vocabulary. If there are 100 000 unique tokens
in the corpus, then the logits vector has 100 000 entries. The
softmax function is then applied to the logits vector, resulting
in a vector of probabilities, where each entry is positive and
adding each entry sums to 1.0. The position of the entry with
the highest probability is noted, and the token associated with
this entry is then the token outputted by the transformer [24]
[27].

10) Beam Search: The transformer can be considered to
output a probability distribution over all the tokens in the
vocabulary, where the token corresponding to the entry with
highest probability is the token the transformer considers most
likely. One method is to always choose the entry with highest
probability as the output token, but there are other methods.
One popular method is known as Beam Search. After the
first step, the model remembers the top n words, and runs
the model n times during the second step, one time for each
of the n tokens, letting the model act as if there are n potential
sentences. This process is repeated for the following steps, and
the sequence that overall accumulated the largest probability
is chosen. Several parameters can be manipulated. Beam size
refers to the number of steps in which token candidates are
considered, in the above example the beam size is 2 because
results were compared after computing beams for the first and
second time steps. Top beams refers to the number of tokens
considered, which in the example was n [24] [27].

IV. METHOD
A. Data

The dataset used for prediction consists of the audio record-
ings of the Cookie Theft test from DementiaBank’s Pitt corpus
and their corresponding transcripts. As mentioned above, the
Cookie Theft is a natural choice for dementia detection of
continuous speech samples. The samples contained in the
Pitt corpus are taken from a large longitudinal cohort study
of AD conducted between 1983 and 1988. After removing
participants who either developed dementia during the study,
or showed to have other diseases affecting cognitive abilities,
188 (out of 204) participants had definite or probable AD,
and 101 (out of 102) participants were in the control group.
The participants had to fulfill certain criteria in order to be
eligible for the study, including not having had any previous
cognitive disorders, nor having had any medication affecting
the central nervous systems (excluding antidepressants). The
participants underwent several sessions of medical and cog-
nitive testing. Thus, a total of 289 participants were included
in the study. The corpus contains a total of 306 (as some



participants performed the test more than once) audio samples
and their corresponding transcriptions, transcribed by linguists,
complete with parts-of-speech tags [5].

B. Data Processing

Whereas transformers have shown to be extremely powerful
tools when it comes to understanding and processing language
coming from written text, they are not designed to process
audio. While many clues concerning the speaker’s cognitive
abilities are likely to be found within the transcription, they do
not provide the entire picture. As mentioned above, dementia
affects many aspects of speech, including enunciation, speech
production rate and other possible prosodic aspects. To make
use of these potentially insightful features, we use speech
analysis software provided by PRAAT to extract syllable
intervals as well as fundamental frequency (fy) sequences
from the audio files. Furthermore we use the OpenSMILE
library to obtain over 5000 additional features from each
sample.

1) Automatic Speech Recognition: As mentioned above,
the dataset contains both audio files recorded during the
participant meeting as well as written transcripts from these
meetings transcribed by linguists. BERT and similar NLP
models typically require text input, and in order to make
a diagnostic aid to help healthcare professionals make a
diagnosis, it is highly beneficial if as little manual labor
as possible is required. Rather than writing transcripts by
hand, automatic speech recognition (ASR) could be used to
transcribe the speech from patients during the meeting. The
performance of ASR models has increased greatly in recent
years, and in this study we attempt to use three variants of
Google’s ASR service, one in which the audio is inputted as
is, which we refer to as Low, one in which the volume has been
increased significantly, referred to as High, and one in which
the audio is inputted as is, but the model used is an enhanced
model provided by Google, referred to as Enhanced.

