
IN DEGREE PROJECT TECHNOLOGY,
FIRST CYCLE, 15 CREDITS

, STOCKHOLM SWEDEN 2020

Analyzing the scalability of R*-tree
regarding the neuron touch
detection task

ANTON BRASK

FILIP BERENDT

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Analyzing the scalability of
R*-tree regarding the neuron
touch detection task

ANTON BRASK
FILIP BERENDT

Degree Project in Computer Science
Date: June 8, 2020
Supervisor: Alexander Kozlov
Examiner: Pawel Herman
School of Electrical Engineering and Computer Science
Swedish title: Analysering av R*-träds skalbarhet i samband med
sökning av neuronkontakt

iii

Abstract

A common task within research of neuronal morphology is neuron touch de-
tection, that is finding the points in space where two neurites approach each
other to form a synapse. In order to make efficient use of cache memory, it
is important to store points that are close in space close in memory. One data
structure that aims to tackle this complication is the R*-tree. In this thesis, a
spatial query for touch detection was implemented and the scalability of the
R*-tree was estimated on realistic neuron densities and extrapolated to explore
execution times on larger volumes. It was found that touch detection on this
data structure scaled much like the optimal algorithm in 3D-space and more
specifically that the computing power needed to analyze a meaningful portion
of the human cortex is not readily available.

iv

Sammanfattning

En vanlig uppgift inom forskning av neuronal morfologi är att hitta var mellan
olika neuroner synapser bildas. För att använda cache-minne effektivt är det
viktigt att lagra punkter som är nära i rymden nära i minnet. En datastruktur
som ämnar att lösa detta är R*-trädet. I denna rapport så implementerades en
sökning av rummet och skalbarheten för R*-trädet uppskattades på realistis-
ka neurondensiteter för att sedan extrapoleras och utforska körtider på större
volymer. Det konstaterades att denna datastruktur skalade sig mycket som den
optimala algoritmen i tredimensionell rymd och mer specifikt att datorkraften
som behövs för att analysera en meningsfull del av människans hjärnbark inte
är fritt tillgänglig.

Contents

1 Introduction 1

1.1 Research Question . 1

1.2 Scope and Limitations . 3

1.3 Thesis Outline . 3

2 Background 4

2.1 Neurons and Touch Detection 4

2.1.1 Brain Cortex . 4

2.2 Data Structures . 7

2.2.1 KD-tree . 7

2.2.2 R-tree . 9

2.2.3 R*-tree . 11

2.3 Algorithms and software . 11

2.4 Related Work . 12

2.4.1 Closely related work 12

2.4.2 Speeding up range queries for brain simulations 13

v

vi CONTENTS

3 Methods 14

3.1 Reconstructions of Neurons 14

3.2 Implementation . 14

3.3 Benchmarks . 15

3.4 Environment for Measurements 16

3.5 Regression . 16

4 Results 17

4.1 Neuron Density . 17

4.2 Detection Distance . 20

4.3 Regression . 22

4.4 Human Cortex . 22

5 Discussion 23

5.1 Iterating Neuron Density . 23

5.2 Iterating Touch Detection Distance 23

5.3 Increasing Volume of Search Space 24

5.3.1 Speculation for Faster Execution 24

5.4 Errors and Improvements . 25

5.5 Comparison With Previous Work 26

5.6 Future Work . 26

6 Conclusions 27

CONTENTS vii

Bibliography 28

A Spatial Query 30

Chapter 1

Introduction

Neurons have a complex shape determined by three different kinds of compo-
nents: soma, axons, and dendrites. The first mentioned is the cell body, while
the latter are both neurites. When put together, the morphological structure
of the neuron can be described as a tree; each node has only one parent (with
the exception for the root node) and usually one or two children[1]. This topo-
logical model of the neuron morphology allows efficient digitalization of the
brain data and high-performance processing. A specific kind of topic within
neuronal research is mapping of the connectome (i.e. finding where between
two neurons synapses are located) of a network of many neurons. Being able
to map the connectome efficiently would help researchers study the general
rules for high-accuracy generation of arbitrary networks of neurons similar to
actual networks found in organisms in nature. Since high-accuracy construc-
tions cannot consistently be generated, this is a subject for ongoing intensive
research.[3][4]

1.1 Research Question

The tree structure mentioned is great for making neuron-specific queries, as
the nodes we are accessing are often close in memory, leading to efficient use
of the cache memory. An obstacle arises when making spatial queries, as it of-
ten includes parts of different neurons, which have no guarantee to be closely
located in memory. This risk opens up the possibility for substantially more

