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Abstract

Diabetic retinopathy (DR) is a complication of diabetes and is a disease that
a�ects the eyes. It is one of the leading causes of blindness in the the West-
ern world. As the number of people with diabetes grows globally, so does the
number of people a�ected by diabetic retinopathy. This demand requires that
better and more e�ective resources are developed in order to discover the dis-
ease in an early stage which is key to preventing that the disease progresses
into more serious stages which ultimately could lead to blindness, and stream-
line further treatment of the disease. However, traditional manual screenings
are not enough to meet this demand. This is where the role of computer-aided
diagnosis comes in. The purpose of this report is to investigate how a convolu-
tional neural network together with transfer learning can perform when trained
for multiclass grading of diabetic retinopathy. In order to do this, a pre-built
and pre-trained convolutional neural network from Keras was used and further
trained and fine-tuned in Tensorflow on a 5-class DR grading dataset. Twenty
training sessions were performed and accuracy, recall and specificity were
evaluated in each session. The results show that testing accuracies achieved
were in the range of 35% to 48.5%. The average testing recall achieved for
class 0, 1, 2, 3 and 4 was 59.7%, 0.0%, 51.0%, 38.7% and 0.8%, respectively.
Furthermore, the average testing specificity achieved for class 0, 1, 2, 3 and
4 was 77.8%, 100.0%, 62.4%, 80.2% and 99.7%, respectively. The average
recall of 0.0% and average specificity of 100.0% for class 1 (mild DR) were
obtained because the CNN model never predicted this class.
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Sammanfattning

Diabetisk näthinnesjukdom (DR) är en komplikation av diabetes och är en
sjukdom som påverkar ögonen. Det är en av de största orsakerna till blindhet i
västvärlden. Allt eftersom antalet människor med diabetes ökar, ökar även an-
talet med diabetisk näthinnesjukdom. Detta ställer högre krav på att bättre och
e�ektivare resurser utvecklas för att kunna upptäcka sjukdomen i ett tidigt sta-
die, vilket är en förutsättning för att förhindra vidareutveckling av sjukdomen
som i slutändan kan resultera i blindhet, och att vidare behandling av sjuk-
domen e�ektiviseras. Här spelar datorstödd diagnostik en viktig roll. Syftet
med denna studie är att undersöka hur ett faltningsnätverk, tillsammans med
överföringsinformation, kan prestera när det tränas för multiklass gradering
av diabetisk näthinnesjukdom. För att göra detta användes ett färdigbyggt och
färdigtränat faltningsnätverk, byggt i Keras, för att fortsättningsvis tränas och
finjusteras i Tensorflow på ett 5-klassigt DR dataset. Totalt tjugo träningsses-
sioner genomfördes och noggrannhet, sensitivitet och specificitet utvärderades
i varje sådan session. Resultat visar att de uppnådda noggranheterna låg inom
intervallet 35% till 48.5%. Den genomsnittliga testsensitiviteten för klass 0, 1,
2, 3 och 4 var 59.7%, 0.0%, 51.0%, 38.7% respektive 0.8%. Vidare uppnåd-
des en genomsnittlig testspecificitet för klass 1, 2, 3 och 4 på 77.8%, 100.0%,
62.4%, 80.2% respektive 99.7%. Den genomsnittliga sensitiviteten på 0.0%
samt den genomsnittliga specificiteten på 100.0% för klass 1 (mild DR) er-
hölls eftersom CNN modellen aldrig förutsåg denna klass.
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Abbreviations

ANN Artificial Neural Network

CAD Computer-Aided Diagnosis

CNN Convolutional Neural Network

DL Deep Learning

DR Diabetic Retinopathy

IDRiD Indian Diabetic Retinopathy image Dataset

ML Machine Learning

NPDR Non-Proliferative Diabetic Retinopathy

PDR Proliferative Diabetic Retinopathy

WHO World Health Organization
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Chapter 1

Introduction

This chapter presents an introduction to the chosen field of study. Firstly, an
explanation of diabetic retinopathy is given and what the current problem is
in terms of diagnosis of the disease. Then, the research question is presented
as well as the scope and delimitation of the study and an explanation of the
approach for the study. Lastly, a section about how the thesis is organized
follows.

1.1 Diabetic Retinopathy

Diabetes is according to the World Health Organization (WHO) an increas-
ingly rising problem around the world. One common complication of long-
term diabetes is diabetic retinopathy (DR) which is an eye disease that could
lead to vision loss or in the worst case blindness [1]. DR is one of the major
causes of blindness in the Western world [2], and it is expected to increase as
global prevalence of diabetes increases [3].

DR is diagnosed by analyzing di�erent types of lesions, an area of abnor-
mal tissue change, on a fundus image. A fundus image shows the rear of an
eye and contains the macula, optic disc and retina [4]. In the early stages of
DR will no treatment occur but the patients eyes will be regularly checked. If
the eye disease worsens, then laser treatment is considered [5].

Early detection of DR in fundus images is crucial in order to prevent fur-
ther development of the disease. As a matter of fact, early detection of DR can
prevent blindness in 90% of cases [6]. However, manual screening for early
detection of DR relies on experienced readers and is both time and labor in-
tensive [7]. Therefore, automated methods for diagnosis of DR can reduce the
workload on readers and improve further follow-up management with diabetic
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patients [8].
Many deep learning (DL) algorithms have in the recent years been devel-

oped for various tasks to analyse retinal fundus images, to develop computer-
aided diagnosis (CAD) systems for DR. A commonly used DL architecture for
DR-detection is the convolutional neural network (CNN). To properly learn a
CNN requires a very large amount of data, but these large amounts of data are
not available in the medical field, particularly for DR. Therefore, one solution
is to use transfer learning, meaning that the CNN model is first taught in an
end-to-end manner using dataset from a related domain and then fine-tuned
using data from the specific domain [4].

With this motivation, the purpose of this report is to research the e�ciency
of DR grading classification with transfer learning.

1.2 Research Question

The study aims to investigate the following:

What is the performance of a convolutional neural network for
diabetic retinopathy grading classification in fundus images with
the use of transfer learning?

By performance, we mean accuracy, recall (sensitivity) and specificity which
are the main measurements used in medicine together with machine learning
[9]. Transfer learning, meaning the usage of a pre-trained network which will
be further trained and fine-tuned for our specific research area, will be per-
formed because of limited data and to save time in the learning process of the
CNN. A histogram equalization algorithm will also be applied to the fundus
images in the the pre-processing step for image contrast enhancement [10].

1.3 Scope/Delimitation

The scope of this study will be to explore the performance of DR grading clas-
sification with one pre-trained CNN architecture, namely Inception-v3. The
CNN will be trained on one dataset, the Indian Diabetic Retinopathy Image
Dataset (IDRiD), which consists of 516 images.

The fact that only one dataset was used, one which is representative for
the Indian population, is a delimitation in the sense that this study may not be
generalizable to other populations.
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1.4 Approach

The study will be performed using a pre-trained CNN architecture called Inception-
v3, which will be trained on IDRiD. The CNN will be fine-tuned, trained and
evaluated using the software library Tensorflow together with the program-
ming language Python. The pre-trained CNN will be imported from Keras,
which is a Python DL API. In the pre-processing step, the images from the
dataset will be cropped, resized and then a histogram equalization algorithm
for image contrast enhancement will be applied. Finally, the images will be
normalized to make the images on the same scale. The images will then be
passed to the CNN for training. The CNN will be trained twenty times to
evaluate how it performs on average, giving more representable results.

