
IN DEGREE PROJECT MECHANICAL ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2020

MPC based
Caster Wheel Aware
Motion Planning for
Differential Drive Robots

JON ARRIZABALAGA
AGUIRREGOMEZCORTA

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Abstract

The inherited rotation in a caster wheel allows movement in any direction, but pays at the expense of reaction
torques. When implemented in a mobile robot, these forces have a negative impact in its performance. One
approach is to restrict rotations on the spot by attaching a filter to the output of the motion planner.
However, this formulation compromises the navigation’s completion in critical scenarios, such as parking,
taking curves in narrow corridors or navigating at the presence of a high density of obstacles. Therefore, in
this thesis we consider the influence of caster wheels in the motion planning stage, commonly presented as
local planning.

This work proposes a Model Predictive Control (MPC) based local planner that integrates the caster wheel
physics into the motion planning stage. A caster wheel aware term is combined with a reference tracking
based navigation, which leads to the formulation of the Caster Wheel Aware Local Planner (CWAWLP). Since
this method requires knowing the caster wheel’s state and there is no sensor that provides this information,
a caster wheel state observer is also formulated.

In order to evaluate the impact of the caster wheel aware term, CWAWLP is compared to a Caster Wheel based
Agnostic Local Planner (CWAGLP) and a Caster Wheel based Agnostic Planner Local Planner with Path
Filter (CWPFLP). After running simulations for three case studies in a virtual framework, two experimental
case studies are conducted in an intra-logistics robot. These are evaluated according to the navigation’s
quality, motor torque usage and energy consumption.

i

ii

According to the patterns observed in the evaluation, CWAWLP covers a longer distance than CWAGLP
wihout decreasing the navigation’s quality. At the same time, its motor torques are similar to the ones of
CWPFLP. Therefore, CWAWLP is capable of considering caster wheel physics without sacrificing navigation
capabilities. The formulated caster wheel aware term is compatible with any MPC based navigation algorithm
and inherits the derivation of an observer capable of estimating caster wheel rotation angles and rolling speeds.
Even if the caster wheel awareness has been implemented in a differential driven robot, this approach is also
applicable to vehicles with an alternative drivetrain, such as car-like robots.

Keywords

Mobile robots, differential drive, caster wheels, motion planning, MPC

Master of Science Thesis Jon Arrizabalaga

Sammanfattning

Den ärvda rotationen i ett hjul möjliggör rörelse i vilken riktning som helst, men fås på bekostnad av reaktion-
smoment. När de implementeras i en mobil robot har dessa krafter en negativ inverkan på dess prestanda.
Ett tillvägagångssätt är att begränsa rotationer på plats genom att applicera ett filter på rörelseplannerns
utgång. Denna formulering komprometterar dock navigeringens slutförande i kritiska scenarier, såsom parker-
ing, kurvor i smala korridorer eller navigering i närheten av höga hinder. Därför beaktar vi i denna avhandling
påverkan av hjul på hjulplaneringen, som ofta presenteras som lokal planering.

Detta arbete föreslår en Model Predictive Control (MPC) -baserad lokal planerare som integrerar svängbara
länkhjuls fysik i rörelseplaneringsstadiet. En kugghjulmedveten term kombineras med en referensspårnings-
baserad navigering, vilket leder till formuleringen av Caster Wheel Aware Local Planner (CWAWLP). Eftersom
denna metod kräver kunskap om svängbara länkhjuls tillstånd och det inte finns någon sensor som ger denna
information, formuleras också en hjulhjulstillståndsobservatör.

För att utvärdera effekten av det medvetna begreppet svängbara änkhjul jämförs CWAWLP med en Caster
Wheel-baserad Agnostic Local Planner (CWAGLP) och en Caster Wheel-baserad Agnostic Planner Local
Planner with Path Filter (CWPFLP). Efter att ha kört simuleringar för tre fallstudier i ett virtuellt ramverk
genomförs två experimentella fallstudier i en intra-logistikrobot. Dessa utvärderas enligt navigeringens kvalitet,
vridmomentanvändning och energiförbrukning.

Enligt de mönster som observerats i utvärderingen når CWAWLP ett längre avstånd än CWAGLP utan
att sänka navigeringens kvalitet. Samtidigt liknar motorns vridmoment dem som CWPFLP. Därför kan

iii

iv

CWAWLP ta hänsyn till svängbara länkhjuls fysik utan att offra navigationsfunktionerna. Den formulerade
medhjulningsmedveten termen är kompatibel med vilken MPC-baserad navigationsalgoritm som helst och
ärver härledningen av en observatör som kan uppskatta hjulets rotationsvinklar och rullningshastigheter.
Även om hjulhjälpmedvetenheten har implementerats i en differentierad robot, är detta tillvägagångssätt
också tillämpligt på fordon med ett alternativt drivsystem, såsom billiknande robotar.

Nyckelord

Mobila robotar, differentiell drivning, hjul, rörelseplanering, MPC

Master of Science Thesis Jon Arrizabalaga

Title
MPC based Caster Wheel Aware Motion Planning for Differential Drive Robots (ENG)
MPC-baserad Rörelseplanering med Integrerat Stöd för Svängbara Länkhjul Avsedd för Robotar med Differ-
entialdrift (SWE)

Author
Jon Arrizabalaga (jonarr@kth.se)
Master of Science Engenieering Design - Mechatronics
KTH Royal Institute of Technology

Examiner
Prof. Lei Feng
lfeng@kth.se
Machine Design - Mechatronics and Embedded Control Systems

Academic supervisor
Phd Candidate Tong Liu
tongliu@kth.se
Machine Design - Mechatronics and Embedded Control Systems

Industrial supervisors
Dr. Niels Van Duijkeren
Niels.VanDuijkeren@de.bosch.com
Corporate Research - Advance Autonomous Systems (CR/AAS4)

Dr. Ralph Lange
ralph.lange@de.bosch.com
Corporate Research - SW Systems Engineering (CR/AEE1)

Place for Project
Robert Bosch GmbH Zentrum für Forschung und Vorausentwicklung
Corporate Research - Advance Autonomous Systems (CR/AAS4)
Robert Bosch Campus, Renningen, Germany, 71272

KTH Royal Institute of Technology
Machine Design - Mechatronics and Embedded Control Systems
Brinellvägen 83, Stockholm, Sweden, 10044

v

vi

Master of Science Thesis Jon Arrizabalaga

Acknowledgements

I would like to express my gratitude to the CR/AAS department in Robert Bosch GmbH for giving me the
chance to write this thesis and providing all the tools and resources needed to complete this work. The spirit
for innovation and progress, combined with the amount of expertise that concentrated at Renningen’s campus
for Corporate Research, have been a major motivating factor.

More specifically, I would like to thank Dr. Niels van Duijkeren and Dr. Ralph Lange for the weekly meetings
and constant support. The challenges that you proposed in a socratic manner, where you made me doubt
about every assumption, have encouraged me to push the limits. Besides the technical knowledge, your
mentorship has brought in the skepticism needed to improve the quality of this thesis. None of this would
have been possible without your guidance.

I would also like to appreciate Dr. Oliver Lenord’s help for introducing me to Modelica language and explaining
the previous work in an early stage prototype of the Active Shuttle.

Department students and interns also played a major role in this adventure, as they contributed to an excep-
tional working environment where lunch times and coffee breaks always converged into vivid conversations
about random topics.

I cannot forget about the Machine Design department at KTH - Royal Institute of Techonology for taking
charge of this thesis. In particular, I would like to thank PhD Candidate Tong Liu for supervising this work
and Prof. Lei Feng for being its examiner. Your immediate assistance, combined with your flexibility when
help was needed, have allowed me to tailor the content’s outline and maximize the learning outcome.

Last but not least, I want to give credit to every friend / student / colleague I have met during this beautiful
journey called Masters. The encouragement I have received through talking to each of you has been the most
valuable lecture I have taken during these last two years. The energy that you transmit has been the fuel for
all the hard work. Thank you.

Of course, thanks also to my family, mom, dad and brother, for supporting me and giving feedback regardless
of the circumstances.

KTH - Royal Institute of Technology
August 4, 2020 Jon Arrizabalaga Aguirregomezcorta

vii

viii

Contents

Abstract i

Acknowledgements vii

List of Figures xiii

List of Tables xvii

Nomenclature xix

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 4
1.3 Purpose . 6
1.4 Methodology . 6
1.5 Delimitations and Limitations . 7

1.5.1 Delimitations . 7
1.5.2 Limitations . 7

1.6 Deposition . 8

2 Fundamentals 9
2.1 Modelling of DDMR with Caster Wheels . 9

2.1.1 DDMR . 9
2.1.2 Caster Wheels . 9

2.2 Caster wheel awareness in mobile robots . 10
2.2.1 Formulation . 11
2.2.2 Implementation . 11

2.3 MPC based motion planning . 11
2.3.1 Path following . 12

2.4 Case Identification . 13
2.4.1 Hypotheses statement . 13
2.4.2 Hypotheses simulation . 15
2.4.3 Hypotheses implication . 16

ix

Contents x

2.5 Summary . 16

3 Concept 19
3.1 Plant Model . 19

3.1.1 Differential Drive Mobile Robot . 19
3.1.2 Caster Wheel . 23
3.1.3 Formulation of the plant model . 25

3.2 Objective function . 26
3.2.1 Navigation term . 26
3.2.2 Caster wheel aware term . 28
3.2.3 Formulation of objective function . 31

3.3 Observer . 31
3.3.1 Observer model . 32
3.3.2 Stability analysis . 32

3.4 Horizon and sampling time . 37
3.4.1 Sampling time . 37
3.4.2 Time and control horizon . 38

3.5 Constraints . 38
3.6 Formulation of OCP . 39
3.7 Implementation of the MPC . 40

3.7.1 Integration . 40
3.7.2 OCP solver . 40

3.8 Extension of PF . 40
3.9 Summary . 41

4 Simulations 43
4.1 Observer . 43

4.1.1 Case study I: Navigation across a global path . 43
4.1.2 Case study II: Forward-Backward case . 46

4.2 Comparison of MPC based local planners . 47
4.2.1 Procedure . 47
4.2.2 Evaluation criteria . 47
4.2.3 Case Study I: Rotation on the spot . 49
4.2.4 Case Study II: Rotate and navigate in a straight line 52
4.2.5 Case Study III: Navigation across given global paths 55

4.3 Summary . 59

5 Field Test 61
5.1 Definition of case studies . 61
5.2 Experimental setup . 62

5.2.1 Layout . 62
5.2.2 Network . 63
5.2.3 Navigation algorithm . 64

Master of Science Thesis Jon Arrizabalaga

xi Contents

5.2.4 Implementation . 65
5.3 Case study I: Rotation on spot . 66

5.3.1 Path Filter . 67
5.3.2 MPC based local planners . 68
5.3.3 Conclusions . 68

5.4 Case study II: Navigation across a given global path . 69
5.4.1 Validation of the observer . 69
5.4.2 Results . 70
5.4.3 Analysis . 72
5.4.4 Conclusions . 73

5.5 Summary . 74

6 Conclusions 75
6.1 Discussion . 75
6.2 Summary . 76
6.3 Future Work . 78

6.3.1 Research Tasks . 78
6.3.2 Research Directions . 78

References 81

A Figures 85
A.1 Fundamentals - Case Identification . 85
A.2 Experiments - Sensors . 86

B Scripts 87
B.1 Local planner . 87
B.2 MPC local planner . 100
B.3 Navigation local planner . 106
B.4 Caster wheel estimator . 110
B.5 Caster wheel based Path Filter . 113

Jon Arrizabalaga Master of Science Thesis

Contents xii

Master of Science Thesis Jon Arrizabalaga

List of Figures

1.1 Comparison of an AGV against a SDV. The SDV can adapt to changes in the environment,
while the AGV relies on a set of instructions that obliges it to follow a fixed path. If an obstacle
appears in its way, a human being needs clear the path, so that the AGV can keep driving. . . 2

1.2 Application cases for AS SDV produced by Bosch Rexroth AG. Source: Bosch Rexroth AG . . 2

1.3 Layout of the PF. It is introduced between the motion planner and the motor controller. . . . 3

1.4 Comparison of trajectories and motor currents when applying PF 4

1.5 Robot’s trajectory when following a L shape global path with a 90°clockwise rotation within
a narrow corridor without (continuous) and with (dashed) PF. In the latter case, the robot
collides with the corridor’s wall. 5

1.6 Outline of the thesis. 8

2.1 Caster wheel’s geometrical and bore torque representations - Source: [5] 10

2.2 Description of PF’s working principle - Source: [5] . 11

2.3 Identification of caster wheel reaction torques. Load sensitivity analysis for a cornering case
of 90° while standing still. The velocity commands of the case study are given in Figure 2.3d. 14

2.4 Rolling speed of the left front caster-wheel for plant (kinematics) and OpenModelica (150 Kg
and 250 Kg) models applicable to a cornering case of 90° while standing still (Figure 2.3d) . 15

2.5 Load sensitivity for a cornering case of 90° while standing still without bore frictions. 16

3.1 Diagram of the robot. Definition of global and local coordinate systems: {x1, y1, z1} and
{x2, y2, z2}. Dimensions ∆xcw,∆ycw represent the distance from the robot’s origin to the left
front caster-wheel. ∆ydw refers to the distance from the robot’s origin to the driven wheels. . 20

3.2 Model of the robot’s motor controller in OpenModelica. 21

3.3 Diagram of the caster wheel. Point 0 is the robot’s origin, A is the linkage between robot-
frame and overhang, B is the connection between overhang and caster-wheel, and C is the
contact point between caster-wheel and environment. 23

3.4 Procedure to implement a virtual time based reference in a L shape global path. Notice that
the reference given in Step 3 is a simplified version and it is intended only for illustration. . . . 27

xiii

List of Figures xiv

3.5 Example of a trajectory given by the global planner that has been divided into sections,
according to its goal-points and check-points. At the same time, a section contains several
lines. This division dictates the behaviour of the time-based reference that the robot tries to
follow. 28

3.6 Caster wheel rotation angles, φ (blue and orange) and their respective steady state angles
(green and red). Notice that the steady state values are specific for each set of input commands 30

3.7 Graphic of atan2. Notice that its domain is [−π, π] and it is discontinuous in the origin. . . . 30
3.8 Implementation of the estimator. 31
3.9 Possible equilibrium front-left caster-wheel angles, x, depending on longitudinal and lateral

velocity commands, v, ω. 33
3.10 Green area represents front-left caster-wheel angle’s equilibrium range, φ = x, for any set of

velocity commands (v, ω) that are within the limits . 34
3.11 Comparison of convergence for two estimators, without (blue) and with (green) oscillations,

initialized at π rad. Orange line represents the estimator’s convergence with no oscillations,
but real velocities as inputs. 36

3.12 Eigenvalues classified according to its respective longitudinal and rotation velocities, V,W and
caster wheel’s rotation angle, φ. The colors divide the eigenvalues depending on its speed. . . 38

4.1 Case-study for caster-wheel angle estimator’s analysis . 43
4.2 Estimation value and error of left-front caster-wheel angle 44
4.3 Estimation value and error of front-left caster-wheel under short disturbances 44
4.4 Estimation value and error of front-left caster-wheel under long disturbances 45
4.5 Estimation value and error of front-left caster wheel for different loads 46
4.6 Estimation value and error of front-left caster-wheel for different loads in ”forward-backward”

case . 46
4.7 Trajectory deviations, derror, applied to all the points obtained from the robots trajectory when

implementing CWAWLP to trajectories for ”Navigation” simulation set. derror has been colored
depending on its respective line in the global trajectory. 48

4.8 Comparison of front caster wheel angles, φLF and φLB , for ”aligned” (discontinuous line) and
”misaligned” (continuous) cases applied to a rotation on the spot with caster wheel agnostic
MPC based local planner. 49

4.9 Performance when rotating on the spot with a caster wheel agnostic MPC local planner for
aligned (discontinuous line) and misaligned (continuous line) initial caster wheel angles φ. . . 50

4.10 Performance when rotating on the spot with a caster wheel agnostic MPC local planner and a
path filter for aligned (discontinuous line) and misaligned (continuous line) initial caster wheel
angles φ. 51

4.11 Performance when rotating on the spot with a caster wheel aware MPC local planner for
aligned (discontinuous line) and misaligned (continuous line) initial caster wheel angles φ. . . 52

4.12 Comparison of front caster wheel angles, φLF and φLR when rotating on the spot with different
local planners . 52

4.13 Performance with CWAGLP (red), CWPFLP (green), CWAWLP (blue) for rotate and navigate
case study. 53

Master of Science Thesis Jon Arrizabalaga

xv List of Figures

4.14 Global paths for analyzing MPC based local planners performance when navigating. They are
characterized for making the robot turn on the spot and being torque demanding. 55

4.15 Performance when navigation through global path 1 with CWAGLP (red), CWPFLP (green),
CWAWLP (blue) . 56

4.16 Performance when navigation through global path 2 with CWAGLP (red), CWPFLP (green),
CWAWLP (blue). 57

4.17 Comparison of OCP’s cost value for global path 2 for differen planners. 59

5.1 Experimental setup for performing case studies on hardware. 62
5.2 Network of experimental setup for performing case studies on hardware. 63
5.3 Reflective markers attached to the robot’s upper surface for tracking its pose. 65
5.4 Assembly of measurement system for caster wheel rotation angle, φ, at AS’s rear axle. 66
5.5 Comparison of velocity commands and torques in AS when rotating on the spot with and

without PF. 67
5.6 Comparison of velocity commands and torques in Active Shuttle when rotating on the spot

for CWAGLP and CWAWLP. 68
5.7 Global path for conducting experiments to compare CWAGLP, CWPFLP and CWAWLP. . . . 69
5.8 Analysis of measurements (continuous) and estimations (dashed) of rear caster wheel rotation

angles φ. Rear left (BL) is shown in blue and rear right (BR) in red. 70
5.9 Comparison of CWAGLP (blue), CWPFLP (orange) and CWAWLP (green) in Active Shuttle

when navigating. The line with a stronger colour represents average value. Maximum values
are given by the shade. 71

5.10 Comparison of applying CWPFLP in the front left (FL) or front-right (FR) in the AS when
navigating. The line with a stronger colour represents average value. Maximum values are
given by the shade. 72

A.1 Caster wheel angles, motor torques and bore torques for a cornering case of 90° with longitu-
dinal velocity of 0.1m/s (Figure A.1d) with respect to kinematics plant model. 85

A.2 Caster wheel angles, motor torques and bore torques for a cornering case of 90° with longitu-
dinal velocity of 0.3m/s (Figure A.2d) with respect to kinematics plant model. 86

A.3 Assembly of encoder to measure rear axle caster wheel rotation angles. 86

Jon Arrizabalaga Master of Science Thesis

List of Figures xvi

Master of Science Thesis Jon Arrizabalaga

List of Tables

2.1 Time difference between caster wheel angle transitions, maximum motor and bore torques
depending on load carried by the robot and different longitudinal speeds when rotating in a
90° corner and carrying a load of 150Kg and 250Kg. 16

4.1 Measurements to evaluate navigation’s performance when simulating CWAGLP (agnostic),
CWPFLP (path filter) and CWAWLP (aware) for ”rotate and navigate” case study 54

4.2 Measurements to evaluate motor torques usage when simulating CWAGLP (agnostic), CW-
PFLP (path filter), CWAWLP (aware) for navigation after rotate and navigate case-study. . . 54

4.3 Measurements to evaluate navigation’s performance when simulating CWAGLP (agnostic),
CWPFLP (path filter) and CWAWLP (aware) for two different trajectories. 57

4.4 Measurements to evaluate motor torques usage when simulating CWAGLP (agnostic), CW-
PFLP (path filter), CWAWLP (aware) for two different trajectories. 58

5.1 Measurements to evaluate motor torques usage when rotating on the spot with and without
PF in the Active Shuttle. 67

5.2 Measurements to evaluate motor torques usage when rotating on spot with CWAGLP (agnos-
tic) and CWAWLP (aware) in the Active Shuttle. 68

5.3 Measurements to evaluate navigation’s performance when applying CWAGLP (agnostic), CW-
PFLP (path filter) and CWAWLP (aware) for navigation case study in the AS. 72

5.4 Measurements to evaluate motor torques usage when applying CWAGLP (agnostic), CWPFLP
(path filter), CWAWLP (aware) for navigation case-study in the AS. 73

5.5 Energy consumption when applying CWAGLP (agnostic), CWPFLP (path filter), CWAWLP
(aware) for navigation case-study in the Active Shuttle. 73

xvii

List of Tables xviii

Master of Science Thesis Jon Arrizabalaga

Nomenclature

List of Abbreviations
AGV Automated Guided Vehicle

AMS Active Shuttle Management System

AS Active Shuttle

Bosch Robert Bosch GmbH

CWAGLP Caster wheel agnostic MPC based local planner

CWAWLP Caster wheel aware MPC based local planner

CWPFLP Caster wheel agnostic MPC based local planner with path filter

DDMR Differential Drive Mobile Robot

DWA Dynamic Window Approach

EB Elastic Band

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

LB Left Back caster wheel

LD Left Driven caster wheel

LF Left Front caster wheel

MAE Mean Absolute Error

MCU Motor Control Unit

MPC Model Predictive Control

NLP Nonlinear problem

OCP Optimal Control Problem

ODE Ordinary differential equation

PF Caster wheel based Path Filter

xix

Nomenclature xx

RB Right Back caster wheel

RCU Robot Control Unit

RD Right Driven caster wheel

RF Right Front caster wheel

RMSE Root Mean Squared Error

ROS Robot Operating System

SCU Safety Control Unit

SDV Self Driving Vehicle

SSH Secure Shell

TEB Time Elastic Band

WMR Wheeled Mobile Robots

List of Symbols
α Rotational acceleration of the robot’s origin rad/s2

∆xcog Distance in x coordinate from robot’s origin to center of mass m

∆xcw Distance in x coordinate from robot’s origin to front-left caster-wheel m

∆ycw Distance in y coordinate from robot’s origin to front-left caster-wheel m

∆ydw Distance in y coordinate from robot’s origin to driven wheels m

γ̇ Rolling speed of caster wheel rad/s

ω Rotational velocity of robot’s origin rad/s

θ Orientation of robot rad

φ Rotation angle of caster wheel rad

a Longitudinal acceleration of the robot’s origin m/s2

F Plant model of the robot

H Constraints in the OCP

hcw Height of caster wheel. Distance in z coordinate from joint to rolling center m

I Inertia of the robot Kg ·m2

i Motor current A

J Cost function in the OCP

M Mass of the robot Kg

N Control horizon of the MPC

Master of Science Thesis Jon Arrizabalaga

xxi Nomenclature

px Position of robot in x coordinate m

py Position of robot in y coordinate m

Qcw Weight for caster wheel aware term in cost function -

Qnav Weight for navigation term in cost function -

Qu Weight for input energy in cost function -

rcw Radius of caster wheel m

rdw Radius of driven wheel m

T Time horizon of the MPC

TL Left motor torque Nm

TR Right motor torque Nm

v Longitudinal velocity of robot’s origin m/s

tr Trail of caster wheel. Distance in x coordinate from joint to rolling center m

List of Indices
(.)cw Value respective to caster wheels

(.)des Desired value respective to velocity commands obtained from the motion planner before
PF

(.)dw Value respective to driven wheels

(.)filt Value after being filtered by PF

(.)ss Steady State value

(̂.) Estimation value

(.) Equilibrium value

Jon Arrizabalaga Master of Science Thesis

Chapter 1

Introduction

This Chapter presents the need to look at caster wheel awareness in mobile robotics. A study of the tendencies
in intra-logistic robots, along with the limitations of previous work leads to the formulation of a research
question. The methodology applied for answering this question is followed by a summary of delimitations and
limitations. To ease the report ’s understanding, the outline of the thesis is given as a closure.

1.1 Background

Reductions in hardware costs, along with an increase of expertise in a variety of research fields, have led to an
industrial revolution, also known as industry 4.0. Among others, this transformation is characterized by adding
flexibility to the transport of goods and resources between workstations within factories or warehouses. Such
strategies result in shorter lead times, tighter links between supply and demand, accelerating new product
introduction and simplifying the manufacture of highly customized products. These advantages have put the
focus on exploring alternative methods to fixed conveyor belts, [1].

During the past years Automated Guided Vehicles (AGVs) have played the main role in intra-logistic purposes.
Since they rely on external guidance devices, such as magnetic tape, beacons, barcodes or predefined laser
paths to navigate on predetermined trajectories, they cannot deal with uncertain scenarios. If the environment
is manipulated and an obstacle appears along the path, an AGV needs to wait for a human being to remove it.
Therefore, AGVs require infrastructure maintenance and do not provide the flexibility required for adjusting
the flow of goods to the needs of the factory. The ability of SDVs to navigate freely without relying on fixed
trajectories combined with the capacity to handle unexpected circumstances, such as obstacle avoidance,
makes them a more appropriate solution than fixed conveyor belts or AGVs (see Figure 1.1). In fact, it is
estimated that, in the upcoming years SDVs will become the main intra-logistics transport method. [2].

Such a SDV, called Active Shuttle (AS) [3], has recently been launched to the market by Bosch Rexroth
AG, a wholly owned subsidiary of Robert Bosch GmbH (see Figure 1.2). It automates the internal flow of
goods and materials depending on the supply chain’s needs. Several units can be coordinated by a traffic
management system that optimizes the assignation of tasks and maximizes the transport’s efficiency. Since

1

Chapter 1. Introduction 2

Figure 1.1: Comparison of an AGV against a SDV. The SDV can adapt to changes in the environment, while
the AGV relies on a set of instructions that obliges it to follow a fixed path. If an obstacle appears in its way,
a human being needs clear the path, so that the AGV can keep driving.

its implementation only requires the factory’s reference map, the fleet’s logistic routes automatically adapt
to changes in infrastructure or modifications in the factory’s layout. Laser based navigation allows the AS
to safely drive around moving obstacles and share the operation area with other vehicles or human workers
[2].

(a) Multiple ASs navigating through a factory (b) AS navigating at the presence of dynamic obsta-
cles

(c) Front view of AS operating in a real factory (d) Side view of AS operating in a real factory

Figure 1.2: Application cases for AS SDV produced by Bosch Rexroth AG. Source: Bosch Rexroth AG

The AS is propelled by two electric motors, each of them coupled to a gearbox and a wheel. Robots with such
a drive-train are known as Differential Drive Mobile Robots (DDMR). Because each wheel is independently
actuated, the robot’s heading direction depends on the ratio of the wheel’s angular speeds and, consequently,
an additional steering motion is not required. The high maneuverability combined with the compactness of
this assembly accounts for its high presence in research and industry [4].

To be able to transport heavier loads, the weight of the load must be distributed across multiple points of

Master of Science Thesis Jon Arrizabalaga

3 1.1. Background

contact. That is why, the AS combines a differential drive system with four caster wheels. This results in
a six-wheeled robot scattered in three rows. The driving wheels are located in the middle whilst the caster
wheels are in the corresponding corners. Their ability to rotate freely allows movement in any direction, but
generates reaction torques in the joints with the chassis. One can perceive this phenomena when pushing
a supermarket trolley or moving an office chair. Even though both items can maneuver in any direction, in
some scenarios, opposition arises.

When implementing caster wheels in mobile robots, reaction torques also arise and have severe consequences
in the navigation’s performance. Depending on the robot’s geometry and power, the influence of the caster
wheels can be critical. Firstly, unwanted orientations can cause blocking scenarios, where either the driving
wheels spin, or the motors cannot provide sufficient force. Secondly, the high inertias involved when trans-
porting heavy and bulky loads combined with the reaction forces generated in the caster wheels lead to abrupt
motions degrading the performance of the components.

Due to these forces, not only torque demand on the actuators increases, but also the local planner needs to
deal with unidentified disturbances. As a consequence, the lifetime of the motors, along with the navigation’s
quality, are compromised. On top of that, since higher torques are required for covering the same distance,
more energy might be consumed [5].

The effects of caster wheels in mobile robots have been previously studied in paper [5], where its contributions
are applied and tested in an early stage prototype of the AS. After modelling this vehicle in OpenModelica
[6] and identifying rotations on the spot as the most critical motions regarding caster wheel reaction torques,
it proposes a solution, denoted as Caster Wheel based Path Filter (PF).

Figure 1.3: Layout of the PF. It is introduced between the motion planner and the motor controller.