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: A sketch, not up to scale, among many others of how a neuron
might look like.[2]

cache misses and page faults, which will affect the execution time negatively.
For this topic, we are specifically interested in finding possible synapse con-
nections between neurons in a given space. In order to minimize the amount of
cache misses, an efficient data structure for spatial queries has to be used. Dif-
ferent data structures scale differently with the volume of the search space and
the density of neurons. One previously researched data structure is k-d tree,
and it was found that the limiting factor was the memory usage of the RAM[5].
A realistic query size would require a large amount of RAM commonly found
in heavy duty machines, e.g. computers specifically made for scientific cal-
culations, and not in a regular personal computer. In another study, different
data structures were compared in regards to query execution time. Among
those compared, they concluded that R*-tree was superior.[6] Combining the
idea of the first mentioned study, with the best data structure of the second
mentioned study, our problem is formulated:

How does the R*-tree data structure scale, when used for an algorithm
for touch detection in neuronal morphometrics?

Also, since an aim in this area of research is to be able to analyse a realistic
volume of tissue, it is interesting to speculate how such a query would look

CHAPTER 1. INTRODUCTION 3

like. This formulates an extra question:

How would a realistic problem size perform, given the scope of this
study?

1.2 Scope and Limitations

It is possible to analyse the R*-tree data structure and how it behaves with dif-
ferent kinds of data sets and spatial queries. This thesis will focus specifically
on studying how the R*-tree scales with a fixed amount of neurons and with a
specific spatial query. No other data structure than the R*-tree will be tested.

Naturally, both time and computing resources put limitations on the sim-
ulations made in this study. Thus, when analyzing realistic neuron densities,
all volumes are kept relatively small.

The benchmarks will be executed purely sequentially. Any possibilities for
parallelism will not be considered at all for the methods.

1.3 Thesis Outline

The background presents the relevant data structures and algorithms as well
as the libraries used in this thesis. The method chapter explains in detail how
all measurements were made and the motivations for choices made. The mea-
surements are then presented in the results chapter with corresponding com-
mentary. Subsequently, the results are discussed in the discussion chapter and
a conclusion is presented.

Chapter 2

Background

2.1 Neurons and Touch Detection

As mentioned in the introduction, neurons form a vast and complicated net-
work by connecting to each other through synapses. From previous stud-
ies, it is known that synapses typically form at an average distance of 5 mi-
crons[7][8]. Taking this into consideration, one can find different points for
a synapse to potentially form in between two neurites of different neurons,
when analyzing a digital representation of a neuronal network (figure 2.1).
This specific query is what is called ’touch detection’. It is possible for autap-
tic synapses to form. These are synapses that form between a single neuron’s
different neurites. Autaptic are considered to be a quite rare occurance.[9] Be-
cause of this rarity, and since autaptic synapses aren’t problematic with regards
to memory management, a simplification made in this study is that synapses
only form between different neurons.

2.1.1 Brain Cortex

The human neocortex accounts for nearly 78% of the total brain volume of
approximately 1200 cm3 and has been estimated to have a neuron density of
24186 neurons/mm3 when observing all cortical layers. This neuron density
is much lower than the estimated neuron density of the mouse cortex (120315
neurons/mm3) but on the other hand the total volume of the mouse brain is

4

CHAPTER 2. BACKGROUND 5

much smaller.[10] Differences in neuron density and actual size of the brain
presents two different numerically difficult touch detection tasks.

6 CHAPTER 2. BACKGROUND

Figure 2.1: Three neurons with three ’touches’ (red circles) detected, with a
maximum distance of 1micron (C010398B-P3, C170898A-P3, C031097B-P3
found at neuromorpho.org)

CHAPTER 2. BACKGROUND 7

2.2 Data Structures

There are plenty of different data structures for storing spatial data and the
common theme is to make data points that are close in space close in memory.
The data structure that is analysed in this thesis is R*-tree which is a variant of
the R-tree. There are also data structures such as e.g KD-tree, MVR-tree and
TPR-tree.[6][5]