1.5 Outline

In this paper, we introduce a deep learning based CNN method for the task of
grading DR in retinal fundus imagery. We then analyze the performance of
the network.

The remainder of this paper is organized as follows: Chapter 2 presents
a background to our study. First diabetic retinopathy is described, as well
as what fundus imaging is. Then, a section on machine learning and deep
learning will be given including CNNs. Then, a section on transfer learning
will be presented. After this, a section on performance metrics will be given.
Finally, this chapter will end by giving an overview of related work. Chapter 3
describes the chosen CNN architecture and methods used in building, training,
evaluation of the network. Chapter 4 presents the results from our experiment.
Chapter 5 and chapter 6 concludes the study with discussion on the results and
future work.



Chapter 2

Background

This chapter will first present an overview of what diabetic retinopathy is and
its characteristics. After this, a section about fundus imaging follows. Then a
brief overview of machine learning and deep neural networks, with focus on
convolutional neural networks will be given. Following this is a section about
transfer learning and di�erent performance metrics that are relevant in ma-
chine learning. The chapter will end in a section about previous work relevant
to this study.

2.1 Characteristics of Diabetic Retinopathy

Diabetic retinopathy (DR) can be divided into two stages: non-proliferative
diabetic retinopathy (NPDR) and advanced, proliferative diabetic retinopathy
(PDR). NPDR can be sub-classified into mild, moderate and severe NPDR.
Mild NPDR is characterized by increased vascular permeability. Moderate
and severe NPDR is characterized by vascular closure. PDR is characterized
by the growth of new, abnormal blood cells on the retina and posterior surface
of the vitreous. Macular edema, characterized by retinal thickening from leaky
blood vessels, can develop at all stages of DR [11][12].

DR is one of the leading causes of vision loss globally. Diagnosis of DR in
diabetic patients in an early stage is key to preventing the disease to progress
into more serious stages which ultimately could end in blindness. Therefore,
diabetic patients regularly have their retinas examined. This is called diabetic
retinopathy screening, and in such a screening, a trained reader examines fun-
dus images of the patient in order to find early signs of the disease and then
decides whether the patient needs to get a referral to an ophthalmologist for
treatment. Various image analysis algorithms have been developed over the

5
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past decades in order to reduce the workload on human interpretation [13].

2.2 Fundus Imaging

Fundus imaging is the process where the interior surface of the eye, or fun-
dus, is being photographed [4]. It is defined as "the process whereby a 2-D
representation of the 3-D retinal semi-transparent tissues projected onto the
imaging plane is obtained using reflected light", according to [14].

One of the most obvious application areas in which retinal screening appli-
cation is used is for detection of retinal diseases, such as detection of glaucoma,
age-related macular degeneration and retinopathy of prematurity and DR.

Early detection of DR through population screening, combined with the
right treatment at the right time, has proven to prevent visual loss and blindness
in patients with retinal complications of diabetes [15][16].

Below, a retinal fundus image from the dataset used in this report is shown.

Figure 2.1: Retinal fundus image from the IDRiD dataset,
see section 3.1.

2.3 Machine Learning

Machine learning (ML) is a subfield of artificial intelligence and can be de-
scribed as the technique of programming computers in order to optimize a
performance criterion using example data or past experience. A model is de-
fined up to some parameters, and learning is the process where an algorithm is
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executed in which these parameters are optimized using training data or past
experience [17].

ML is used in various application areas, such as retail, finance, manufactur-
ing and medicine. In fact, ML algorithms were from the initial beginning de-
signed and used for analyzation of medical datasets [18]. For example, banks
use past data in order to build ML models to use in credit applications, fraud
detection and stock market. In medicine, ML is used for medical diagnostics.

There exist di�erent learning techniques in ML, meaning ways in which
the ML model learns. One common learning technique used is supervised
learning. In supervised learning, the training data include both input data and
the desired output (the correct classification, or labels) data, which is not the
case with other learning techniques [19]. Supervised learning is the learning
technique used in this report.

2.3.1 Deep Learning and Neural Networks

An important subfield of ML which has gotten a lot of attention in the last
decade is deep learning (DL). DL is a concept taken from animal brains based
on so called neurons and neural networks. In the field of computer science,
these are referred to as artificial neurons or nodes and artificial neural net-
works (ANNs). An ANN consists of an input layer, one or more hidden layers
and an output layer where a layer is multiple nodes grouped together. Between
the layers there are connections with weights and it is by updating the weights
an ANN learns. One advantage of ANNs over other ML algorithms is that
ANNs have automatic feature extraction, where a feature is either a measur-
able attribute or characteristic in a dataset. Selecting relevant features from
a dataset is crucial for prediction accuracy and to decrease learning time be-
cause it removes redundant data and reduces the problem of overfitting, which
occurs when a ML model is trained too closely on a dataset making general-
ization poor. The depth of an ANN is the number of hidden layers in an ANN.
It is the increase of computational power in the time of computers that have
made deep ANNs possible and therefore also advancements in the fields of
e.g. image processing and speech recognition [20].

Convolutional Neural Network

In DL there are di�erent architectures. One of the most common DL archi-
tecture for image processing is called convolutional neural network (CNN). In
general, a CNN typically takes an image as input, this is then passed through
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multiple convolutional and pooling layers before entering a part of fully con-
nected layers which produce the final output [21]. Flattening, the process of
converting a matrix into a column vector, is also needed before the data is fed
to the fully connected layers. Figure 2.2 illustrates these main components of
a CNN. Minimal pre-processing is needed with CNNs because a CNN takes
raw images as input; however, a CNN requires fixed-size images [4].

Figure 2.2: An overview of a CNN. Creator: M. Hacibeyoglu [22]

Throughout the learning process of a CNN, the convolutional layers de-
tects meaningful shapes like e.g. edges and circles in the input data. In the
first convolutional layers basic shapes are detected compared to the later con-
volutional layers which detect more sophisticated shapes like for instance a
face.

In the pooling layers which usually follow convolutional layers, the pur-
pose is to downsize the spatial data representation and to decrease the risk of
overfitting. A pooling layer uses a pooling operation on the input data, a com-
monly called average pooling. Average pooling calculates the average of the
numbers in the filter, which is slid across the input data, and passes it to the
pooled feature map as illustrated in figure 2.3.

Figure 2.3: An example showing the result of the average pool-
ing operation.
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In the end of a CNN there is a part with a fully connected ANN. This ANN
will combine feature produced by the earlier part of a CNN in order to classify
the input image [20]. Some CNNs have more than one fully connected ANN
at the end of the CNN, one example of this is the AlexNet [23].

2.4 Transfer Learning

Transfer learning is, as the name suggests, a way to transfer knowledge learned
in one or more source tasks and use it to improve learning in a related task.
By doing this, an already trained network can be used to solve new similar
problems in a more e�cient and quicker way. This is in contrast to traditional
ML, which is designed to learn each task from scratch and in each of these
models, brand new training data is required [24].

The more the source task and the target task are related, the better the pre-
diction of the newly trained transfer network will be. A major challenge in
the development of transfer methods is to avoid producing negative transfer
(meaning that the transfer method decreases performance, compared to per-
formance without transfer) between tasks that are less related.

There are several approaches to take in order to avoid negative transfer.
One way is to try to recognize and reject harmful source-task information
while learning the target task, in order to minimize the impact of bad infor-
mation so that the performance of the transfer is as least as good as the perfor-
mance would be without transfer.