C. Bert Embeddings

Simply using BERT for classification will yield a single
value; 1 or 0 depending on the classification. To combine the
output of BERT with other non-text features, we can use BERT
to get feature vectors. Devlin et al. [9] describes different
variations of combining the last layers of BERT as contextual
embeddings, and then feeding these as input to a BiLSTM
before the classification layer in a Named Entity Recognition
(NER) task. Using a concatenation of the last four hidden
layers (out of 12) achieved the best results for the NER task.
This method achieves an accuracy of 96.1%, and a weighted
sum of the last four hidden layers achieves an accuracy of
95.9%, while using the entire BERT-base model achieves an
accuracy of 96.4%. This shows that this approach can achieve
comparable results to using the entire fine-tuned BERT model
[9]. For our study, we use the method of concatenating the
last four hidden layers, and then concatenating them with
other prosodic and linguistic features, before applying a final
classification layer.

D. General Description

Transcriptions are used as input to a transformer model in
order to extract embedding vectors by concatenating the four
final hidden layers of the output. The PRAAT software is used
on the audio samples to produce f; sequences and syllable
intervals, which are themselves used as input to an LSTM
model. An additional number of features are also extracted
from the audio samples using OpenSMILE. These features
are inserted into a vector. The BERT embeddings vector, the
LSTM vector, and the openSMILE features vectors are finally
concatenated and used as input to one or more fully-connected
layers, yielding a binary output as classification.

BERT has several settings, and maximum sequence length
the model can take as input can be adjusted. In our experi-
ments, we tried to set the maximum sequence length to both
256 and 512 tokens. If a sequence contains more than the limit,
only the first tokens up until the limit are included, the rest
are discarded. If the sequence contains fewer tokens than the
limit, the input vector is padded until it is of the appropriate
length.

1) Data exploration and general comments: 10-fold cross
validation was used to reduce bias. Each patient in the study
participated in the cookie theft test between one and three
times, thus, in order to avoid training a model on one sample
from patient A, and also testing the model on another sample
from patient A, the samples were grouped together on a per
patient basis. As such, the data was divided into train-test splits
according to patients rather than samples. After removing
patients classified as MCI, 275 patients were left with a total
of 512 data samples. The 275 remaining patients were split
into 10 sets, averaging 27 patients per set. For each train-
test set a new model was trained for 8 epochs, and the highest
number of correctly classified samples was recorded. The total
number of correctly classified samples spanning over all train-
test sets was finally recorded and accuracy, precision, recall
and specificity was calculated.

For all models with maximum length set to 256 a batch size
of 16 was used, while for models with maximum length set
to 512 a batch size of 6 was used due to GPU constraints. We
did not experiment thoroughly with different hyperparameters,
instead we used many of the default settings. A learning
rate of 3e-5 was used, with the AdamW optimizer from the
HuggingFace library.

We noted that the all models seemed to struggle with
roughly the same data samples. The visits of three patients
were not correctly classified by any model.

Out of the 10 most often incorrectly classified patients, 3
belonged to the control group and 7 belonged to the AD group.
In total, there are 269 AD samples and 243 control samples,
meaning that 52.5% of the samples are AD. There is a total
of 275 patients, 176 in AD group, and 99 in control.



E. Metrics

We employ four different metrics; accuracy, precision,
specificity and recall. They are defined as follows:

Moo — TP +TN Precision — TP
“TTPY{TN+FP+FN "= rp L Fp
TN TP
i ficity = —————— all = ———
Speci ficity TN+ FP’ Reca TP+ FN
V. RESULTS

A. Results Overview

1) Prosodic Features with Bert Embeddings: We found
that concatenating the prosodic features with the embeddings
of BERT and RoBERTa and then feeding them to a fully-
connected layer led to a slight decrease in accuracy for all
models, and as such these are not included in the table of
results and were not analyzed further.

TABLE 1
BEST RESULTS IN TERMS OF ACCURACY FOR EACH MODEL ON LINGUIST
TRANSCRIPTS. 256 AND 512 REFERS TO THE MAXIMUM INPUT LENGTH

TABLE IV

SAMPLE OF THE SENTENCES MOST OFTEN INCORRECTLY CLASSIFIED.