2.2.1 KD-tree

The KD-tree is a binary tree composed of nodes containing a k-dimensional
point, and two pointers to its child nodes. Naturally, any node not having
any pointers to children initialized are considered leaf nodes. Every non-leaf
node references a k-dimensional space, which is split across a hyperplane per-
pendicular to a single dimensional axis, generating two distinct ’half-spaces’.
Points in the right half-space are represented solely by the right subtree, while
points in the left half-space are represented by the left subtree. The direction
which defines the splitting hyperplane is determined by the depth of the node
which the hyperplane splits. The following regards a three-dimensional tree.
The root node, which has a depth of 0, could be split by the plane perpendic-
ular to the x-axis. Then its children, which have a depth of 1, could be split
by the plane perpendicular to the y-axis. Finally, their children, which has a
depth of 2, could be split by the plane perpendicular to the z-axis. Since the
tree is three-dimensional, this pattern is repeated in a modular cycle for any
deeper nodes.[11]

8 CHAPTER 2. BACKGROUND

Figure 2.2: A 3-dimensional KD-tree illustrated by boxes split with regards to
rotational dimensions.[12]

CHAPTER 2. BACKGROUND 9

2.2.2 R-tree

The R-tree is a tree based data structure that indexes spatial data points with
tree nodes consisting of minimum bounding boxes that encapsulates a part
of space. These boxes reference either smaller minimum bounding boxes or
individual data points within the boxes. Data points that are close to each other
in space are referenced by a minimum bounding box in the next level of the
tree. This spatial tree hierarchy makes it possible to exploit the spatial locality
of the data and store data points close in memory. In order to search the tree
one has to only consider the boxes which intersect the desired search volume
and can thus exclude many branches of the tree, consequently avoiding whole
pages of memory. When processing nodes close in space less page faults and
cache misses will be generated, resulting in efficient use of memory.

Figure 2.3: A 3-dimensional R-tree illustrated by bounding boxes.[13]

10 CHAPTER 2. BACKGROUND

A great flaw with this data structure is the construction of the tree. There
is no guarantee that any two minimum bounding boxes won’t overlap and thus
a decision on which box to put a point in has to be made. When inserting and
choosing between overlapping boxes the box which would need to be extended
the least is always favoured. On node overflow, that is when the amount of
points referenced by a box overflows, a split of the box into two boxes has to
be made. This split is usually chosen by one of two heuristics; quadratic split
or linear split. This flaw makes the quality of the construction sensitive to the
order of the data points inserted into the structure. A bad construction results in
slower queries, which is highly undesired whenmaking many complex queries
on the same structure.[14]

CHAPTER 2. BACKGROUND 11

2.2.3 R*-tree

The R*-tree is a variant of the R-tree and differs only when constructing the
tree. In order to construct a fast performing R-tree, the amount of overlap and
the resulting size of the boxes has to be minimized. Less overlap between
boxes will result in less branches having to be searched when querying the
tree. The R*-tree aims to solve these issues by using improved heuristics to
handle the splits on node overflow and a reinsertion strategy that tries to rein-
sert some of the points contained in the overflowing box. This reinsertion
strategy minimizes the dependency of the order of the data being inserted dur-
ing the construction of the tree, resulting in an almost optimally constructed
tree. While this strategy will likely result in many overheads during construc-
tion, the final construct will show close to optimal query performance, which
is likely much better than what a R-tree construct would show.[14]

2.3 Algorithms and software

The optimal algorithm for finding pairs of points within a distance to each other
in three dimensional space is a recursive divide and conquer algorithm that is
O(n*log(n)), with n being the amount of points. This algorithm recursively
divides the space on one axis and then on another axis, calculating distances
between points only around the splitting plane andwhen reaching a sufficiently
deep recursion depth. The plane to split on would for example be the y-z plane
passing through the middle point on the x-axis. This creates two sub problems
on either side of the splitting plane. The points that are close enough to the
plane are projected onto the plane so that neighbours close enough to each
other on opposite sides of the plane can be found. A similar algorithm is used
for searching the two dimensional plane created by the projection.[15]

The R*-tree provides means for efficiently querying the data structure as
one can descend the tree only choosing the points of interest. A query can
choose whether or not to evaluate a node based on the space that is encapsu-
lated by the minimum bounding box. This makes it possible for e.g a range
query to exclude many data points from the search and as data points close in
space are contained on the same pages, entire pages are avoided and I/O over-
head is minimized. Consequently, queries for touch detection can choose to
only evaluate nodes that are closely located in space and will thus only access

12 CHAPTER 2. BACKGROUND

data closely located in memory. An algorithm utilizing the tree structure will
thus be much more memory efficient when unnecessary memory overheads
are avoided.