If there not only exists one source task, but instead a set of candidate tasks,
then one could try to choose the "best" source task out of the candidates in
order to avoid negative transfer. There are multiple factors one could consider
when choosing how "best" in this situation is defined. For example, the source
tasks could be ordered by their di�culty. In that case, appropriate source tasks
would be those that are less di�cult than the target task, but still contain useful
information. Another example for finding the best source tasks is to construct
a graph out of the source and target tasks, and then find the most similar tasks
by looking for graph isomorphism [25].

With transfer learning, only the fully connected layers of the source model
need to be retrained in order to create the target model [24].
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2.5 Performance Metrics

In order to compare di�erent DL models for DR grading classification, dif-
ferent performance metrics are needed. Below are the most commonly used
metrics in research regarding DR and ML [4].

Confusion Matrix

A confusion matrix is used to visualize the outcome of a classifier [26]. When
using ML, the learning has to be supervised in order to produce a confusion
matrix because only then there is a set number of labels which make the classes
in a confusion matrix. This is not necessarily a metric and it is often not shown
in similar research, although we show it to help the reader get familiar with the
fundamental concepts.

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 5 2 2 1 3

1 1 7 1 3 4
2 4 2 7 0 1
3 2 3 1 6 3
4 0 1 2 3 7

Table 2.1: An example of a confusion matrix used for mul-
ticlass classification. The bold values in the diagonal of the
confusion matrix are the desired outcomes.

There are two sorts of classifications: binary and multiclass. In binary
classification there exist two classes; thus, the confusion matrix will have a
dimension of 2x2. In multiclass classification, three or more classes exist and
then the confusion matrix has equally many rows and columns as the number
of classes.

In binary classification, a desired (true) outcome occurs when a classifier
predicts the same class equal to the actual class and all desired outcomes are
represented as values in the diagonal of a confusion matrix. A desired outcome
is either called true positive (T P) or true negative (T N ). If only class 0 (posi-
tive) and 1 (negative) was present in figure 2.1, it would be binary classification
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with T P = 5 and T N = 7. A false outcome occurs when the classifier pre-
dicts an unqualified class compared to the actual class. These outcomes are
either called false positive (FP) or false negative (FN ), in figure 2.1 these
would become FP = 2 and FN = 1.

This can be generalized to multiclass classification which this study em-
ploys because of the five labels (or classes) in IDRiD (the dataset used in this
study, see section 3.1). Table 2.1 and 2.2 are based on the labels from IDRiD.
In multiclass classification, there are multiple separate T P; one for each class
along the diagonal of a confusion matrix. The T P value for class 0, 1, 2, 3 and
4 in table 2.1 and is T P0 = 5, T P1 = 7, T P2 = 7, T P3 = 6 and T P4 = 7,
respectively. There are also multiple separate T N , one per class which is cal-
culated by taking the sum of all entities in a confusion matrix excluding those
in the row and column belonging to the class which T N is calculated for. In
table 2.2, all the partial T N are shown in order to calculate the T N for class
1. Calculating FP for a class is performed by adding all the entities in the
row of the class, excluding its T P , in a confusion matrix. To calculate FN ,
all the entities in the column of a specific class are summed up excluding the
T P of the class. For class 1 in table 2.2, FP1 = E10 +E12 +E13 +E14 and
FN 1 = E01 + E21 + E31 + E41. Based on this, the following metrics can be
calculated [26].

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 T N 00 E01 T N 02 T N 03 T N 04

1 E10 T P1 E12 E13 E14

2 T N 20 E21 T N 22 T N 23 T N 23

3 T N 30 E31 T N 32 T N 33 T N 34

4 T N 40 E41 T N 42 T N 43 T N 44

Table 2.2: An example of the di�erent symbols required to cal-
culate all four outcomes of class 1 in multiclass classification.

Accuracy

The ratio between the desired outcomes and the total number of entities. The
accuracy of a classifier is calculated by dividing the sum of the diagonal values
by the sum of all the entities in its corresponding confusion matrix.
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Recall (Sensitivity)

In multiclass classification, the specificity is calculated per class. The re-
call per class is calculated, from a confusion matrix, by dividing the desired
outcome value (diagonal value) of a class by the sum of all the entities in
the actual class column. With the symbols presented above Recallclass =
T Pclass/(T Pclass + FN class).

Specificity

As for recall, specificity is calculated per class in multiclass classification. The
specificity per class is calculated as specificityclass = T N class/(T N class +
FPclass).

Standard Deviation

A common metric used in statistics is sample standard deviation, denoted s.
This metric shows the dispersion (or spread) of a set of values X from the
mean (average) X̄ . It is calculated according to 2.1 where n is the sample size
[27].

s =

sP
(X � X̄)2

n� 1
(2.1)

2.6 Previous Work

This section will present previous work on DR grading classification with
CNNs and inform about the state-of-the-art.

Carson et al. [7] studied, in 2018, the performance of a convolutional
neural network on color fundus images for the recognition task of DR staging.

Two fundoscope image datasets were used for training. The first dataset
used was a Kaggle dataset consisting of 35 000 images with 5-class labels
(normal, mild, moderate, severe, end stage). Second dataset used was the
Messidor-1 dataset, which consists of 1200 color fundus images with 4-class
labels (normal, mild, moderate, severe).

They also used transfer learning with the pre-trained networks from the
ImageNet database, which is a visual object recognition database. The pre-
trained GoogLeNet model was trained on the Messidor dataset for 30 epochs
using stochastic gradient descent optimization with step decay learning rate
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initialized at 0.002. The model validation achieved 66.03% as the best accu-
racy.

They trained GoogLeNet, AlexNet and VGG16 on binary-labeled (nor-
mal or mild vs moderate to end stage) Kaggle dataset, and found that the
GoogLeNet achieved highest recall of 95% and specificity of 96%, and there-
fore achieved state-of-the-art accuracy. Their implementation was performed
in Tensorflow and all model weights were allowed to be updated. However,
they found after experiments with 3-ary and 4-ary classifiers with a GoogLeNet
model on the Kaggle dataset that the recall levels for the mild class was much
lower compared to recall levels for no DR and severe DR (7% for mild class,
98% and 93% for no DR and severe DR, respectively). Thus, they achieved
state-of-the-art performance with CNNs using binary classifiers, but found that
performance degrades with increasing number of classes. They conclude that
the reason for this is that moderate and severe diabetic retinal images contain
macroscopic features at a scale that current CNN architectures, such as those
available from the ImageNet visual database, are optimized to classify. Con-
versely, the features that distinguish mild vs normal disease reside in less than
1% of the total pixel volume, a level of subtleness that is often di�cult for
human interpreters to detect.

They used a histogram equalization filtering algorithm as part of the im-
age pre-processing and discovered that 3-ary classifier recall for the mild case
increased from 0 to 29.4%, while this measure was approximately the same
for the remaining two classes. The algorithm enabled improved detection of
pinpoint subtle features and microaneurysms via convolutional filters, which
were previously imperceptible by the CNN.

Pratt et al. [2] trained, in 2016, a CNN for classification of DR in fundus
images. They used the Kaggle dataset consisting 80 000 images. With their
proposed CNN, they achieved a recall of 95% and accuracy of 75% on 5000
validation images.

They used the DL package Keras with the Tearas ML backend. As part
of pre-processing, they used colour normalization on all images using the
OpenCV package. They also resized all images to 512x512 pixels in order to
decrease memory size. They ran the CNN on the a high-end GPU, NVIDIA
K40c, which contains 2880 CUDA cores and comes with the NVIDIA CUDA
Deep Neural Network library (cuDNN) for GPU learning. However, their net-
work encountered problems with distinguishing between mild, moderate and
severe cases of DR. They write that "the low sensitivity, mainly from the mild
and moderate classes, suggests the network struggled to learn deep enough fea-
tures to detect some of the more intricate aspects of DR". Another issue they
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identified was that 10% of the images in the dataset they used were ungrad-
able. They indicate that this could have been a significant hindering factor in
the results since the images were missclassified for both training and valida-
tion.