Most
incorrectly
classified sample
in AD group

often

well the boy on the chair is falling, reaching up for a
cookie, handing one to the girl. the lady is wiping a
dish. water running on the floor. she’s standing in it.
trees outside, the lawn, shrubbery. a window outside
that I can see. that’s about it dear.

Second most
often incorrectly
classified sample
in AD group

the chair is tilting. lid is off of the cookie jar. cookie
in the left arm of the boy. his right hand is touching
a cookie in the cookie jar. one of his feet is a about a
third off of the stool. he’s got short pants and a blouse.
and look like they’re boots instead of shoes. the girl
has a finger to her lips as though to say “quiet” one
hand out. her left hand is out. she’s got short skirt
and a blouse, jersey sweater. socks, anklets rather.
the on [ did mention that the stool was tilting. the
boy’s standing on the stool and it's tilting. I think I
mentioned that. the girl has hair hanging to her neck.
the boy has like hair combed straight back. the jar is
open on the the the cupboard. the mother’s drying the
dish with her right hand holding it with her left. she's
got an apron over her dress or whatever it may be.
water spilling out of the sink. two cups facing opposite
direction. one plate to the right of the cups. curtains
flowing in the breeze of the wind. there still some more
but oh yeah.

USED.

Model BERT256 BERT512 ROBERTA512  Guo et al. [1 l]]
Accuracy 84.96% 85.55% 86.72% 85.4%
Precision 85.82% 84.45% 90.69 %

Specificity  84.36% 81.89% 90.53%
Recall 85.50% 88.85% 83.27%
TABLE II
BEST RESULTS ON DIFFERENT TRANSCRIPT TYPES.
Transcript Linguist High Low Enhanced

Model RoBERTa512 BERT512 BERT512 RoBERTa512
Accuracy 86.72% 82.23% 81.84% 83.59%
Precision 90.69 % 82.48% 83.85% 86.56%
Specificity 90.53% 80.25% 82.71% 86.01%

Recall 83.27% 84.01% 81.04% 81.41%

prediction outcome
p n total
True False
p' | Positive: Negative: P’ = 269
224 45
actual
value
False True
n' | Positive Negative N' = 243
23 220
total P =247 N = 265
TABLE III

CONFUSION MATRIX FOR HIGHEST PERFORMING ROBERTAS512 MODEL

'Guo et al. uses leave-one-person-out validation instead of 10-fold-cross-
validation

Most
incorrectly
classified sample
in control group

often

inside the room or every place?. *INV just say it out
loud. oh you don’t want me to memorize it ! oh.
okay, the the little girl asking for the cookie from the
boy who's about to fall on his head. and she’s going
I guess “shush” or “give me one”. the mother's we
don’t think she might be on drugs because she’s off
someplace because the sink’s running over. and it's
summer outside because the window’s open and the
bushes look healthy and she’s drying dishes with her
apron on. and the cookie jar's looking full. that’s it.

Always
diagnosed
correctly and
belonging to AD

group

there’s a little girl talking to this boy up up on the
step. and she’s asking him to bring some of this down
or whatever it was a jar or whatever it is that so it
doesn’t doesn’t break. there's a mother over here. she's
watching them that she has that break in her hand. and
it looks like it's very strong or heku or she's looking
real real good at it, a jar or whatever. she’s touching
giving a little little little touch of her mouth. although
that's. and it it looks like he's gonna bring some of
that down down for them all. and and and mother's
out there looking at them. and and looks like she's
washing this dishes that they already had it. and she's
she's washing the dishes away from them. it it looks
that way. she’s cleaning it you know.

Always
diagnosed
correctly and
belonging to

Control group

cookie jar. a lad standing on a stool teetering, grabbing
for the cookies. sister 1 guess laughing at him. mother
washing dishes. sink is overflowing. view of the yard
and the kitchen window with its curtain. two cups and
a dish remain. looks like they’re dried. mother standing
in the overflowed water. her two faced cabinets four
doors. and a valance and the curtain. window's half
open. and there’s landscaping along the wall of view
of the yard. and the walk pictured from the window.
water is running, overflowing. boy is holding a cookie
in his left hand, grabbing for another one with his right
hand. the lid of the cookie jar is over uff off. mother's
wearing an apron drying dishes. okay.