This method consists on avoiding rotations on the spot when the robot is navigating. To this end, a filter
combined with an estimator are introduced between the motion planner and motor controller (see Figure
1.3). In this way, velocity commands obtained from the motion planner are filtered by considering caster
wheel state estimations. Instead of turning on the spot, the PF ensures that the caster wheels are rolling by
converting pure rotational velocity commands into a combination of longitudinal and rotational commands, as
depicted in Figure 1.4a. This ensures that there are no sudden changes in the caster wheels orientation and,
consequently, the reaction torques generated in the caster wheels are not relevant to the robot’s performance
(see Figure 1.4b).

Jon Arrizabalaga Master of Science Thesis

Chapter 1. Introduction 4

(a) Robot’s trajectory when following a
L shape global path with a 90°clockwise
rotation with (dashed) and without (con-
tinuous) PF

(b) Left (red) and right (blue) motor currents when turning while
standing still carrying a load of 150Kgs with (dashed) and without
(continuous) PF - Source: [5]

Figure 1.4: Comparison of trajectories and motor currents when applying PF

The resultant behavior of the robot ensures that, when the PF is activated, rotations with low longitudinal
velocity commands are avoided, minimizing the influence of the reaction torques in the performance of the
robot. Figure 1.4a shows an example where the robot needs to follow a global path that involves a 90°corner.
It illustrates how does the robot’s behavior change when attaching the PF to the output of the motion
planner. Instead of rotating on the spot, the robot increases the radius of the curve. In this way, the caster
wheels are rolling when there is an offset between the driving direction and the caster wheel’s orientation.
The respective impact on the motor currents is given in Figure 1.4b, where implementing the PF causes a
decrease in amplitude and oscillations.

1.2 Problem statement

Despite the capability of the PF to mitigate reaction torques, its potential is limited by the fact that it is
not integrated into the motion planner. Consequently, it modifies velocity commands without taking other
constraints into account. This might have severe consequences in scenarios where rotations on the spot are
required, such as parking or navigating in areas with limited free space. In these cases, not being able to
rotate on the spot might lead to getting stuck or colliding with surrounding obstacles.

In order to illustrate this, the example shown in Figure 1.4a has been extended by limiting the available space
to a narrow corridor (see Figure 1.5). Since the PF is not aware of the existence of obstacles, the filtering will
not vary, increasing the radius of the curve and causing a collision against the corridor’s wall. Even if Figure
1.4b demonstrates that the PF succeeds in minimizing caster wheel reaction torques, it cannot guarantee that
the navigation will be completed. Consequently, there is a need of introducing the caster wheel awareness in
the motion planning stage.

Motion planning is concerned with finding of a collision free trajectory that respects the kinematic and
dynamic motion constraints [7]. If optimality is also desired, there needs to be a trade-off between control
effort, control error or transition time between start and goal pose. Therefore, many researchers are focusing

Master of Science Thesis Jon Arrizabalaga

5 1.2. Problem statement

Figure 1.5: Robot’s trajectory when following a L shape global path with a 90°clockwise rotation within a
narrow corridor without (continuous) and with (dashed) PF. In the latter case, the robot collides with the
corridor’s wall.

on obtaining solutions or even approximations of the underlying trajectory optimization problem efficiently
[8]. In this field, three common methods are Dynamic Window Approach (DWA), Elastic Band (EB) and
Time Elastic Band (TEB).

DWA is a widely applied method for mobile robot navigation [9]. It samples simulated trajectories for a specific
velocity search space according to a feasible velocity set. The control action is kept constant throughout the
horizon and, consequently, complex motions, such as reversals, are not possible with this technique. After
making predictions for all samples, the optimal candidate is selected on the basis of a cost function and
desired constraints. Depending on the restrictions applied to the velocity set, computational efficiency can
be achieved at the expense of obtaining sub-optimal results.

An alternative approach is EB [10], where the global path is deformed online according to internal and external
forces that vary depending on the density of obstacles. Introducing temporal aspects in this formulation results
in TEB [7]. This upgrade makes possible to consider dynamic constraints (such as velocities and accelerations)
and its results are closer from being optimal than the ones from DWA. Nevertheless, TEB’s downside is that
constraints are only applied as penalties.

Model Predictive Control (MPC) is an advanced control method that can be used for motion planning. It
consists on taking predictions by relying on a plant model over a finite horizon. Every prediction is evaluated
according to a cost function and only the first input set of the optimal prediction is applied. In other words,
it is a closed-loop optimization-based control approach that works in a receding horizon fashion and can
explicitly optimize trajectories according to nonlinear goals, while considering desired constraints in states
and inputs [11]. This accounts for its high presence in robotics tasks, such as collision avoidance in trajectory

Jon Arrizabalaga Master of Science Thesis

Chapter 1. Introduction 6

planning for multi-robots [12] and regularization of nonholonomic robots [13].

Due to the nonlinear physics of a DDMR with caster wheels, MPC is a suitable framework, since it can find the
optimal control action respective to nonlinear objectives. Moreover, the capability to include constraints in
states and inputs when solving the Nonlinear Problem (NLP) fits to the need of limiting the robot’s velocities
and accelerations for trajectory planning. Therefore, MPC can address differential drive motions and, at the
same time, counteract caster wheel reaction torques already in the trajectory planning stage.

1.3 Purpose

Considering that the PF is not aware of the existence of the constraints included in the motion planner, it
sacrifices navigation capabilities and endangers its completion. That is why, there is a need to address the
caster wheel’s physics in the motion planning stage.

To do so, the circumstances under which caster wheel reaction torques arise need to be identified and a term
that penalizes them has to be proposed. Since this term is implemented in a MPC framework, it needs to be
finite and differentiable within the entire input range and cannot have a negative impact in the navigation’s
quality. Hence, the implications of including it into the motion planning stage have to be observed. To be
clear, this process is broken down into the following three research steps:

Research Objective 1: Identify the circumstances under which caster wheel reaction torques are relevant
for the robot’s performance.

Research Objective 2: Formulate a term that minimizes the scenarios stated in Obj.1 and is numerically
compatible with an Optimal Control Problem (OCP).

Research Objective 3: Analyze the compatibility of the term formulated in Obj.2 with navigating capabilities
of the local planner.

The ultimate purpose of the three objectives mentioned above is to to minimize the influence of the caster
wheel reaction torques in the robot’s navigation performance by addressing the caster wheel awareness in the
motion planning stage. Accordingly, this thesis ought to answer the following research question:

Research Question: Is it possible to formulate a local planner that considers caster wheel physics, so that
maximum and average motor torques are reduced without compromising navigation capabilities?

1.4 Methodology

The procedure followed for completing this thesis can be divided into three steps. A literature review leads
to the formulation of a concept that is evaluated according to the trends observed in specific case studies.
Below this process is described in detail.

In the first place, a literature review defining the background needed to answer the research question is carried
out. The focus is set on understanding previous work regarding techniques of motion planning capable of
dealing with nonlinear dynamics. For this purpose, approaches that can address additional objectives, other
than navigation, are considered. This requires understanding the robot’s physics upon which the local planner
will be tested, leading to the analysis of modelling methods for a DDMR and a caster wheel.

Master of Science Thesis Jon Arrizabalaga

7 1.5. Delimitations and Limitations

Secondly, the theoretical content that stands behind the contributions to this thesis is presented. At the
very beginning, a case identification that recognizes the circumstances under which caster wheel reaction
torques occur is carried out. To do so, a hypotheses that validates an statement of previous work is tested
by running simulations. Subsequently, the robot’s plant model, a cost function that evaluates the predictions
and a observer that estimates caster wheel states are combined into an OCP. When doing so, the horizon and
controller’s sampling time are also determined. Before evaluating this planner details on its implementations
are given. Finally, an extension of a method presented in previous work is proposed .

Thirdly, the contributions are tested by analyzing specific case studies in a virtual environment and an experi-
mental setup. Considering that field testing is time consuming and resource demanding, the initial analysis will
be based on simulations. This increases the speed of testing and extends the range of opportunities, which,
all together, lead to a more profitable research. The results obtained from the simulations are considered to
be the basis for the experimental case studies. This provides a strong foundation to apply the knowledge
acquired during the simulations once the motion planner is implemented in the real robot.

The analysis in the virtual framework can be divided into two simulation sets. The first one evaluates the
observer at the presence of disturbances and load variations, while the second tests the caster wheel awareness
through three case studies, where three local planners are compared against each other. Once the results in the
virtual environment are satisfactory, the analysis is extended to the real world by replicating two case studies in
the AS. The mixture of the results obtained in the simulations and experimental case studies provides a strong
basis for drawing insightful conclusions about the capabilities and weaknesses of the proposed concept.

1.5 Delimitations and Limitations

1.5.1 Delimitations

Even though the content presented in this thesis has been tailored for the AS, the contributions are applicable
to any DDMR with caster wheels. Moreover, the minimization of caster wheel reaction torques has been
addressed in a modular manner, so that it is compatible with any MPC based navigation algorithm.

Therefore, the focus is set on the formulation of the caster wheel aware term, while the navigation algorithm
is simplified to reference tracking across a sub-optimal global path. Its downside is that following a virtual
time based reference biases the usage of motor torques, avoiding to visualize the full impact of the caster
wheel aware term.

Apart from that, when conducting case studies in the experimental setup, certain weak points in the methods
proposed in previous work have been observed. Even if a further extension could solve these, the resultant
formulations would not be sufficient for overcoming the stated problem. That is why, these improvements
are considered to be out of the scope of this thesis and are left as future work.

1.5.2 Limitations

Since the AS is not manufactured in the entity where research is conducted, there is a lack of knowledge
regarding hardware and software specifications, which hinders the implementation of the local planner in the
robot. For example, an explicit driver that connects the ROS network with the Robot Control Unit (RCU)

Jon Arrizabalaga Master of Science Thesis

Chapter 1. Introduction 8

has to be written. Therefore, an efficient implementation cannot be guaranteed, compromising the results
obtained when testing.

On top of that, the robot’s Safety Control Unit (SCU) is active, even when the navigation stack is deactivated.
Consequently, the control actions derived from the local planner can be modified or interrupted by the SCU.
As a consequence, testing is exposed to unknown phenomena, slowing down the identification of bugs and
reducing the test’s outcome. In order to avoid this, it is necessary to guarantee that the distance to the
nearest obstacle is below a threshold, the velocity commands are within a given range and the blinkers are
coordinated with robot rotations. To this end, hardware specific constraints have to be included in the
local planner, which increases the computational load and grows apart the theoretical formulation from the
implemented one.

1.6 Deposition

This thesis is divided into 6 Chapters, as shown in Figure 1.6. After having introduced the topic and determined
the research fields of interest in this chapter, Chapter 2 covers the required background to understand the
contributions of this thesis. The theoretical formulation of the MPC based caster wheel aware local planner
is given in Chapter 3. This is tested in Chapters 4 and 5, where case studies in a virtual environment and
an experimental setup are conducted. Finally, Chapter 6 summarizes the steps taken to answer the research
question, discusses the results, highlights the most relevant contributions of the thesis and closes by pointing
out future research directions.

Figure 1.6: Outline of the thesis.

Master of Science Thesis Jon Arrizabalaga

Chapter 2

Fundamentals

The purpose of this Chapter is to define the basic concepts required for answering the research question. For
this purpose we start by examining previous work according to the research scope stated in Chapter 1. To
this end, the focus is put on caster wheel awareness in mobile robotics and MPC based motion planning.
Subsequently, a case identification is conducted, so that circumstances in which critical caster wheel reaction
torques occur are detected. The highlighted content will be the basis upon which contributions to the thesis
will be made.

2.1 Modelling of DDMR with Caster Wheels

MPC consists on applying the first control action respective to the optimal prediction. These predictions are
taken according to a plant model based on Ordinary Differential Equations (ODE), which implies that the
physics of the robot need to be modelled. Since the scope of this thesis is set on DDMRs with caster wheels,
the modelling can be divided into two subsystems.

2.1.1 DDMR

The modelling of mobile robots with a differential drivetrain is well known and has been applied across several
research fields. Paper [14] is an appropriate summary, since it proposes two different ODE formulations
(Newton-Euler and Lagrange) for differential driven robots and proofs their equivalence.

2.1.2 Caster Wheels

The kinematics and dynamics of the caster wheels are given in [15], where the principle of virtual work and
second order Lagrange equations are applied in a DDMR robot with a centered caster wheel located at the
front side.

On to of that, in the second Section of [5], the caster wheel and its respective reaction torque, defined as
bore torque, are also modelled. For this purpose, it proposes a modified version of the tyre model suggested

9

Chapter 2. Fundamentals 10

in [16]. The respective expression is given in Equation 2.1.

|Tbore| =

(|Tbore,max| − |Tbore,stic|) · λbore
λbore,lim

+ |Tbore,stic|), if |ωz| · srep > λbore,lim · | ˙ωwheel| · r

|Tbore,max| else
(2.1a)

|Tbore,max| = FN · µbore · srep (2.1b)

|Tbore,stic| = max(0, |Tbore,max| − kstic · |γ̇|) (2.1c)

λbore =
|ωz| · srep
|ωwheel| · r

(2.1d)

where λbore is the bore slip, µbore is the bore friction, wz and wwheel are the caster wheel’s rotating and rolling
speeds, srep is a measurement regarding the contact patch and kstic is a constant that softens the transition
to maximum bore torque. These variables can be visualized in Figure 2.1a and Equation 2.1 is represented
graphically in Figure 2.1b.

(a) Caster wheel’s representation according to vari-
ables in paper [5]

(b) Graphical representation of Equation 2.1 of caster
wheel’s bore torque, rolling and rotating speeds

Figure 2.1: Caster wheel’s geometrical and bore torque representations - Source: [5]

2.2 Caster wheel awareness in mobile robots

To the knowledge of the author, there is no previous work apart from paper [5] that accounts for caster wheel
awareness in mobile robotics. As it has been mentioned in Section 1.1, [5] proposes to introduce a filter and
an observer between the motion planner and the motor controller, so that the velocity commands obtained
from the first are modified according to estimated caster wheel states and are fed into the latter. Even if
this method has been validated in [5] by running experiments, in Section 1.2 it has been explained that it
sacrifices navigation capabilities and jeopardizes its completion. In any case, it is the only work that tackles
this problem and its closeness to the AS, thus, looking into its formulation provides insightful information for
formulating a caster wheel aware local planner.

Master of Science Thesis Jon Arrizabalaga

11 2.3. MPC based motion planning

2.2.1 Formulation

As a first step, desired longitudinal and angular velocity commands (v and ω) are converted to their respective
equilibrium caster wheel states (rotation angle, φ, and rolling speed, γ̇). Simultaneously, the caster wheel
state (φ̂ and ˆ̇γ) is estimated by applying a delay to the previously filtered caster wheel states. This delay
introduces two tuneable parameters which need to be tailored to the dynamics of the robot. In order to ensure
that sudden changes in the caster wheel’s orientation do not occur, a filtered state is deduced by applying
Equation 2.2a. Finally, this state is converted back to filtered velocity commands (vfilt, ωfilt). This process is
depicted in Figure 2.2.

φfilt = φ̂+ k · (φdes − φ̂) (2.2a)

where k is a filtering term given by

k = min(1,
∣∣∣∣∣ ˆ̇γ

γ̇max

∣∣∣∣∣) (2.2b)

Notice that γmax is a third tuning parameter which defines the influence of the filter. High values will increase
the time needed to reach the desired state, leading to a reduction in maneuverability but keeping reaction
torques low. Apart from that, the filtered rolling speed is assigned the value of the desired one.

γ̇filt = γ̇des (2.2c)

Figure 2.2: Description of PF’s working principle - Source: [5]

2.2.2 Implementation

Paper [5] also presents a Functional Mock Up Interface (FMI) [17] adapter for coupling a Modelica [18] based
model with the Robot Operating System (ROS) [19]. In this way, the PF can be implemented in hardware
by modelling it in Modelica and exporting it to a Functional Mock-up Unit (FMU). This is proven in paper
[5], where the entire AS robot, along with the PF, are modelled in Modelica. This implementation method
is validated by running experiments in an early stage prototype.

2.3 MPC based motion planning

Model Predictive Control (MPC) is an optimization based closed loop control approach that works in a
receding horizon fashion [11]. Predictions made over a plant model, F , for a finite horizon, N , are evaluated
according to a cost function, J , and constraints in states and inputs, H. In other words, an Optimal Control

Jon Arrizabalaga Master of Science Thesis

Chapter 2. Fundamentals 12

Problem (OCP) with a finite horizon is solved and only the first input-set of the optimal prediction, u∗
1, is

applied. Once the robot performs the motion respective to these inputs, the states are measured from sensors
or estimated by an observer, so that they can be fed back as the starting point of the predictions in the next
iteration. This process is repeated according to the controller’s sampling time ts.

U∗ = min
u

N+1∑
k=1

J(xk, uk) (2.3a)

subject to xk+1 = F (xk, uk) (2.3b)

0 ≥ H(xk, uk) (2.3c)

x1 = xe (2.3d)

where U∗ is the control sequence over the optimization horizon and consists of uk with k ∈ {1, 2, ..., N +1}
at each stage.

Such a controller can be suitable for addressing nonlinear dynamics in the motion planning stage [20]. Non-
linear model-predictive methods for motion planning enable simultaneous resolution of obstacle avoidance
problems, feasible trajectory selection, and trajectory following, while complying with constraints in control
inputs and state values [21]. In this way, caster wheel physics can be integrated in the motion planning.

For this purpose, the MPC not only has to ensure that the robot travels across the global path, but it also
needs to mitigate caster wheel reaction torques while navigating. In other words, the cost function needs to
have at least two terms. The first one relates to the navigation capabilities and the second one to the caster
wheel reaction torques.

J = Jnavigation + Jcw (2.4)

Notice that the second term Jcw is only applied if caster wheel reaction torques want to be minimized, while
the first term, Jnavigation, is mandatory to ensure that the robot navigates across the global path. In other
words, it addresses the motion planning problem, which is defined as the capability of a robot to plan its
own motions, in order to achieve a task specified by initial and goal spatial arrangements of physical objects
[22]. Considering that the focus of this work is put on the caster wheel awareness, the motion planning will
be simplified to a path following problem, where the environment is static and the robot is the only moving
object.

2.3.1 Path following

Path following consists on designing a control law that drives an object to reach and follow a geometric
path by chasing a virtual signal. If this reference is updated according to a timing law, the ”path following”
problem is simplified to ”trajectory tracking”. In [23] a comparison between both leads to the conclusion that
the latter one involves a performance limitation.

The ease of including bounds to inputs and states combined with the difficulties that arise from traditional
closed loop control methods, converts MPC in an interesting approach for addressing the path following

Master of Science Thesis Jon Arrizabalaga

13 2.4. Case Identification

and trajectory tracking problems. When doing so, it needs to be highlighted that non-integrable constraints
contained in Wheeled Mobile Robots (WMR) add complexity with respect to omnidirectional robots.

Paper [24] extends and generalizes previous work in prediction based path following. Regarding trajectory
tracking for WMR, [25] proposes, compares and validates two different approaches (linear and non-linear
MPC). In [26] path following and trajectory tracking are combined into the same MPC framework. In this
way, the respective benefits of both problems are merged.

2.4 Case Identification

This Section will focus on studying and motivating the scenarios when caster wheel reaction torques become
relevant for the robot’s dynamics. Considering that paper [5] identifies rotations on spot or with low longi-
tudinal velocities as the most critical scenarios, the robot’s cornering performance is going to be analyzed by
running simulations in the AS’s Modelica based model presented in [5]. These simulations will lead to stating
and proving a hypotheses, which defines the basis for formulating a local planner capable of answering the
research question.

2.4.1 Hypotheses statement

When it comes to analyzing how motor-torques react to specific robot motions, looking into cornering cases
is specially relevant.

In order to state the hypotheses, sensitivity to load in a 90° corner, performed while standing still (v = 0

m/s and ω = −0.35 rad/s) is considered. This is further developed by looking into bore friction parameter
variations. Finally, the hypotheses is evaluated according to the results obtained from the simulations. Since
the robot has to carry loads within the range of 150 to 250 Kg, both extremes are observed.

As Figure 2.3a shows, the caster-wheel angle changes when the robot starts rotating. The time difference
depends on the load that is being carried. The heavier the load, the longer the period between both events.
Once the rotation is completed, the caster wheels align with respect to the robot’s orientation. Notice that
no time difference occurs at this stage.

In Figure 2.3b it can be visualized that the caster wheel angle’s delay is related to the peak torque generated
by the motors at the beginning of the rotation. The existence of this peak can be explained by the caster
wheel reaction torques given in Figure 2.3c. Thus, increasing the load augments caster wheel reaction torques
and generates higher motor-torques. Notice that this only occurs in the first transient.

From Figure 2.3d, it can be concluded that the existence of a longitudinal velocity command causes the
difference between the two transients. In the first case, at the beginning of the rotation, the robot has no
longitudinal motion. However, when the caster wheels get aligned with the robot’s orientation, the robot is
driving forward. Thus, bore torques have a bigger impact on the robot’s performance when turning while
standing still.

Another way to see this is by looking into caster wheel rolling speeds in Figure 2.4. If the robot is rotating
and the caster wheels are not rolling, the motors will have to provide higher torques. By looking into the

Jon Arrizabalaga Master of Science Thesis

Chapter 2. Fundamentals 14

(a) Left front caster wheel angles. (b) Average motor torques.

(c) Average bore torques. (d) Velocity commands.

Figure 2.3: Identification of caster wheel reaction torques. Load sensitivity analysis for a cornering case of
90° while standing still. The velocity commands of the case study are given in Figure 2.3d.

timeline, it can be observed that the period when the caster wheel is not rolling (from t = 6 to t = 7.5

approximately) matches the peak torque given in Figure 2.3b.

From the arguments given in the previous paragraphs the following hypotheses can be stated:

”The peak torque generated by the motors (1), the load that the robot is carrying (2) and the time difference
between transients in caster wheel angles (3) are proportional for stand still rotations (v = 0, ω ̸= 0, γ̇ = 0)
with misaligned caster wheels (∆φ > 0).”

The hypotheses can be further developed by looking into the model’s sensitivity with respect to bore friction
parameters. The proportionality given in the hypotheses only holds for stand-still rotations. In other words,
it is only applicable for cases where the robot is rotating without moving forward and the caster wheel is not
rolling. If we apply this to Equation 2.1, the bore torque acquires its maximum value (|Tbore| = |Tbore,max|),
which explains the existence of the reaction torque’s peak when the caster-wheel is not rolling. This is highly
relevant, since ensuring that the caster wheel is rolling guarantees that the respective bore torque does not
reach its maximum value.

Before extending the hypotheses, it is convenient to sanity-check the ideas covered in the last paragraph by
performing a simulation where the friction coefficient between caster wheels and environment (µbore) is 0.
From Equation 2.1 it can be stated that this modification leads to |Tbore,max| = 0, which, at the same time
involves that |Tbore,stic| = 0, and, finally, translates to |Tbore| = 0. If this is true, not only the torque spikes
should disappear, but there also should be no time difference between caster wheel angle transients of both

Master of Science Thesis Jon Arrizabalaga

15 2.4. Case Identification

Figure 2.4: Rolling speed of the left front caster-wheel for plant (kinematics) and OpenModelica (150 Kg
and 250 Kg) models applicable to a cornering case of 90° while standing still (Figure 2.3d)

loads. Figure 2.5 demonstrates that all these assumptions are true.

Considering the content covered in the previous paragraphs, the hypotheses could be reformulated as fol-
lows:

”Motor-torques that are above nominal range are required for rotations on the spot (v = 0, ω ̸= 0, γ̇ = 0)
if caster wheels are misaligned with respect to the robot’s longitudinal motion (∆φ > 0). These peaks are
proportional to the load that the robot is carrying and the time difference between transients in caster wheel
angle values.”

2.4.2 Hypotheses simulation

The hypotheses given in 2.4.1 can be tested by simulating 90° cornering with low longitudinal velocities. If
the hypotheses is correct, the torques obtained for these simulations should be lower than the ones given in
Figure 2.3. In order to prove this, two sets of simulations have been fulfilled with a longitudinal velocity of
0.1m/s and 0.3m/s while the robot is rotating. The results are shown in Figures A.1 and A.2 and summarized
in Table 2.1.

The results given in Figures A.1 and A.2 (see appendix), along with Table 2.1, prove that the hypothesis
stated in 2.4.1 is correct. A very low longitudinal velocity (0.1m/s) is enough to reduce the maximum motor
torque by 71% for a load of 150Kg. For the case of 250Kg, this reduction increases up to 82%. On top of
that, the torque reductions are negligible when the longitudinal velocity is further increased. Increasing the
longitudinal speed by 30% has caused a torque decrease of 17% for 150Kg and 11.1% for 250Kg.

Jon Arrizabalaga Master of Science Thesis

Chapter 2. Fundamentals 16

(a) Left front caster wheel angles. (b) Average motor torques.

(c) Average bore torques.

Figure 2.5: Load sensitivity for a cornering case of 90° while standing still without bore frictions.

Table 2.1: Time difference between caster wheel angle transitions, maximum motor and bore torques depend-
ing on load carried by the robot and different longitudinal speeds when rotating in a 90° corner and carrying
a load of 150Kg and 250Kg.

Load [Kg] v [m/s] ∆t(φ̂, φ) [s] Tmotor,max [Nm] Tbore,max [Nm]

150 Kg
0 0.5 5.9 1.45

0.1 0.1 1.7 0.5
0.3 0.05 1.4 0.0125

250 Kg
0 2 10 2.2

0.1 0.1 1.8 0.7
0.3 0.05 1.6 0.019

2.4.3 Hypotheses implication

The hypotheses stated and proven in this Section implies that the caster wheel reaction torques strongly rely
on the tendency of the local planner to take curves with low longitudinal speed. Thus, the MPC based local
planner is going to be formulated in such a way that it minimizes rotations on spot, as long as its trajectory
does not excessively diverge from the path it needs to follow.

2.5 Summary

In this Chapter the background required to answer the research question has been covered. As a starting
point, previous work in considering caster wheels for mobile robot navigation has been studied by looking
into paper [5]. From this publication, the analytical expression for the caster wheel reaction torque and the
PF solution have been explained. For the latter case, its limitations in specific scenarios, such as parking or
high density of obstacles, has revealed the need of integrating caster wheel awareness in the motion planning
stage.

Master of Science Thesis Jon Arrizabalaga

17 2.5. Summary

It has been shown that MPC is a suitable control approach for this purpose, since it can address the motion
planning problem and caster wheel physics simultaneously. Considering that this thesis focuses on minimizing
caster wheel reaction torques, the motion planning problem has been reduced to path following. That is why,
contributions in papers that implement MPC to solve path following and trajectory tracking problems have
been highlighted.

Finally, the circumstances under which caster wheel reaction torques become critical for the performance of
the robot have been analyzed by running simulations. In this way, a hypotheses that correlates motor torques
with the robot’s velocity profile is formulated and proven. It has been concluded that the reaction torques are
associated to rotations on spot (v = 0,ω ̸= 0), where caster wheels are not rolling (γ̇ = 0) and they have an
offset with respect to the steady state caster wheel angle (∆φ > 0). In the following Chapter a local planner
that addresses this phenomena is formulated.

Jon Arrizabalaga Master of Science Thesis

Chapter 2. Fundamentals 18

Master of Science Thesis Jon Arrizabalaga

Chapter 3

Concept

This Chapter covers the theoretical content upon which the research question will be answered. Considering
the knowledge acquired from the analysis of previous work and the case identification performed in Chapter
2, an MPC based local planner that takes caster wheels into account is presented. To do so, the OCP that
obtains the sequence of optimal control decisions, according to the real time state feedback is formulated.
This requires defining the plant model, cost function, constraints, horizon and caster wheel state observer.
On top of that, an extension to the PF explained in Chapter 2 is proposed.

3.1 Plant Model

The plant model is used for taking predictions over a finite horizon. Since the input command applied to the
robot depends on those predictions, the plant model should reflect the significant dynamic characteristics of
the real robot.

Taking into account that the AS is a DDMR with caster wheels, it can be modelled as two independent
subsystems: a differential drive and a caster wheel. Kinematic and dynamic models are proposed for both of
them. After being analyzed, both subsystems are combined, resulting in the formulation of the AS’s plant
model.

3.1.1 Differential Drive Mobile Robot

DDMRs have been a common tool in a wide range of research fields and its kinematic and dynamic modelling
are mature. These are given in [14] and they are used as a basis for modelling the differential drive subsystem
of the AS. After formulating both options (kinematics and dynamics), a comparison leads to choosing one of
them.

The robot is modelled in a planar fashion, as given in Figure 3.1. To do so, two different frames are used.
The first one {x1, y1, z1} is a global frame that is fixed to the environment in which the robot moves in,
while the second one {x2, y2, z2} is a local frame attached to the robot’s origin O.