Gulshan et. al. [28] trained, in 2016, a CNN architecture Inception-v3
to detect referable DR (defined as moderate and worse DR), referable dia-
betic macular edema, or both, on fundus images. They used two datasets;
EyePACS-1 dataset, which consists of 9963 images taken from 4997 patients
and MESSIDOR-2, which contains 1748 images. Both of these datasets were
graded by at least seven US licensed ophthalmologists and ophthalmology se-
nior residents. In two validation sets of 9963 images and 1748 images, at
the operating point selected for high specificity, the algorithm had 90.3% and
87.0% recall and 98.1% and 98.5% specificity, respectively. At the operating
point selected for high recall, the algorithm had 97.5% and 96.1% recall and
93.4% and 93.9% specificity, respectively.

From this brief literature review it can be seen that there was no uniform
database which the di�erent CNNs were trained and validated on, supported
by [4]. This, in addition to di�erently used performance metrics, makes com-
parison hard to determine a state-of-the-art. Although, it seems like the CNN
by Gulshan et al. [28] outperformed the others and therefore it makes the cur-
rent state-of-the-art as concluded by authors themselves.



Chapter 3

Methods

This chapter presents chosen methods to carry out the study. First, relevant
information about the used dataset is explained. Then, a section about the
pre-trained network used in the study follows. After this, details on how the
implementation was performed follows, such as data pre-processing, how the
CNN was built, how the fully connected layers were trained and finally how
the network was fine-tuned. Lastly in this chapter, a section about how the
network was evaluated follows.

3.1 Dataset

In this study, the Indian Diabetic Retinopathy Image Dataset (IDRiD) was used
to train and test the CNN. It is divided into three parts: segmentation, disease
grading and localization. The part used in this study was disease grading which
consists of 516 labeled fundus images (where 413 and 103 images are meant
for training and testing, respectively). Each image has a corresponding label
value between 0 and 4 which represents the disease severity. The values has
the following meanings: no DR (0), mild DR (1), moderate DR (2), severe DR
(3) and proliferative DR (4). These labels are found in supplied csv files (also
divided into training and testing).

The dataset was publicly published 2018 and the images were acquired
from an eye clinic in the city Nanded located in India. The images were taken
during the time period 2009 to 2017. In 2018, the dataset was part of a chal-
lenge with the aim of evaluating automated DR grading classification algo-
rithms [29].
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3.2 Pre-trained Network

The CNN that is used as a pre-trained network, thereby obtaining the utility
of transfer learning, is called Inception-v3 [30]. Inception-v3 is the third ver-
sion Inception CNN developed at Google which is more compatible to scale
up in some applications without losing excessive performance compared to
the prior versions. Other CNNs like the AlexNet [23] requires more memory
and computational resources than an Inception CNN. Inception-v3 (and all the
previous versions) was trained on the ImageNet dataset [31] which originally
had 3.2 million images.

The Inception-v3 was used because it has achieved good results in previous
studies like [28] and due to the fact that less resources were needed.

3.3 Implementation

A software library called TensorFlow and the programming language Python
were used to implement the CNN. TensorFlow was used due to its simplicity
when trying to build and train a CNN and because it has been used in a previous
study [7]. Furthermore, Keras, which is a neural network library running on
top of TensorFlow, has the Inception-v3 available for usage as a pre-trained
network.

The hardware used to build and train the CNN was a laptop with a In-
tel Core i7-7500U CPU and 8 GB of RAM. This hardware was also used for
evaluation (section 3.4). No dedicated GPU was installed on the laptop and
therefore the CPU was used instead for training which is generally not consid-
ered optimal [32].

The following subsections are presented in the same order as they were
implemented.

3.3.1 Data Pre-processing

In the data pre-processing stage, the images from IDRiD were first cropped to
a size of 1200x1200 pixels. This was done to remove most of the black pixels
outside the circular border in the images, see figure 3.1. These black pixels
are irrelevant and do not provide any useful information for the CNN. Without
the black pixels we got better results.
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Figure 3.1: The cropped version of the fundus image shown in
figure 2.1.

The images were then resized from 1200x1200 pixels to a size of 125x125
pixels. Resizing was necessary to perform due to limited hardware.

After resizing, a histogram equalization algorithm was applied to the im-
ages. This was used for image contrast enhancement and we used the his-
togram equalization algorithm implemented in the OpenCV library. The im-
provement Carson et al. [7] obtained when using the algorithm in pre-processing,
where it lead to an increase of 3-ary classifier recall for the mild case increased
from 0 to 29.4%, was the motivation for using the histogram equalization al-
gorithm in our study.

Lastly, all the images were normalized, a process of changing the range of
all the pixel values in an image. In our case, all the images were divided by
255 (the highest pixel value in RGB images) resulting in pixel values between
0 and 1. Normalization was performed to make the images on the same scale
[33].

3.3.2 Building the CNN

The Inception-v3 CNN was imported from Keras with the option of not in-
cluding the fully connected layers, as these layers are not applicable to DR
grading classification, and with the input shape set to 125x125x3 (same as the
pre-processed images). The value three in the input shape represents the dif-
ferent color channels (e.g. red, green and blue when using RGB). The weights
coming from the training of the Inception-v3 on the ImageNet datset were also
included in this step. Transfer learning is utilized by importing and using the
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Inception-v3 CNN as the base of the constructed CNN model described in this
subsection.

When passing the pre-processed images latter to this part of the constructed
CNN, it will produce a block of features per image with the shape 2x2x2048.
The weights in this part were set to be non-trainable because when training
the CNN first-time, only the weights in the fully connected layers should be
trained. This is sometimes referred to as freezing the layers.

A pooling layer was subsequently added to the CNN serving as a flatten-
ing layer. The pooling layer performed average pooling, having no stride and
a filter size of 2x2, on the block of features. This transformed the block of
features into a vector of 2048 elements. It was done in order to pass the data to
the fully connected layers which require a vector as input. The fully connected
layers were then joined together with the flattening layer. Its last (output) layer
was set to have five nodes, one for each label occurring in IDRiD. Softmax was
used as the activation function in the fully connected layer because it functions
well when working with multiclass classification [34].

3.3.3 Training the Fully Connected Layers

Before the actual training was started, it was necessary to specify an optimizer,
loss function and metric. The loss function used, as it is appropriate for mul-
ticlass classification, was sparse categorical crossentropy from Keras built-in
loss functions. The optimizer used was RMSprop and its learning rate was
set to 0.0001 (default is 0.001) because this produced better results. In addi-
tion to the loss function, accuracy was chosen as the metric in order to show
how the CNN model progressed and performed during training. Training was
subsequently performed on the training images from IDRiD. The CNN out-
put was compared with its input image corresponding label obtained from the
csv training file in order to learn. As mentioned above, this training was only
meant for the fully connected layers. From the training images, 10% was taken
for usage as a validation set. Images in the validation set are not used for train-
ing the CNN, instead they are used to check if the CNN model is overfitting
on the training images. The training was performed for 10 epochs where one
epoch means that the CNN model goes through all of the input images once.
Di�erent epoch values was tested although 10 gave acceptable results while
avoiding excessive overfitting.