TABLE V
SAMPLE TOKEN AND CHARACTER LENGTHS AND STATISTICS

Group All AD Control ~ Worst 10
mean no. chars. 502.89  466.77 543.01 520.73
median no. chars. 446 420 475 481
std.dev. no. chars. 26593 251.68 275.41 206.13
mean no. chars. 128.26 121.87 135.35 131.55
median no. tokens 114 109.5 120 126
std.dev. no. tokens 65.39 64.08 66.10 49.51

VI. ANALYSIS

We find that the transformer architecture is suitable for
classification of text samples taken from cookie theft tests.
All models consistently significantly perform well above the
baseline, which we define as predicting the most common
category on all samples. The RoBERTa model achieved the
highest accuracy, precision, and specificity, which were all
achieved using the linguist transcripts. The ratio between
correctly classified AD samples (224) and correctly classified
control samples (220) is roughly 1 for the best performing
RoBERTa model, not displaying any significant bias towards
either group. However, we note that the model is more likely
to incorrectly produce false negatives (45), compared to false
positives (23). Table III shows the differences between various
statistics regarding number of characters and number of tokens
in the different groups. We note that on average the AD
group produced samples with fewer total number of characters
and tokens (where “tokens” refers to tokens as produced by
the BERT tokenizer included in the BERT model). We note
that for the group of the 10 least correctly classified patients
(referred to as Worst 10 in the diagram), the mean number of
characters and tokens was slightly above overall mean.

BERT models overall generally performed slightly worse
than RoBERTa, but was able to achieve a higher recall in
some instances, with BERT512 achieving the highest recall of
88.85% on the linguist transcripts.

An analysis was made comparing which participants and
their samples each model was able to correctly classify. We
found that all models were able to correctly classify a large
number all samples of a certain group of participants. These
samples were correctly classified across all models (BERT256,
BERT512, RoBERTa512). Furthermore, we found that there
were a few patients whose samples no models were able to
classify correctly. Thus we conclude that all tested models
struggle with roughly the same set of samples.

Observing the sentence samples in table IV, we note that
the samples always correctly classified are rather clear as to
whether they belong to the AD group or the control group.
Meanwhile, observing the most often incorrectly sample from
the Control group, we note that it includes a bit of gibberish,
and the authors (admittedly lacking medical degrees) would
spontaneously classify this sample as belonging to AD. While
this analysis is done ad-hoc, it lends extra credibility to the
results of the transformer models.

Unsurprisingly we find that all models performed better

when using linguist transcripts, and that the performance goes
in the following order: Linguist transcripts, google enhanced
transcripts, google high volume transcripts, google low volume
transcripts. However, we note that the performance is still
relatively good, and not significantly lower than using the
transcripts. The lower performance, however, is likely due
to errors when transforming the raw speech data to text by
Google’s ASR model. Another source of error is the fact
that the Google transcripts contain words and phrases uttered
by both the doctor and the participant, while the linguist
transcripts only contain phrases uttered by the participant.
Modern microphones commonly have the ability to detect
speaker direction, making it easy to automatically remove
sound coming from one source or speaker, removing this
source of error. The fact that the audio of the doctor is
included could be viewed as a feature, rather than a source
of noise, depending on the application. A medical examiner
may through experience notice subtle details and probe the
patient in certain ways to gain useful information. Including
these probes could increase the accuracy of a model, and could
be useful if including the transformer model as a biomarker
in a system of tests. It is also important to bear in mind that
the recordings are relatively old and of rather low quality,
Google’s ASR is likely to produce better results with samples
recorded with better equipment.