19

Chapter 3. Concept 20

Figure 3.1: Diagram of the robot. Definition of global and local coordinate systems: {x1, y1, z1} and
{x2, y2, z2}. Dimensions ∆xcw,∆ycw represent the distance from the robot’s origin to the left front caster-
wheel. ∆ydw refers to the distance from the robot’s origin to the driven wheels.

3.1.1.1 Kinematics of Diff. Drive

Considering longitudinal and rotational velocity (v and ω) as inputs, kinematics of a DDMR can be used to
obtain the equations of motion that represent the origin’s absolute position px, py, θ with respect to reference
frame {x1, y1, z1}: 

ṗx

ṗy

θ̇

 =


v · cos(θ)
v · sin(θ)

ω

 (3.1)

3.1.1.2 Dynamics of Diff. Drive

The model that is going to be proposed takes currents as inputs, converts them to torques and feeds them
to the dynamics of a DDMR.

Estimation of motor-currents
Motor currents can be derived by applying a PI controller to desired and real velocities, as shown in the motor
controller of the Modelica model developed in paper [5] and depicted in Figure 3.2).

First step is to convert velocity commands to rotational speeds of the driven wheels.

ωdwl|t =
1

rdw
· (wt ·∆ydw + vt) (3.2a)

ωdwr|t =
1

rdw
· (−wt ·∆ydw + vt) (3.2b)

Since the procedure is analogue for both motor-currents (left and right), ωdwl,t and ωdwr,t will be simplified

Master of Science Thesis Jon Arrizabalaga

21 3.1. Plant Model

Figure 3.2: Model of the robot’s motor controller in OpenModelica.

to ωdw,t. Secondly, the error between desired and real rotational speeds is defined.

et = ωdw|t − ωdw,fb|t (3.2c)

where ωdw,fb|t is the rotational speed subtracted as feedback. Adding an anti-windup term to this error results
in the controller’s integration part.

ζt = et +
1

Tsat
· (it−1 − ht−1) (3.2d)

Tsat is the time constant of anti-windup compensation, ht−1 and it−1 are motor-currents before and after
saturation. This term can be integrated using Forward Euler’s method.∫

ζt =

∫
ζt−1 + ts · ζt (3.2e)

where ts is the step size. Combining all the equations given above with the respective proportional Tp and
integral Ti constants, results in expressing motor currents as shown below:

ht =
1

Tp
· e+ 1

Ti
·
∫

ζt (3.2f)

Since the current that can be pulled out the motors is limited to imax, bounds need to be set on h. This can

Jon Arrizabalaga Master of Science Thesis

Chapter 3. Concept 22

be done by a saturation function.

it =


imax, if ht > imax

−imax, else if ht ≤ −imax

ht else

(3.2g)

Both motor currents can be obtained by following this procedure. These values will be the inputs for the
ODEs that are explained in the following subsection.

Dynamic ODEs
The estimated motor currents are the inputs to the ODE system that describes the dynamics of a DDMR.
That is why, the ODE can be divided into two Sections.

The first one consists of two equations, which convert currents, i, into torques, T . This is done by a first
order delay that comes after the PI motor-controller.

Ṫ =
1

Tti
· (i− T) (3.3a)

Tti is the time constant regarding the conversion from current to torque. The second group involves the
dynamics of DDMR. These have been widely implemented across several research fields and are given in [14].

− 1

rdw
· (TL + TR) +M · (a−∆xcog · ω2) = 0 (3.3b)

2 ·∆ydw
rdw

· (TL − TR)−∆xcog ·M · v · ω + (Izz +∆xcog ·M2) · α = 0 (3.3c)

Putting everything together results in the following ODE system:


ẋ1

ẋ2

ẋ3

ẋ4

 =


1
Tti

· (u1 − x1)

1
Tti

· (u2 − x2)

1
M ·rdw

· (x1 + x2) + ∆xcog · x2
4

1
Izz+∆xcog·M2 ·

(
−2·∆ydw

rdw
· (x1 − x2) + ∆xcog ·M · x3 · x4

)

 (3.4a)

where 
x1

x2

x3

x4

 =


TL

TR

v

ω

 ,

u1

u2

 =

iL
iR

 (3.4b)

3.1.1.3 Model comparison

Any of the two systems (kinematics in Equation 3.1 or dynamics in 3.4a) proposed above is valid to be
implemented in the plant model. In order to choose which is the best option, several points need to consid-
ered.

The kinematic alternative is simpler, since it has less equations and they are pure integrators. Its downside is

Master of Science Thesis Jon Arrizabalaga

23 3.1. Plant Model

that it is not aware of the load and inertia that the robot is carrying.

The dynamics based system does address this topic, at the expense of adding four extra equations, and several
modelling and tuning parameters. On top of that, it also requires a motor current estimator attached to its
input. This complexity makes it more prone to differing from the robot’s behavior. Furthermore, the DDMR
dynamics introduce two poles, which convert it into a faster system than the kinematic one. Due to all these
disadvantages, the kinematic system has been chosen to replicate the robot’s differential drive behavior in
the plant model.

3.1.2 Caster Wheel

The four caster wheels located at each corner of the robot’s footprint can also be modelled through kinematic
and dynamic relationships.

Figure 3.3: Diagram of the caster wheel. Point 0 is the robot’s origin, A is the linkage between robot-frame
and overhang, B is the connection between overhang and caster-wheel, and C is the contact point between
caster-wheel and environment.

3.1.2.1 Kinematics of the caster wheel

By applying kinematic relationships, equations of motion respective to the caster wheel’s rotational and
rolling angles φ, γ can be derived. This is demonstrated in the upcoming paragraphs for the front left caster
wheel.

As a starting point, it is necessary to define the velocity of B in two different manners. Considering that the
frame’s velocity is known, B’s velocity is

v⃗B = v⃗O + ω⃗1 × O⃗A+ ω⃗2 × A⃗B =


v

0

ω

+


0

0

θ̇

×


∆xcw

∆ycw

0

+


0

0

φ̇

×


−tr
0

−hcw

 (3.5)

which results in

v⃗B =

v − θ̇ ·∆ycw + φ̇ · sin(φ) · tr
θ̇ ·∆xcw − φ̇ · cos(φ) · tr

 (3.6)

Jon Arrizabalaga Master of Science Thesis

Chapter 3. Concept 24

If spinning in the caster wheel is neglected and pure rolling is assumed, the following equations also define
B’s velocities in the local frame:

v⃗2B = w⃗cw × C⃗B =


γ̇ · rcw

0

φ̇

 (3.7)

Translating this velocity to the fixed frame results in

v⃗B =


cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

 ·


γ̇ · rcw

0

φ̇

 =


γ̇ · rcw · cosφ
γ̇ · rcw · sinφ

φ̇

 (3.8)

From combining equations 3.6 and 3.8, the following two equations of motion arise, which describe the
behavior of the caster wheel’s rotating and rolling angles (φ, γ):

γ̇ · rcw · cosφ = v − θ̇ ·∆ycw + φ̇ · sin(φ) · tr

γ̇ · rcw · sinφ = θ̇ ·∆xcw − φ̇ · cos(φ) · tr
(3.9)

Equation 3.9 can be transformed into

φ̇ = − 1

tr · [(v − ω ·∆ycw) · sin(φ)− (ω ·∆xcw) · cos(φ)] (3.10a)

γ̇ =
1

rcw
· [(v − ω ·∆ycw) · cos(φ) + (ω ·∆xcw) · sin(φ)] (3.10b)

Notice that equations 3.10a and 3.10b are applied to the front left caster wheel and can be extended to other
wheels by varying the signs of ∆xcw and ∆ycw.

Equilibrium state
Equations 3.10a and 3.10b describe the rotation and rolling angles φ, γ̇ of the caster wheels. Getting the
analytical expressions of the respective equilibrium angles provides information about its steady state values
for given velocity commands v, ω. This is of great use for anticipating to undesired caster wheel motions,
which might provoke an increase in bore torques, and consequently, in motor torques. Hence, the equations
obtained in this subsection, along with 3.10a and 3.10b, play a crucial role in the formulation of the MPC
based local planners.

Rotation angle
This term defines the angle at which the caster wheel stops rotating and acquires a steady state value for
given input commands (v and ω). It can be obtained by taking the derivative of Equation 3.10b with respect
to φ and making it equal to 0.

∂γ̇

∂φ
=

1

rcw
· [−(v − ω ·∆ycw) · sin(φss) + (ω ·∆xcw) · cos(φss)] = 0 (3.11)

Master of Science Thesis Jon Arrizabalaga

25 3.1. Plant Model

the caster wheel’s steady state angle can be described as:

φss = atan
(

ω ·∆xcw
v − ω ·∆ycw

)
(3.12)

Rolling angle
Combining Equation 3.10b with the term obtained from Equation 3.12 leads to the definition of the caster-
wheel’s rolling speed once it rotates to a steady state angle.

γ̇ss =
1

rcw
· [(v − ω ·∆ycw) · cos(φss) + (ω ·∆xcw) · sin(φss)] (3.13)

Considering the following trigonometric relationships
sin(atan(x)) = x√

1+x2

cos(atan(x)) = 1√
1+x2

(3.14)

Equation 3.13 can be simplified into

γ̇ss =
1

rcw
·
»

(v − ω ·∆ycw)2 + (ω ·∆xcw)2 (3.15)

3.1.2.2 Dynamics of the caster wheel

Even if Equations 3.10a and 3.10b, provide very valuable information about the caster wheel’s motion, the
counter acting force that it generates, also defined as bore torque, remains unknown. According to paper [5]
this reaction force is given by Equation 2.1.

3.1.3 Formulation of the plant model

The AS can be divided into two independent subsystems: a DDMR and four caster wheels. The kinematics
and dynamics of both subsystems have been developed. Putting them together leads to the plant model that
is going to be used to formulate a MPC based local planner.

Notice that the DDMR’s ODE system given in Section 3.1 has been extended to the accelerations domain.
This gives the chance to penalize longitudinal and lateral accelerations, ensuring a smooth navigation.

Combining this system with the caster wheel angle’s equation of motion defined in 3.10a and applied to
the front left and right caster wheels, results in a seven state model that takes longitudinal and angular

Jon Arrizabalaga Master of Science Thesis

Chapter 3. Concept 26

accelerations as inputs.



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7


=



x4 · cos(x3)

x4 · sin(x3)

x5

u1

u2

− 1
tr · [(x4 − x5 ·∆ycw) · sin(x6)− (x5 ·∆xcw) · cos(x6)]

− 1
tr · [(x4 + x5 ·∆ycw) · sin(x7)− (x5 ·∆xcw) · cos(x7)


(3.16a)

where 

x1

x2

x3

x4

x5

x6

x7


=



x

y

θ

v

ω

φFL

φFR


,

u1

u2

 =

a
α

 =

v̇
ω̇

 (3.16b)

3.2 Objective function

In order to implement the first input sample according to the optimal forecast, each prediction is evaluated
according to a cost function. In other words, the cost function establishes the criteria for evaluating every
prediction. As explained in Section 2.3, the research question defines two main goals for the motion planner’s
formulation: navigating as close as possible to the global path and considering caster wheel reaction torques.
Therefore, the objective function consists of two terms. One of them ensures that the robot follows the
desired path, while the other is in charge of minimizing caster wheel reaction torques. This concept has
already been summarized in Equation 2.4.

3.2.1 Navigation term

In Section 2.3 it has already been mentioned that motion planning is simplified to path following. When
doing so, references to papers that apply MPC for solving path following and trajectory tracking problems
have been analyzed. In order to ensure that the robot navigates across the global path, a simplified version of
the trajectory tracking method proposed in [25] is applied. According to this approach, the robot is obliged
to follow the global path by penalizing the distance from the robot to a virtual time based reference.

The global path and the reference’s navigation velocity are assummed to be known. This information is used
to discretize the global path and convert it into a grid of points with time labels. Once this is done, the
reference navigates across the grid through time interpolation. This procedure can be visualized in Figure
3.4.

The time based reference, rk, is a set of points with a length equal to N +1, where N is the control horizon.
By penalizing the distance from the robot to the reference, it is forced to chase it. For this purpose, the
following term needs to be included in the OCP’s cost function.

Master of Science Thesis Jon Arrizabalaga

27 3.2. Objective function

(a) Step 1: Global path and refer-
ence’s navigation speed are known.

(b) Step 2: Discretize the global
path into a grid of points. Each
point is assigned a timestamp that
depends on the desired navigation
velocity.

(c) Step 3: A virtual time based
reference covers the global path by
travelling across the grid through
time interpolation.

Figure 3.4: Procedure to implement a virtual time based reference in a L shape global path. Notice that the
reference given in Step 3 is a simplified version and it is intended only for illustration.

∀k ∈ {1, 2, ..., N + 1}

ek = rk − xk =


xgoal,k

ygoal,k

θgoal,k

−


xk

yk

θk

 . (3.17)

In order to fully define this term, the functioning principle of the time based reference, rk, has to be explained.
Apart from the discretization given in Figure 3.4, it relies on a chopping procedure that re-organizes the path
received from the global planner. Before getting into the details about the time interpolation strategy, the
procedure of restructuring the global path will be explained.

3.2.1.1 Processing of global path

The path given by the global planner will be denoted as a trajectory and will be considered to be defined as
a set of points. These points can be separated into check-points and goal-points. The latter ones divide the
trajectory into sections. If a section does not contain any check-points, the section will be a single line that
connects both goal-points. If a section contains q check-points, the section will be defined by q + 1 lines.
Furthermore, each section is related to a navigation velocity, which is considered to be given. Looking into
Figure 3.5 might be helpful to visualize these concepts.

The time based reference will navigate along each of the sections. Once it gets to the end, it will wait for
the robot to arrive. As soon as this happens, the moving reference will start navigating through the following
section. Every time that the reference gets into a new section, it updates its speed. This procedure is repeated
until the reference gets to the end of the last section.

3.2.1.2 Time based reference

The time reference consists of N + 1 points Rt
0,1,...,N+1 = (rt0, r

t
1, ..., r

t
N+1), where each of them has three

fields rt0 = (xt
0, y

t
0, θ

t
0). Every time step ts, rt0 and rtN+1 are updated. In order to update rt0, it is enough

to substitute with the second point of the reference (rt+ts
0 = rt1). Updating rtN+1 is not that simple. For

Jon Arrizabalaga Master of Science Thesis

Chapter 3. Concept 28

Figure 3.5: Example of a trajectory given by the global planner that has been divided into sections, according
to its goal-points and check-points. At the same time, a section contains several lines. This division dictates
the behaviour of the time-based reference that the robot tries to follow.

this purpose, each section is divided into a set of grid-points before the navigation starts, as depicted in
Figure 3.4. Depending on the section’s navigation speed, a time is assigned to each point that is part of this
grid. During navigation, the reference’s last value rtN+1 is updated through time interpolation along the grid
points. Once rt+ts

0 and rt+ts
N+1 are defined, the rest of the reference points are linearly distributed.

In this way, the time based reference follows every line of the section with the assigned navigation speed.
Once it gets to the end of a line, it will either continue or stop. This depends on the point-group to whom
the end of the line belongs. If it is a check-point, the reference will be updated and it will continue navigating
through the next line. If it is a goal-point, the reference will wait until the robot gets close enough. Once
this condition is met, the reference will update and the navigation will continue. This loop keeps going until
the the robot gets to the last goal-point. As a consequence, goal-points are mandatory locations that the
robot cannot miss, while check-points only define the trajectory’s shape. This process is summarized in the
following algorithm:

3.2.1.3 Formulation of navigation term

Assigning a weight, Qnav, to the distance between the robot and the time based reference given in Equation
3.17, results in the cost function’s term that is in charge of the navigation part.

Jnavigation =

N+1∑
k=1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

xgoal,k − x1,k

ygoal,k − x2,k

θgoal,k − x3,k


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

Qnav

(3.18)

3.2.2 Caster wheel aware term

Once the navigation term of the cost function has been defined, the term that gives the local planner awareness
of the caster wheels is formulated. Consequently, the content exposed in this subsection is highly relevant to
the thesis’ outcome.

Master of Science Thesis Jon Arrizabalaga

29 3.2. Objective function

Time based reference
Initialization:

grid = discretize_global_path(global_path)
labeled_grid = assign_time_stamps(navigation_speed, grid_points)
section_finished = false
cont_section = 0

Navigate:
while True do
t = t+ ts
if section_finished = false then

rtN+1 = time_interpolation(labeled_grid, t)
end if
rt0 = rt−ts

1

rt1, ..., r
t
N = linear_distribution(rt0, rtN+1)

goal_point = update_goal_point(cont_section)
if rtN+1 = goal_point then

section_finished = true
else if |position_robot - goal_point| ≤ tolerance then

section_finished = false
cont_section = cont_section + 1

end if
end while

According to the case identification in Section 2.4, peak reaction torques arise when caster wheels are mis-
aligned with respect to the robot’s driving direction (∆φ > 0). In other words, if caster wheels are kept
aligned with respect to the navigation’s direction, reaction torques are not critical and severe consequences
are omitted.

Therefore, the most intuitive approach to tackle this problem is by penalizing the difference, ∆φ, between
steady state and current caster wheel rotation angles (φss, φ). In this way, it can be guaranteed that the
alignment mentioned in the previous paragraph is fulfilled. Both elements of the subtraction can be visualized
in Figure 3.6. In this Section it will be assumed that the current or real caster wheel states, (φ, γ̇) are known
and the focus will be put in the steady states (φss, γ̇ss).

The mentioned difference is expressed by
∆φ = φss − φ (3.19a)

where φss is given in Equation 3.12 and represents the steady state caster wheel rotation angle for a given
set of input commands (v, ω). Since this expression includes an atan, which is only defined in the range of
[−π/2, π/2], and it is desired to project the rotation angle in an entire revolution, atan is replaced by atan2.
This results in extending Equation 3.12 as follows:

φss = atan2
(

ω ·∆xcw
v − ω ·∆ycw

)
(3.19b)

Despite that substituting atan with atan2 has succeeded in translating φss, into a range within [−π, π], it has
the disadvantage of being discontinuous in the origin (see Figure 3.7). Moreover, the fraction inside atan2 is
not defined in the entire input range. More specifically, the fraction becomes infinite if both longitudinal and
rotational velocity commands, (v, ω) are 0. Due to these two facts, such a term is not numerically compatible
with an OCP solver. Even if penalizing the angle difference given in Equation 3.19a might have a positive

Jon Arrizabalaga Master of Science Thesis

Chapter 3. Concept 30

Figure 3.6: Caster wheel rotation angles, φ (blue and orange) and their respective steady state angles (green
and red). Notice that the steady state values are specific for each set of input commands

impact in the mitigation of caster wheel reaction torques, it numerically is problematic.

Figure 3.7: Graphic of atan2. Notice that its domain is [−π, π] and it is discontinuous in the origin.

Instead of penalizing the difference in rotation angles, a workaround is to penalize the difference in rolling
speeds ∆γ̇. For this purpose, the analytical expression of γ̇ss has to be applied. This has already been derived
in Equation 3.15 by combining φss with the Equation of motion of the caster wheel’s rolling speed, γ̇.

When doing so, the numerical issues related to the atan2 and the fraction have been omitted and replaced
by a square root that is defined and finite in the input’s entire domain. In order to make it also differentiable,
a small constant ϵ is added. Otherwise, its derivative in the origin would be infinite.

∆γ̇ = γ̇ss − γ̇ (3.20a)

Master of Science Thesis Jon Arrizabalaga

31 3.3. Observer

γ̇ss ≈
1

rcw
·
»

(v − ω ·∆ycw)2 + (ω ·∆xcw)2 + ε (3.20b)

3.2.2.1 Formulation of caster wheel aware term

Adding a term to the cost function that accounts for the difference between steady state and current caster
wheel rolling speeds guarantees that changes in orientation are smooth, hindering motions that generate
reaction torques. The weight allocated to this penalization is Qcw.

Jcw =

N+1∑
k=1

||∆γ̇||2Qcw
(3.21)

3.2.3 Formulation of objective function

Adding the recently formulated navigation and caster wheel aware terms and including a third term that
minimizes the energy introduced in the system results in the following cost function:

J =

N+1∑
k=1

||probot,k − pref,k||2Qnav + ||∆γ̇k||2Qcw + ||uk||2Qu (3.22)

In this way, each prediction is going to be evaluated according to the distance between the robot’s trajectory
to the global path (1), the difference between the caster wheel’s real and steady state rolling speeds (2) and
the energy consumption (3). The relevance of each goal depends on the ratio between the weights. The first
sample of the input corresponding to the prediction that deals best with these three objectives is the one
applied in the robot.

3.3 Observer

In the previous Section it has been assumed that the caster wheel’s angle, φ, is known. However, the AS
has no sensors that provides such information, which implies the need of an observer. The estimation takes
place by integrating another model, denoted as ”observer model”, in parallel with the plant model. Figure
3.8 shows how the observer is implemented:

Figure 3.8: Implementation of the estimator.

Feeding the estimations from the last iteration [φ̂L,t, φ̂R,t], along with measured longitudinal and rotational

Jon Arrizabalaga Master of Science Thesis

Chapter 3. Concept 32

velocities [vt, ωt], to the observer is sufficient to obtain a new set of estimations. Notice that the velocities
that the estimator takes as inputs are velocities measured by odometry. Since the previous estimations need
also to be fed, this implementation involves knowing the initial value of the caster-wheel angles. There are
two different ways to tackle this. Even if the assumption that these are known could be made, it would be
possible to start navigating with constant command velocities until the caster-wheels align with respect to
the equilibrium angle, which can be derived from Equation 3.12.

3.3.1 Observer model

The observer consists on integrating the equation of motion respective to the caster wheel’s rotation angle
derived in Section 3.1.2 and given in Equation 3.10a applied to the front left and right caster wheels.

ẋ1

ẋ2

 =


− 1

tr · [(u1 − u2 ·∆ycw) · sin(x1)− (u2 ·∆xcw) · cos(x1)]

− 1
tr · [(u1 + u2 ·∆ycw) · sin(x2)− (u2 ·∆xcw) · cos(x2)]

 (3.23a)

where x1

x2

 =

φ̂L

φ̂R

 ,

u1

u2

 =

v

w

 (3.23b)

3.3.2 Stability analysis

The purpose of this Section is to proof that the steady state rotation angle, φss is an asymptotically stable
point for the estimator presented above. Since the estimator’s model consists of two analogous ODEs based on
the caster-wheel kinematics given in Equation 3.10a, demonstrating its stability is enough. The demonstration
will be done for the front left caster wheel and is applicable to any of the four wheels.

3.3.2.1 Stability of caster wheel’s rotation angle

From the caster-wheel’s kinematics the Equation of motion respective to its rotation angle can be derived.
This has already been done Section 3.1.2, which led to Equation 3.10a. For the sake of simplicity, it will be
simplified to the following form:

ẋ = f(x, u) = −a · [(u1 − u2 · b) · sin(x)− (u2 · c) · cos(x)] (3.24a)

, where

x = φ,

u1

u2

 =

v
ω

 , and


a

b

c

 =


1
tr

∆ycw

∆xcw

 (3.24b)

The equilibrium points, x can be obtained by ẋ = 0, which results in

x = atan
(

u2 · c
u1 − u2 · b

)
(3.25)

Notice that this expression is equivalent to Equation 3.12. Considering that inputs are limited, all possible

Master of Science Thesis Jon Arrizabalaga

33 3.3. Observer

equilibrium angles can be computed, as shown in Figure 3.9. According to this graph, any value of velocity
commands will make the front left caster wheel converge to an angle between −1.19 rad and 1.97 rad. The
alternative representation shown in the Figure 3.10 might be helpful to visualize this concept.

Figure 3.9: Possible equilibrium front-left caster-wheel angles, x, depending on longitudinal and lateral velocity
commands, v, ω.

No matter which are the velocity commands, the front left caster-wheel’s rotation will converge to an angle
within the green area. In other words, any angle between −1.19 rad and 1.97 rad could be an equilibrium
angle and each of them has its respective set of velocity commands v, ω.

3.3.2.2 Stability of caster wheel angle’s error

In subsection 3.3.2.1 it has been shown that the caster-wheel’s rotation angle has got multiple equilibrium
points. Since this implies that convergence should be demonstrated for each of them, it is convenient to
find an alternative representation with fewer equilibrium points. That is why, Equation 3.24a is going to
be converted, so that it represents the difference between the estimated and equilibrium caster-wheel angle.

e = x− x (3.26a)

ė = ẋ− ẋ (3.26b)

Considering that the equilibrium point is given for specific inputs,

ẋ = 0 (3.26c)

ė = ẋ = f(x, u) = f(e+ x, u) = g(e, u) (3.26d)

ė = −a · [(u1 − u2 · b) · sin(e+ x)− (u2 · c) · cos(e+ x)] (3.26e)

Jon Arrizabalaga Master of Science Thesis

Chapter 3. Concept 34

Figure 3.10: Green area represents front-left caster-wheel angle’s equilibrium range, φ = x, for any set of
velocity commands (v, ω) that are within the limits

Using the trigonometric properties given in Equation 3.14 enables to simplify Equation 3.26e to

ė = g(e, u) = −a ·
»
(u1 − u2 · b)2 + (u2 · c)2 · sin(e) = −d · sin(e) (3.26f)

where d is a positive real number. Equation 3.26e represents the difference between estimated and equilibrium
caster-wheel angle. If this Equation converges to e = 0 for any initial starting state e0 ̸= 0, the estimated angle
converges to the respective steady state angle, thus, the observer is asymptotically stable for every equilibrium
angle shown in Figures 3.9 and 3.10. This will be proved by applying two lemmas and a theorem.

Proof of stability

From ė = 0, equilibrium points e1 = 0 and e2 = π are obtained. Following the argument given above, the
proposed observer is asymptotically stable if Equation 3.26e is unstable for e = π (lemma 1) and stable for
e ̸= π (lemma 2). Since e = π is an equilibrium angle, the error will stay in in π, unless the system is
externally disturbed. Adding oscillations to the estimated angles will avoid e from staying in π and will ensure
its convergence from e = π to e = 0 (theorem 1).

Lemma 1

- Statement: ”Equation 3.26e is unstable for e = π”.

- Proof: Equilibrium around e = π can be analyzed by linearizing Equation 3.26e at this point and looking

Master of Science Thesis Jon Arrizabalaga

35 3.3. Observer

into its eigenvalues. If these are strictly positive, Equation 3.26e is unstable in e = π.

ė = g(e, u) = A · ∂e+B · ∂u (3.27a)

where A = ∂f(e,ė,u)
∂e and B = ∂f(e,ė,u)

∂u . The eigenvalues of Equation 3.26e in e = π are defined by

λ = eig(A) = eig(
[
∂f(e = π, ė = 0, u)

∂e

]
) = eig(−d · cos(e))) = d (3.27b)

Since d = a ·
√

(u1 − u2 · b)2 + (u2 · c)2, it can be concluded that

λ(e = π) = d > 0,∀u1, u2 ∈ U (3.27c)

Consequently, it can be generalized that Equation 3.26e is unstable in e = π for any longitudinal and rotational
velocity commands within the limits.

Lemma 2

- Statement: ”Equation 3.26e is stable ∀e ̸= π”.

- Proof: Equation 3.26e is a nonlinear system, whose asymptotic stability ∀e ∈ (−π, π) with respect to e = 0

can be proofed by the existence of a Lyapunov function, V (e), with a strictly negative total derivative [27].
This function needs to fulfill the following conditions:

V (e) =


V (e) > 0, ∀e ∈ (−π, π) ∧ e ̸= 0 (3.28a)

V (e) = 0, e = 0 (3.28b)
dV (e)

dt
< 0, ∀e ∈ (−π, π) (3.28c)

Consider the following Lyapunov function
V (e) =

1

2
· e2 (3.29)

which fulfills requirements 3.28a and 3.28b. Taking the derivative of Equation 3.29 and combining it with
3.24a, results in Equation 3.30, which is strictly negative ∀e ∈ (−π, π), thus, it also satisfies Equation 3.28c.

V̇ (e) = e · ė = −e · d · sin(e) (3.30)

Since the Lyapunov function proposed in 3.29 accomplishes conditions 3.28a,3.28b and 3.28c, Equation 3.26e
is asymptotically stable ∀e ∈ (−π, π).

Theorem 1

- Statement: ”The observer proposed in 3.23a is asymptotically stable ∀e ∈ [−π, π] at φss, if small oscillations
are added to its output.”