’libspatialindex’ is a library offering implementations of different spatial
data structures such as R-tree, R*-tree, MVR-tree and TVR-tree. Query capa-
bilities such as nearest neighbour search and basic range search can be easily
accessed through a C API and some customized queries can be constructed
through provided functions.[16] ’boost’ is another library that offers among
other things an implementation of the R-tree with the choice of R*-tree in-
dexing. A wide range of different spatial queries are provided, for example
intersection, disjoint and covered-by queries.[17]

2.4 Related Work

2.4.1 Closely related work

There are several examples of studies on spatial data structures but not many
with regards to the touch detection problem. Westlin/Mårtensson analysed the
scalability of the KD-tree when applied to the touch detection problem. As
pointed out in the introduction, they concluded that memory usage was the
limiting factor as they ran into stack overflow issues when performing their
measurements. Their findings could be useful when compared to the findings
of this thesis as it would be possible to conclude which of the two data struc-
tures scales better.[5]

Another study by Norelius/Tacchi focused on comparing the performance
of different data structures for spatial queries. They compared three different
types of spatial data structures; R-tree, R*-tree, and Quadtree. They concluded
that R*-tree scaled better than both other trees when the number of entries was
increased.[6] Their conclusion was what led this thesis to analyse the R*-tree
as no other thesis had yet explored that data structure with regards to the touch
detection problem.

CHAPTER 2. BACKGROUND 13

2.4.2 Speeding up range queries for brain simulations

In this study, a new way to index spatial data points is presented and com-
pared to different versions of the R-tree when executing a range query. The
new indexing method, chosen to be called FLAT, was tested along with the
Hilbert R-tree, the STR R-tree and the PR-tree. They identified the problem
of increased overlap between minimum bounding rectangles when performing
queries on very dense data sets and thus developed FLAT. Benchmarks were
made in the form of range queries on the different data structures and mea-
surements of page reads and data retrieved was collected. Upon comparison
of their benchmarks it was found that the FLAT method scaled much better in
terms of executed page reads and thus the IO overhead was minimized. Their
conclusion was that their newmethod FLATmade range queries on dense data
sets much faster than any of the compared data structures but with higher con-
struction costs. FLAT is not in the public domain and thus not considered in
this thesis.[18]

Chapter 3

Methods

3.1 Reconstructions of Neurons

Publicly available reconstructions of neurons from the online archive neuro-
morpho.org was used[19]. The choice of which neurons to use is arbitrary, but
for consistency all neurons came from the same animal and cortical layer. The
neurons chosen were pyramidal neurons from a rat available in the Markram
archive on Neuromorpho. The pyramidal cells are the main type of neurons in
the cortex. The neurons in theMarkram archive has been corrected as much as
possible, with regards to reconstruction errors such as tissue shrinkage, which
makes them especially usable for simulations.[20]

3.2 Implementation

The process of benchmarking R*-tree begins with adding all the neurons to the
data structure. As the implementation of R*-tree provided by libspatialindex is
used, it provides abstracted means of creating and inserting points to the struc-
ture. There is only a fixed amount of neuron reconstructions to use. Therefore,
multiple copies of each neuron is added to the tree in order to reach the desired
neuron density. Each neuron inserted is rotated randomly and placed with a
random offset within allowed bounds.

14

CHAPTER 3. METHODS 15

In order to query the data structure for pairs of points a spatial query for
touch detection was needed. The library libspatialindex was chosen for this
thesis as it contains ready to use implementations of the data structure and
some customizability. As there was no implementation provided by libspa-
tialindex, or any other library for that matter, to query for pairs of points within
a distance from each other the library had to be modified so that a spatial query
for touch detection could be made (Appendix A). The spatial query imple-
mented for this thesis simply descends the tree and only compares nodes that
are within the touch detection distance. This eliminates much of the branching
when searching the tree and only necessary comparisons of leaf nodes will be
made. This implementation was chosen as it most truthfully shows the scala-
bility of the data structure, as opposed to implementing the optimal algorithm
for three dimensional closest pair which simply isn’t feasible to use on large
data sets where memory efficiency is important.

The construction of a R*-tree can be tweaked by altering certain variables,
e.g leaf node capacity. Trees that are customized differently will more than
likely show varying performance on the same data sets. As it is by no means
an easy task to determine what would be the optimal construction parameters,
all variables are set to their respective default values as provided by the library.