Taking these things into consideration, an automated setup
in which modern equipment is used, removing the instructor’s
voice from the sample, and then using a model similar to
Google’s ASR to produce transcripts is likely to yield results
of high accuracy similar to those we were able to produce
with RoBERTa using the linguist transcripts.

1) Sources of error and improvements: We note that the
dataset is relatively small and may not be large enough to fine-
tune a transformer model to its full potential. Furthermore, the
limited dataset size may affect the reliability of the accuracy,
as the train and test split may affect the outcome significantly.
However, using 10-fold cross validation strengthens then
reliability of the results. Several studies use leave-one-out
testing, however, due to limited resources and the time
required to train and test each model, we were unable to
perform such an analysis.

In recent years a multitude of successful NLP models have
been published, including XIL.Net, TransformerXL and GPT-
2, which all have achieved impressive results on several NLP
tasks. With more time and resources, we would have like to
explore the performance of several of these on the dataset.
As mentioned in the results, using prosodic features did not
yield any improved results. We speculate that this may be
due to the low quality of the audio recordings, and it would
be interesting to see if higher quality audio could yield any
improvements. Finally, we could have further experimented
with hyperparameter tuning, performing a more extensive
analysis of how varying the learning rate, batch size, different
learning rate schedules and such could affect the performance.



Part I1

A market analysis of early
dementia screening using
natural language processing

I. INTRODUCTION

This part of the paper focuses on a market analysis of
early dementia screening tools. We will analyze the market
potential for a dementia diagnostics system that uses natural
language processing. Specifically, we will discuss questions
such as: what is the market size and growth for early dementia
screening, who are customers, and more. This analysis will be
based on Porter’s five forces, PEST and the SWOT framework.
The section consists of these parts: methodology, explanation
of the theoretical framework and, finally, application of the
framework on a product that diagnoses dementia early.

II. METHODOLOGY

Firstly, an extensive literature study was performed which
focused on finding the benefits and problems with early de-
mentia diagnostics. Furthermore, we researched the cost of de-
mentia to society and to the individuals who are affected. This
literature study was performed by searching for peer-reviewed
articles using the key words: dementia, market analysis, early
diagnosis, cost of illness, dementia, Alzheimer’s disease, meta-
study. Using this search strategy, we screened 153 peer-
reviewed articles based on abstract and titles. This screening
was mainly focused on finding qualitative meta-studies, since
those studies have themselves screened thousands of papers.

Secondly, we had a semi-structured interview with two
experts in the field of dementia diagnostics: the CEO of
Mindmore, developer of the leading dementia screening tool
in Sweden, and a healthcare professional researching potential
automated methods of carly diagnosis of dementia. These
two interviews gave a holistic perspective on the market for
dementia diagnostics and was a good complement to the
literature study.

The facts discovered in the literature review and the inter-
views was then arranged in Porter’s five forces, PEST and
SWOT framework in order to organize the key findings.

III. THEORETICAL FRAMEWORK

We use a multi-step analysis consisting of the combi-
nation of the most used and well respected frameworks
for market analysis: Porter’s five forces, PEST-analysis, and
SWOT. Porter’s five forces is a framework used to analyse
the the most important market forces [21]. PEST is a wide
framework that encompasses political, economic, social and
technological factors [7]. SWOT is a general framework that
makes it easy to structure information [12]. In each framework
we use data from the literature study and the expert semi-
structured interview. This novel combination of these three
frameworks enables us to use to get the best utility from all

three frameworks. The combination is greater than the sum of
its parts since the frameworks complement each other in an
efficient manor. First, we use Porter’s five forces to breakdown
the general market conditions. Second, the PEST analysis is
applied in order to widen the analysis to include socio-political
factors. Finally, we use the SWOT to pick up remaining parts
of the analysis which cannot be accommodated by Porter’s
five forces and PEST.

IV. RESULT
V. PORTER’S FIVE FORCES

This analysis is based on the answers provided by the CEO
of Mindmore.