- Proof: Lemma 1 and Lemma 2 have concluded that the estimator is unstable for e = π and asymptotically

Jon Arrizabalaga Master of Science Thesis

Chapter 3. Concept 36

stable ∀e ∈ (−π, π) with respect to e = 0. Since e = π is an equilibrium point, the current estimator does
not converge from e = π to e = 0. However, this point is unstable, which means that a small disturbance
is enough to make it converge. That is why, adding small oscillations to the estimated angles will make
the estimator asymptotically stable ∀e ∈ [−π, π]. Equation 3.24a can be modified, so that it includes these
oscillations.

ẋ = −a · [(u1 − u2 · b) · sin(x)− (u2 · c) · cos(x)] + ζ · sin(wζ · t) (3.31)

where term ζ · sin(wζ · t) represents oscillations with an amplitude of ζ and an angular frequency of wζ .
It is relevant to highlight that the oscillation’s amplitude has to be minimized, so that the impact on the
estimator’s performance is negligible, while being able to deviate the caster-wheel angle from e = π.

In order to demonstrate this theorem, a new case has been studied, where the robot drives longitudinally
(v = 0.5m/s, ω = 0rad/s) with an offset of πrad in the caster-wheel angle’s initialization. Consequently, the
difference between estimated and equilibrium angles is e = −π. As it can be seen in Figure 3.11 , only for
the case where the oscillations are included (green), the error converges from e = π to e = 0.

Figure 3.11: Comparison of convergence for two estimators, without (blue) and with (green) oscillations,
initialized at π rad. Orange line represents the estimator’s convergence with no oscillations, but real velocities
as inputs.

For this demonstration the estimator’s layout exposed in Figure 3.8 has been modified. According to this
diagram, the estimator takes the robot’s real velocities as inputs. In order to avoid deviations from e = π,
these have been replaced by the command velocities. Otherwise, the variations included in the velocity
measures disturb the system, which make it converge to e = 0, as the orange line indicates. Notice that this
convergence is slower than the one achieved by adding oscillations.

Outcome of proof

By transforming the observer’s Equation of motion into an expression that stands for the error, e, between
steady state and real angle, it has been demonstrated that the caster wheel’s steady state angle, φss, is an
asymptotically stable point in the observer’s system for any set of commands within the range.

Master of Science Thesis Jon Arrizabalaga

37 3.4. Horizon and sampling time

3.4 Horizon and sampling time

The plant model over which predictions are made, together with an objective function that evaluates them
and an observer that estimates caster wheel states, have already been defined. In this Section, the length of
time taken into account when making predictions is determined.

This period is denoted as ”time horizon”, T , and the quantity of input sets applied during this interval is
defined as ”control horizon”, N . The ratio between them is given by the sampling time, ts = T

N . By taking
its inverse, the frequency of the MPC can be obtained.

fMPC =
1

ts
=

N

T
(3.32)

The MPC needs to run faster than the dynamics that is trying to control. A rule of thumb is that the
controller’s rate needs to be five to ten times higher than the system’s fastest pole [28]. Consequently, the
choice of time and control horizon will depend on the plant model’s poles.

3.4.1 Sampling time

The AS’s plant model consists of two subsystems: the DDMR and the caster wheels. Since the first one is
made out of pure integrators, only the poles of the latter are relevant. These can be obtained by linearizing
Equation 3.10 and looking into its eigenvalues.

φ̇ = f(φ, u) = A · ∂φ+B · ∂u (3.33a)

where A = ∂f(φ,u)
∂φ and B = ∂f(φ,u)

∂u . The eigenvalues of Equation 3.10 in φ = φ∗ for inputs v = v∗ and
ω = ω∗ are defined by

λ = eig(A) = eig(
[
∂f(φ = φ∗, u = u∗)

∂φ

]
) (3.33b)

λ = − 1

tr · [(v
∗ − ω∗ ·∆ycw) · cos(φ∗) + (ω∗ ·∆xcw) · sin(φ∗)] (3.33c)

Considering the bounds of the inputs, the fastest eigenvalue is

λmax =
1

tr · (|vmax|+ |ωmax| ·∆ycw) (3.33d)

which can be converted into the respective frequency of the caster wheel’s rotation angle

fφ,max =
λmax
2π

=
1

2π · tr · (|vmax|+ |ωmax| ·∆ycw) (3.33e)

Applying Equation 3.33e to the AS’s dimensions and velocity limits results in a frequency of 3.08Hz. Hence,
in order to ensure that the caster wheels motions are addressed at every moment and no aliasing occurs,
MPC needs to run at a frequency between 15Hz and 30Hz.

The eigenvalues obtained from computing Equation 3.33b for a grid of inputs are given in Figure 3.12. The
cloud of eigenvalues has been classified according to their respective rotation angle φ and velocity commands
v, ω. The fastest eigenvalues (red color) take place for maximum velocity commands and rotation angles of

Jon Arrizabalaga Master of Science Thesis

Chapter 3. Concept 38

Figure 3.12: Eigenvalues classified according to its respective longitudinal and rotation velocities, V,W and
caster wheel’s rotation angle, φ. The colors divide the eigenvalues depending on its speed.

φ = 0 and φ = π. The fastest eigenvalue has been marked with a black cross and proves the correctness of
Equation 3.33e.

3.4.2 Time and control horizon

Since, the AS’s focus is set in intralogistics, the local planner needs to deal with unexpected static and dynamic
obstacles. Consequently, its time horizon has to be sufficiently long to find a way through the obstacles, while
staying as close as possible to the global path. Extending the horizon increases the computation load and
memory overhead and does not guarantee a better control performance [29]. Consequently, finding the right
balance between performance and computation overhead is crucial to define these two parameters.

Considering that the longitudinal and angular speeds are limited to 1 m/s and 1 rad/s and the behaviour
of potential obstacles in an industrial site, predictions between 2 s and 5 s are sufficient. A time horizon
lower than 1 s might lead to instabilities, while going over 5 s increases computational load without having
a significant contribution to the planner’s performance.

Due to the frequency range obtained out of Equation 3.33e, the facts given in the previous paragraphs and
restrictions on computational capacity, a frequency of fMPC = 20 Hz with a time horizon of T = 2 s have
been chosen. From Equation 3.32, it is known that this is equivalent to a control horizon of N = 40.

3.5 Constraints

The constraints defined in the OCP ensure that the MPC’s optimal output is not out of the robot’s operation
range. These conditions can also guarantee other requirements, such as safety or hardware limitations. That
is why, a total of four constraints have been added to the OCP.

The robot’s longitudinal and rotational velocities always remain within the bounds, thanks to the following

Master of Science Thesis Jon Arrizabalaga

39 3.6. Formulation of OCP

expressions.
vmin ≤ v ≤ vmax (3.34a)

wmin ≤ ω ≤ wmax (3.34b)

For the case of the AS, [vmin, vmax] = [0, 1] and [wmin, wmax] = [−1, 1]. Furthermore, due to the robot’s
nature, accelerations are also limited by their respective mass and inertias. Moreover, the motors have
restrictions on rotational accelerations. These are also taken into account in the OCP, by applying the
following restrictions:

adw,min ≤ a− α ·∆ydw ≤ adw,max (3.34c)

adw,min ≤ a+ α ·∆ydw ≤ adw,max (3.34d)

where adw is the longitudinal acceleration in the driving wheel’s center of rotation (point B in Figure 3.3,
applicable to left and right driving wheels).

3.6 Formulation of OCP

The plant model presented in Section 3.1 evaluated according to the cost function in Section 3.2 over the
horizon chosen in Section 3.4 and considering constraints in Section 3.5 leads to the definition of the OCP
that can be solved by the MPC:

min
u1,...,uN

N+1∑
k=1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

xgoal,k − x1,k

ygoal,k − x2,k

θgoal,k − x3,k


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

Qnav

+

∣∣∣∣∣∣
∣∣∣∣∣∣
γ̇l

k − γ̇l
ss,k

γ̇r
k − γ̇r

ss,k

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Qcw

+ ||uk||2Qu
(3.35a)

subject to xk+1 = F (xk,uk), (3.35b)

vmax ≥ x4,k ≥ vmin, (3.35c)

wmax ≥ x5,k ≥ wmin, (3.35d)

adw,max ≥ u1,k − u2,k · ∆ydw
2

≥ adw,min, (3.35e)

adw,max ≥ u1,k + u2,k · ∆ydw
2

≥ adw,min (3.35f)

where F is the plant model and the caster wheel rolling speeds, γ̇ and γ̇ss, are defined by equations 3.10b
and 3.15. States x6,k and x7,k are estimated from the observer proposed in Section 3.3.

γ̇l
k =

1

rcw
· [(x4,k − x5,k ·∆ycw) · cos(x6,k) + (x5,k ·∆xcw) · sin(x6,k)] (3.35g)

Jon Arrizabalaga Master of Science Thesis

Chapter 3. Concept 40

γ̇r
k =

1

rcw
· [(x4,k + x5,k ·∆ycw) · cos(x7,k) + (x5,k ·∆xcw) · sin(x7,k)] (3.35h)

γ̇l
ss,k =

1

rcw
·
»
(x4,k − x5,k ·∆ycw)2 + (x4,k ·∆xcw)2 (3.35i)

γ̇r
ss,k =

1

rcw
·
»
(x4,k + x5,k ·∆ycw)2 + (x4,k ·∆xcw)2 (3.35j)

3.7 Implementation of the MPC

The MPC has been developed in an open source tool for optimal control called CasADi [30]. It offers several
methods for nonlinear optimization and algebraic differentiation. Its usage can be divided into integration of
ODEs and finding a solution for the OCP.

3.7.1 Integration

The plant and observer models are integrated by using ”Range Kutta” [31] with 1 finite element and a step size
equal to the MPC’s sampling time, ts. Since the optimal inputs obtained from the MPC are accelerations,
they need to be converted to velocities. This is done by applying Forward Euler’s integration [32] at a
frequency of 50Hz. This value has its roots in the Motor Control Unit’s (MCU) characteristics.

3.7.2 OCP solver

The OCP is solved by applying the interior-point method [33]. To do so, a software package called ”Ipopt”
(Interior Point Optimizer) [34] capable of solving large scale nonlinear optimization problems has been used.
The amount of tunable parameters that this solver includes allows the user to customize its performance.
Finding the optimal combination of these parameters is out of the scope of these thesis. However, the OCP
is the most critical part to ensure that the MPC runs at the desired frequency. That is why, an effort has
been made to spot the settings that have the biggest impact on decreasing the solving time. According to
user’s guide [35], the linear solver’s choice plays a crucial role. ”MA27” [36] has ended up being the one
with best performance. Using ”warm start” [37] and tuning its respective setting have also turned out to be
crucial.

3.8 Extension of PF

The equations obtained in the kinematics based analysis done in Section 3.1.2 can be applied to further
develop the PF.

Estimator
The PF’s estimator can be fully replaced by the one developed in Section 3.3. In this way, two tuning
parameters can be omitted, estimations do not exclusively rely any more on the equilibrium state, and
transient scenarios are considered.

Master of Science Thesis Jon Arrizabalaga

41 3.9. Summary

Filtering ratio
Parameter γ̇max in Equation 2.2b, can be replaced by QPF · γ̇ss, where QPF is a weight that defines how much
the PF should modify desired velocity commands and γ̇ss is the caster wheel’s steady state rolling speed given
for the desired velocity commands, as described in Equation 3.15. The purpose of this modification is that
the filtering ratio, k, does not rely on the global maximum rolling speed, but adapts to the desired velocities.
In this way, the tuning process for parameter QPF (≈ 1) is more intuitive than for γ̇max.

3.9 Summary

In this Chapter a caster wheel aware MPC has been formulated and the PF explained in the previous Chapter
has been extended. The focus is put in the first case. As a starting point, kinematics of a differential drive
and caster wheel’s rotation angle have been combined to a plant model, F . Secondly, the cost function, J ,
that evaluates predictions according to navigation capabilities, caster wheel awareness and energy usage has
been presented. For this purpose, it is necessary to derive an observer that estimates caster wheel rotation
angles, φ, and rolling speeds, γ̇. Moveover, a Lyapunov function has been found that proves that the steady
state rotation angle, φss, is an asymptotically stable equilibrium point. Subsequently, the horizon (N,T) and
sampling time, ts, have been determined by looking into the eigenvalues of the caster wheel angle’s equations
of motion. Putting all this information together results in an OCP that the MPC will implement for deriving
optimal input commands. Having formulated the MPC, it is time to evaluate it by running simulations
(Chapter 4) and experiments (Chapter 5).

Jon Arrizabalaga Master of Science Thesis

Chapter 3. Concept 42

Master of Science Thesis Jon Arrizabalaga

Chapter 4

Simulations

The objective of this Chapter is to explain results obtained from simulating the previously proposed caster
wheel aware MPC based motion planner in a Modelica based AS’s model. The evaluation takes place in
two steps. Firstly, the observer’s estimations are validated. Secondly, the performance of three different
local planners are compared against each other. In this way, the caster wheel aware term’s influence is
studied.

4.1 Observer

4.1.1 Case study I: Navigation across a global path

The caster wheel angles measured from the model have been compared to the estimated ones in the case
study shown in Figure 4.1. The respective trajectory and velocity profiles can be visualized in Figures 4.1a
and 4.1b.

(a) Trajectory for estimator’s analysis (b) Velocity commands for estimator’s analysis

Figure 4.1: Case-study for caster-wheel angle estimator’s analysis

43

Chapter 4. Simulations 44

This case-study involves three turns on the spot at three different points. The rotations are concatenated,
which make the observer vulnerable to the accumulation of error. In order to test the estimator’s performance
in both directions, clockwise and counter-clockwise rotations are involved.

(a) Real and estimated front-left caster-wheel angle (b) Error between real and estimated caster-wheel an-
gles

Figure 4.2: Estimation value and error of left-front caster-wheel angle

As it is depicted in Figure 4.2, apart from the steady-state error of 0.11 rad, the difference between measure-
ments and estimations is negligible. In fact, the Root Mean Square Error (RMSE) between both data sets is
0.06988.

4.1.1.1 Disturbance sensitivity

The estimator’s behaviour under disturbances plays a key role when studying its convergence with respect
to the caster wheel angle steady state value, φss. That is why the effect of adding a disturbance to the
estimated angle in the form of an impulse is observed. Since the resultant value is the input of the integrator
in the following step, the respective estimation is disrupted. Once the impulse is over, the caster wheel angle
converges back to the equilibrium point. In other words, the action of the impulse is equivalent to rotating
the caster wheel externally by an angle and a duration equal to the impulse.

Figures 4.3 and 4.4 show the estimator’s behaviour under disturbances. In order to consider the phenomena
mentioned in the previous paragraph, disturbances of different lengths (0.01 s and 0.1 s) are going to be
considered.

(a) Real and estimated front-left caster wheel angle
under disturbances that are 0.01 s long

(b) Disturbances and errors caused in front-left
caster-wheel angle

Figure 4.3: Estimation value and error of front-left caster-wheel under short disturbances

Master of Science Thesis Jon Arrizabalaga

45 4.1. Observer

The disturbances shown in Figure 4.3 are impulses of a length of 0.01 s with different sizes ranging from
−π to π rad, which take place in steady state and transient cases. As shown in this Figure, the estimation
converges to the equilibrium angle regardless of the instant at which the disturbance occurs.

If the disturbance’s amplitude is larger than π rad, the estimation converges to the closest value from the
origin φ = 2nπ with n = 0,±1,±2, Another way to replicate this scenario is to increase the disturbance’s
length.

(a) Real and estimated front-left caster wheel angle
under disturbance that are 0.1 s long

(b) Disturbances and estimation errors in front-left
caster-wheel angle

Figure 4.4: Estimation value and error of front-left caster-wheel under long disturbances

The disturbance given in Figure 4.4 is 0.1 s long, ten times longer than in Figure 4.3. Following the analogy
mentioned above, this implies that the caster-wheel angle is externally rotated during a longer time. This
generates an offset with respect to the origin, which, for the case shown in Figure 4.4, is equal to 2π rad. As
it was expected in the last paragraph, once the disturbance is over, the estimation converges to the closest
value with respect to φ = 2nπ.

4.1.1.2 Parameter variation

The estimator needs to be applicable to different robot setups, such as changes in geometry and mass.
Considering that the previous analysis has only been applied to the cases with average load (150 Kg), it is
worth looking into the applications with possibly maximum and minimal load mass (0 Kg and 250 Kg). The
mass of the robot’s main body (60 Kg) should be added to the load that it is carrying and thus, the robot’s
total mass can vary from 60 Kg to 310 Kg and the previous analysis has only considered a mass of 210

Kg.

Figure 4.5 shows that the behaviour of the caster wheel changes considerably depending on the load that the
robot is carrying. The caster wheel rotation angle deviates from the origin much faster for the case of 60 Kg
than for 250 Kg. This is also reflected on the error’s graph in Figure 4.5b. The error is negligible, except
for the moments when the caster-wheel angles deviate from the origin, which happens in a faster manner
for lighter weights. However, the estimator adapts to this phenomena and its values are very close from the
measurement. This demonstrates that the estimator’s performance is not sensitive to the load that the robot
is carrying.

Jon Arrizabalaga Master of Science Thesis

Chapter 4. Simulations 46

(a) Real and estimated front-left caster-wheel for 60
Kg and 310 Kg

(b) Estimation errors in front-left caster-wheel angle
for 60 Kg and 310 kg

Figure 4.5: Estimation value and error of front-left caster wheel for different loads

4.1.2 Case study II: Forward-Backward case

Since the estimator is based on the kinematics of the caster-wheel, the effects of dynamics are neglected.
Considering the positive performance observed in the previous section, there is no need for such an extension.
This simplification compromises the estimator’s accuracy in some critical cases.

The ”forward-backward” case would be such a case. It consists on a scenario where the robot is driving
longitudinally (ω = 0 rad/s, α = 0 rad/s2) and switches the direction by reversing. This implies that the
caster-wheels will flip π rad. Specifying the instant when this event is going to take place involves precise
modelling of the dynamics not only from the robot, such as mass, inertia and caster-wheel friction parameters,
but also environment, such as road’s surface or wind. It also is highly sensitive to the integrator that is used
to solve the ODEs.

(a) Real and estimated front-left caster-wheel for dif-
ferent loads in ”forward-backward” case

(b) Estimation errors in front-left caster-wheel angle
for different loads in ”forward-backward” case

Figure 4.6: Estimation value and error of front-left caster-wheel for different loads in ”forward-backward”
case

This scenario has been replicated by running a simulation where the robot drives longitudinally with a speed
of v = 0.5 m/s, ω = 0 rad/s during the first half and reverses direction by driving v = −0.5 m/s, ω = 0

rad/s in the second half. The results are shown in Figure 4.6b. The estimator detects this variation with a
time difference, which varies depending on the load (530 ms for 60 kg, 270 ms for 210 kg and 170 ms for
310 kg) that it is carrying. These are considerably higher than the 20 ms transients analyzed previously. The
direction of the estimation’s rotation also varies depending on the load (it is correct only for the case of 60

Master of Science Thesis Jon Arrizabalaga

47 4.2. Comparison of MPC based local planners

kg). These facts confirm the sensitivity of this case to slight variations in the robot’s parameters.

Since the AS is not allowed to drive backwards, this case is not applicable to this use case. Furthermore,
extending the estimator, so that it would consider this particular scenario, would increase the complexity of
the estimator’s computational cost. Due to these reasons, finding a solution to this case is outside the scope
of this thesis.

4.2 Comparison of MPC based local planners

4.2.1 Procedure

The MPC formulated in Section 3.6 is tested by running three sets of simulation. Each simulation compares
three local planners: caster wheel agnostic, caster wheel agnostic with PF and caster wheel aware. A
hypotheses is formulated at the beginning of each simulation set. The results are used to fulfill an analysis
that leads to an evaluation of the hypotheses. The robot is replaced by a FMU exported out of the Modelica
based AS’s model developed in paper [5]. The FMU and the simulation framework are linked by the usage
of a Python library called FMPy [38]. The MPC’s implementation is explained in Section 3.7.

The first set of simulations consists on making the robot rotate on the spot. The case identification stated
in Section 2.4, reveals the importance of this scenario when referring to reaction torques, and, consequently,
motor torques. That is why, it is worth studying how torque term Jcw influences the behavior of the robot.
The second set of simulations makes the robot follow a time based reference which navigates in the opposite
direction of the robot’s initial orientation. This case provides insightful information regarding its capability
to cope with critical motions and, at the same time, follow a time based reference. The third simulation
set consists on following two global paths that concatenate complex motions. Out of here it is expected
to compare how all three local planners can handle the trade-off between chasing the moving reference and
minimizing motor torques.

Before getting started clarifications in nomenclature should be made. ”CWAGLP” stands for ”Caster Wheel
Agnostic MPC based Local Planner” and does not include the term that minimizes motor torques in the
OCP’s cost function. For this purpose, term ”CWAWLP”, ”Caster Wheel Aware MPC based Local Planner”,
has to be used. The last term, ”CWPFLP”, ”Caster Wheel Agnostic MPC based Local Planner with Path
Filter”, consists on attaching the PF to ”Agnostic”’s output. This notation is summarized in the following
Equation.

CWAGLP → J = Jnav

CWAWLP → J = Jnav + Jcw

CWPFLP → [J = Jnav] + PF

(4.1)

4.2.2 Evaluation criteria

Before comparing the navigation capability of each planner, it is worth defining on which criteria are the
results adopted to evaluate the simulation results.

Jon Arrizabalaga Master of Science Thesis

Chapter 4. Simulations 48

4.2.2.1 Navigation

The local planner’s navigation capabilities are going to be judged according to two statistical measurements:
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) of the trajectory’s deviation. Other
parameters, such as distance covered and time spent during navigation, are also going to be considered.

Trajectory’s deviation

The navigation’s success depends on the similarity between the robot’s trajectory and the global path. In
order to quantify this, MAE and RMSE are going to be applied over the orthogonal distance, derror, from
every point of the robot’s trajectory to its respective line in the global path.

Since the sampling of the robot’s pose runs at 125 Hz, derror is updated every 8 ms. Thus, the sum of
all distances approximates the area between the global path and the robot’s trajectory. This area is a
measurement of how much has the robot deviated from the desired path. Figure 4.7 helps to visualize this
measure.

(a) Trajectory deviation for trajectory 1. (b) Trajectory deviation for trajectory 2.

Figure 4.7: Trajectory deviations, derror, applied to all the points obtained from the robots trajectory when
implementing CWAWLP to trajectories for ”Navigation” simulation set. derror has been colored depending on
its respective line in the global trajectory.

MAE and RMSE

The areas colored in Figure 4.7 are a measure of the navigation’s discrepancy with respect to the desired
trajectory. Since the value of these areas consist of a set of distances (derror), they can be approximated by
applying MAE and RMSE to the mentioned set.

Both terms provide information regarding the average distance error. On the one hand, RMSE is more
appropriate for normally distributed errors, which means that it penalizes large deviations more severely. On
the other hand, MAE provides more intuitive results, since it is the average of all distances [39].

The navigation’s success rate depends on these two measurements. The lower their values, the higher the
resemblance between the robot’s trajectory and the global path. Thus, the planner with the lowest MAE and
RMSE is the one with the best navigation capabilities.

Master of Science Thesis Jon Arrizabalaga

49 4.2. Comparison of MPC based local planners

4.2.2.2 Torques

Motor torques are evaluated based on relative percentage change of mean and maximum values. Left and
right motors are analyzed separately for the rotation on spot case, while the average will be taken as a measure
for the case studies related to navigation.

4.2.3 Case Study I: Rotation on the spot

The purpose of these simulations is to study the performance of the torque term Jcw by making the robot
rotate on the spot. When doing so, two different scenarios have been considered for the initial angles of the
caster-wheels φ0. Each of the scenarios (”aligned” and ”misaligned”) is going to be simulated twice (with
and without torque term Jcw).

The first case is denoted as ”aligned” and consists on starting the rotation with the caster wheels aligned
with respect to the steady state value that they are going to achieve once the rotation takes place. From
Equation 3.12 and considering that a rotation in the spot involves v = 0 and ω = ωrotation, the initial caster
wheel angles can be defined as

φaligned
0 = φrotationSpot

ss = atan
(
∆xcw
∆ycw

)
(4.2)

When referring to the other case, term ”misaligned” is used. Instead of having the caster wheels aligned with
respect to the steady state values, their angle is equal to the robot’s orientation.

φmisaligned
0 = 0 (4.3)

Figure 4.8 depicts the difference between ”aligned” and ”misaligned” simulations. For the latter case there is
a transition from the initial caster wheel angle to the desired one. This does not occur for the second case,
because the caster-wheels initial angle matches the rotation’s steady state value.

Figure 4.8: Comparison of front caster wheel angles, φLF and φLB , for ”aligned” (discontinuous line) and
”misaligned” (continuous) cases applied to a rotation on the spot with caster wheel agnostic MPC based
local planner.

Jon Arrizabalaga Master of Science Thesis

Chapter 4. Simulations 50

4.2.3.1 Caster wheel agnostic - CWAGLP

Hypotheses

”When implementing the MPC based local planner in CWAGLP to a rotation on the spot, the optimal velocity
commands obtained from the OCP do not vary depending on the initial caster wheel angles φ0. This implies
that the motors have to provide an extra amount of torque to overcome the transition from φ0 to φss that
is required for the misaligned case.”

Results

(a) Velocity commands. (b) Motor torques.

Figure 4.9: Performance when rotating on the spot with a caster wheel agnostic MPC local planner for aligned
(discontinuous line) and misaligned (continuous line) initial caster wheel angles φ.

Notice that the caster wheel angle’s change for the front caster wheels is given in Figure 4.8.

Analysis

Figure 4.9a shows that the robot rotates on the spot (v = 0 m/s and ω = 1 m/s) without varying its behaviour
depending on the caster wheel’s initial angle. As the hypotheses has predicted, this induces an increase in
motor torques for the ”misaligned” case. According to Figure 4.9b, the raise in the maximum motor torque
can be quantified to an increase of 123.25% (from 4.0 Nm to 8.93 Nm). These peak values are related to
the caster wheel angle transition shown in Figure 4.8. Once the motors overcome the necessary torque to
align the caster wheel with respect to the steady state value, which happens approximately at t = 1.375 s,
the torques start decreasing.

4.2.3.2 Path Filter after caster wheels agnostic - CWPFLP

Hypotheses

”For CWPFLP the optimal commands obtained from the MPC are filtered according to the caster wheel’s
rotation angle φ and rolling speed γ̇. Consequently, when applied to a rotation on the spot, the velocity
commands that are fed to the robot differ depending on the initial caster wheel angles φ0. On the one hand,
if these are misaligned, it drives forward before it starts rotating. On the other hand, if they are aligned, the
PF does not filter the commands given by the MPC.”

Master of Science Thesis Jon Arrizabalaga

51 4.2. Comparison of MPC based local planners

(a) Velocity commands. (b) Motor torques.

Figure 4.10: Performance when rotating on the spot with a caster wheel agnostic MPC local planner and a
path filter for aligned (discontinuous line) and misaligned (continuous line) initial caster wheel angles φ.

Results
Analysis
As the hypotheses has foreseen, the performance of the local planner differs depending on the initial caster
wheel rotation angles. From the second term of Equation 2.2a , k · (φss − φ̂), the PF relies on the difference
between current and steady state caster wheel rotation angles, φss − φ̂ , and the ratio between caster wheel’s
current and steady state rolling speeds, k =

ˆ̇γ
QPF·γ̇ss

. At the beginning of the rotation the robot is standing
still, hence, γ̇ = 0 and k = 0. As a consequence, once the caster wheel starts rolling, the filtering relies on
∆φ, which is 0 for the aligned case and φss − φ̂ for the misaligned one. This explains why driving forward is
only necessary for the latter one and why the aligned one is a replica of the CWAGLP. This can be visualized
in Figure 4.10a.

From Figure 4.10b it can be stated that the PF is capable of varying velocity commands, so that motor
torques are minimized. For the misaligned case, the maximum value is 4.32 Nm, 48.4% of the CWAGLP’s
peak torque.

4.2.3.3 Caster Wheel aware

Hypotheses
”When implementing CWAWLP, the optimal inputs obtained from the OCP vary depending on the initial
value of the caster wheel angles φ0. On the one hand, for the ”aligned” case, the robot rotates on the spot
in a similar manner to the caster wheel agnostic case. On the other hand, if the caster wheels are misaligned,
the robot is expected to drive forward, so that term Jcw is mitigated. This leads to a decrease in motor
torques.”