3.3 Benchmarks

There are two possible variables to vary upon, for benchmarking the scalabil-
ity of the data structure. The variables for each test run are the neuron density
of the search space and the maximum allowed distance between two points of
different neurons for a connection to possibly exist.
In order to reach realistic values for the neuron density in the range of 50000-
200000 neurons/mm3[10] the volume of the search space is limited to a cube
of 0.001mm3 and the amount of neurons is iteratively set between 50 and 200,
with fixed touch detection distances of 1, 3, and 5 microns for each run. The
measurements for iterating upon touch detection distance is made with the
same volume of space, with fixed neuron densities of 50000, 100000, and
150000 neurons/mm3, while iterating upon the touch detection distance in the
range of 0.5-5.0 microns. Each test with a set neuron density and touch detec-
tion distance is run 3 times, to counter exceptionally good or bad outliers.

16 CHAPTER 3. METHODS

In order to assess the scalability in a more realistic environment tests are
also made with varied volume where all variables are set to match the human
cortex. The value for touch detection distance was chosen to be 3 microns and
the neuron density was set to 25000 neurons/mm3. 3 microns might appear
to be arbitrary but it was chosen as it was the middle value used for the mea-
surements on neuron densities. The volume was then varied from 0.001mm3

to 0.015mm3, where the upper limit was set due to the calculations becoming
too time consuming.

3.4 Environment for Measurements

All measurements in this thesis were made on a system with an Intel Core i7-
4770K processor @ 3.50GHz and 16 gigabytes of RAM.While this will affect
the execution time the scalability of the data structure can still be estimated and
compared to more powerful systems.

3.5 Regression

To help assert the scalability of the data structure, the benchmark results from
iterating densities is compared to curves generated from the same results by
the least squares method, using different curve structures. The curve structures
being used are an2log(n)+C, anlog(n)+C, alog(n)+C, and an2+bn+C. The
second structure mentioned is chosen based on the theoretical time complexity
for the optimal algorithm mentioned in 2.3. The other structures are chosen
based on the fact that they’re common time complexities for algorithms, and
that they are slight deviations of the theoretical one. The r2-values for each
regression curve is then presented for discussion.

Chapter 4

Results

The results presented was produced from three individual test runs for each
set of variables. The performance of each run is represented by a red dot. The
mean performance for each set of parameters is represented by a blue bar.

4.1 Neuron Density

Benchmarks for different neuron densities were made in the range 50000-
200000 neurons/mm3, with three different touch detection distances. Each
iteration increases the amount by 10000 (figure 4.4, 4.5, 4.6).

17

18 CHAPTER 4. RESULTS

Figure 4.1: Results for varying neuron density with touch detection distance
1 micron

Figure 4.2: Results for varying neuron density with touch detection distance
3 microns

CHAPTER 4. RESULTS 19

Figure 4.3: Results for varying neuron density with touch detection distance
5 microns

20 CHAPTER 4. RESULTS

4.2 Detection Distance

Benchmarks for different maximum touch distances were made in the range of
0.5-5.0 microns, with three different neuron densities. Each iteration increases
the distance with 0.5 microns (figure 4.1). The upper limit was determined by
the limit put by previous studies[7][8].

Figure 4.4: Results for varying lengths of touch detection distance with 50000
neurons/mm3

CHAPTER 4. RESULTS 21

Figure 4.5: Results for varying lengths of touch detection distance with
100000 neurons/mm3

Figure 4.6: Results for varying lengths of touch detection distance with
150000 neurons/mm3

22 CHAPTER 4. RESULTS

4.3 Regression

Curve Structures 1 µm 3 µm 5 µm
an2log(n)+C 0.9738 0.9780 0.9907
anlog(n)+C 0.9937 0.9898 0.9931
alog(n)+C 0.9476 0.9365 0.9268
an2+bn+C 0.9940 0.9917 0.9984

Table 4.1: The r2-values for each curve structure generated by the least squares
method. Higher values indicate a better matching curve.

4.4 Human Cortex

Figure 4.7: Results for varying volume (averages of 3 runs) with fixed density
of 25000 neurons/mm3 and touch detection distance 3 microns, fitted with a
curve.

Chapter 5

Discussion

5.1 Iterating Neuron Density

The charts for varying neuron density (figure 4.1 - 4.3) shows some usable
results. The scalability looks almost linear when increasing the density with
a touch detection distance of 1 micron but shows more O(n*log(n)) behaviour
with a distance of 5 microns. This is much expected as a 5 times larger touch
detection distance will result in a much larger volume around the points where
other points would be accepted. After fitting the data points with the best fit
curve, as indicated in table 4.1, it is clear that the time complexity resembles
that of the optimal algorithm. Although the 2nd degree polynomial seems to fit
the data better, it is excluded as it simply isn’t realistic to have quadratic time
complexity when only a small fraction of all points are compared for every
point.