A. Threat of new entrants

Entry barriers are relatively high due to most customers
requiring several scientific studies displaying the reliability,
specificity, and cost efficiency of the product before consider-
ing trying it. Capital requirements are however relatively low
as no expensive equipment is required to build or develop the
product, but funding research to prove its viability may be
challenging. Due to these factors, the threat of new entrants is
low.

B. Threat of substitutes

The product itself is a major substitute to existing, tradi-
tional methods of dementia diagnostics. The method itself
could potentially provide significant efficiency in terms of time
and cost, as well as reliability and specificity when compared
to the traditional methods. Furthermore, the method relies on
cutting-edge technology and the reliability of computers, rather
than traditional pen-and-paper methods in which results may
vary greatly depending on the person in charge of performing
the test. Switching costs are relatively low, as the traditional
methods for which our product acts as a substitute generally do
not require expensive hardware, and new technologies require
relatively inexpensive tools. The propensity for a customer
to buy could also be increased, as many government goals
involve increasing electronic healthcare services and utilizing
new technology. Therefore the interviewee from Mindmore
deems the threat of newer substitutes low, but there exists a
threat in the sense that several actors may want to continue
using traditional methods rather than adopting new technology.

C. Bargaining power of customers

The customers in this case refers to several potential groups.
Dementia diagnostics is carried out at university hospitals,
regular hospitals, outpatient clinics (both privately owned and
public), psychiatrists (where access to regular hospitals and
outpatients clinics is scarce), and specialized dementia and
memory clinics. The interviewee further states that the patient
should be viewed not as a customer, but as a partner. The
method of selling the product differs within different countries,
and even within different regions. Some areas may require
the purchases to be done through public procurements, which
are typically extensive, whereas private actors may proceed



with greater speed. The bargaining power of customers is
high in the sense that significant research and contemplation
is performed before buying, given that the product affects the
health of patients. Customers may require significant scientific
evidence for the specificity, reliability and general utility of
the method before considering abandoning the prior methods
of diagnosis. However, the interviewee from Mindmore states
that studies have been made displaying both reliability and
specificity, and several trial runs have indicated a great increase
in efficiency regarding speed, reliability and quality control
regarding diagnosis, oftentimes greatly reducing the burden
many outpatient clinics are facing, given that between 1-2%
of all patient visits to outpatient clinics are due to dementia.

D. Bargaining power of suppliers

While Mindmore uses software from a multitude of suppli-
ers, there are relatively many different suppliers for similar
tools, and there is also ample opportunity to create this
software in-house if suppliers should increase prices or discon-
tinue their software. As such, the bargaining power of suppliers
is considered low, and not a potential obstacle to market entry.

E. Competitive rivalry

There are currently several other actors (although most
of them in early stages) on the global market, ranging in
size from small to large and listed on stock indices. These
include Cambridge Brain Sciences, a company offering online
cognitive assessments. While competition may be difficult with
larger established actors, these have low market penetration
in large parts of the world and are mostly locally active. In
Sweden, there are currently two major actors; Mindmore and
Geras solution. However, currently these companies are quite
differentiated and their offerings are far from identical, and
competition cannot be considered particularly fierce, especially
considering the vastness of the market, and the wide range of
interested parties. In summary, rivalry may become a larger
problem in the future, but is at this stage considered relatively
low threat.

VI. PEST
A. Political factors

Since the likely customer for a screening tool for dementia is
the national and regional governments, the political factors are
of high importance. Both of our interview subjects mentioned
the importance of “Socialstyrelsen” in Sweden, which is the
national agency that sets the guidelines for all health care
providers in Sweden. This agency is ultimately controlled
by politicians which makes the market more volatile, since
they might shift opinions if a new party wins an election.
In the interview with the health care professional, there are
two things which is needed in order to convince politicians:
scientific proof of economic savings and proof that patient’s
lives are greatly improved.