Results
Analysis
The behaviour of the robot varies depending on the initial caster wheel angles. Only if these are not aligned
with the respective steady state angles, the robot drives slightly forward. This can be seen in Figure 4.11a,
where the longitudinal velocity command is 0.2 m/s . This results in a maximum torque value of 4.52 Nm,
which can be quantified as a decrease of 49.4% with respect to the maximum motor torque obtained with
CWAGLP. The fact that the longitudinal command for the misaligned case is negligible proves that this

Jon Arrizabalaga Master of Science Thesis

Chapter 4. Simulations 52

(a) Velocity commands. (b) Motor torques.

Figure 4.11: Performance when rotating on the spot with a caster wheel aware MPC local planner for aligned
(discontinuous line) and misaligned (continuous line) initial caster wheel angles φ.

formulation is capable of mitigating torques depending on the caster wheel’s state.

Minimizing torque term Jcw means that the difference between the caster wheel’s real and desired rolling
speed (γ̇ − γ̇ss) is kept low. From Equation 2.1, it can be concluded that the bore torque that the motors
need to overcome decreases. Comparing Figures 4.8 and 4.12b provides an alternative approach to understand
the reason behind this phenomena. Firstly, the transition of φ starts 1.1 s earlier and lasts 0.4 s longer for
CWAWLP. Since driving forward forces the caster wheels to roll, the bore torques that the motors need to
overcome is decreased. Consequently, the lowered torque limit is achieved earlier and the caster wheels are
capable to start rotating towards a steady state angle.

(a) CWPFLP (b) CWAWLP

Figure 4.12: Comparison of front caster wheel angles, φLF and φLR when rotating on the spot with different
local planners

4.2.4 Case Study II: Rotate and navigate in a straight line

These simulations replicate a scenario where the robot’s starting orientation is opposite to the navigation’s
one. Consequently, the robot needs to turn 180° before navigating in a straight line. Analyzing this use case
provides information about the performance of each planner to juggle rotations on the spot and navigation
capability.

Master of Science Thesis Jon Arrizabalaga

53 4.2. Comparison of MPC based local planners

4.2.4.1 Hypotheses

”The execution of the rotation on the spot that takes place before starting to navigate depends on each
planner. Similar behaviour to the one observed in subsection 4.2.3 is expected. Thus, CWAWLP and
CWPFLP result in a longitudinal velocity command that causes a longitudinal motion prior to the rotation.
Consequently, the robot does not turn while standing still, which leads to a significant decrease in motor
torques. Since the time based reference keeps navigating while the robot is rotating, the curves in the
trajectories of CWPFLP and CWAWLP might have a bigger radius than the CWAGLP’s one. In other words,
at the expense of minimizing torques, the length of the trajectory increases.

4.2.4.2 Results

(a) Longitudinal velocity commands. (b) Rotational velocity commands.

(c) Average of motor torques. (d) Trajectories.

Figure 4.13: Performance with CWAGLP (red), CWPFLP (green), CWAWLP (blue) for rotate and navigate
case study.

Before getting into the details of the results, some clarifications regarding this case study should be made
by referring to Figure 4.13d. The robot starts in position [x, y] = [−0.095, 0] facing the X-axis’ positive
direction. However, the time based reference navigates from −0.095 m to −4 m, negative direction of X-axis,
with v = 0.5 m/s along the ”global path” (black dashed line in Figure 4.13d).

Even if all three trajectories given in Figure 4.13d are close from each other, there are two differences that
need to be highlighted. Firstly, at the beginning of the navigation, CWPFLP (green) and CWAWLP (blue)
drive longitudinally from −0.095 m to 0.04 m. This does not occur for CWAGLP (red). Secondly, in the case
of CWAGLP, there is a small overshoot at 3 m, when the robot gets back to the global path.

Jon Arrizabalaga Master of Science Thesis

Chapter 4. Simulations 54

All these motions can also be observed in the velocity profile given in Figures 4.13a and 4.13b. The longitudinal
velocity command that takes place from t = 0 s to t = 2 s for CWPFLP and CWAWLP explains the forward
motion at the beginning of the navigation.

Figure 4.13c shows the average of both motor torques required to fulfill these trajectories. CWAGLP’s
motions result in a peak torque at the initial stage of the navigation, which does not happen for CWPFLP
and CWAWLP. Notice that the oscillations that appear after t = 11 s are caused by the time based reference’s
compression once it gets to the end point.

4.2.4.3 Analysis

Navigation
Table 4.1: Measurements to evaluate navigation’s performance when simulating CWAGLP (agnostic), CW-
PFLP (path filter) and CWAWLP (aware) for ”rotate and navigate” case study

Local planner Distance [m] Time [s] MAE [m] RMSE [m]
Agnostic 4.05 14.7 0.1154 0.1844

Path filter 4.16 14.7 0.09 0.1646
Aware 4.26 14.4 0.1378 0.1989

From the first column in Figure 4.1, it can be stated that the hypotheses has correctly foreseen that CWAGLP
would cover a shorter distance than CWPFLP and CWAWLP. Regarding MAE and RMSE columns, the
deviation with respect to the global path is very similar for all three planners. Even if CWPFLP navigates
closest to the global path (lowest MAE and RMSE values), the maximum relative difference with respect to
the other planners is only 4.78 cm.

Torques
Table 4.2: Measurements to evaluate motor torques usage when simulating CWAGLP (agnostic), CWPFLP
(path filter), CWAWLP (aware) for navigation after rotate and navigate case-study.

Local planner TL,max[Nm] TL,mean[Nm] TR,max[Nm] TR,mean[Nm]
Agnostic 8.89 1.59 8.94 2.23

Path filter 4.85 0.71 4.46 1.39
Aware 4.81 0.76 4.48 1.31

The content shown in Figure 4.13c is covered in detail in Figure 4.2. As the hypotheses has predicted
CWPFLP and CWAWLP have reduced the peak torques that the CWAGLP’s rotation on the spot implies.
This change can be quantified as a decrease of 54% in both motors. Moreover, the average torques have also
been lowered to 52% for the left motor and 62% for the right one.

4.2.4.4 Conclusions

This case study has analyzed an scenario where the robot needs to rotate before navigating in a straight
line. The results provide insightful information regarding each planner’s navigation capabilities and torque
requirements. The behaviour observed in Section 4.2.3 has been replicated and confirms that CWPFLP
and CWAWLP avoid rotating on the spot, which decreases motor torques considerably. When doing so, the
navigation’s quality is not sacrificed, since all three trajectories are very close from each other. Consequently,

Master of Science Thesis Jon Arrizabalaga

55 4.2. Comparison of MPC based local planners

this Section has proved that CWPFLP and CWAWLP are capable of mitigating torques without requiring
meaningful variations in the robot’s trajectories.

4.2.5 Case Study III: Navigation across given global paths

The purpose of these simulations is to extend the analysis made in Section 4.2.4 by navigating through more
complex paths. This will lead to the evaluation of each motion planner’s performance when following a specific
path and, at the same time, its capability to mitigate motor torques. To do so, two different trajectories are
considered.

In Sections 4.2.3 and 4.2.4 the performance of MPC formulations when rotating on the spot has been
analyzed. It has been proven that CWAWLP and CWPFLP can minimize motor torques when rotating on the
spot according to caster wheel states. These simulations have validated the torque term Jcw of CWAWLP
and the PF included in CWPFLP. However, their capability to navigate is still unknown.

The purpose of the following simulations is to study how CWAWLP and CWPFLP perform when navigating
along two given trajectories, whose main attributes are short distances between turning points and curves
featured by sharp angles. Consequently, torques above the nominal range are required to complete these
trajectories.

(a) Global path 1. (b) Global path 2.

Figure 4.14: Global paths for analyzing MPC based local planners performance when navigating. They are
characterized for making the robot turn on the spot and being torque demanding.

4.2.5.1 Hypotheses

”Considering that CWAWLP and CWPFLP try to minimize motor torques, these planners tend to increase
the radius of the curves. Therefore, CWAGLP is the formulation that keeps the closest distance with respect
to the global path. Softening the trajectory by taking longer curves leads CWAWLP and CWPFLP to have a
lower average motor torque than CWAGLP. Taking into account that the CWPFLP’s PF is not included in the
OCP, but attached to its output, CWAWLP handles better than CWPFLP the trade-off between navigation
and torque mitigation.”

Jon Arrizabalaga Master of Science Thesis

Chapter 4. Simulations 56

(a) Longitudinal velocity commands. (b) Rotational velocity commands.

(c) Average of motor torques. (d) Trajectories.

Figure 4.15: Performance when navigation through global path 1 with CWAGLP (red), CWPFLP (green),
CWAWLP (blue)

4.2.5.2 Results

Global path 1
Figures in 4.15 show that all three planners behave in a very similar manner. No meaningful differences can
be identified between CWAGLP and CWPFLP. Nevertheless, in Figure 4.15d it can be seen that CWAWLP
slightly increases the radius of the curves. This is related to higher longitudinal velocity commands shown
in Figure 4.15a. The average motor torques are also alike for all three planners, but there are some small
differences for the case of CWAWLP in t = 7.5 s and t = 15 s. In the first case oscillations are reduced, while
in the second there is a small increase in the average torque value.

Global path 2
From Figure 4.16d it can be seen that CWAGLP covers the shortest distance, while CWPFLP’s and CWAWLP’s
trajectories are very close from each other. Regarding motor torques, even if all three planners seem to follow
the same pattern, CWAWLP stands out for getting rid of the spike in t = 9 s and the oscillations around
t = 10 s.

4.2.5.3 Analysis

In order to study the navigation’s quality and the respective motor torques separately, the analysis is divided
into two groups. This is going to be based on different measures explained in subsection 4.2.2 and references
to Figures 4.15 and 4.16.

Master of Science Thesis Jon Arrizabalaga

57 4.2. Comparison of MPC based local planners

(a) Longitudinal velocity commands. (b) Rotational velocity commands.

(c) Average of motor torques. (d) Trajectories.

Figure 4.16: Performance when navigation through global path 2 with CWAGLP (red), CWPFLP (green),
CWAWLP (blue).

Navigation
The results shown in Figures 4.15d and 4.16d have been summarized in Table 4.3.

Table 4.3: Measurements to evaluate navigation’s performance when simulating CWAGLP (agnostic), CW-
PFLP (path filter) and CWAWLP (aware) for two different trajectories.

Trajectory Local planner Distance [m] Time [s] MAE [m] RMSE [m]

1
Agnostic 8.13 18.0 0.1561 0.2035

Path filter 8.17 18.0 0.1602 0.2081
Aware 8.57 17.82 0.1881 0.2400

2
Agnostic 6.06 15.54 0.1846 0.2364

Path filter 6.39 16.26 0.2061 0.2690
Aware 6.34 14.82 0.2097 0.2674

Table 4.3 reveals that in both case studies CWAGLP is the planner which covers the shortest distance.
Regarding navigation time, CWAWLP is the fastest to the end of both trajectories. When it comes to the
trajectory’s closeness with respect to the time based reference’s global path, CWAGLP performs best (smallest
MAE and RMSE values), while CWAWLP and CWPFLP tend to deviate more.

Torques
The torques of left and right motors have been measured separately. The respective information its summa-
rized below.

Jon Arrizabalaga Master of Science Thesis

Chapter 4. Simulations 58

Table 4.4: Measurements to evaluate motor torques usage when simulating CWAGLP (agnostic), CWPFLP
(path filter), CWAWLP (aware) for two different trajectories.

Trajectory Local planner TL,max[Nm] TL,mean[Nm] TR,max[Nm] TR,mean[Nm]

1
Agnostic 3.98 1.35 5.32 1.88

Path filter 4.01 1.36 5.35 1.9
Aware 4.27 1.52 4.96 2.0

2
Agnostic 5.2 2.15 5.38 1.78

Path filter 5.2 2.12 5.09 1.7
Aware 5.08 2.11 5.12 1.84

Table 4.4 and Figures 4.15c, 4.16c show that all three planners apply very similar torques when navigating
through both trajectories. Considering the inconsistency of the torques obtained for each global path and
the similarity between different planners, no clear trend can be observed. The cause of this phenomena is
explained in the following subsection.

4.2.5.4 Conclusions

The results and analysis given during Subsection 4.2.5, combined with the ones done in 4.2.3 and 4.2.4 provide
enough information to observe the strong and weak points of each planner in a simulation framework.

The navigation’s analysis has confirmed that CWAGLP is the planner that sticks best to the global path.
However, the difference with respect to CWAWLP and CWPFLP is negligible if the AS’s dimensions and
the deviation’s mean values are compared. Furthermore, its relative deviation is persistent for both case
studies.

From subsections 4.2.3 and 4.2.4, it was expected that CWPFLP and CWAWLP would decrease the torques
obtained in CWAGLP. However, out of the torque’s analysis, all three planners apply very similar values.
The command velocities in Figures 4.15 and 4.16 are helpful to explain this phenomena. In these figures,
it can be perceived that CWAGLP’s motion profile is close to the optimal one. That is why, CWPFLP and
CWAWLP are not capable of making significant reductions. Since CWAGLP’s tuning ensures that the time
based reference is chased smoothly, the robot will never be submitted to abrupt accelerations which imply
critical movements that could cause undesired motor torques. Thus, applying a time based reference to
complex global paths hinders visualizing the impact of the PF and caster wheel aware term.

Nevertheless, Figures 4.15c and 4.16c demonstrate that CWAWLP is capable of removing torque oscillations
that appear in CWPFLP and CWAGLP. On top of that, CWAWLP also decreases the time required for getting
to the end point.

Looking into the cost of the OCP provides an alternative approach for understanding the impact of the caster
wheel aware term. Adding a quadratic term to the objective function, should increase its value. However, its
physical implications in the AS’s behaviour causes the opposite if the caster wheels are in a blocking scenario,
such as the rotation on the spot that takes place from t = 8 s to t = 12.5 s in Figure 4.17.

Putting all these arguments together, it can be stated that CWPFLP and CWAWLP are capable of mitigating
torques, without sacrificing the navigation’s quality. On top of that, CWAWLP requires less time to reach the
goal point. Finally, it has been learnt that a time based reference navigation policy is not a suitable approach
to compare torque mitigation planners in complex global paths.

Master of Science Thesis Jon Arrizabalaga

59 4.3. Summary

Figure 4.17: Comparison of OCP’s cost value for global path 2 for differen planners.

Consequently, the navigation capabilities presented in this section combined with the capacity to deal with
critical motions in Subsections 4.2.3 and 4.2.4 prove that the caster wheel aware term formulated in Section
3.6 and PF extended in Section 3.8 are tools that can be implemented to minimize motor torques in DDMR
with caster wheels.

4.3 Summary

In this Chapter the observer and the MPC formulation have been tested by running simulations. In the
first half, measured and estimated caster wheel rotation angles have been compared. When doing so, the
observer’s convergence with respect to steady state values has been demonstrated by adding disturbances
and varying the load. In the second half, the MPC formulated in Section 3.6 has been evaluated. For this
purpose, three simulation sets have been carried out. It has been shown that adding the caster wheel aware
term, Jcw, to the cost function causes a similar behaviour to attaching the PF to the output of the agnostic
planner. For both cases, mean and maximum torques decrease without degrading the navigation’s quality. It
has also been learnt that following a time based reference biases the mitigation of reaction torques. In the
upcoming chapter this validation is extended from a virtual framework to an experimental setup, where the
proposed motion planners are integrated in the AS.

Jon Arrizabalaga Master of Science Thesis

Chapter 4. Simulations 60

Master of Science Thesis Jon Arrizabalaga

Chapter 5

Field Test

The MPC based local planners formulated in Section 3.6 combined with the PF’s extension in subsection 3.8,
have led to a comparison of three different local planners in a virtual framework. Given that some important
indexes for real application cannot be validated just by simulations, two case studies are conducted in an
experimental setup. To this end, this chapter covers the implementation of the MPC in the AS and the
analysis of the results obtained in each case.

5.1 Definition of case studies

Two different sets of experiments are conducted. The first one consists on a rotation on the spot, where the
PF’s and CWAWLP’s performances are studied. Secondly, a modified version of the global path presented
in Subsection 4.2.4 is applied for analyzing torque mitigation when following a time based reference with
CWAGLP, CWPFLP and CWAWLP. Moreover, estimated and measured caster wheel rotation angles are
compared.

According to the hypotheses stated in Section 2.4, torques out of nominal range are required when rotating
on the spot. As a first experimental step, this hypotheses, along with the MPC and PF solutions developed
in Sections 3.6 and 3.8 are tested.

Simulations in the previous Chapter have shown that following a time based reference with a properly tuned
MPC has an influence on the applied motor torques and hinders the impact of the caster wheel aware term.
Hence, looking into long global paths does not provide any valuable information regarding motor torques.
Therefore, the second set of tests consists on an extended version of the case study in Subsection 4.2.4, while
the case study in Subsection 4.2.5 is discarded.

When doing so, the caster wheel state observer has been validated by comparing measured and estimated
rotations angles. For this purpose, a sensor-system to measure caster wheel rotation angles has been designed
and assembled for both wheels at the rear axle.

61

Chapter 5. Field Test 62

5.2 Experimental setup

5.2.1 Layout

Converting simulations running in a virtual framework into a field test requires a neutral environment that will
not interfere in the AS’s outcome. Furthermore, there is a need for an infrastructure capable of measuring
the parameters that have been considered to be known during simulations. The experiments were executed
in a test field that fulfilled all these conditions. An overview of the setup is given in Figure 5.1.

Figure 5.1: Experimental setup for performing case studies on hardware.

The testing site consists of an obstacle-free flat surface located below a set of cameras that track the robot’s
position. This vision system is called ”Opti-Track” [40] and is connected to a desktop machine denoted as
”Vision Unit”. The robot’s location is sent from the ”Vision Unit” to the ”Navigation Unit” (Lenovo Thinkpad
T470 with a processor called Intel®Core i5-7300U operating at 2.5 GHz and 8 GB of RAM), which runs the
navigation algorithm that controls the robot’s motions by sending velocity commands to the robot. These
are converted to motor commands by the driver running inside the RCU.

All three computers are connected through a ROS network, whose master is the RCU and can be accessed
from the ”Navigation Unit” through Secure Shell protocol (SSH). Details on the ROS network are given in
Section 5.2.2.

The navigation algorithm is listening to a joystick (”Logitech F710”), which can either be used as a remote
control to drive around, or can activate the ”autonomous mode”, so that the local planner follows a specified
global path. The PF can also be activated/deactivated from the remote control. The algorithm’s working
principle is covered in 5.2.3.

Master of Science Thesis Jon Arrizabalaga

63 5.2. Experimental setup

5.2.2 Network

The experimental framework explained in 5.2.1 involves three different computers which need to operate
under a network capable of exchanging information in a synchronized manner. This was achieved by applying
the ROS network shown in Figure 5.2.

Figure 5.2: Network of experimental setup for performing case studies on hardware.

The components can be classified according to the color that they have been assigned. Hardware devices,
such as the AS, joystick and opti-track cameras, can be visualized in yellow. The three computers are shown
in green. Since the RCU is the master of the network, its outline is thicker. Relevant components inside
the robot are shown in blue and the micro-controller in charge of publishing sensor values is purple. Arrows
represent the transfer of messages between two devices and the names refer to their respective ROS-topic.
The machine that is linked to the arrow’s origin contains a ROS-publisher, while the one attached to its end
has a subscriber.

The network’s master is the RCU and runs a script that connects the robot’s hardware with the ROS network.
The velocity commands received from the ”Navigation Unit” are stored and converted to motor commands,
which are sent with a frequency of 50 Hz. As soon as these are received by the motors, the RCU publishes a
feedback message containing, motor currents, IMU and odometry data to the ROS network.

The ”Navigation Unit” runs the navigation algorithm, which can drive the robot in manual or autonomous
mode. It is subscribed to the feedback information provided by the motors and the robot’s location coming
from the ”Vision Unit”. If the manual mode is activated, it also listens to the joystick’s velocity commands.
Apart from that, for analysis purposes, it logs sensor values published by the micro-controller.

Jon Arrizabalaga Master of Science Thesis

Chapter 5. Field Test 64

5.2.3 Navigation algorithm

The navigation algorithm is subscribed to different buttons on the joystick. This way, not only the robot can
operate in a manual or autonomous mode, but the PF can also be activated/deactivated by pushing a single
button.

Once the autonomous mode is activated, the robot will drive around a previously defined global path. This
is done by following the logic exposed in the pseudo code shown below.

MPC local planner
Initialization:

mpc = MPC_local_planner
navigation = navigation_local_planner
observer = caster_state_observer
pf = caster_path_filter
HLC.start [20Hz]
LLC.start [200Hz]

HLC(x):
while True do
ref = navigation.update(x, time)
a, α = mpc.NLPsolver(x, ref)

end while
LLC(a, α):

while True do
if navigation.check = finished then

HLC.stop
break

end if
x = UpdateState(pose, odometry, est)
v, ω = ForwardEuler(a, α)
est = observer.estimate(odometry, v, ω)
if pf.on = True then

v, ω = pf.filter(est)
end if
Publish(v, ω, est)

end while
manual_mode.activate

The local planner (App. B.1) is divided into four classes: the MPC (App. B.2), the time based reference
(App. B.3), the observer (App. B.4) and the path filter (App. B.5). In this way, the functions required to
follow the global path are implemented in a modular fashion, which eases the correction of bugs and facilitates
the formulation of new algorithms. Notice that all the scripts have been added to App. B.

These classes are applied in two independent loops that run at different frequencies. Since the MPC’s horizon
choice in Section 3.4 implies a rate of 20 Hz and the computation time required for solving the NLP varies
between 20 ms and 50 ms, parallelization is required. This is done by applying a Python package called
”Multiprocessing”. Its working principle is similar to the one of a thread, but avoids the ”Global Interpreter
Lock” by using subprocesses instead of threads, which results in an increase on speed [41].

Once the three classes are initialized, a process, named ”High Level Control” (HLC), that runs the MPC at
the desired frequency is started. It takes the robot’s most recent state, x, as input and returns the optimal
linear and angular accelerations (a and α).

Master of Science Thesis Jon Arrizabalaga

65 5.2. Experimental setup

Simultaneously, another loop, which represents the ”Low Level Control” is running at a rate of 200Hz. This
loop starts by verifying if the robot has reached its destination or the autonomous mode has been deactivated.
If none of this is true, it updates the state vector. To do so, it replaces the position and velocity states with the
member variables stored in the last calls of the subscriber-callback functions for topics \pose and \odometry.
The estimations are updated by applying the ones obtained in the previous iteration.

Notice that LLC’s inputs are accelerations (a and α), obtained from the HLC’s process. Since the RCU takes
velocity commands (v and ω) as inputs, Forward Euler integration is applied to the accelerations. If the path
filter is activated, the velocity commands are filtered out depending on the estimated caster wheel state, est.
Finally, the resultant velocity commands are published to the ROS network.

5.2.4 Implementation

5.2.4.1 Tracking system

The pose of the AS is obtained through a motion tracking system [42]. A set of cameras, which lay above the
testing area, capture the light that is reflected from four markers attached to the robot’s upper surface (see
Figure 5.3). ”Motive” is a software running in the ”Vision Unit” and converts the data sampled by the cameras
into coordinates. Its broadcasting options allow to publish the robot’s pose to the ROS network.

Figure 5.3: Reflective markers attached to the robot’s upper surface for tracking its pose.

When calibration takes place, a ”Calibration Result Report” is provided by the software. According to this, the
”Overall Reprojection 3D Error” is 0.478mm and the mean triangulation error is 0.6mm (the recommended
maximum is 2.8mm). The software classifies this calibration as ”Exceptional”, the highest quality among the
possible ranks [40].

Jon Arrizabalaga Master of Science Thesis

Chapter 5. Field Test 66

5.2.4.2 Active Shuttle

As it was mentioned in Section 1.5, apart from the RCU, inside the robot a SCU is also running. It ensures that
safety requirements, such as minimum distance to surrounding obstacles and synchronization between motions
and blinkers, are always satisfied. Since the robot is not allowed to operate above certain combinations of
longitudinal and angular velocities, new linear restrictions need to be included into the OCP formulated in
Section 3.6. Considering that these provide confidential information regarding hardware characteristics, they
are not documented in this thesis.

5.2.4.3 Sensors

Since CWPFLP and CWAWLP modify the robot’s trajectory depending on the states of the caster wheels,
these planners are considered to be caster wheel aware approaches. Both rely on the kinematic model of the
observer which estimates the caster wheel’s rotation angle, φ, and rolling speed, γ̇. That is why, comparing
estimated and real caster wheel states provides meaningful information to validate, not only the observer
formulated in Section 3.3, but also the ”caster wheel aware” term, Jcw, included into the OCP’s cost function
in Section 3.6.

In order to measure the rotating angle of the caster wheels, encoders (”AMT22” - CUI devices [43]) have
been placed at the rear axle. The rotational movement of the caster wheel is transferred to the encoder
through a 3D printed shaft that is attached to the caster wheel’s frame. This design requires replacing the
caster wheel assembly’s bolts with screws that have holes through them. Both encoders are connected to a
micro-controller (Teensy 3.6 [44]), which is plugged to the RCU through USB. In this way, the micro-controller
reads the values of both encoders and publishes them to the ROS network. Notice that the encoders are
powered from the USB’s 5V line. An overview of the assembly is given in Figure 5.4. More details about this
measurement system are given in Figure A.3 in the appendix.

(a) Isometric view. (b) Bottom view.

Figure 5.4: Assembly of measurement system for caster wheel rotation angle, φ, at AS’s rear axle.

5.3 Case study I: Rotation on spot

The case identification in Section 2.4 and results obtained in Subsection 4.2.3 reveal the importance of
rotations on the spot when mitigating motor torques in a DDMR with caster wheels. That is why, the

Master of Science Thesis Jon Arrizabalaga

67 5.3. Case study I: Rotation on spot

behaviour of the PF’s extension proposed in Section 3.8 and CWAWLP formulated in Section 3.6 have been
observed in the experimental setup presented in Section 5.2.

5.3.1 Path Filter

In order to examine the PF when rotating on the spot, a command of [v, ω]=[0, 0.7] is published to topic
\cmd_vel_Des. If the PF is activated, this command is filtered depending on caster wheel estimations and
published to topic \cmd_vel, so that a subscriber callback in the RCU converts it to motor references.

(a) Average (continuous) and maximum (dashed) mo-
tor torques.

(b) Command (continuous) and odometry (dashed)
velocities.

Figure 5.5: Comparison of velocity commands and torques in AS when rotating on the spot with and without
PF.

Figure 5.5 shows very similar results to the ones obtained in 4.2.3, where the initial torque spike is reduced
by driving forward instead of rotating on the spot. In Figure 5.5a it can be visualized that the average and
maximum motor torques are reduced to the half. This can be understood by looking into the motion profile
given in Figure 5.5b. When the PF is activated, the robot moves forward (purple) and rotates (brown)
simultaneously, instead of turning (orange) while standing still (blue). Notice that the dashed thinner lines
represent the robot’s real velocity given by the motor’s odometry feedback.

Table 5.1: Measurements to evaluate motor torques usage when rotating on the spot with and without PF
in the Active Shuttle.

Local planner TL,max [Nm] TL,mean [Nm] TR,max[Nm] TR,mean[Nm]
without PF 11.16 2.03 13.99 1.84

with PF 4.4 1.61 7.75 1.87

Since there is no navigation involved in this experiment set, the focus is put on the analysis of motor torques.
The results shown in Figure 5.5a have been summarized in Table 5.1. According to these results, maximum
torques have been reduced by 60.57% and 44.6% for the left and right motors. Regarding mean values, the
left motor decreases by 20.7%, while an increase of 1.6% happens for the right side. If mean values of both
motors are averaged, the PF reduces torques by 52%.

Jon Arrizabalaga Master of Science Thesis

Chapter 5. Field Test 68

5.3.2 MPC based local planners

So that the performance of MPC based planners when rotating on the spot in hardware is analyzed,
CWAGLP and CWAWLP have been compared in a similar manner to the simulations performed in Subsection
4.2.3.

(a) Average (continuous) and maximum (dashed) mo-
tor torques.

(b) Command (continuous) and odometry (dashed)
velocities.

Figure 5.6: Comparison of velocity commands and torques in Active Shuttle when rotating on the spot for
CWAGLP and CWAWLP.

The results given in Figure 5.6a show analogous patterns to the ones obtained in the simulations. The same
way that happened in the PF’s case, a longitudinal motion gets rid of the initial torque spike. This is shown
in Figure 5.6a, where the decrease in average and maximum motor torques can be visualized. The velocity
commands in Figure 5.6a justify this difference. The explanation given for Figure 5.5b is applicable to this
case. Notice that CWAWLP’s torque oscillations that start at t = 5 s are caused by the lack of smoothness
in the rotational velocity command (brown).