5.2 Iterating Touch Detection Distance

Our measurements for different values on touch detection distance (figure 4.4
- 4.6) clearly show increased execution time with increased distance, as one
could expect. Upon comparing the three charts it is also visible that increasing
the density makes the query scale worse as there are much more points to
compare to when increasing the detection distance. It is also apparent that

23

24 CHAPTER 5. DISCUSSION

increasing detection distance does not directly follow a cubic relationship as
the optimal algorithm would do in theory. These results can be explained
by the structure of the tree; leaf nodes contain several hundred data points
and as the detection distance is increased the amount of comparisons made
are only increased when more, previously not included, nodes are within the
touch detection distance. That would explain the very similar results of slightly
differing distances (e.g. the 1.5 and 2.0 micron tests for high densities). This
could make the cubic relationship hard to capture with a low variation of touch
detection distance, and could indicate a possible inefficiency as unnecessary
comparisons are done.

5.3 Increasing Volume of Search Space

The results yielded from varying the volume of the search space (figure 4.7)
while keeping the neuron density fixed aimed to show the scalability under cir-
cumstances that mimicked the human cortex. The curve fitted to the observed
data points was chosen to have O(n*log(n)) time complexity due to it having
the best fit. What is shown in these results is that for a mere 10 µm3 over 5
seconds of processing time is needed on the machine these tests were made
on. The volumes used in this test are nowhere near a sizeable portion of the
human cortex and extrapolating the yielded curve estimates that for a whole
cm3, more than 20 days of execution time would be required. If one would like
to search the whole human cortex which is vastly larger, that number climbs
to over 27000 days, which is nearly 74 years of execution time.

5.3.1 Speculation for Faster Execution

Even with our speculative time complexity, which is often considered ’good’
for computation, the sheer size of the problem makes it unfeasible for purely
sequential execution. Assuming that the query is completely parallelizable,
one could consider the option to analyse an entire human cortex on a super-
computer with a vast array of processing units. Beskow is the supercomputer
located at KTH.[21] Its prime purpose is to greatly reduce execution time on
parallelizable programs, with its vast number of CPUs. We’re assuming the
entirety of the algorithm can be parallelized, due to the fact that we’re search-
ing for pairing points to each point in the data structure. We’re also ignoring

CHAPTER 5. DISCUSSION 25

any overheads and difficulties introduced by parallelizing the algorithm. Our
computer has 8 cores, but since the program is purely sequential, only a single
core is used. Since Beskow has 67456 cores, one couldmake some (extremely)
rough calculations on how long Beskow would take to complete the task, if it
was parallelized. Assuming that all cores on Beskow are equal, and equal to
our cores, the execution time is reduced approximately 67456-fold, resulting
in a execution time a little shy of half a day. Half a day execution time is
still ’slow’, but it is at least much more realistic than 74 years, and still more
realistic than the approximately 9 years that we would achieve by the same
rules on our own computer. Note that there are hundreds other supercomput-
ers available in the world, that are considered better than Beskow[22]. Their
performance might be even better.

5.4 Errors and Improvements

The measurements made in this thesis were made entirely in main memory
meaning that the created R*-tree was in main memory and not on disk. This
could mean that even though are a lot of cache misses the resulting penalty
would be relatively small and hard to capture in the measurements. If the
memory needed to store the tree is in the same order of magnitude as the dif-
ferent caches the penalty of misses would hardly be noticeable as much of
the tree would likely be cached. Having a larger R*-tree stored on disk could
drastically change the results as potential page faults would take more time to
process. This would generate much more realistic results as data bases con-
taining neuronal morphology are usually very large and cannot be stored in
main memory.

The choice of neurons for this thesis was arbitrary and could have a large
effect on the results. 10 different neurons was chosen for all measurements,
which isn’t anywhere close to the real value of unique neurons in the chosen
cortical layer. Increasing both the amount of different neurons and improv-
ing the selection by choosing the most common neurons could generate more
realistic results.

It is also possible that the simplifications made in this study affected the
yielded results. Due to limitations on computing resources, all tests were made
on a very small volume which could have caused parts of some neurons to be

26 CHAPTER 5. DISCUSSION

placed outside the given volume. This could create a misleading density of
data points inside the volume. While this is entirely dependent on randomiza-
tion, we do not know to what extent this affects the results.