The CNN was trained (including fine-tuning, see subsection 3.3.4) and
evaluated (see subsection 3.4) twenty times in order to see how it performed
on average. This was done because each CNN model performed di�erently
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after each training session on the images from IDRiD. The specific value of
twenty was chosen because it seemed enough to obtain a general idea of how
the CNN model performed on average while having limited time.

With the hardware described earlier, it took approximately 1 minute, on
average of all training sessions, to train and validate the CNN for 10 epochs
on the training images from IDRiD (371 and 42 images were used for training
and validation, respectively).

3.3.4 Fine-tuning

Fine-tuning is the next optional step in the process of completing a CNN
model, used to increase the performance of the CNN model [32]. When fine-
tuning a CNN model, all the weights throughout a CNN are set to be trainable
(or a great portion of them) and not only the weights in the fully connected
layers as before.

All the weights were set to be trainable in the built and trained CNN mod-
els mentioned in the previous subsections. The same optimizer (including
learning rate), loss function and metric were used as before. With the same
configurations as previously, the CNN models were further trained for 10 final
epochs.

It took approximately 6 minutes, on average of all training sessions, to
train the CNN models. This was performed with the same epoch value which
resulted in a significant increase of time compared to when only training the
fully connected layers. It is evident that training the entire CNN is more time
consuming.

3.4 Evaluation

In order to compare all the twenty trained CNN models with the results from
previous studies in this field, it was needed to measure the performance of
the models. Both the training and testing images were evaluated although the
performance of each model on the testing images have a greater importance.
The testing images were not used in the training of the models and therefore
the models had not seen these images before. A good model performance on
the testing images could indicate an equally good performance on other new
fundus images and thus give an idea of if the model could be used in practice.

All the images were passed to the trained CNN models in order to obtain a
predicted label. Each predicted label and the correct label were recorded sep-
arately for the training and testing images resulting in two confusion matrices
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(see table 4.3 (a) & (b)) for each model. From these confusion matrices, the
accuracy, recall and specificity of each CNN model were calculated according
to section 2.5.

Lastly, the accuracy, recall and specificity of each model, in the di�erent
training sessions, were collected. This was done to calculate the average ac-
curacy, recall, specificity and the standard deviation as seen in table 4.4, 4.5
(a) & (b) and 4.6 (a) & (b).



Chapter 4

Results

This section will present the results achieved during the training and evaluation
of the implemented CNN models mentioned in the Method section (chapter 3).
The CNN models, in all twenty training sessions, were based on the pre-trained
Inception-v3 network and trained on images from IDRiD for 20 epochs in total.
The aim in this report is to investigate the performance, using accuracy, recall
and specificity, of a CNN for DR grading classification in fundus images with
the use of transfer learning. Transfer learning is utilized by using a pre-trained
network.

4.1 Performance and Outcome

All the results shown in this subsection comes from the evaluation step (section
3.4). Hence, the measurements are split into training and testing.

Twenty training sessions were performed and due to repetitive data, only
the results from one training session are shown. Table 4.1, 4.2 (a) & (b) and
4.3 (a) & (b) show the results of training session 1. See Appendix A for a
complete record of results from all training sessions.

In training session 1 the CNN model achieved an accuracy of 77.0% and
36.9%, as shown in table 4.1, on the training and testing images, respectively.
The accuracies of DR grading on both the training and testing images were
lower in this session compared to the average accuracy (see table 4.4) of all
twenty training sessions.
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Accuracy (%)
Training images 77.0
Testing images 36.9

Table 4.1: The accuracy in percentage of the CNN model for DR
grading classification on the training and testing images from
IDRiD. This accuracy was obtained from training session 1.

In table 4.2 (a) & (b), the recall and specificity per class are shown from
DR grading classification on the training and testing images, obtained from
training session 1. The 0.0% recall and 100.0% specificity for class 1 in both
table 4.2 (a) & (b) is in accordance with the average recall and specificity in
table 4.5 (a) & (b).

Class Recall (%) Specificity (%)
0 94.8 89.6
1 0.0 100.0
2 83.1 97.5
3 98.6 82.6
4 10.2 100.0

(a) Training images

Class Recall (%) Specificity (%)
0 52.9 82.6
1 0.0 100.0
2 21.9 93.0
3 68.4 42.9
4 0.0 100.0

(b) Testing images

Table 4.2: The recall and specificity in percentage per class
of the CNN model for DR grading classification on the train-
ing and testing images from IDRiD. These result values were
obtained from training session 1.

The CNN model in training session 1 never predicted class 1 as seen in
table 4.3 (a) & (b). This resulted in the low recall and high specificity of
classification of class 1 in table 4.2 (a) & (b). This occurred in all training
sessions as seen in table 4.5 (a) & (b). The recall and specificity have a standard
deviation of 0.0% for class 1, see table 4.6 (a) & (b). If adding all the entities
in each column of both table 4.2 (a) & (b), class 1 has the lowest sum which
means that IDRiD has few images graded as mild DR.
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Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 127 15 9 1 4

1 0 0 0 0 0
2 2 2 113 0 3
3 5 3 14 73 37
4 0 0 0 0 5

(a) Training images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 18 2 5 3 2

1 0 0 0 0 0
2 2 0 7 3 0
3 14 3 20 13 11
4 0 0 0 0 0

(b) Testing images

Table 4.3: Confusion matrices showing the outcome of the
CNN model when classifying the grading of DR on the train-
ing and testing images from IDRiD. It shows the outcome of
training session 1.

Table 4.4 shows the average accuracy of all training sessions in percent-
age for DR grading classification on both the training and testing images from
IDRiD together with the respective standard deviation. It can be seen that on
average the accuracy for DR grading is higher when classifying on the train-
ing images compared to the testing images. There is no substantial di�erence
between the standard deviation for the training and testing images.

Average
accuracy (%)

Standard
deviation (%)

Training images 79.2 3.5
Testing images 42.8 3.8

Table 4.4: The average accuracy of all twenty training sessions
for the training and testing images together with the respective
standard deviations in percentage.

Table 4.5 (a) & (b) shows the average recall and specificity per class when
performing DR grading on the training and testing images from IDRiD. Class
1 has both the lowest average recall and highest average specificity in both table
4.5 (a) & (b). On the training images shown in table 4.5 (a), the average recall
is 94.1% for class 0 which is the highest average recall out of all the classes.
This is in accordance with the testing images in table 4.5 (b) where class 0
also has the highest average recall (59.7%). The lowest average specificity
occurred in class 2 on both the training and testing images (86.1% and 62.4%,
respectively). Table 4.5 (b) shows a low average recall of 0.8% for class 4
which is significantly lower than the average recall for class 4 in table 4.5 (a).
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Class Average
recall (%)

Average
specificity (%)

0 94.1 91.3
1 0.0 100.0
2 93.0 86.1
3 87.9 93.0
4 19.6 96.6

(a) Training images

Class Average
recall (%)

Average
specificity (%)

0 59.7 77.8
1 0.0 100.0
2 51.0 62.4
3 38.7 80.2
4 0.8 99.7

(b) Testing images

Table 4.5: The average recall and specificity per class of all
twenty training sessions for the training and testing images dis-
played in percentage. Table 4.6 shows the associated standard
deviations.

Table 4.6 (a) & (b) show the standard deviation of the recall and specificity
for each class in percentage. These standard deviations are used together with
the average recalls and specificties in table 4.5 (a) & (b) to show the amount
of spread of the recall and specificity per class in the twenty training sessions.
Overall, the standard deviations of the recalls and specificities are higher in
table 4.6 (b) than in table 4.6 (a).