Information regarding motor torques has been summarized in Table 5.2. The decrease in peak torques is
quantified to 44.04% and 26.6% for left and right maximum motor torques. Regarding mean torques, the
left motor has been reduced by 21.97% and the right one increased 14.95%. Converting these results to the
average of both motor torques, the decrease provoked by the caster wheel aware term is 36%.

Table 5.2: Measurements to evaluate motor torques usage when rotating on spot with CWAGLP (agnostic)
and CWAWLP (aware) in the Active Shuttle.

Local planner TL,max[Nm] TL,mean[Nm] TR,max [Nm] TR,mean[Nm]
Agnostic 7.97 1.82 7.33 1.72
Aware 4.46 1.42 5.38 1.97

5.3.3 Conclusions

Both CWAWLP and CWPFLP minimize mean and maximum motor torques according to the caster wheel’s
state by converting a pure rotational command into a combination of longitudinal and rotational commands.
In this way, the robot drives forward instead of rotating on the spot, and consequently, reaction torques in

Master of Science Thesis Jon Arrizabalaga

69 5.4. Case study II: Navigation across a given global path

the caster wheels are minimized. For CWPFLP the reduction on average of both motors is 52% and for
CWAWLP is 36%. However, it needs to be highlighted that these values cannot be compared, since they are
from experiments. In the first case, the PF was attached to a pure rotational command, while in the latter
one, CWAGLP was compared against CWAWLP. However, the responses of both methods were the same.
The step-shaped rotational command is smoothed and a low longitudinal command ensures that the robot
is moving forward, while it is rotating. From this case study it can be stated that CWPFLP and CWAWLP
have the same behavior when rotating on the spot.

5.4 Case study II: Navigation across a given global path

In order to observe the local planner’s capacity to trade-off between torque mitigation and navigation capa-
bilities, the global path is defined and shown in Figure 5.7.

Figure 5.7: Global path for conducting experiments to compare CWAGLP, CWPFLP and CWAWLP.

It consists of two sections. Once the time based reference covers the first section (green) and gets to the
midpoint (yellow), it waits for the robot to arrive. As soon as this happens, it starts Section 2 (red) and
gets back to the origin (purple). Consequently, it involves two rotations on the spot. In order to ensure
that uncertainties are included, each planner navigates across the global path 10 times in a continuous
manner.

5.4.1 Validation of the observer

The caster wheel rotation angles have been measured through the system presented in 5.2.4.3. The measured
and estimated angles, along with the respective absolute errors, are given in Figure 5.8

Jon Arrizabalaga Master of Science Thesis

Chapter 5. Field Test 70

(a) Comparison between measurements and estima-
tions.

(b) Absolute error between measurements and esti-
mations.

Figure 5.8: Analysis of measurements (continuous) and estimations (dashed) of rear caster wheel rotation
angles φ. Rear left (BL) is shown in blue and rear right (BR) in red.

Figure 5.8 shows that the estimations and measurements only differ in steady state equilibrium angles by
a magnitude of 0.1 rad. The results obtained out of this comparison are very similar to the ones in the
simulation based validation in Subsection 4.1. In fact, this error also occurred when testing the observer in
the virtual framework (see Figure 4.2). Otherwise, Figure 5.8b proves that the error is negligible (≈ 0 rad)
for the rest of the cases. Computing the RMSE values results in 0.0292 rad and 0.0230 rad for rear-left and
-right caster wheels. Thus, the observer presented in Section 3.3 is validated and the estimations obtained
out of it can be considered to be an accurate measurement of the caster wheel rotation angle.

5.4.2 Results

As mentioned above, each planner has been executed 10 times continuously across the global path. In this
way, the recorded data includes more cases, uncertainties are minimized and conclusions arising from the
results are more generic.

The average trajectory from the 10 iterations is represented by a continuous line in Figure 5.9a, while the
possible deviations are included in the shade with the respective color. The same representation has been
applied for the velocity commands Figure in 5.9c. When it comes to motor torques, the mean of the averaged
torques along the 10 iterations are given by a continuous line and the shades stand for the range of the
maximum torques between both motors.

In Figure 5.9a it can be observed that CWPFLP and CWAWLP increase the radius of the curves. However,
deviations seem to be similar for all planners. Regarding maximum motor torques, there are two points that
should be highlighted. Firstly, CWAWLP’s values are lower than those of the other two. Secondly, CWPFLP
has two severe peaks at t = 0 s and t = 30 s. In the case of mean torques, visually relevant differences
cannot be recognized.

The increase of the curves’ radius mentioned in the previous paragraph can be understood by looking into
the velocity command Figure in 5.9c. For both cases (t = 0 s, t = 30 s for the first curve and t = 15 s for
the second), CWPFLP and CWAWLP decrease the time span where v = 0 m/s. Consequently, the robot
drives longitudinally for a longer time and the rotations on spot are neglected, augmenting the trajectory’s

Master of Science Thesis Jon Arrizabalaga

71 5.4. Case study II: Navigation across a given global path

(a) Trajectories. (b) Motor torques.

(c) Longitudinal (top) and angular (bottom) velocity commands.

Figure 5.9: Comparison of CWAGLP (blue), CWPFLP (orange) and CWAWLP (green) in Active Shuttle
when navigating. The line with a stronger colour represents average value. Maximum values are given by the
shade.

radius.

As far as CWPFLP is concerned, there are two points that deserve a detailed explanation. The first relates
to the existence of abrupt changes in the longitudinal velocity commands in Figure 5.9c around t = 3 s and
t = 4 s. When the PF filters velocity commands, it violates the SCU’s constraints explained in Subsection
5.2.4.2, causing this unit to be actuated by sending an interrupt. This scenario is another representation of
the problem stated in Section 1.2. The PF is not capable of considering other circumstances and it cannot
guarantee that all constraints are fulfilled, obliging to trigger the SCU.

The second observation refers to the aforementioned spikes in maximum motor torques during the first curve
(X = −2 m, t = 0 s and t = 30 s). These are caused because the PF is implemented in a single caster
wheel, the front-left one in this case. Consequently, velocity commands are filtered only according to the
state of this wheel, while those of the other three are not considered. As a consequence, the motor that is in
the opposite side is sacrificed. In order to verify this, the PF has been moved to the front-right caster wheel
and the case study has been replicated. The obtained results are given in Figure 5.10. When doing so, not
only the trajectory changes, but also the spikes of the maximum torque are moved from the first curve (t = 0

Jon Arrizabalaga Master of Science Thesis

Chapter 5. Field Test 72

s sand t = 30 s) to the second (t = 15 s). Since rotations in these curves occur in opposite directions, the
PF only favours one of the rotations and generates torque-peaks in the other case. This issue can be solved
by extending the PF presented in paper [5], so that the states of all four caster wheels are considered when
velocity commands are filtered.

(a) Trajectories. (b) Motor torques.

Figure 5.10: Comparison of applying CWPFLP in the front left (FL) or front-right (FR) in the AS when
navigating. The line with a stronger colour represents average value. Maximum values are given by the
shade.

5.4.3 Analysis

The results obtained above are analyzed in three separate blocks. Firstly, navigation characteristics of each
planner are studied and a comparison is conducted. Secondly, motor torque usage is evaluated by looking
into mean and maximum torques. Thirdly, the energy consumed by each planner is analyzed.

5.4.3.1 Navigation

Trajectories obtained in Figure 5.9a are quantified in Table 5.3, where covered distance, navigation’s time
and quality (MAE,RMSE) for the average of the 10 repetitions are given. Deviations obtained out of the
other repetitions are included as uncertainties.

Table 5.3: Measurements to evaluate navigation’s performance when applying CWAGLP (agnostic), CWPFLP
(path filter) and CWAWLP (aware) for navigation case study in the AS.

Local planner Distance [m] Time [s] MAE [m] RMSE [m]
Agnostic 8.28 ± 0.03 30.73 ± 0.06 0.1654 ± 0.0093 0.1973 ± 0.0099

Path filter 8.51 ± 0.02 31.08 ± 0.1 0.13 ± 0.0022 0.1657 ± 0.002
Aware 8.91 ± 0.03 30.33 ± 0.03 0.1699 ± 0.0033 0.2057 ± 0.0047

The first column of Table 5.3 shows that CWPFLP and CWAWLP cover longer distances than CWAGLP.
This is related to the fact that they take wider curves. For the first case, the difference is 0.23 m, while for
the latter it is 0.63 m. Even if CWAWLP navigates across a longer path, it needs 0.4 s less than CWAGLP.
This does not hold for CWPFLP, because it requires 0.35 s more. Regarding navigation’s quality, CWAGLP
and CWAWLP are very close to each other. The maximum difference in RMSE considering uncertainties is
4%. In terms of average deviation (MAE), this is equivalent to a difference of 8.1 mm. CWPFLP performs

Master of Science Thesis Jon Arrizabalaga

73 5.4. Case study II: Navigation across a given global path

better, but the deviation 4 cm with respect to the other two still remains insignificant when considering the
robot’s dimensions. Notice that all the results that have been obtained by field test have also been observed
when doing simulations in the virtual framework (see Table 4.3).

5.4.3.2 Motor torques

The numerica results in Figure 5.9b are summarized in Table 5.4, where the mean and maximum motor torques
are quantified. CWAWLP reduces mean torques by 0.04 Nm and maximum torques by 0.9 Nm compared to
CWAGLP. In percentages, these decrements are equivalent to 3.83% and 15.86%. In the case of CWPFLP,
the already explained implementation issues combined with the interrupt of the SCU, result in an increase of
mean and maximum torques. The first rise is negligible (1.3%), while the second is severe (20%).

Table 5.4: Measurements to evaluate motor torques usage when applying CWAGLP (agnostic), CWPFLP
(path filter), CWAWLP (aware) for navigation case-study in the AS.

Local planner Tmean[Nm] Tmax[Nm]
Agnostic 2.35 ± 0.04 5.64 ± 0.25

Path filter 2.38 ± 0.08 6.77 ± 0.44
Aware 2.26 ± 0.05 4.74 ± 0.53

5.4.3.3 Energy

The energy consumption has also been measured by adding the product of the force and the distance covered
at every sample.

E =

tend∑
t=0

Tt

rdw
· dt (5.1)

where T is the motor torque and dt is the distance covered during every sampling interval. The absolute
energy consumption, along with the ratio respective to the CWAGLP are given in Table 5.5.

Table 5.5: Energy consumption when applying CWAGLP (agnostic), CWPFLP (path filter), CWAWLP (aware)
for navigation case-study in the Active Shuttle.

Local planner Etotal[J] Eratio
Agnostic 394.89 ± 5.28 1.0

Path filter 419.79 ± 13.6 1.063 ± 0.049
Aware 418.83 ± 9.37 1.061 ± 0.038

Due to the fact that CWPFLP covers a longer distance and the average motor torque is also higher, its
energy consumption is the largest of all. In the case of CWAWLP, the reduction in mean motor torques is not
sufficient when compared to the increase in the covered distance and the decrease in navigation time, causing
the PF to consume more energy. Consequently, both, CWPFLP and CWAWLP, consume approximately 24 J
more, equivalent to an rise of 6%.

5.4.4 Conclusions

When navigating across a global path in a continuous manner some differences have been identified. CWAWLP
covers more distance in less time. However, the deviation of the robot’s trajectory with respect to the global

Jon Arrizabalaga Master of Science Thesis

Chapter 5. Field Test 74

path remains very similar for all three planners. The most significant differences have been observed in motor
torques, where CWAWLP has been able to minimize both, mean and maximum values. This cannot be
achieved on CWPFLP, since both quantities have increased.

In fact, regarding CWPFLP, two weak-points have been spotted. Firstly, applying the PF to a single caster
wheel neglects the state of other caster wheels and endangers the motor on the opposite side. Secondly, it
has been observed that the PF cannot guarantee the fulfillment of other constraints, since it has infringed
the restrictions related to the SCU. In a similar manner, restrictions regarding obstacle avoidance could be
violated and thus, it can be stated that the PF cannot guarantee the navigation’s completion.

Even if the energy consumptions for all three planners are very similar, the ones of CWPFLP and CWAWLP
are slightly higher. This can be explained by the fact that the navigation’s duration and distance are different
for the three planners.

5.5 Summary

In this Chapter the motion planner formulated in Section 3.6 has been tested in an experimental setup. The
focus has been put on two case studies. Before executing the experiments, the setup, along with other
implementation concepts have been explained. Moreover, the design and assembly of the caster wheel angle’s
measurement system have been briefly introduced.

From the first case study, a rotation on the spot, it has been learnt that the CWPFLP and CWAWLP behave in
an analogous manner. Both planners convert the angular velocity command into a combination of longitudinal
and angular commands. In this way, the robot drives forward before it starts to rotate, which guarantees that
the caster wheel is rolling once it changes the orientation, decreasing the reaction torques. The influence of
this motion has shown to have a positive impact on the motor torques.

The second case study consists on driving back and forth within a 4m long space. As a starting point,
the observer has been validated by comparing the estimations against the measurements obtained from the
system. When it comes to case study’s results, CWAWLP is the planner whose mean and maximum torques
are the lowest. At the same time, it covers the longest distance in the shortest time. This does not hold
for CWPFLP, because the current implementation of the PF sacrifices one motor. Even if an extension can
solve this issue, it has been confirmed that it cannot be aware of constraints included in the motion planning
stage.

Master of Science Thesis Jon Arrizabalaga

Chapter 6

Conclusions

The last Chapter summarizes the content of the thesis, highlights the most relevant points and proposes an
answer to the research question formulated in Section 1.3. To do so, a summary that puts together all the
steps leads to the listing of key contributions that have been crucial for answering the research question.
Possible extensions are analyzed after discussing the capabilities and limitations of the presented concept by
proposing future directions for research.

6.1 Discussion

In the first case study of the simulations it has been shown that CWPFLP and CWAWLP make the robot drive
forward instead of turning while standing still. In this way, caster wheels are rolling when their orientation
changes, resulting in a decrease of reaction torques. However, in the second case study, improvements of
CWPFLP and CWAWLP with respect to CWAGLP have not been noticed. The reason is that the applied
torques depend on how the reference tracking is tuned, hindering the visualization of the caster wheel aware
term’s influence in motor torque minimization.

Regarding experiments, the simulation’s results for rotations on the spot have been replicated. When it comes
to navigation, due to timing and hardware requirements, significant changes in implementation were required.
One of these modifications consisted on adding hardware related constraints to the OCP, which caused issues
in the CWPFLP. Otherwise, the outcome is very similar to the one in simulations.

Considering that the analysis in Section 5.4 is particularized for the global path given in Figure 5.7, the
quantitative results are not applicable for other cases. Changes in the desired trajectory or modifications
in the tuning parameters, would cause significant variations in the recorded data. There are however some
patterns that are always fulfilled and can be generalized.

Navigation [RMSE] → CWAWLP ≈ CWAGLP > CWPFLP

Tmean, Tmax[Nm] → CWAGLP > CWPFLP ≈ CWAWLP

Energy cons. [J] → CWPFLP ≈ CWAWLP > CWAGLP

(6.1)

75

Chapter 6. Conclusions 76

Firstly, CWAWLP covers a longer distance in less time without reducing the navigation’s quality. Even if
the CWPFLP’s trajectory tends to be a little closer to the global path than the other two, differences are
insignificant when compared to the robot’s dimensions. Secondly, CWAWLP and CWPFLP, are capable of
minimizing mean and maximum motor torques. For both cases, the maximum motor torques are reduced in
a higher rate than mean values. Even if both perform in a similar manner, it has been shown that CWPFLP
sacrifices one of the motors and is not aware of the constraints included in the planning stage. Since the
decrease in mean torques is not sufficient to overcome the increase in the covered distance, CWPFLP and
CWAWLP consume more energy than CWAGLP.

Putting together the trends observed in simulations and experiments, the research question can be answered
by stating that the caster wheel aware MPC based motion planner proposed in this thesis (CWAWLP) is
capable of considering caster wheel reaction torques in the motion planning stage without compromising
navigation capabilities.

6.2 Summary

Caster wheels offer high maneuverability in a compact and cheap assembly at the expense of reaction torques.
By looking into the effects of these in differential drive mobile robots, it has been identified that they
significantly increase the motor torque demand. This phenomena, not only jeopardizes the motor’s lifetime,
but also increases the energy consumption and degrades the navigation’s performance.

When looking into what has been done previously in this field, the focus has been put in paper [5], where
a path filter (PF) is attached to, but not integrated into the planning stage. Thus, it cannot guarantee
the fulfillment of constraints, such as obstacle avoidance or hardware demands, endangering the navigation’s
completion. This has led to a research question which aims to integrate caster wheel physics into a local
planner.

The ease to solve nonlinear dynamics and include constraints make MPC a suitable control approach for
considering caster wheel motions and, simultaneously, following the global path. Since the focus is put in the
first, the motion planning problem has been simplified to reference tracking.

Having defined the research question and the methodology, every term involved in the MPC’s OCP has been
determined. As a starting point, a plant model with seven states and longitudinal and angular accelerations as
inputs is presented. To this end, the differential drive and caster wheel models have been analyzed separately.
In the latter case, the equations of motion of the caster wheel’s rotation angle and rolling speed have been
derived.

Subsequently, the OCP’s cost function has been formulated by splitting it up into two terms: the first one is
in charge for the navigation, while the second involves caster wheel reaction torques. The first one consists on
penalizing the distance from the robot to a time based reference, while the second minimizes the difference
between steady state and current caster wheel rolling speeds. Since the caster wheel state (rotation angle
and rolling speed) is unknown, an observer that estimates it has also been proposed. Finally the MPC’s
sampling time and horizon have been established by considering the fastness of the equations of motion of
the caster wheel rotation angle. Putting everything together has determined the OCP that stands behind the
MPC.

Master of Science Thesis Jon Arrizabalaga

77 6.2. Summary

This formulation has been tested in a virtual framework, where the robot is substituted by a FMU exported
from the AS’s Modelica model. After verifying that the estimations obtained from the observer are similar
to the angles measured from the model, three planners (CWAGLP, CWPFLP and CWAWLP) have been
compared against each other in three different testing cases. The first one consisted on rotating on the spot
and was extended by the second one, where the robot had to rotate on the spot and navigate. Thirdly, the
robot had to navigate across two different global paths. Combining the results obtained in all three case
studies, it is concluded that CWPFLP and CWAWLP are capable of considering caster wheel physics without
causing severe deviations with respect to CWAGLP’s trajectory.

In order to validate the results obtained in the simulations, all three planners have been implemented in
an experimental setup. Before getting into the case studies, the observer has been validated by comparing
estimations against real caster wheel rotation angles measured from two sensors assembled at the rear axle
of the robot. In the first case study, which consisted on rotating on the spot, PF and CWAWLP have shown
a similar behavior. However, some differences have been identified in the second one, which consisted on
driving the robot back and forth by following a time based reference in a continuous manner for 10 times.
CWAWLP has shown to be the only planner capable of minimizing mean and maximum torques. Omitting
implementation and conceptual issues of CWPFLP, results obtained in experiments are very similar to the
ones in simulations.

In the list below, the contributions that were crucial for integrating caster wheel physics into a local planner
are summed up. To the writer’s knowledge there is no prior work that has addressed these topics.

1. Formulation of a caster wheel aware term compatible with any MPC framework. Instead of
penalizing the difference between steady state and current caster wheel rotation angles, an alternative
expression for differences in rolling speeds has been found. In this way, the caster wheel aware term
is finite, defined and differentiable in the entire input range, which generalizes its usage to other OCP
solvers and is compatible with any MPC framework.

2. The caster wheel aware term can be combined with any MPC based navigation algorithm.
Given that the navigation and the caster wheel aware terms are decoupled in the cost function, the caster
wheel aware term can be implemented in any MPC based navigation algorithm, providing modularity
and facilitating its generalization to other cases.

3. The caster wheel aware term is applicable to any vehicle with caster wheels. The caster wheel
aware term is adjustable to other vehicles by replacing the DDMR motion equations in the plant model
with the vehicle’s drivetrain equations. For example, this attribute enables to implement the caster
wheel awareness in car-like mobile robots.

4. Formulation of a caster wheel state (rotation angle and rolling speed) observer. Since the caster
wheel aware term requires knowing the caster wheel’s state, an observer that estimates rotation angles
and rolling speeds has been derived. When analyzing the observer’s stability, a Lyapunov function
has been found that proves that the steady state angle is an asymptotically stable equilibrium point.
Therefore, every estimation converges to the steady state angle respective to the applied velocity
commands. This observer is also applicable to estimate the states of a caster wheel in any vehicle
whose longitudinal and angular velocities are known.

Jon Arrizabalaga Master of Science Thesis

Chapter 6. Conclusions 78

6.3 Future Work

A brief outlook is given in two subsections to further develop the motion planner presented by this thesis.
Firstly, solutions to weak points or minor bugs are presented. Secondly, paths for further research in this field
are proposed.

6.3.1 Research Tasks

Extending PF to both sides
When running experiments, it has been discovered that implementing the PF to a single caster wheel does
not take the status of other wheels into account, sacrificing the motor in the opposite side. An extension
of the PF, so that it filters velocity commands by considering the states of all the caster wheels would solve
this issue. Notice that such an improvement would ensure that both motors are equally treated, but the PF
would still remain being incapable of fulfilling constraints introduced in the planning stage.

Extend caster wheel aware term to all wheels
The plant model applied in the thesis has 7 states, out of which the last two are front-left and -right caster
wheel rotation angles. Adding two more equations would be sufficient for including both wheels of the rear axle.
Considering that the AS’s front wheels are significantly bigger than the rear ones, they have more influence in
the robot’s overall performance. However, if the proposed motion planner wants to be implemented in other
robots whose wheels have the same size, implementing the equations in all four wheels might be interesting.
Notice that such an extension would increase the OCP’s solving time, compromising the frequency at which
the MPC runs.

Re-evaluate experiments
In order to evaluate navigation capabilities in the experiments, three parameters have been observed: distance,
duration and quality (RMSE and MAE). Instead of navigating across the global path 10 times continuously
and observing all three parameters vary with respect to each other, fixing one of them would result in a
more thorough comparison. This would be relevant for comparing the consumed energy if either navigation’s
distance or duration are fixed.

6.3.2 Research Directions

Including dynamics in the plant model
Even if extending the kinematic based plant model to the field of dynamics increases the number of equations
and parameters, this opens the possibility to modify the caster wheel aware term, so that a simplified version
of the bore torque’s analytical expression is introduced in the cost function. For this purpose, is would be
necessary to modify Equation 2.1, since it includes discontinuities and fractions that would cause numerical
issued when solving the OCP.

Applying this upgrade to the observer’s model might solve the issue related to identifying the change in
caster wheel orientation for the forward-backward case (Section 4.1.2). Moreover, when including inertias
and a tyre model for the caster wheels, the observer’s steady state error of 0.1rad might disappear. Never-

Master of Science Thesis Jon Arrizabalaga

79 6.3. Future Work

theless, this modification hinders the applicability of the model, since it becomes vulnerable to the fitting of
parameters.

Replace the navigation term
As mentioned above, the caster wheel aware term is compatible with other MPC navigation algorithms and
frameworks. Considering that the navigation part of the motion planner presented in this thesis consists on
reference tracking, the navigation strictly relies on the tuning of how the moving reference is followed.

Therefore, it would be interesting to replace the reference tracking navigation with a more mature MPC based
navigation algorithm, such as Tunnel Following NMPC [45], where the distance to a tunnel is penalized and
any trajectory within the corridor is equally good. In such a framework, the caster wheel aware term would
have a greater influence, since the trajectory with the lowest reaction torques among the ones inside the
corridor would be chosen. In addition, new scenarios , such as obstacle avoidance, could be observed.

Jon Arrizabalaga Master of Science Thesis

Chapter 6. Conclusions 80

Master of Science Thesis Jon Arrizabalaga

References

[1] Jonathan Tilley. “Automation, Robotics, and the Factory of the Future”. In: McKinsey. https://www.
mckinsey. com/business-functions/operations/our-insights/automation-robotics-and-the-factory-of-the-
future (2017).

[2] Badea Sorin-Ionut. “Intelligent Devices for Transporting Parts Between Processing Systems, Ultra-
precise Cyber-Mechatronic Systems for Industrial and Laboratory Control (For Molded Parts in the
Automotive Industry) and the Assembly Line”. In: International Conference of Mechatronics and Cyber-
Mixmechatronics. Springer. 2020, Bucharest, Romania, pp. 165–172.

[3] Bosch Rexroth. Active Shuttle - setting your intralogistics in motion. 2020 (accessed August 3, 2020).
url: https : / / www . boschrexroth . com / en / xc / products / product - groups / assembly -

technology/topics/intralogistics/template-neuprodukt-seite-6.

[4] Yuan Ping Li, Teresa Zielinska, Marcelo H Ang, and Wei Lin. “Vehicle dynamics of redundant mobile
robots with powered caster wheels”. In: Romansy 16. Springer, 2006, pp. 221–228.

[5] Nikolas Schröder, Oliver Lenord, and Ralph Lange. “Enhanced Motion Control of a Self-Driving Ve-
hicle Using Modelica, FMI and ROS”. In: Proceedings of the 13th International Modelica Conference,
Regensburg, Germany, March 4–6, 2019. 157. Linköping University Electronic Press. 2019.

[6] Hilding Elmqvist, Sven Erik Mattsson, and Martin Otter. “Modelica-a language for physical system
modeling, visualization and interaction”. In: Proceedings of the 1999 IEEE international symposium
on computer aided control system design (Cat. No. 99TH8404). IEEE. 1999, Kohala Coast, HI, USA,
pp. 630–639.

[7] Christoph Rösmann, Wendelin Feiten, Thomas Wösch, Frank Hoffmann, and Torsten Bertram. “Tra-
jectory modification considering dynamic constraints of autonomous robots”. In: ROBOTIK 2012; 7th
German Conference on Robotics, Munich Germany. VDE. 2012, pp. 1–6.

[8] Christoph Rösmann, Frank Hoffmann, and Torsten Bertram. “Integrated online trajectory planning and
optimization in distinctive topologies”. In: Robotics and Autonomous Systems 88 (2017), pp. 142–153.

[9] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. “The dynamic window approach to collision avoid-
ance”. In: IEEE Robotics & Automation Magazine 4.1 (1997), pp. 23–33.

[10] Sean Quinlan. Real-time modification of collision-free paths. 1537. Stanford University Stanford, 1994.

[11] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer Science & Business
Media, 2013.

81

https://www.boschrexroth.com/en/xc/products/product-groups/assembly-technology/topics/intralogistics/template-neuprodukt-seite-6
https://www.boschrexroth.com/en/xc/products/product-groups/assembly-technology/topics/intralogistics/template-neuprodukt-seite-6

References 82

[12] David H Shim, H Jin Kim, and Shankar Sastry. “Decentralized nonlinear model predictive control of
multiple flying robots”. In: 42nd IEEE International Conference on Decision and Control (IEEE Cat.
No. 03CH37475), Maui, Hawaii, USA. Vol. 4. IEEE. 2003, pp. 3621–3626.

[13] Dongbing Gu and Huosheng Hu. “A stabilizing receding horizon regulator for nonholonomic mobile
robots”. In: IEEE Transactions on Robotics 21.5 (2005), pp. 1022–1028.

[14] Rached Dhaouadi and A Abu Hatab. “Dynamic modelling of differential-drive mobile robots using la-
grange and newton-euler methodologies: A unified framework”. In: Advances in Robotics & Automation
2.2 (2013), pp. 1–7.

[15] Stefan Staicu. “Dynamics equations of a mobile robot provided with caster wheel”. In: Nonlinear Dy-
namics 58.1-2 (2009), p. 237.

[16] Dirk Zimmer and Martin Otter. “Real-time models for wheels and tyres in an object-oriented modelling
framework”. In: Vehicle system dynamics 48.2 (2010), pp. 189–216.

[17] Torsten Blochwitz, Martin Otter, Martin Arnold, Constanze Bausch, H Elmqvist, A Junghanns, J Mauß,
M Monteiro, T Neidhold, Dietmar Neumerkel, et al. “The functional mockup interface for tool inde-
pendent exchange of simulation models”. In: Proceedings of the 8th International Modelica Conference;
March 20th-22nd; Technical Univeristy; Dresden; Germany. 063. Linköping University Electronic Press.
2011, pp. 105–114.

[18] Peter Fritzson and Vadim Engelson. “Modelica—A unified object-oriented language for system modeling
and simulation”. In: European Conference on Object-Oriented Programming. Springer. 1998, Brussels,
Belgium, pp. 67–90.