An issue that might complicate the political landscape
according to the CEO of Mindmore is that politicians might
be affected by the acts of other digital health care tools. In

Sweden, there has been some critique of the private telehealth
providers and that critique might have some spillover on other
digital tools in health care. Politicians are in general unreliable
and might quickly change their mind if some big scandal
occurs.

B. Economic factors

Dementia patients take a large economic toll on the health
care system. Those with severe dementia requires institution-
alisation and care both day and night. In the US alone the cost
of dementia is estimated to be US$1 trillion [30]. Postponing
the onset of severe dementia that requires institutionalisation
one year is calculated to save $48,096 (€43,259) per patient
[2].

There are studies that seem to imply that an early diagnosis
of dementia can reduce these costs for society; however, it
is hard to definitively prove that it is the case. Weimer et.al.
claims that an early diagnose, defined as having a mini mental
state examination (MMSE) number at 28 or above, can save
over $10,000 per diagnosis in the United States [29]. Weimer
et.al. reaches this number by assuming that drugs can cut the
rate of MMSE points decline by half which in turn reduces the
years spent in nursing homes by 1.2 years according to their
Monte Carlo simulation. Since the state pays for the care in
the nursing homes, this cost reduction would directly lead to
saved tax money [29]. However, we see problems with Weimer
et.al.’s paper. The assumption that some drugs can lower the
reduction rate of MMSE points can be strongly questioned.
This assumption is based on one study [18] which achieves
these results; yet, a widely cited and large meta study on the
same category of drugs found no such meaningful reduction
[23]. If the assumption of the effectiveness of drugs falls, then
the entire reasoning around the cost reductions falls as well.
Still, there are other studies that show evidence that early
diagnostics lead to cost reduction for the state. Mittelman
et.al. has a study which shows that counseling for spouses
who care for patient with dementia can reduce the time to
institutionalization by 1.5 years [20]. This counseling becomes
more effective if applied early according to [18]. Thus, the
state could potentially save substantial amounts by investing
in screening tools that diagnose dementia early.

C. Social factors

Some believe that getting a diagnosis is a human right. This
belief is reinforced by surveys where subjects without MCI or
dementia were asked whether they would like to be screened
for dementia. 98% of participants in the survey answered that
they would want to be screened and 99% were willing to
take medication if the medication would reduce the risk for
getting dementia [8]. It is clear that most would prefer to know
they have dementia as soon as possible. It is possible that the
idea that a diagnosis is a human right gains political traction.
In such a scenario, our app for early dementia screen would
have greater market potential since there would be a higher
willingness to pay.



D. Technological factors

New technologies within computer science, Al and machine
learning have in recent years greatly contributed to new and
effective methods. Indeed, as both the method described in
this paper and the one by Mindmore have shown, there is
great potential for automated methods of diagnosis relying on
apps and machine learning.

One technological limitation of our method is the need for
data. If the method is to be effective at scale it would need
thousands of recordings from dementia patients. This data is
needed for every natural language which makes it harder to
apply the method in new countries. However, there is a lot of
scientific research in this area and many research teams are
collecting data. It would be possible to collect this data from
various universities across the world, and thus, this technical
limitation is not a big one.

VII. SWOT

In order to supplement the market analysis provided by
Porter’s five forces and PEST, we analyze the market with
the SWOT framework. We evaluate the remaining strengths,
weaknesses, opportunities and threats.

A. Strengths

There are multiple factors that strengthen the market poten-
tial of an app-based early screening of dementia using natural
language processing. First of all, it is a product which can
be used in countries and regions which have low resources.
Most of the undiagnosed cases today are in areas of low
socioeconomic status. According World Alzheimer Report,
up to 90% of cases in areas with low socioeconomic status
can be undiagnosed [22]. The product could potentially help
millions of people who would remain undiagnosed without
our help. While that probably would have limited economic
impact directly, it could give the app strong political support
or sponsors. The cost of using the app once developed is very
low. Even though the machine learning algorithm requires the
use of a GPU, each diagnosis will cost less than one dollar
in terms of the marginal cost. Therefore, we could offer these
services pro bono to areas that lack the required resources
for a paid version. Furthermore, the method performs very
well compared to many other machine learning methods, and
could potentially provide a more objective judge than a human
counterpart.