Class
Standard
deviation

of recall (%)

Standard
deviation

of specificity (%)
0 3.5 3.2
1 0.0 0.0
2 3.8 6.3
3 6.8 4.4
4 23.0 15.0

(a) Training images

Class
Standard
deviation

of recall (%)

Standard
deviation

of specificity (%)
0 15.0 7.1
1 0.0 0.0
2 14.4 14.0
3 18.2 12.7
4 3.4 0.6

(b) Testing images

Table 4.6: The standard deviations of the recall and specificity
per class for the training and testing images in percentage. Ta-
ble 4.5 shows the associated average recalls and specificities.

4.2 CNN Model Progression

The learning progressions of our CNN models in the di�erent training sessions
are relevant in order to see how the models perform throughout the training
in the di�erent epochs. The CNN model progression in training session 1 is
shown in figure 4.1 which displays both the accuracy of the model and loss
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when classifying DR grading on the training and validation images. We only
show the progression of a model from one training session because all twenty
model progressions look similar.

Figure 4.1: The upper plot shows the accuracy of the CNN
model on the training and validation images after each epoch.
The lower plot shows the loss on the training and validation
images after each epoch. In both plots, the start of the fine-
tuning step is displayed as a green line. This is the progression
of the CNN model in training session 1.

Figure 4.1 (upper plot) shows a significant increase of the model accuracy
on the training and testing images after the fine-tuning step. On the validation
images, not used in the actual training, the model accuracy starts to decrease
after 1 epoch after the fine-tuning step.

There is almost no change in loss before the fine-tuning step as seen in the



26 CHAPTER 4. RESULTS

lower plot of figure 4.1. After the fine-tuning step, the training loss started to
decrease while the validation loss first decreased for 1 epoch to then flatten
out.

It should be pointed out that the accuracy of the CNN model in training
session 1, after 20 epochs, on the training images is unequal to the accuracy
of the same training session model on the training images presented in table
4.1. This is because 10% of the training images from IDRiD were taken for
validation. The model performs better on the training images than the vali-
dation images as seen in figure 4.1. When including the validation images as
the training images in the evaluation step, the model accuracy on the training
images was reduced.
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Discussion

The performance of the CNN models, in the di�erent training sessions, achieved
lower results than state-of-the-art results. An average testing accuracy of 42.8%
was achieved with a standard deviation of 3.8%. There are a few factors that
we think are likely to be the reasons to why the results are lower than state-of-
the-art results. One of these factors is that the CNN in each training sessions
was trained and fine-tuned on a relatively small amount of images (516). If
it would have been trained on a much larger dataset, the performance would
likely be higher. Data augmentation is a common way to deal with too small
training sets. Both [2] and [7] used real-time data augmentation to improve
the localization ability of the network.

Another factor is that the results could possibly have improved if more
steps would have been added as part of pre-processing. By more pre-processing
of images and by using real-time data augmentation, the performance might
would have increased.

Another aspect is the cropping and resizing steps of images which were
performed as part of pre-processing, due to performance reasons. It is pos-
sible that some features were removed or neglected for this reason, and thus
not being considered by the CNN models during training and testing. This
could possibly have lead to a misclassification of images or that the CNN did
not make a classification at all. This is a relevant aspect to bring up when dis-
cussing factors a�ecting the results, since the images were first cropped and
then significantly resized, from 1200x1200 pixels to 125x125 pixels, which
likely could have a�ected the results in some way.

Also, it is relevant to address that the CNN-models used in the studies
mentioned in previous work were trained on di�erent datasets than this study.
Most of the datasets used were also of very large volume, which require more
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powerful hardware than possible for this study. Thus, by having access to more
powerful hardware to implement and train the CNN models with datasets of
larger volume, the results could have possibly increased.

Another factor which possibly could have had an impact on the results,
is the imbalance between representation of classes in the used dataset. From
training session 1, table 4.3 (a), it can be seen that class 1 (mild DR) is signif-
icantly less occurring in the dataset compared to other classes. Specifically,
of the training images, there are 134 images belonging to class 0, 20 images
of class 1, 136 of class 2, 74 of class 3 and 49 of class 4. This means that
the CNN model got less training on some classes compared to others, class 1
being the least trained on. This is in accordance with our results from training
sessions, in which class 1 never got predicted, as seen in table 4.3 (a) & (b).
This occurred in all training session resulting in the 0.0 ± 0.0% average recall
and 100.0 ± 0.0% average specificity for class 1 shown in table 4.5 (a) & (b)
combined with table 4.6 (a) & (b). Furthermore, the second least occurring
class in the dataset was class 4 (proliferative DR). Class 4 had a testing average
of 97.7% for specificity and 0.8% for recall, as seen in table 4.5 (a). The low
recall is in line width the relatively low occurrence of images belonging to this
class.

The low occurrences of images of grade 1 and grade 4 is not acceptable
because it is wanted for the CNN models to classify all DR grades with a
high recall and specificity as possible. The reason behind the fact that class
1 was the lowest occurring class could be that it is hard to detect the early
signs of DR. If calculating the sum of all the entities in each column of table
4.3 (a) % (b), column 0 and 2 have the highest sum compared to all the other
classes and could indicate that images which should have been labeled as 1
was instead labeled either 0 or 2. A recall of 7% for mild DR was achieved
by Carson et al. [7] compared to 0.0% in this study and together with Pratt et
al. [2], all experience the same problem of a low recall for mild DR. This is
also despite the fact that di�erent datasets were used which means that other
DR grading datasets possibly also contain few images labeled as 1. To remedy
this potential problem, more images labeled as mild DR has to be included in
DR datasets or better labeling has to take place.
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Conclusion

The aim of the study was to investigate the following question:

What is the performance of a convolutional neural network for
diabetic retinopathy grading classification in fundus images with
the use of transfer learning?

In this study, we have implemented a CNN using transfer learning, mean-
ing that we have used a pre-trained CNN model (Inception-v3), which we then
further trained and fine-tuned on our research area in order to perform DR
grading classification on fundus images. Twenty training sessions were per-
formed which resulted in testing accuracies in the range of 35% to 48.5%.
The average testing recall achieved for class 0, 1, 2, 3 and 4 was 59.7%, 0.0%,
51.0%, 38.7% and 0.8%, respectively. The average testing specificity achieved
for class 0, 1, 2, 3 and 4 was 77.8%, 100.0%, 62.4%, 80.2% and 99.7%, re-
spectively. Lower results were achieved in this study compared to the previous
work which we think is partially a consequence of a small size dataset, as well
as an imbalance of occurrence of classes in the used dataset. Our results clearly
show the need for better labeling in DR grading datasets to make each class
equally represented, left for future research.
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Appendix A

Complete Record of Results from

all Training Sessions

Session 1

Accuracy (%)
Training images 77.0
Testing images 36.9

Class Recall (%) Specificity (%)
0 94.8 89.6
1 0.0 100.0
2 83.1 97.5
3 98.6 82.6
4 10.2 100.0

Training images

Class Recall (%) Specificity (%)
0 52.9 82.6
1 0.0 100.0
2 21.9 93.0
3 68.4 42.9
4 0.0 100.0

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 127 15 9 1 4

1 0 0 0 0 0
2 2 2 113 0 3
3 5 3 14 73 37
4 0 0 0 0 5

Training images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 18 2 5 3 2

1 0 0 0 0 0
2 2 0 7 3 0
3 14 3 20 13 11
4 0 0 0 0 0

Testing images

Session 2

34
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Accuracy (%)
Training images 84.0
Testing images 47.6