5.5 Comparison With Previous Work

The study Westlin and Mårtensson performed, despite the fact that we found
major flaws regarding their unrealistic neuron density and their graphs being
unreliable, pointed at that a realistic query size was prohibitively large, regard-
ing both execution time and memory. Our study seems to point at the same
conclusion.[5]

5.6 Future Work

Possible extensions of this thesis would be to either further analyze the R*-tree
in depth or apply the touch detection task to other spatial data structures. The
construction of the R*-tree can be customized and tweaked with different pa-
rameters e.g leaf node capacity, index node capacity and the factor of elements
that get reinserted. This poses a optimization problem and could possibly be
a subject for future work.

The previously mentioned data structure FLATwas proven to be more effi-
cient than several different versions of the R-tree and would be the single most
interesting data structure to analyse, but is sadly not in the public domain.
Comparing the performance of different spatial data structures when used for
the touch detection problem could be useful as one could conclude what kind
of indexing is most suitable for neuronal morphology.

Since the problem size becomes unfeasibly large for any realistic query
with our sequential execution, future work could look at the possibility of par-
allelizing the query, in the hopes of greatly reducing the execution time using
multiple processing units.

Chapter 6

Conclusions

We can conclude that the touch detection task with the R*-tree data structure
scales much like the optimal algorithm would do in theory, but with some
minor possible inefficiencies as indicated in the above discussion. More work
would be required to properly assess if those inefficiencies could be addressed
with different construction parameters or if that simply is a fault with the R*-
tree. It is also apparent that the realistic computing power needed to perform
touch detection on a significant portion of the human cortex is far greater than
what is available on an ordinary personal computer, but it is plausible for a
supercomputer to do utilising parallelism.

27

Bibliography

[1] Cannon RC et al. “An on-line archive of reconstructed hippocampal
neurons”. In: J Neurosci Methods 84(1-2) (1998), pp. 49–54.

[2] brgfx. Visited: 2020-04-29, Altered by Filip Berendt by adding tags.
URL: https://www.freepik.com/free-vector/stem-cell-diagram-white-background
_2480958.htm#page=1&query=stem-cell-diagram-white&position=4.

[3] S. Lawrence Zipursky JoshuaR.Sanes. “Chemoaffinity Revisited: Dscams,
Pro- tocadherins, and Neural Circuit Assembly”. In: (2010).

[4] de Garis H. Shuo C. Goertzel B. Ruiting L. “A world survey of artificial
brain projects, Part I: Large-scale brain simulations”. In: Neurocomput-
ing 74.Issue 1-3 (2010), pp. 3–29.

[5] MårtenssonWestlin. “An estimation of scalability when using a k-d tree
as the data structure for neuron touch detection”. In: (2018).

[6] Tacchi Norelius. “Evaluating data structures for range queries in brain
simulations”. In: (2018).

[7] Reimann. Michael King. James Muller. Eilif Ramaswamy. Markram.
“An algorithm to predict the connectome of neural microcircuits”. In:
(2015).

[8] Hill. Sean Wang. Riachi. Schürmann. Markram. “Statistical connectiv-
ity provides a sufficient foundation for specific functional connectivity
in neocortical neural microcircuit”. In: (2012).

[9] J. M. Bekkers. “Synaptic Transmission: Functional Autapses in the Cor-
tex”. In: (2003). Visited: 2020-05-15,
URL: https://www.sciencedirect.com/science/article/pii/S0960982203003634.

[10] Javier DeFelipe. Lidia Alonso-Nanclares. Jon I. Arellano. “Microstruc-
ture of the neocortex: Comparative aspects”. In: Journal of Neurocytol-
ogy 31 (2002), p. 302.

28

BIBLIOGRAPHY 29

[11] J. L. Bentley. “Multidimensional binary search trees used for associa-
tive searching”. In: (1975). Visited: 2020-04-28,
URL: https://dl.acm.org/doi/10.1145/361002.361007.

[12] Chire. KDTree-Visualization. Visited: 2020-04-19,
URL: https://commons.wikimedia.org/wiki/File:3dtree.png.

[13] Chire. RTree-Visualization. Visited: 2020-04-19,
URL: https://commons.wikimedia.org/wiki/File:RTree-Visualization-3D.svg.