B. Weaknesses

One of the key factors that affect the cost savings with an
early diagnose of dementia is whether the preemptive measures
are likely to postpone institutionalisation. World Alzheimer
Report screened 8039 papers for quantitative evidence that
early preemptive measures can postpone institutionalisation
[22]. Unfortunately, they could not find any considerable
quantitative evidence that clearly shows that early preemptive
measure can reduce the risk of institutionalisation. It is very
difficult to conduct research that show reliable evidence that
early preemptive measures can postpone institutionalisation

since such research would have to been done over the course of
over twenty years, according to our interview with the health
care professional expert. However, such research would to be
provided in order for governments to make the investments
needed in a dementia screening tool. According to our expert
interview, there is research currently in progress in this field
which is showing promising results, it will be published in the
coming months. Hopefully such research shows that an early
diagnose could postpone institutionalisation.

Both our interviewees mentioned the importance of rigorous
scientific research when convincing government agencies such
as Socialstyrelsen. Here our methed is lacking since it it still
in its infant stages. A large research study with hundreds of
patients over the course of years would have to be conducted
in order to get the required scientific support for our method.

Furthermore, our method currently only provides the poten-
tial to automate one part of the diagnostic tests. While certainly
useful, it would help to include automation for various other
tests in our product.

C. Opportunities

A big opportunity is the large size of the market for de-
mentia diagnostics and the possibility to scale quickly world-
wide. It is estimated that there are 28 million people with
dementia who are undiagnosed [22]. Furthermore, the number
of undiagnosed patients will continuously increase with the
rate of the ageing population. If the cost of one diagnose
is $100, the total market for dementia diagnostics could be
estimated to $2,8 billion. While this estimate is a simple one,
it says something about the sheer size of the market.

There is currently no single firm that dominates the market
for digital dementia screening tools. This implies that the sec-
tor currently does not have a dominant design. If one company
can take a big market share quickly, there is the possibility to
create the dominant design. Getting to a dominant design has
considerable benefits such as brand loyalty, giving customers
high switching costs, access to scarce resources such as talent
and much more [26].

D. Threats

There is a risk that the proliferation of dementia screening
tools might lead to over diagnosis. With some screening tools
there may be a risk of diagnosing mild cognitive impairments
as dementia. Only 5-10% of people with mild cognitive
impairment will progress to dementia each year, and as many
as 40-70% of people do not progress or their cognitive function
may even improve [16]. It is extremely important for the
screening tool to lower the amount of false positives since
that might lead to over diagnosis. However, this is a challenge
since it might be even more important to avoid false negatives,
since that could have devastating consequences for a patient
that does not receive care. This issue is one of the biggest
challenges related to dementia screening tools.

VIII. CONCLUSION

First, we note that our primary source sample is small and
as such it is difficult to draw strong conclusions. However,



if the sample is representative, we can state the following
things. Dementia is a massive cost to society today, both
economically and socially. Postponing the onset of severe
dementia and the subsequent institutionalisation by one year is
estimated to save $48,096 per patient. There are some evidence
that preemptive measures can postpone institutionalisation by
several years, and these are most effective if applied early.
Therefore, the market potential of an effective screening tool
for dementia should be millions of dollars, since it could
save billions for society if it can postpone institutionalisation.
However, the market potential still contains some uncertainty
due to (1) the uncertain effectiveness of preemptive measure
for reducing institutionalisation and (2) uncertainty regarding
just how early the screening tools can detect dementia. Despite
these uncertainties there is considerable interest from states
in automatic dementia screening tools which means that the
market potential should be big.
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