Class Recall (%) Specificity (%)
0 95.0 93.5
1 0.0 100.0
2 93.4 88.4
3 93.2 95.6
4 46.9 99.7

Training images

Class Recall (%) Specificity (%)
0 64.7 73.9
1 0.0 100.0
2 46.9 69.0
3 63.1 84.5
4 0.0 98.9

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 128 10 3 0 5

1 0 0 0 0 0
2 6 6 127 5 15
3 0 4 5 69 6
4 0 0 1 0 23

Training images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 22 3 9 2 4

1 0 0 0 0 0
2 11 1 15 5 5
3 0 1 8 12 4
4 1 0 0 0 0

Testing images

Session 3

Accuracy (%)
Training images 78.2
Testing images 42.7

Class Recall (%) Specificity (%)
0 96.3 90.3
1 0.0 100.0
2 93.4 86.3
3 87.8 92.3
4 4.1 100.0

Training images

Class Recall (%) Specificity (%)
0 67.6 75.4
1 0.0 100.0
2 43.8 57.7
3 36.8 85.7
4 0.0 100.0

Testing images
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Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 129 11 6 1 8

1 0 0 0 0 0
2 4 6 127 8 20
3 1 3 3 65 19
4 0 0 0 0 2

Training images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 23 3 9 3 2

1 0 0 0 0 0
2 8 2 14 9 11
3 3 0 9 7 0
4 0 0 0 0 0

Testing images

Session 4

Accuracy (%)
Training images 76.3
Testing images 48.5

Class Recall (%) Specificity (%)
0 96.3 87.1
1 0.0 100.0
2 93.4 80.9
3 79.7 97.3
4 0.0 100.0

Training images

Class Recall (%) Specificity (%)
0 79.4 69.6
1 0.0 100.0
2 56.3 63.4
3 26.3 92.9
4 0.0 100.0

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 129 15 7 6 8

1 0 0 0 0 0
2 5 5 127 9 34
3 0 0 2 59 7
4 0 0 0 0 0

Training images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 27 4 11 3 3

1 0 0 0 0 0
2 5 1 18 11 9
3 2 0 3 5 1
4 0 0 0 0 0

Testing images

Session 5

Accuracy (%)
Training images 76.8
Testing images 43.7
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Class Recall (%) Specificity (%)
0 93.3 93.0
1 0.0 100.0
2 90.4 85.9
3 93.2 88.2
4 0.0 100.0

Training images

Class Recall (%) Specificity (%)
0 55.9 81.2
1 0.0 100.0
2 40.6 74.6
3 68.4 67.9
4 0.0 100.0

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 125 11 3 1 2

1 0 0 0 0 0
2 4 7 123 4 24
3 5 2 10 69 23
4 0 0 0 0 0

Training images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 19 3 6 2 2

1 0 0 0 0 0
2 9 1 13 4 4
3 6 1 13 13 7
4 0 0 0 0 0

Testing images

Session 6
Accuracy (%)

Training images 78.5
Testing images 44.7

Class Recall (%) Specificity (%)
0 97.0 90.7
1 0.0 100.0
2 93.4 90.6
3 90.5 89.1
4 0.0 100.0

Training images

Class Recall (%) Specificity (%)
0 58.8 76.8
1 0.0 100.0
2 46.9 76.1
3 57.9 71.4
4 0.0 100.0

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 130 15 5 2 4

1 0 0 0 0 0
2 3 4 127 5 14
3 1 1 4 67 31
4 0 0 0 0 0

Training images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 20 3 6 4 3

1 0 0 0 0 0
2 10 1 15 4 2
3 4 1 11 11 8
4 0 0 0 0 0

Testing images

Session 7
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Accuracy (%)
Training images 73.4
Testing images 35.0

Class Recall (%) Specificity (%)
0 82.8 98.2
1 0.0 100.0
2 94.9 76.2
3 82.4 88.5
4 4.1 100.0

Training images

Class Recall (%) Specificity (%)
0 23.5 91.3
1 0.0 100.0
2 56.3 57.7
3 52.6 63.1
4 0.0 100.0

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 111 3 2 0 0

1 0 0 0 0 0
2 18 16 129 13 19
3 5 1 5 61 28
4 0 0 0 0 2

Training images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 8 1 2 2 1

1 0 0 0 0 0
2 15 3 18 7 5
3 11 1 12 10 7
4 0 0 0 0 0

Testing images

Session 8

Accuracy (%)
Training images 78.5
Testing images 40.8

Class Recall (%) Specificity (%)
0 96.3 92.8
1 0.0 100.0
2 95.6 79.8
3 87.8 96.2
4 0.0 100.0

Training images

Class Recall (%) Specificity (%)
0 44.1 82.6
1 0.0 100.0
2 65.6 46.5
3 31.6 86.9
4 0.0 100.0

Testing images
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Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 129 6 3 2 9

1 0 0 0 0 0
2 5 14 130 7 30
3 0 0 3 65 10
4 0 0 0 0 0

Training images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 15 2 7 2 1

1 0 0 0 0 0
2 15 3 21 11 9
3 4 0 4 6 3
4 0 0 0 0 0

Testing images

Session 9

Accuracy (%)
Training images 77.2
Testing images 45.6

Class Recall (%) Specificity (%)
0 96.3 86.7
1 0.0 100.0
2 86.0 91.3
3 93.2 90.3
4 8.2 100.0

Training images

Class Recall (%) Specificity (%)
0 73.5 72.5
1 0.0 100.0
2 34.4 81.7
3 57.9 71.4
4 0.0 100.0

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 129 15 10 3 9

1 0 0 0 0 0
2 4 3 117 2 15
3 1 2 9 69 21
4 0 0 0 0 4

Training images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 25 3 11 3 2
1 0 0 0 0 0
2 4 2 11 5 2
3 5 0 10 11 9
4 0 0 0 0 0

Testing images

Session 10

Accuracy (%)
Training images 81.4
Testing images 39.8
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Class Recall (%) Specificity (%)
0 94.0 91.8
1 0.0 100.0
2 93.4 85.9
3 90.5 95.6
4 32.7 100.0

Training images

Class Recall (%) Specificity (%)
0 47.1 81.2
1 0.0 100.0
2 62.5 50.7
3 26.3 83.3
4 0.0 100.0

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
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as
s 0 126 12 6 2 3

1 0 0 0 0 0
2 8 7 127 5 19
3 0 1 3 67 11
4 0 0 0 0 16

Training images

Actual Class
0 1 2 3 4

Pr
ed
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te

d
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s 0 16 3 5 2 3

1 0 0 0 0 0
2 13 2 20 12 8
3 5 0 7 5 2
4 0 0 0 0 0

Testing images

Session 11
Accuracy (%)

Training images 77.0
Testing images 46.6

Class Recall (%) Specificity (%)
0 92.5 83.5
1 0.0 100.0
2 92.6 85.9
3 82.4 97.1
4 14.3 100.0

Training images

Class Recall (%) Specificity (%)
0 79.4 62.3
1 0.0 100.0
2 53.1 69.0
3 21.1 91.7
4 0.0 100.0

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 124 16 10 8 12

1 0 0 0 0 0
2 9 4 126 5 21
3 1 0 0 61 9
4 0 0 0 0 7

Training images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 27 3 11 7 5

1 0 0 0 0 0
2 6 2 17 8 6
3 1 0 4 4 2
4 0 0 0 0 0

Testing images

Session 12
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Accuracy (%)
Training images 86.9
Testing images 45.6