[19] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and
Andrew Y Ng. “ROS: an open-source Robot Operating System”. In: ICRA workshop on open source
software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

[20] Frank Allgöwer and Alex Zheng. Nonlinear model predictive control. Vol. 26. Birkhäuser, 2012.

[21] Kun Zhang, Jonathan Sprinkle, and Ricardo G Sanfelice. “A hybrid model predictive controller for path
planning and path following”. In: Proceedings of the ACM/IEEE Sixth International Conference on
Cyber-Physical Systems. 2015, New York, NY, United States, pp. 139–148.

[22] Jean-Claude Latombe. Robot motion planning. Vol. 124. Springer Science & Business Media, 2012.

[23] A Pedro Aguiar, João P Hespanha, and Petar V Kokotović. “Performance limitations in reference
tracking and path following for nonlinear systems”. In: Automatica 44.3 (2008), pp. 598–610.

[24] Timm Faulwasser and Rolf Findeisen. “Nonlinear model predictive control for constrained output path
following”. In: IEEE Transactions on Automatic Control 61.4 (2015), pp. 1026–1039.

[25] F Künhe, J Gomes, and W Fetter. “Mobile robot trajectory tracking using model predictive control”.
In: II IEEE latin-american robotics symposium. Vol. 51. Citeseer. 2005.

[26] Kiattisin Kanjanawanishkul, Marius Hofmeister, and Andreas Zell. “Smooth Reference Tracking of a
Mobile Robot using Nonlinear Model Predictive Control.” In: ECMR. 2009, pp. 161–166.

[27] Jamal Daafouz, Pierre Riedinger, and Claude Iung. “Stability analysis and control synthesis for switched
systems: a switched Lyapunov function approach”. In: IEEE transactions on automatic control 47.11
(2002), pp. 1883–1887.

Master of Science Thesis Jon Arrizabalaga

83 References

[28] Karl J Åström and Björn Wittenmark. Computer-controlled systems: theory and design. Courier Cor-
poration, 2013.

[29] Karl Worthmann. “Estimates on the prediction horizon length in model predictive control”. In: Pro-
ceedings of the 20th International Symposium on Mathematical Theory of Networks and Systems,
CD–ROM, MTNS2012. Vol. 112. 2012, Melbourne, Australia.

[30] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl. “CasADi – A software
framework for nonlinear optimization and optimal control”. In: Mathematical Programming Computa-
tion 11.1 (2019), pp. 1–36. doi: 10.1007/s12532-018-0139-4.

[31] John C Butcher. “Coefficients for the study of Runge-Kutta integration processes”. In: Journal of the
Australian Mathematical Society 3.2 (1963), pp. 185–201.

[32] Francis Begnaud Hildebrand. Introduction to numerical analysis. Courier Corporation, 1987.

[33] Sanjay Mehrotra. “On the implementation of a primal-dual interior point method”. In: SIAM Journal
on optimization 2.4 (1992), pp. 575–601.

[34] Andreas Wächter and Lorenz T Biegler. “On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming”. In: Mathematical programming 106.1 (2006), pp. 25–
57.

[35] C Laird and A Wächter. “Introduction to IPOPT: a tutorial for downloading, installing, and using
IPOPT. Revision No. 1863”. In: Electronically published: http://www. coin-or. org/Ipopt/documenta-
tion/(accessed at 11.02. 2013) ().

[36] Iain S Duff and John K Reid. MA27-a set of Fortran subroutines for solving sparse symmetric sets of
linear equations. UKAEA Atomic Energy Research Establishment, 1982.

[37] E Alper Yildirim and Stephen J Wright. “Warm-start strategies in interior-point methods for linear
programming”. In: SIAM Journal on Optimization 12.3 (2002), pp. 782–810.

[38] Dassault Systèmes. FMPy - Free Python library to simulate Functional Mock-up Units (FMUs). 2020
(accessed August 6, 2020). url: https://github.com/CATIA-Systems/FMPy.

[39] Tianfeng Chai and Roland R Draxler. “Root mean square error (RMSE) or mean absolute error (MAE)?–
Arguments against avoiding RMSE in the literature”. In: Geoscientific model development 7.3 (2014),
pp. 1247–1250.

[40] Inc. DBA OptiTrack. Opti Track Motion Cameras. 2020 (accessed August 6, 2020). url: https:

//optitrack.com/.

[41] Jan Palach. Parallel programming with Python. HPDC ’19: Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed Computing - Packt Publishing Ltd, 2014,
New York,NY, United States.

[42] Joshua S Furtado, Hugh HT Liu, Gilbert Lai, Herve Lacheray, and Jason Desouza-Coelho. “Comparative
analysis of optitrack motion capture systems”. In: Advances in Motion Sensing and Control for Robotic
Applications. Springer, 2019, pp. 15–31.

[43] CUI Devices. AMT22 - Absolute Encoders. 2020 (accessed September 7, 2020). url: https://www.

cuidevices.com/product/resource/amt22.pdf.

Jon Arrizabalaga Master of Science Thesis

https://doi.org/10.1007/s12532-018-0139-4
https://github.com/CATIA-Systems/FMPy
https://optitrack.com/
https://optitrack.com/
https://www.cuidevices.com/product/resource/amt22.pdf
https://www.cuidevices.com/product/resource/amt22.pdf

References 84

[44] PJRC Electronic Projects. Teensy 3.6. 2020 (accessed September 7, 2020). url: https://www.pjrc.

com/teensy/techspecs.html.

[45] Niels van Duijkeren. “Online Motion Control in Virtual Corridors-for Fast Robotic Systems”. PhD thesis.
MECO Research Team, Katholieke Universiteit Leuven, 2019.

Master of Science Thesis Jon Arrizabalaga

https://www.pjrc.com/teensy/techspecs.html
https://www.pjrc.com/teensy/techspecs.html

Appendix A

Figures

The following figures have been referenced during the thesis and might help the reader to understand the
presented content. Notice that each Figure was added according to the Section in which it was cited.

A.1 Fundamentals - Case Identification

(a) Left front caster wheel angle. (b) Left motor torque.

(c) Left front bore torque. (d) Velocity commands for cornering with V = 0.1m/s.

Figure A.1: Caster wheel angles, motor torques and bore torques for a cornering case of 90° with longitudinal
velocity of 0.1m/s (Figure A.1d) with respect to kinematics plant model.

85

Appendix A. Figures 86

(a) Left front caster wheel angle. (b) Left motor torque.

(c) Left front bore torque. (d) Velocity commands for cornering with V = 0.3m/s.

Figure A.2: Caster wheel angles, motor torques and bore torques for a cornering case of 90° with longitudinal
velocity of 0.3m/s (Figure A.2d) with respect to kinematics plant model.

A.2 Experiments - Sensors

(a) Components before assembling. (b) Teensy 3.6 microcontroller with wiring.

(c) Top view of sensor’s assembly without encoder.

Figure A.3: Assembly of encoder to measure rear axle caster wheel rotation angles.

Master of Science Thesis Jon Arrizabalaga

Appendix B

Scripts

In Section 5.2.3 the navigation algorithm is divided into several classes, providing modularity and ease of use.
The pseudo code given in this Section shows how these classes interact with each other. This logic has been
applied through the ROS network presented in Section 5.2.2. The respective scripts have been added to this
appendix.

B.1 Local planner

I combines all the classes by following the procedure explained in the pseudo code. The global path and the
controller’s tuning parameters are defined by the user in an external text file.

1 #!/usr/bin/env python
2

3 import numpy as np
4 import multiprocessing as mp
5 #import threading
6 #import time
7

8 import rospy
9 import tf

10 from std_msgs.msg import Float32
11 from geometry_msgs.msg import Twist, PoseStamped
12 from nav_msgs.msg import Odometry, Path
13 from sensor_msgs.msg import Joy
14 from casterwheelaware_mpc_ROS.msg import caster_state
15

16

17 from MPC_local_planner import *
18 from caster_estimator import *
19 from navigation_local_planner import *
20 from caster_estimator import *
21 from caster_path_filter import *
22

23 class local_planner_ROS():

87

Appendix B. Scripts 88

24

25

26 def __init__(self, x0, horizon, model_parameters, f_LLC, tolerance, trajectory_path,
mpcParameter_path):

27

28 ##############################General variables#############################
29 #Opti-tracker marker displacement
30 self.dxOpti = -0.31688 # x-distance from origin of opti marker to center of

robot
31 self.dyOpti = 0.034213 # x-distance from origin of opti marker to center of

robot
32

33

34 #Step sizes
35 self.ts_MPC = horizon[0]/horizon[1] #step size of MPC (20Hz)
36 self.ts_LLC = 1/float(f_LLC) #step size of low level controller (motor commands

, 50Hz)
37

38 #Flags
39 self.odom_fbk = False #flag to define if feedback from odom was received
40 self.pose_fbk = False #flag to define if feedback from odom was received
41 self.cmdvelDes_fbk = False #flag to define if feedback from twistDes was

received
42 self.pf_flag = False #flag to define if path filter is active
43 self.drive_mode = "joy" #flag to activate mpc navigation
44

45 #initial states
46 self.x = x0
47 self.X = x0[0]
48 self.Y = x0[1]
49 self.TETA = x0[2]
50 self.v_odom = x0[3]
51 self.w_odom = x0[4]
52 self.cmdV = x0[3]
53 self.cmdW = x0[4]
54 self.vDes = x0[3]
55 self.wDes = x0[4]
56

57 #mpc
58 self.mpcParameter_path = mpcParameter_path
59 self.horizon = horizon
60 self.MPC_reinit = True
61 self.pf_update = True
62 self.model_parameters = model_parameters
63 self.f_LLC = f_LLC
64

65 #navigation
66 self.trajectory_path = trajectory_path
67 self.tolerance = tolerance
68

69

70 ##############################Initialize ROS#############################

Master of Science Thesis Jon Arrizabalaga

89 B.1. Local planner

71

72 rospy.init_node('MPC_local_planner', anonymous=True)
73 rospy.loginfo("Initializing ROS...")
74

75 #robot
76 self.odometry_sub = rospy.Subscriber('odometry_data', Odometry, self.odometryCallback)
77 self.pose_sub = rospy.Subscriber('vrpn_client_node/ActiveShuttle/pose', PoseStamped,

self.poseCallback)
78 self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=50)
79

80

81 #path filter
82 self.cmd_velDes_sub = rospy.Subscriber('cmd_vel_Des', Twist, self.cmdvelDesCallback)
83 self.pf_trigger_sub = rospy.Subscriber('joy', Joy, self.joyTriggerCallback)
84

85 #mpc
86 self.cmd_velDes_pub = rospy.Publisher('cmd_vel_Des', Twist, queue_size=50)

desired velocity by MPC
87 #self.mpc_horizon_pub = rospy.Publisher('mpc/horizon', Path, queue_size=1000)

horizon estimation of MPC
88 #self.stopPt_pub = rospy.Publisher('moving_refence/stop_points', Path, queue_size

=1000) # stopping points of path
89 #self.trajectory_pub = rospy.Publisher('moving_refence/trajectory', Path, queue_size

=1000) # current trajectory
90 self.moving_reference_pub = rospy.Publisher('moving_refence/reference', Path,

queue_size=50) # moving reference
91

92 #others
93 self.caster_state_pub = rospy.Publisher('estimator/caster_state', caster_state,

queue_size=50)
94

95 ##############################Initialize estimator#############################
96

97 rospy.loginfo("Initializing estimator...")
98

99 #Solver parameters
100 dae_solver = 'rk'
101 dae_opts = {'tf':self.ts_LLC, 'simplify':True, 'number_of_finite_elements':4}
102 # jit_opts = {"jit": True, "compiler":"shell", "jit_options": {"compiler": "ccache gcc

", "compiler_flags":["-O3"]}}
103 # self.dae_opt.update(jit_opts)
104

105 #Definition of estimator
106 self.est = estimator(initial_state = [x0[5],x0[6],0,0], #we suppose it

starts standing still --> gammadot=0rad/s
107 f_controller = self.f_LLC,
108 dae_solver = dae_solver,
109 dae_opts = dae_opts,
110 model_parameters = self.model_parameters)
111

112

113 ##############################launch##############################

Jon Arrizabalaga Master of Science Thesis

Appendix B. Scripts 90

114

115 #start navigaton depending on drive_mode
116 try:
117 self.choose_drive_mode()
118 except rospy.ROSInterruptException:
119 pass
120

121 def initMPC(self):
122

123 rospy.loginfo("Initializing MPC...")
124

125 #Import settings
126 labels = np.genfromtxt(self.mpcParameter_path, delimiter=',', usecols=0, dtype=str)
127 raw_data = np.genfromtxt(self.mpcParameter_path, delimiter=',')[:,1:]
128 data = {label: row for label, row in zip(labels, raw_data)}
129

130 weights = [data['Qacc'], data['Qalph'], data['Qd'], data['Qteta'], data['Qvref'], data
['Qgammadot'], data['Qslack']]

131 self.boundaries = [data['vmin'],data['vmax'],data['wmin'],data['wmax'],data['accmin'],
data['accmax'], data['alphmin'],data['alphmax']]#, data['alphmin'],data['alphmax']]

132

133 #Solver parameters
134 dae_solver = 'rk'
135 dae_opts = {'tf':self.ts_MPC, 'simplify':True, 'number_of_finite_elements':1}
136 ocp_solver = 'ipopt'
137 ocp_opts = { "ipopt.sb":"yes", "ipopt.print_level":0, "print_time":False,
138 "ipopt.linear_solver":"ma27", "ipopt.warm_start_init_point":"yes",
139

140 "ipopt.warm_start_bound_push":1e-9, "ipopt.warm_start_bound_frac":1e
-9,

141 "ipopt.warm_start_slack_bound_frac":1e-5, "ipopt.
warm_start_slack_bound_push":1e-5,

142 "ipopt.warm_start_mult_bound_push":1e-5, #"ipopt.
warm_start_mult_init_max":1e6,

143 }
144

145 #torque term
146 if data['torque_term'] == 0.0:
147 weights[-1] = 0.0
148

149 #definition of mpc
150 self.mpc = MPC_local_planner(x0 = x0[:5],
151 weights = weights,
152 horizon = self.horizon,
153 boundaries = self.boundaries,
154 dae_solver = dae_solver, dae_opts = dae_opts,
155 ocp_solver = ocp_solver, ocp_opts = ocp_opts,
156 model_parameters = self.model_parameters,
157 jit_on = False)
158

159 def initPF(self):
160

Master of Science Thesis Jon Arrizabalaga

91 B.1. Local planner

161 rospy.loginfo("Initializing path filter...")
162

163 #Import settings
164 labels = np.genfromtxt(self.mpcParameter_path, delimiter=',', usecols=0, dtype=str)
165 raw_data = np.genfromtxt(self.mpcParameter_path, delimiter=',')[:,1:]
166 data = {label: row for label, row in zip(labels, raw_data)}
167

168 #definition of pf
169 self.pf = path_filter(model_parameters = self.model_parameters, tuning_parameter =

data['pf_ratio'])
170

171 def odometryCallback(self,odom_msg):
172

173 self.v_odom = odom_msg.twist.twist.linear.x
174 self.w_odom = odom_msg.twist.twist.angular.z
175

176 self.odom_fbk = True
177

178 def poseCallback(self,opti_msg):
179

180 #if self.odom_fbk == True: #odom is received slower, thus, wait for it
181

182 self.X = opti_msg.pose.position.x+self.dxOpti
183 self.Y = opti_msg.pose.position.y+self.dyOpti
184 quaternion = [opti_msg.pose.orientation.x, opti_msg.pose.orientation.y, opti_msg.pose.

orientation.z, opti_msg.pose.orientation.w]
185 self.TETA = tf.transformations.euler_from_quaternion(quaternion = quaternion)[2]+np.pi

/2
186

187 self.odom_fbk = False
188

189 def cmdvelDesCallback(self,twistDes_msg):
190

191 self.vDes = twistDes_msg.linear.x
192 self.wDes = twistDes_msg.angular.z
193

194 self.cmdvelDes_fbk = True
195

196 def joyTriggerCallback(self,joy_msg):
197

198 #pathfilter
199 if joy_msg.buttons[7] == 1: #"RT" button (index 7) from logitech

joy activates pf
200 self.pf_flag = True
201 rospy.loginfo("Path filter activated")
202

203 if joy_msg.buttons[6] == 1: #"LT" button (index 7) from logitech
joy deactivates pf

204 self.pf_flag = False
205 rospy.loginfo("Path filter de-activated")
206

207 #mpc navigation

Jon Arrizabalaga Master of Science Thesis

Appendix B. Scripts 92

208 if (joy_msg.buttons[4] == 1) and (joy_msg.buttons[5] == 1): #"RB" and "LB" buttons (
index 4,5) from logitech joy activates mpc

209 rospy.loginfo("MPC activated")
210 self.drive_mode = "mpc"
211

212 if joy_msg.buttons[0] == 1: #"X" button (index 0) from
logitech joy deactivates pf

213 rospy.loginfo("MPC de-activated")
214 self.drive_mode = "joy"
215

216 #mpc torque term
217 if joy_msg.axes[5] == 1.0: #"arrow-down" button (index

5) from logitech joy activates reinitialization of mpc
218 rospy.loginfo("MPC reinitialization activated")
219 self.MPC_reinit = True
220

221

222 if joy_msg.axes[5] == -1.0: #"arrow-down" button (
index 5) from logitech joy activates reinitializatio of pf

223 rospy.loginfo("PF reinitialization activated")
224 self.pf_update = True
225

226 def casterState_publish(self):
227

228 #casterstate
229 caster_state_msg = caster_state()
230

231 caster_state_msg.phi_est_FL = self.est.FL.phi_est
232 caster_state_msg.phi_est_FR = self.est.FR.phi_est
233 caster_state_msg.phi_des_FL = self.est.FL.phi_des
234 caster_state_msg.phi_des_FR = self.est.FR.phi_des
235

236 caster_state_msg.gammadot_est_FL = self.est.FL.gammadot_est
237 caster_state_msg.gammadot_est_FR = self.est.FR.gammadot_est
238 caster_state_msg.gammadot_des_FL = self.est.FL.gammadot_des
239 caster_state_msg.gammadot_des_FR = self.est.FR.gammadot_des
240

241 #publish
242 self.caster_state_pub.publish(caster_state_msg)
243

244 def navigation_publish(self):
245 #mpc horizon estimation and moving reference
246 #mpc_horizon_msgs = Path()
247 moving_reference_msgs = Path()
248

249 #loc1_list = []
250 loc2_list = []
251

252 for i in range(self.mpc.N):
253 loc1 = PoseStamped()
254 #loc1.pose.position.x = self.x_estim[i]
255 #loc1.pose.position.y = self.y_estim[i]

Master of Science Thesis Jon Arrizabalaga

93 B.1. Local planner

256 #loc1_list.append(loc1)
257

258 loc2 = PoseStamped()
259 loc2.pose.position.x = self.navigation.goal_pt[0,i]
260 loc2.pose.position.y = self.navigation.goal_pt[1,i]
261 loc2_list.append(loc2)
262

263 #mpc_horizon_msgs.poses = loc1_list
264 moving_reference_msgs.poses = loc2_list
265

266 #publish
267 #self.mpc_horizon_pub.publish(mpc_horizon_msgs)
268 self.moving_reference_pub.publish(moving_reference_msgs)
269

270 def cmdVel_publish(self):
271

272 cmd_vel_msg = Twist()
273 cmd_vel_msg.linear.x = self.cmdV
274 cmd_vel_msg.angular.z = self.cmdW
275 self.cmd_vel_pub.publish(cmd_vel_msg)
276

277 #if self.drive_mode == "mpc":
278 # cmd_velDes_msg = Twist()
279 # cmd_velDes_msg.linear.x = self.vDes
280 # cmd_velDes_msg.angular.z = self.wDes
281 # self.cmd_velDes_pub.publish(cmd_velDes_msg)
282

283 def stop_robot(self):
284 #update drive_mode
285 self.drive_mode = "joy"
286

287 #Stop smoothly the robot
288 while self.v_odom > 0.05:
289

290 t_start = rospy.get_time()
291 ###
292 self.cmdV = self.v_odom -0.5* self.ts_MPC
293 self.cmdW = 0
294 self.vDes = self.cmdV
295 self.wDes = self.cmdW
296 self.cmdVel_publish()
297 ###
298 t_delta = rospy.get_time()-t_start
299

300 if t_delta < self.ts_LLC:
301 rospy.sleep(self.ts_LLC-t_delta)
302

303 #Stop completely
304 self.cmdV = 0
305 self.cmdW = 0
306 self.vDes = self.cmdV
307 self.wDes = self.cmdW

Jon Arrizabalaga Master of Science Thesis

Appendix B. Scripts 94

308

309 def LLC(self, acc, alph, maxV, maxW, cycle_MPC, navigation_finished):
310

311 rospy.init_node('MPC_local_planner_LLC', anonymous=True)
312 vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=50)
313

314 #Declare variables for LLC
315 cmd_vel_msg = Twist()
316 cmdV = self.cmdV
317 cmdW = self.cmdW
318 ts_LLC = self.ts_LLC
319 boundaries = self.boundaries
320 ratio = int(np.ceil(self.ts_MPC/self.ts_LLC))
321 cycle_LLC = ratio+1
322 cycle_MPC_old = 0
323

324 #start LLC+publishing to motors
325 while navigation_finished.value == False:
326

327 # if cycle_MPC.value > cycle_MPC_old:
328 # cycle_MPC_old = cycle_MPC.value
329 # cycle_LLC = 0
330

331 if cycle_MPC.value >= 1:# cycle_MPC_old:#cycle_LLC < ratio:#3*cycle_MPC.value >
cycle_LLC and 3*(cycle_MPC.value-1) <= cycle_LLC :#

332

333 #accel = acc.value
334 #alpha = alph.value
335 #cycle_MPC_old = cycle_MPC.value
336

337 #for i in range(ratio):
338

339 t_start = rospy.get_time()
340

341 ################################
342 #Converting optimal accelerations to velocities
343 cmdV = cmdV + ts_LLC*acc.value
344 cmdW = cmdW + ts_LLC*alph.value
345 cmdV = np.clip(cmdV,boundaries[0], boundaries[1])#-abs(maxV.value), abs(maxV.

value)) #limit cmdV#
346 cmdW = np.clip(cmdW,boundaries[2], boundaries[3])#-abs(maxW.value), abs(maxW.

value)) #limit cmdW#
347 #cmdV = maxV.value
348 #cmdW = maxW.value
349 rospy.loginfo("LLC --> acc: %.2f, alph: %.2f, cmdV: %.2f, cmdW: %.2f", acc.

value, alph.value, cmdV, cmdW)
350

351 #Estimating caster state
352 self.est.estimate(t_start = rospy.get_time(), t_end = rospy.get_time()+

ts_LLC,
353 vel_odom = [self.v_odom, self.w_odom], vel_des = [cmdV

, cmdW])

Master of Science Thesis Jon Arrizabalaga

95 B.1. Local planner

354

355 cmd_vel_msg.linear.x = cmdV
356 cmd_vel_msg.angular.z = cmdW
357 vel_pub.publish(cmd_vel_msg)
358 ################################
359

360 t_delta = rospy.get_time()-t_start
361

362 if t_delta < ts_LLC:
363 rospy.sleep(ts_LLC-t_delta)
364 else:
365 rospy.loginfo("LLC too slow: %.2f instead of %.2f",t_delta*1e3, ts_LLC*1e3

)
366

367 def joy_navigate(self):
368

369 rospy.loginfo_once("Joy navigation activated")
370

371 #checking if feedback received
372 while True:
373

374 if (self.odom_fbk == True) and (self.cmdvelDes_fbk == True):
375

376 #Reset flags
377 self.odom_fbk = False
378 self.cmdvelDes_fbk = False
379

380 #Continue
381 break
382

383 #rospy.loginfo("Waiting for feedback...")
384

385 #Estimating caster state
386 self.est.estimate(t_start = rospy.get_time(), t_end = rospy.get_time()+self.ts_LLC,
387 vel_odom = [self.v_odom, self.w_odom], vel_des = [self.vDes, self.

wDes])
388

389 #Filter velocity commands
390 if self.pf_flag == True:
391

392 if self.pf_update == True:
393 self.pf_update = False
394 self.initPF()
395

396 self.pf.filter(phi_est = [self.est.FL.phi_est, self.est.FR.phi_est],
397 phi_des = [self.est.FL.phi_des, self.est.FR.phi_des],
398 gammadot_est = [self.est.FL.gammadot_est, self.est.FR.

gammadot_est],
399 gammadot_des = [self.est.FL.gammadot_des, self.est.FR.

gammadot_des])
400

401 self.cmdV = self.pf.FR.v_filt

Jon Arrizabalaga Master of Science Thesis

Appendix B. Scripts 96

402 self.cmdW = self.pf.FR.w_filt
403

404 elif self.pf_flag == False:
405

406 self.cmdV = self.vDes
407 self.cmdW = self.wDes
408

409 #Defining new state
410 self.x = [self.X, self.Y, self.TETA,
411 self.v_odom, self.w_odom,
412 self.est.FL.phi_est, self.est.FR.phi_est]
413

414 #Publish information
415 self.cmdVel_publish()
416 self.casterState_publish()
417

418 def mpc_navigate(self):
419

420 rospy.loginfo_once("MPC navigation activated")
421

422 #############################Re-initialize pf#############################
423 if (self.pf_flag == True):
424 self.pf_update = False
425 self.initPF()
426

427 #############################Re-initialize MPC#############################
428 if self.MPC_reinit == True:
429 self.MPC_reinit = False
430 self.initMPC()
431

432 #############################Initialize navigation#############################
433 self.x = [self.X, self.Y, self.TETA,
434 self.v_odom, self.w_odom]#,
435 #self.est.FL.phi_est, self.est.FR.phi_est]
436

437 self.navigation = navigation_local_planner(path_filename = self.trajectory_path,
438 tolerance = self.tolerance,
439 initial_states = self.x,
440 N = self.horizon[1], ts = self.ts_MPC)
441

442 #############################MPC running#############################
443

444 rospy.loginfo("Starting MPC navigation...")
445

446 #declare variables for processes
447 acc = mp.Value('d',0.0)
448 alph = mp.Value('d',0.0)
449 maxV = mp.Value('d',0.0)
450 maxW = mp.Value('d',0.0)
451 cycle_MPC = mp.Value('i',0)
452 #cycle_tref = mp.Value('i',0)
453 #x = mp.Array('d',self.x)

Master of Science Thesis Jon Arrizabalaga

97 B.1. Local planner

454 #p = mp.Array('d',np.zeros((4*(self.horizon[1]+1))))
455 navigation_finished = mp.Value('b',False)
456

457 #declare processes
458 #process_ref = mp.Process(target=self.moving_reference, args = (x,p,

navigation_finished ,cycle_tref)) #declare moving reference process
459 process_LLC = mp.Process(target=self.LLC, args = (acc,alph,maxV,maxW,cycle_MPC,

navigation_finished)) #declare HLC process
460 process_LLC.start()
461

462 #start LLC+publishing to motors
463 t_navigation_start = rospy.get_time()
464

465 while True:
466

467 t_start = rospy.get_time()
468

469 ###############################
470 #update states (for processes, for processes, otherwise in separate thread)
471 x = [self.X, self.Y, self.TETA,
472 self.v_odom, self.w_odom]#,#,cmdV,cmdW,#
473 #self.est.FL.phi_est, self.est.FR.phi_est]
474

475 #Updating goal point
476 self.navigation.navigation_update(states = x, time = rospy.get_time()-

t_navigation_start)
477

478 #check if robot needs to be stopped
479 if (self.navigation.finished == True) or (self.drive_mode == "joy"):
480 navigation_finished.value = True #stops HLC process
481 self.stop_robot()
482 break
483

484 t_nav = rospy.get_time()-t_start
485

486 #Finding optimal accelerations
487

488 [acc.value , alph.value],[maxV.value, maxW.value] = self.mpc.nlp_solver(x0 = x, p
= self.navigation.goal_pt) #[self.x_estim, self.y_estim]

489 rospy.loginfo("MPC --> acc: %.2f, alph: %.2f", acc.value, alph.value)
490

491 #update cycle flag
492 cycle_MPC.value += 1
493

494 #rate.sleep()
495

496 ################################
497

498 t_delta = rospy.get_time()-t_start
499

500 if t_delta < self.ts_MPC:
501 rospy.sleep(self.ts_MPC-t_delta)

Jon Arrizabalaga Master of Science Thesis

Appendix B. Scripts 98

502 else:
503 #self.drive_mode = "joy"
504 rospy.loginfo("MPC too slow: %.2f instead of %.2f --> nav: %.2f and mpc: %.2f"

, t_delta*1e3, self.ts_MPC*1e3, t_nav*1e3, (t_delta-t_nav)*1e3)
505

506

507

508 #Continue joy navigation
509 rospy.loginfo("MPC navigation de-activated")
510

511 def choose_drive_mode(self):
512

513 while not rospy.is_shutdown():
514

515 #checking if MPC navigation activated
516 if self.drive_mode == "mpc":
517 self.mpc_navigate()
518 elif self.drive_mode == "joy":
519 self.joy_navigate()
520

521 if __name__ == '__main__':
522

523 #Get parameters from launch file
524 trajectory_path = rospy.get_param('/local_planner/trajectory_file')
525 mpcParam_path = rospy.get_param('/local_planner/MPC_parameters')
526

527

528 #Initial state
529 x0 = [0,0,0,0,0,0,0]
530

531 #Horizon for MPC
532 T = 2.0 #time horizon of MPC
533 N = 40 #number of control intervals of MPC
534 ts = T/N #step size of MPC
535 f_LLC = 50.0 #frequency of LLC (low level controller)
536

537

538 #Motion planner parameters
539 tolerance = 0.2
540

541 #Model parameters (all distances assume that the robot's origin is the axis of DD wheels)
542 dxCaster = 0.241212 #X-distance from origin to front caster wheel (m)

#0.3065 (devkit front) 0.360860 (AS-rear)
543 dyCaster = 0.159 #Y-distance from origin to front caster wheel (m)

#0.12 (devkit front) 0.0614 (AS-rear)
544 hCaster = 0.0611 #Overhang of caster wheel front (m)

#0.038 (devkit front) 0.0449 (AS-rear)
545 rCaster = 0.040 #Radius of front caster wheels

#0.0375 (devkit front) 0.025 (AS-rear)
546 dyDrive = 0.183 #Distance to left drive wheel
547

548 #Local planner class

Master of Science Thesis Jon Arrizabalaga

99 B.1. Local planner

549 local_planner_ROS(x0 = x0,
550 horizon = [T,N],
551 model_parameters = [dxCaster,dyCaster, hCaster, rCaster, dyDrive],
552 f_LLC = f_LLC,tolerance = tolerance,
553 trajectory_path = trajectory_path, mpcParameter_path =

mpcParam_path)

Listing B.1: Class for local planner

Jon Arrizabalaga Master of Science Thesis

Appendix B. Scripts 100

B.2 MPC local planner

Defines the a MPC with the respective formulations of the plant model and the OCP.