[14] Norbert Beckmann. Hans-Peterbegel Ralf Schneider. Bernhard. Seeger.
“The R*-tree: An Efficient and Robust AccessMethod for Points and
Rectangles”. In: (1990), pp. 322–325.

[15] UC Santa Barbara Subhash Suri. Closest Pair Problem. Visited: 2020-
03-26, URL: https://sites.cs.ucsb.edu/ suri/cs235/ClosestPair.pdf.

[16] Marios Hadjieleftheriou. libspatialindex.
Visited: 2020-03-26 URL: https://libspatialindex.org/.

[17] Rene Rivera Beman Dawes David Abrahams. boost. Visited: 2020-03-
26 URL: https://www.boost.org/.

[18] Farhan Tauheed. Laurynas Biveinis. ThomasHeinis. Felix Schürmann. Henry
Markram. Anastasia Ailamaki. “Speeding Up Range Queries For Brain
Simulations”. In: (2011).

[19] George Mason University. NeuroMorpho. Visited: 2020-03-26, URL:
neuromorpho.org.

[20] Markram et al. “Reconstruction and Simulation of Neocortical Micro-
circuitry”. In: Cell, Volume 163 Issue 2 (2015). Visited: 2020-05-15,
URL: https://www.cell.com/cell/fulltext/S0092-8674(15)01191-5.

[21] PDC.Visited: 2020-05-15. URL: https://www.pdc.kth.se/hpc-services/computing-
systems/beskow-1.737436.

[22] E. Strohmaier et al. Visited: 2020-06-04.
URL: https://www.top500.org/list/2019/11/?page=1.

Appendix A

Spatial Query

The main part of the source code for the spatial query added to libspatialindex.

// The public function exposed in the class
void SpatialIndex::RTree::RTree::query_pairs(IVisitor&

vis, double& r) {
NodePtr n1 = readNode(m_rootID);
int index = 0;
// Search all combinations of boxes below root node.
for (uint32_t cChild1 = 0; cChild1 < n1->m_children;

++cChild1) {
for (uint32_t cChild2 = index; cChild2 <

n1->m_children; ++cChild2) {
query_pairs(n1->m_pIdentifier[cChild1],

n1->m_pIdentifier[cChild2], vis, r);
}
index++;

}
}

// Helper function
void SpatialIndex::RTree::RTree::query_pairs(id_type

id1, id_type id2, IVisitor& vis, double& r) {
// Read the two nodes to be compared
NodePtr n1 = readNode(id1);
NodePtr n2 = readNode(id2);
vis.visitNode(*n1);

30

APPENDIX A. SPATIAL QUERY 31

vis.visitNode(*n2);
int index = 0;

for (uint32_t cChild1 = 0; cChild1 < n1->m_children;
++cChild1) {
for (uint32_t cChild2 = index; cChild2 <

n2->m_children; ++cChild2) {

// break away all branches too far away
if

((*(n1->m_ptrMBR[cChild1])).getMinimumDistance(
*(n2->m_ptrMBR[cChild2])) >= r) {

continue;
}

if (n1->m_level == 0 && n2-> m_level == 0) {
// Compare two leaf nodes
std::vector<const IData*> v;
Data e1(n1->m_pDataLength[cChild1],

n1->m_pData[cChild1],
*(n1->m_ptrMBR[cChild1]),
n1->m_pIdentifier[cChild1]);

Data e2(n2->m_pDataLength[cChild2],
n2->m_pData[cChild2],
*(n2->m_ptrMBR[cChild2]),
n2->m_pIdentifier[cChild2]);

v.push_back(&e1);
v.push_back(&e2);
vis.visitData(v);

} else if (n1->m_level == 0) {
// If n1 is a leaf node then further descend

n2
query_pairs(id1, n2->m_pIdentifier[cChild2],

vis, r);
} else if (n2->m_level == 0) {

// If n2 is a leaf node then further descend
n1

query_pairs(n1->m_pIdentifier[cChild1], id2,
vis, r);

// break because of n2 being a leaf node
break;

32 APPENDIX A. SPATIAL QUERY

} else {
query_pairs(n1->m_pIdentifier[cChild1],

n2->m_pIdentifier[cChild2], vis, r);
}

}
// Stop duplicate search if same node
if (id1 == id2) {

index++;
}

// break if n1 is at bottom of the tree and we’re
not comparing two leaf nodes.

if (n1->m_level == 0 && n2->m_level != 0) {
break;

}
}

}

www.kth.se

TRITA -EECS-EX-2020:337