Class Recall (%) Specificity (%)
0 91.0 93.2
1 0.0 100.0
2 95.6 90.6
3 93.2 97.3
4 77.6 100.0

Training images

Class Recall (%) Specificity (%)
0 70.6 73.9
1 0.0 100.0
2 43.8 74.6
3 47.4 77.4
4 0.0 98.9

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 122 11 4 2 2

1 0 0 0 0 0
2 11 9 130 3 3
3 1 0 2 69 6
4 0 0 0 0 38

Training images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 24 3 6 4 5

1 0 0 0 0 0
2 8 2 14 5 3
3 2 0 12 9 5
4 0 0 0 1 0

Testing images

Session 13

Accuracy (%)
Training images 83.1
Testing images 43.7

Class Recall (%) Specificity (%)
0 98.5 92.5
1 0.0 100.0
2 86.8 94.9
3 94.6 90.0
4 46.9 99.7

Training images

Class Recall (%) Specificity (%)
0 76.5 78.3
1 0.0 100.0
2 31.3 71.8
3 47.4 75.0
4 0.0 97.8

Testing images
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Actual Class
0 1 2 3 4

Pr
ed
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d
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s 0 132 13 6 1 1

1 0 0 0 0 0
2 1 5 118 3 5
3 0 2 12 70 20
4 1 0 0 0 23

Training images

Actual Class
0 1 2 3 4

Pr
ed
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d
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s 0 26 2 8 3 2

1 0 0 0 0 0
2 7 2 10 5 6
3 1 1 14 9 5
4 0 0 0 2 0

Testing images

Session 14

Accuracy (%)
Training images 75.8
Testing images 43.7

Class Recall (%) Specificity (%)
0 94.8 89.2
1 0.0 100.0
2 96.3 77.3
3 71.6 97.9
4 4.1 100.0

Training images

Class Recall (%) Specificity (%)
0 64.7 76.8
1 0.0 100.0
2 56.3 52.1
3 26.3 90.5
4 0.0 100.0

Testing images

Actual Class
0 1 2 3 4

Pr
ed
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te

d
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as
s 0 127 9 5 3 13

1 0 0 0 0 0
2 7 11 131 18 27
3 0 0 0 52 7
4 0 0 0 0 2

Training images

Actual Class
0 1 2 3 4

Pr
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d
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s 0 22 2 7 4 3

1 0 0 0 0 0
2 12 3 18 10 9
3 0 0 7 5 1
4 0 0 0 0 0

Testing images

Session 15

Accuracy (%)
Training images 79.9
Testing images 39.8
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Class Recall (%) Specificity (%)
0 94.0 93.2
1 0.0 100.0
2 96.3 83.0
3 87.8 95.0
4 16.3 100.0

Training images

Class Recall (%) Specificity (%)
0 41.2 87.0
1 0.0 100.0
2 65.6 42.3
3 31.6 85.7
4 0.0 100.0

Testing images

Actual Class
0 1 2 3 4

Pr
ed
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d
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s 0 126 10 5 1 3

1 0 0 0 0 0
2 7 9 131 8 23
3 1 1 0 65 15
4 0 0 0 0 8

Training images

Actual Class
0 1 2 3 4
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d
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as
s 0 14 2 4 2 1

1 0 0 0 0 0
2 19 3 21 11 8
3 1 0 7 6 4
4 0 0 0 0 0

Testing images

Session 16
Accuracy (%)

Training images 81.8
Testing images 45.6

Class Recall (%) Specificity (%)
0 97.0 89.6
1 0.0 100.0
2 94.1 94.1
3 86.5 86.5
4 32.7 32.7

Training images

Class Recall (%) Specificity (%)
0 79.4 65.2
1 0.0 100.0
2 43.8 63.4
3 21.1 94.0
4 15.4 98.9

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 130 15 6 3 5

1 0 0 0 0 0
2 4 5 128 7 21
3 0 0 2 64 7
4 0 0 0 0 16

Training images

Actual Class
0 1 2 3 4

Pr
ed
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te

d
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as
s 0 27 3 14 3 3

1 0 0 0 0 0
2 7 1 14 10 8
3 0 1 4 4 0
4 0 0 0 1 2

Testing images

Session 17



44 APPENDIX A. COMPLETE RECORD OF RESULTS FROM ALL
TRAINING SESSIONS

Accuracy (%)
Training images 77.7
Testing images 44.7

Class Recall (%) Specificity (%)
0 94.0 92.8
1 0.0 100.0
2 96.3 81.2
3 86.5 94.1
4 0.0 100.0

Training images

Class Recall (%) Specificity (%)
0 52.9 84.1
1 0.0 100.0
2 75.0 52.1
3 21.1 85.7
4 0.0 100.0

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 126 7 4 0 9

1 0 0 0 0 0
2 7 10 131 10 25
3 1 3 1 64 15
4 0 0 0 0 0

Training images

Actual Class
0 1 2 3 4

Pr
ed
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te

d
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s 0 18 3 2 3 3

1 0 0 0 0 0
2 14 2 24 12 6
3 2 0 6 4 4
4 0 0 0 0 0

Testing images

Session 18

Accuracy (%)
Training images 82.8
Testing images 44.7

Class Recall (%) Specificity (%)
0 95.5 94.3
1 0.0 100.0
2 97.8 83.4
3 75.7 97.3
4 51.0 100.0

Training images

Class Recall (%) Specificity (%)
0 58.8 85.5
1 0.0 100.0
2 75.0 43.7
3 10.5 92.9
4 0.0 98.9

Testing images
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Actual Class
0 1 2 3 4

Pr
ed
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d
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1 0 0 0 0 0
2 5 12 133 15 14
3 1 0 1 56 7
4 0 0 0 0 25

Training images

Actual Class
0 1 2 3 4
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d
Cl

as
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1 0 0 0 0 0
2 13 4 24 13 10
3 1 0 4 2 1
4 0 0 0 1 0

Testing images

Session 19

Accuracy (%)
Training images 82.8
Testing images 38.8

Class Recall (%) Specificity (%)
0 94.8 91.8
1 0.0 100.0
2 91.2 91.7
3 94.6 92.6
4 42.9 100.0

Training images

Class Recall (%) Specificity (%)
0 58.8 78.3
1 0.0 100.0
2 37.5 64.8
3 42.1 72.6
4 0.0 100.0

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 127 12 7 2 2

1 0 0 0 0 0
2 5 5 124 2 11
3 2 3 5 70 15
4 0 0 0 0 21

Training images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl

as
s 0 20 2 8 2 3
1 0 0 0 0 0
2 9 3 12 9 4
3 5 0 12 8 6
4 0 0 0 0 0

Testing images

Session 20

Accuracy (%)
Training images 75.5
Testing images 36.9
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Class Recall (%) Specificity (%)
0 88.1 91.0
1 0.0 100.0
2 94.9 76.2
3 87.8 97.1
4 0.0 100.0

Training images

Class Recall (%) Specificity (%)
0 44.1 76.8
1 0.0 100.0
2 62.5 43.7
3 15.8 89.3
4 0.0 100.0

Testing images

Actual Class
0 1 2 3 4

Pr
ed

ic
te

d
Cl
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s 0 118 12 7 1 5

1 0 0 0 0 0
2 16 8 129 8 34
3 0 0 0 65 10
4 0 0 0 0 0

Training images

Actual Class
0 1 2 3 4
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d
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as
s 0 15 2 7 4 3

1 0 0 0 0 0
2 19 3 20 12 6
3 0 0 5 3 4
4 0 0 0 0 0

Testing images
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