1 from casadi import*
2 import numpy as np
3 import time
4

5 class MPC_local_planner():
6

7

8 def __init__(self, x0, horizon, weights, boundaries, dae_solver, dae_opts, ocp_solver,
ocp_opts, model_parameters, jit_on):

9

10 #Horizon and states
11 self.T = horizon[0] #time horizon
12 self.N = horizon[1] #control horizon
13 self.ts = self.T/self.N #step size
14 self.nx = 7 #number of states in plant model
15 self.nu = 2 #number of inputs in plant model
16 self.ns = 2 #number of slack variables in for safety
17

18

19 #OCP parameters
20 self.Qacc = weights[0] #weight for XXXXX
21 self.Qalph = weights[1] #weight for XXXXX
22 self.Qd = weights[2] #weight for XXXXX
23 self.Qteta = weights[3] #weight for XXXXX
24 self.Qvref = weights[4] #weight for XXXXX
25 self.Qgammadot = weights[5] #weight for XXXXX
26 self.Qslack = weights[6]
27

28 self.vmin = boundaries[0] #minimum longitudinal velocity [m/s]
29 self.vmax = boundaries[1] #maximum longitudinal velocity [m/s]
30 self.wmin = boundaries[2] #minimum rotational velocity [rad/s]
31 self.wmax = boundaries[3] #ocp_optsmaximum rotational velocity [rad/s]
32 self.accmin = boundaries[4]
33 self.accmax = boundaries[5]
34 self.alphmin = boundaries[6]
35 self.alphmax = boundaries[7]
36

37 #Solver parameters
38 self.dae_solver = dae_solver #solver for ode
39 self.dae_opts = dae_opts #options for ode solver
40 self.ocp_solver = ocp_solver #solver for ocp
41 self.ocp_opts = ocp_opts #options for ocp solver
42

43

44 #Model parameters
45 self.dxCaster = model_parameters[0] #X-distance from origin to front caster wheel

(m)

Master of Science Thesis Jon Arrizabalaga

101 B.2. MPC local planner

46 self.dyCaster = model_parameters[1] #Y-distance from origin to front caster wheel
(m)

47 self.hCaster = model_parameters[2] #Overhang of caster wheel front (m)S
48 self.rCaster = model_parameters[3] #Radius of front caster wheels
49 self.dyDrive = model_parameters[8] #Y-distance from origin to left driven wheel
50

51 #others
52 self.numb = 1e-3 #fix for square root jacobian in cost

function
53 self.jit_on = jit_on #compilation method (if false C code

generated and compiled)
54

55 #functions
56 self.MPC_definition(x0 = x0) #function to define OCP PROBLEM (

defines function "solver")
57

58

59 def MPC_definition(self, x0):
60

61 ##################################PLANT MODEL##################################
62 #Variables
63 x = SX.sym('x',self.nx)
64 u = SX.sym('u', self.nu)
65

66 #Equations x = 'X', 'Y', 'TETA', 'V', 'W'
67 ode = SX.zeros(self.nx)
68 ode[0] = x[3]*cos(x[2])
69 ode[1] = x[3]*sin(x[2])
70 ode[2] = x[4]
71 ode[3] = u[0]
72 ode[4] = u[1]
73 ode[5] = -1/(self.hCaster)*((x[3]-x[4]*self.dyCaster)*sin(x[5])-x[4]*self.dxCaster*cos

(x[5]))
74 ode[6] = -1/(self.hCaster)*((x[3]+x[4]*self.dyCaster)*sin(x[6])-x[4]*self.dxCaster*cos

(x[6]))
75

76 #define integrator
77 dae = {'x': x, 'ode': ode, 'p': u}
78 plant_model = integrator('intg', self.dae_solver, dae, self.dae_opts)
79

80 ##################################FORWARD INTEGRATOR##################################
81 # #Variables
82 # u_opt = SX.sym('u_opt',2)
83

84 # #Equations x = 'X', 'Y', 'TETA', 'V', 'W'
85 # ode_f = SX.zeros(2)
86 # ode_f[0] = u_opt[0]
87 # ode_f[1] = u_opt[1]
88

89 # #define integrator
90 # dae = {'x': u_opt, 'ode': ode_f, }
91 # self.forward_integr = integrator('intg', self.dae_solver, dae, self.dae_opts)

Jon Arrizabalaga Master of Science Thesis

Appendix B. Scripts 102

92

93 ##################################NLP##################################
94

95 # Start with an empty NLP
96

97 w = []
98 lbw = []
99 ubw = []

100

101 g = []
102 lbg = []
103 ubg = []
104

105 J = 0
106

107 #Optimization
108 x = SX.sym("x", self.nx)
109 par = SX.sym("param",4,self.N+1) #parameter
110

111 #x = SX.sym('x', nx)
112 w += [x]
113 lbw += [x0]
114 ubw += [x0]
115

116 for k in range(self.N): #Optimization problem for a horizon (w is a optimization
variable--> "Multiple shooting")

117

118 # New NLP variable for the control
119 u = SX.sym('u', self.nu)
120 w += [u]
121 lbw += [DM([self.accmin, self.alphmin])]#[DM([-inf, -inf])] #
122 ubw += [DM([self.accmax, self.alphmax])]#[DM([inf, inf])] #
123

124 # Integrate until the end of the interval
125 xn_dae = plant_model(x0=x, p=u)['xf']
126

127 # New NLP variable for state at end of interval
128 xn = SX.sym('x', self.nx)
129 w += [xn]
130 lbw += [DM([-inf, -inf, -inf, self.vmin, self.wmin, -inf, -inf])]
131 ubw += [DM([inf, inf, inf, self.vmax, self.wmax, inf, inf])]
132

133 # New NLP variable for slack variable in safety constaints
134 s = SX.sym('s',self.ns)
135 w += [s]
136 lbw += [DM([0, 0])]
137 ubw += [DM([inf, inf])]
138

139 # Add equality constraint
140 g += [xn_dae - xn]
141 lbg += [DM.zeros(self.nx)]
142 ubg += [DM.zeros(self.nx)]

Master of Science Thesis Jon Arrizabalaga

103 B.2. MPC local planner

143

144

145 # # Add input constraints
146 g += [u[0]-self.dyDrive/2*u[1], u[0]+self.dyDrive/2*u[1]]
147 lbg += [DM([self.accmin]), DM([self.accmin])]
148 ubg += [DM([self.accmax]), DM([self.accmax])]
149

150 #Add safety constraints
151 a0 = 3.76454364e-1
152 a1 = -1.09537003e-16
153 a2 = 5.34941652e-1
154 xt1 = sqrt(2)/2*(x[4]-x[3])
155 yt1 = sqrt(2)/2*(x[4]+x[3])
156 xt2 = sqrt(2)/2*(x[4]+x[3])
157 yt2 = sqrt(2)/2*(-x[4]+x[3])
158 ft1 = a0*xt1*xt1+a1*xt1+a2
159 ft2 = a0*xt2*xt2-a1*xt2+a2
160 g += [(yt1-ft1)-s[0], (yt2-ft2)-s[1]]#[(yt1-ft1), (yt2-ft2)]
161 lbg += [DM([-inf, -inf])]
162 ubg += [DM([0, 0])]
163

164 ############
165 #Cost function
166 ref_error = x[:4]-par[:,k]
167

168 Vref = x[3]#par[3,k]
169 Wref = x[4]#0
170 V = x[3]
171 W = x[4]
172 phi_L = x[5]
173 phi_R = x[6]
174

175 gammadot_ss_L = 1/self.rCaster*sqrt((Vref-Wref*self.dyCaster)**2+(Wref*self.
dxCaster)**2+self.numb)

176 gammadot_ss_R = 1/self.rCaster*sqrt((Vref+Wref*self.dyCaster)**2+(Wref*self.
dxCaster)**2+self.numb)

177 gammadot_L = 1/self.rCaster*((V-W*self.dyCaster)*cos(phi_L)+W*self.dxCaster*
sin(phi_L))

178 gammadot_R = 1/self.rCaster*((V+W*self.dyCaster)*cos(phi_R)+W*self.dxCaster*
sin(phi_R))

179

180 ref_error_3 = vertcat(gammadot_ss_L-gammadot_L, gammadot_ss_R-gammadot_R)
181

182 J += mtimes(mtimes(ref_error.T, diag(vertcat(self.Qd, self.Qd, self.Qteta, self.
Qvref))),ref_error)

183 J += mtimes(mtimes(ref_error_3.T, diag(vertcat(self.Qgammadot, self.Qgammadot))),
ref_error_3)

184 J += mtimes(mtimes(u.T, diag(vertcat(self.Qacc, self.Qalph))), u)
185 J += mtimes(s.T, vertcat(self.Qslack, self.Qslack))#mtimes(mtimes(s.T, diag(

vertcat(self.Qslack, self.Qslack))), s)
186

187 # Udpdate state

Jon Arrizabalaga Master of Science Thesis

Appendix B. Scripts 104

188 x = xn
189

190 #Cost for last iteration
191

192 ref_error = x[:4]-par[:,self.N]
193

194 Vref = x[3]#par[3,self.N]
195 Wref = x[4]#0
196 V = x[3]
197 W = x[4]
198 phi_L = x[5]
199 phi_R = x[6]
200

201 gammadot_ss_L = 1/self.rCaster*sqrt((Vref-Wref*self.dyCaster)**2+(Wref*self.dxCaster)
**2+self.numb)

202 gammadot_ss_R = 1/self.rCaster*sqrt((Vref+Wref*self.dyCaster)**2+(Wref*self.dxCaster)
**2+self.numb)

203 gammadot_L = 1/self.rCaster*((V-W*self.dyCaster)*cos(phi_L)+W*self.dxCaster*sin(
phi_L))

204 gammadot_R = 1/self.rCaster*((V+W*self.dyCaster)*cos(phi_R)+W*self.dxCaster*sin(
phi_R))

205

206 ref_error_3 = vertcat(gammadot_ss_L-gammadot_L, gammadot_ss_R-gammadot_R)
207

208 J += mtimes(mtimes(ref_error.T, diag(vertcat(self.Qd, self.Qd, self.Qteta, self.Qvref)
)),ref_error)

209 J += mtimes(mtimes(ref_error_3.T, diag(vertcat(self.Qgammadot, self.Qgammadot))),
ref_error_3)

210

211

212 # Concatenate decision variables and constraint terms
213 w = vertcat(*w)
214 g = vertcat(*g)
215 self.lbg = vertcat(*lbg)
216 self.ubg = vertcat(*ubg)
217 self.lbw = vertcat(*lbw)
218 self.ubw = vertcat(*ubw)
219

220 ##################################COMPILER##################################
221 # Declare solver
222 nlp = {'f': J, 'x': w, 'g': g, 'p': par}
223 if self.jit_on == True:
224 print("MPC initialization: JIT compiler...")
225 jit_opts = {"jit": True, "compiler":"shell", "jit_options": {"compiler": "ccache

gcc", "compiler_flags":["-O3"]}}
226 self.ocp_opts.update(jit_opts)
227 self.solver = nlpsol('nlp', self.ocp_solver, nlp, self.ocp_opts)
228 else:
229 self.solver = nlpsol('nlp', self.ocp_solver, nlp, self.ocp_opts)
230 #self.solver.generate_dependencies("nlp.c")
231 #print("MPC initialization: Generating C code...")
232 #os.system("gcc -fPIC -O3 -shared nlp.c -o nlp.so")

Master of Science Thesis Jon Arrizabalaga

105 B.2. MPC local planner

233 #self.solver = nlpsol("solver", "ipopt", "./nlp.so")
234

235 def nlp_solver(self, x0, p):
236

237 #Define initial conditions (warm guess)
238 self.lbw[:self.nx] = vertcat(x0)
239 self.ubw[:self.nx] = vertcat(x0)
240

241 #nlp solve
242 t_start = time.time()
243 sol = self.solver(lbg = self.lbg, ubg = self.ubg, lbx = self.lbw, ubx = self.ubw, p =

p)
244 self.time_nlp = time.time()-t_start
245

246 # print("Objective:", round(self.solver.stats()['iterations']['obj'][-1],5),
247 # "\tIterations:",self.solver.stats()['iter_count'],
248 # "\t\tTime(ms):", round(self.time_nlp*1000,2))
249

250 # if self.solver.stats()['success'] == False:
251 # print("NLP failed --> Return status: ",self.solver.stats("return_status"))
252

253 #convert output
254 wopt = sol['x'].full()
255 wopt_1toN = wopt[:self.N*(self.nx+self.nu+self.ns)].reshape((self.nx+self.nu+self.ns,

self.N), order='F')
256 xopt = np.concatenate((wopt_1toN[:self.nx, :], wopt[self.N*(self.nx+self.nu+self.ns)

:]), axis=1).transpose()
257 uopt = wopt_1toN[self.nx:-self.ns, :].transpose()
258

259 # wopt = sol['x'].full()
260 # wopt_1toN = wopt[:self.N*(self.nx+self.nu)].reshape((self.nx+self.nu, self.N), order

='F')
261 # xopt = np.concatenate((wopt_1toN[:self.nx, :], wopt[self.N*(self.nx+self.nu):]),

axis=1).transpose()
262 # uopt = wopt_1toN[self.nx:, :].transpose()
263

264 #Forward integrate
265 cmdV = xopt[0,3]
266 cmdW = xopt[0,4]
267 V = cmdV + self.ts*uopt[0,0]
268 W = cmdW + self.ts*uopt[0,1]
269 #vopt = self.forward_integr(x0=uopt[0])['xf']
270 #v_opt = [vopt.full()[0][0], vopt.full()[1][0]]
271

272 return uopt[0], [V,W]#, [V,W]#v_opt###, [tuple(xopt[:,0]), tuple(xopt[:,1])]#[xopt
[1,3], xopt[1,4]]

Listing B.2: Class for MPC local planner

Jon Arrizabalaga Master of Science Thesis

Appendix B. Scripts 106

B.3 Navigation local planner

The local planner follows a time dependant reference which moves along the trajectory. This class contains
the functions that dictate how the reference is going to move along the path.

1 from casadi import *
2 import numpy as np
3

4 class navigation_local_planner():
5

6 def __init__(self, path_filename, tolerance, initial_states, N, ts):
7

8 self.traj = np.genfromtxt(path_filename, delimiter=',', names=True) #obtain path
to follow

9 self.tolerance = tolerance #tolerance
when checking if goal is achieved

10 self.x = initial_states #initial
states of the system

11 self.N = N #control
horizon

12 self.ts = ts #control
horizon

13

14 self.cont_traj = 0 #counter for number of trajectories
15 self.t0_traj = 0 #timer for time spent in current trajectory
16

17 self.goal_pt = vertcat(np.ones((1,N+1))*self.x[0],
18 np.ones((1,N+1))*self.x[1],
19 np.ones((1,N+1))*self.x[2]) #initial goal point
20

21 self.get_trajectories() #divide path to follow into trajectories
22

23 self.finished = False #flag to know when the navigation is finished
24

25 def get_trajectories(self):
26 traj = self.traj
27 ts = self.ts
28

29 info = [traj['x'], traj['y']]
30 ind = np.where(traj["flag_goal"] == 1)[0]
31

32 #separate the information into trajectories
33 d = []
34 v_nav = traj['v_nav'][ind]
35 for k in range(len(info)):
36 c =[]
37 for i in range(len(ind)-1):
38 b = []
39 for j in range(ind[i], ind[i+1]+1): b.append(info[k][j])
40 c.append(b)
41

42 if ind[-1] < len(info[k])-1:

Master of Science Thesis Jon Arrizabalaga

107 B.3. Navigation local planner

43 b = []
44 for i in range(ind[-1], len(info[k])):
45 b.append(info[k][i])
46 c.append(b)
47 d.append(c)
48

49 #get distance and scattering of each trajectory
50 tf = [0]
51 distT = []
52 tT = []
53 scT = []
54 n_info = len(d)
55 n_traj = len(d[0])
56 for i in range(n_traj):
57 n_traj_points = len(d[0][i])
58 distance = []
59 tf = [0]
60 scatter_chk = []
61

62 for k in range(n_traj_points -1):
63 distance.append(np.sqrt(((d[0][i][k+1]-d[0][i][k])**2)+((d[1][i][k+1]-d[1][i][

k])**2)))
64 tf.append(tf[-1]+distance[-1]/v_nav[i])
65 scatter_chk.append(int(np.ceil(tf[-1]/ts)))
66

67 distT.append(distance)
68 scT.append(scatter_chk)
69 tT.append(tf)
70

71 #get checkpoints of each trajectory
72 d_type = np.dtype([('t', np.float64), ('x', np.float64), ('y', np.float64), ('teta',

np.float64)])
73 trajectories = []
74 for i in range(n_traj):
75 n_traj_points = len(d[0][i])
76 checkpoints = []
77 chk = []
78 for k in range(n_traj_points -1):
79 chk_t = np.linspace(tT[i][k],tT[i][k+1], scT[i][k]+2)
80 chk_X = np.linspace(d[0][i][k],d[0][i][k+1], scT[i][k]+2)
81 chk_Y = np.linspace(d[1][i][k],d[1][i][k+1], scT[i][k]+2)
82 angle = atan((d[1][i][k+1]-d[1][i][k])/(d[0][i][k+1]-d[0][i][k]))
83

84 if angle == 0 and d[0][i][k]<d[0][i][k+1]: angle = 0
85 if angle == 0 and d[0][i][k]>d[0][i][k+1]: angle = np.pi
86 if np.isnan(angle) and d[1][i][k]<d[1][i][k+1] and d[0][i][k]==d[0][i][k+1]:

angle = np.pi/2
87 if np.isnan(angle) and d[1][i][k]>d[1][i][k+1] and d[0][i][k]==d[0][i][k+1]:

angle = -np.pi/2
88

89 chk_teta = np.ones(scT[i][k]+2)*angle
90

Jon Arrizabalaga Master of Science Thesis

Appendix B. Scripts 108

91 for z in range(scT[i][k]+2): chk.append((chk_t[z], chk_X[z], chk_Y[z],
chk_teta[z]))

92

93 checkpoints.append(np.array(chk,dtype=d_type))
94

95 trajectories.append(checkpoints)
96

97 self.trajectories = trajectories
98 self.ind = ind
99

100 def navigation_update(self,states,time):
101 self.t = time
102 self.x = states
103 self.check_status()
104 if self.finished == False:
105 self.get_goal()
106

107 def check_status(self):
108 if self.check_end():
109 self.cont_traj += 1
110 self.t0_traj = self.t
111 if self.cont_traj > len(self.trajectories)-1:
112 self.finished = True
113 else: print("--Trajectory: " + str(self.cont_traj+1)+", References velocity: ",

str(self.traj['v_nav'][self.ind[self.cont_traj]])+"m/s")
114

115 def check_end(self):
116 posX = self.x[0]
117 posY = self.x[1]
118 objX = self.trajectories[self.cont_traj][0]['x'][-1]
119 objY = self.trajectories[self.cont_traj][0]['y'][-1]
120 distance = np.sqrt(((posX-objX)**2)+((posY-objY)**2))
121 #print("Dist", distance)
122 if distance < self.tolerance: return True
123 else: return False
124

125 def get_goal(self):
126 self.v_ref = self.traj['v_nav'][self.ind[self.cont_traj]]
127 t = self.t-self.t0_traj
128 checkpoints = self.trajectories[self.cont_traj][0]
129 N = self.N
130 ts = self.ts
131

132 objX_old = float(self.goal_pt[0,1])
133 objY_old = float(self.goal_pt[1,1])
134 objTeta_old = float(self.goal_pt[2,1])
135

136 objX = np.interp(t+N*ts, list(checkpoints['t']),list(checkpoints['x']))
137 objY = np.interp(t+N*ts, list(checkpoints['t']),list(checkpoints['y']))
138 objTeta = np.interp(t+N*ts, list(checkpoints['t']),list(checkpoints['teta']))
139

Master of Science Thesis Jon Arrizabalaga

109 B.3. Navigation local planner

140 # if (objX == checkpoints['x'][-1]) and (objY == checkpoints['y'][-1]): #if the time
based reference has got to the end of the section, move its origin to robot's location

141 # objX = tuple(np.linspace(self.x[0], objX, N+1))
142 # objY = tuple(np.linspace(self.x[1], objY, N+1))
143 # objTeta = tuple(np.linspace(objTeta_old, objTeta, N+1))
144 # objVel = tuple(np.ones(N+1)*self.v_ref)
145 # else: #else normal time based reference
146 objX = tuple(np.linspace(objX_old, objX, N+1))
147 objY = tuple(np.linspace(objY_old, objY, N+1))
148 objTeta = tuple(np.linspace(objTeta_old, objTeta, N+1))
149 objVel = tuple(np.ones(N+1)*self.v_ref)
150

151 self.goal_pt = horzcat(objX,objY,objTeta,objVel).T
152 self.objX = objX
153 self.objY = objY

Listing B.3: Class for navigation local planner

Jon Arrizabalaga Master of Science Thesis

Appendix B. Scripts 110

B.4 Caster wheel estimator

Contains the ODE equations to estimate the caster wheel states (rotation angle, φ, and rolling speed, γ̇). It
also calculates the steady states of those two variables (φss,γ̇ss).

1 from casadi import*
2 import numpy as np
3

4 class caster_estimator():
5

6 def __init__(self, initial_state, f_controller, dae_solver, dae_opts, model_parameters):
7

8 self.v_des = 0 #DESIRED longitudinal velocity
9 self.w_des = 0 #DESIRED rotational velocity

10

11 self.v_odom = 0 #ODOMETRY longitudinal velocity
12 self.w_odom = 0 #ODOMETRY rotational velocity
13

14 self.phi_est = initial_state[0] #initial ESTIMATED caster-wheel rotation
angle

15 self.gammadot_est = initial_state[1] #initial ESTIMATED caster-wheel rolling
speed angle

16

17 self.phi_des = 0 #DESIRED caster-wheel rotation angle
18 self.gammadot_des = 0 #DESIRED caster-wheel rolling angle
19

20 self.t_start = 0 #start time for integration
21 self.t_end = 0 #finish time for integration
22 self.ts = 1/f_controller #step size of integration
23

24 self.dxCaster = model_parameters[0] #X-distance from origin to front caster wheel
(m)

25 self.dyCaster = model_parameters[1] #Y-distance from origin to front caster wheel
(m)

26 self.hCaster = model_parameters[2] #Overhang of caster wheel front (m)S
27 self.rCaster = model_parameters[3] #Radius of front caster wheels
28

29 self.dae_solver = dae_solver #solver for ode
30 self.dae_opts = dae_opts #options for ode solver
31

32 self.ODE_definition() #function to define INTEGRATOR
33

34 def ODE_definition(self):
35

36 #Variables
37 x = SX.sym('x',1)
38 u = SX.sym('u',2)
39

40 #Equations --> x = ['phiL', 'phiR', 'gammaL', 'gammaR']
41 ode = SX.zeros(1)
42 ode[0] = -1/(self.hCaster)*((u[0]-u[1]*self.dyCaster)*sin(x[0])-u[1]*self.dxCaster*cos

(x[0]))

Master of Science Thesis Jon Arrizabalaga

111 B.4. Caster wheel estimator

43

44

45 #Settings
46 dae = {'x': x, 'ode': ode, 'p': u}
47

48 intg = integrator('intg', self.dae_solver, dae, self.dae_opts)
49 x_next = intg(x0=x, p=u)['xf']
50 self.F = Function('F', [x,u], [x_next], ['x','u'], ['x_next'])
51

52 def TwistToCasterDesired(self, v_des, w_des):
53

54 #desired caster wheel rotation angles
55 self.phi_des = arctan2((w_des*self.dxCaster),(v_des-w_des*self.dyCaster))
56

57 #desired caster wheel rolling angles
58 self.gammadot_des = 1/self.rCaster*np.sqrt((v_des-w_des*self.dyCaster)**2+(w_des*self.

dxCaster)**2)
59

60 def CasterStateEstimate(self, v_odom, w_odom):
61

62 U = [v_odom, w_odom]
63 phi_est = self.phi_est
64

65 #estimate rotation angle (integration)
66 for T in np.arange(self.t_start, self.t_end, self.ts):
67 phi_est = self.F(phi_est, U)
68 self.phi_est = float(phi_est.full())
69

70 #estimate rolling angle (analytical equations)
71 self.gammadot_est = 1/(self.rCaster)*((U[0]-U[1]*self.dyCaster)*cos(phi_est[0])+U[1]*

self.dxCaster*sin(phi_est[0]))
72

73 def estimate(self, t_start, t_end, vel_des, vel_odom):
74

75 #safe variables
76 self.t_start = t_start
77 self.t_end = t_end
78

79 #convert desired command velocities to caster wheel angles
80 self.TwistToCasterDesired(v_des = vel_des[0] , w_des = vel_des[1])
81

82 #estimate caster wheel rotation and rolling angles
83 self.CasterStateEstimate(v_odom = vel_odom[0], w_odom = vel_odom[1])
84

85 class estimator():
86

87 def __init__(self, initial_state, f_controller, dae_solver, dae_opts, model_parameters):
88

89 #Model parameters
90 dxCaster = model_parameters[0] #X-distance from origin to front caster

wheel (m)

Jon Arrizabalaga Master of Science Thesis

Appendix B. Scripts 112

91 dyCaster = model_parameters[1] #Y-distance from origin to front caster
wheel (m)

92 hCaster = model_parameters[2] #Overhang of caster wheel front (m)S
93 rCaster = model_parameters[3] #Radius of front caster wheels
94 dxCasterRear = model_parameters[4]
95 dyCasterRear = model_parameters[5]
96 hCasterRear = model_parameters[6]
97 rCasterRear = model_parameters[7]
98

99 #initialize a path filter for each caster-wheel
100 self.FL = caster_estimator(initial_state = initial_state[:2],
101 f_controller = f_controller,
102 dae_solver = dae_solver,
103 dae_opts = dae_opts,
104 model_parameters = [dxCaster,dyCaster,hCaster,rCaster])
105

106 self.FR = caster_estimator(initial_state = initial_state[2:],
107 f_controller = f_controller,
108 dae_solver = dae_solver,
109 dae_opts = dae_opts,
110 model_parameters = [dxCaster,-dyCaster,hCaster,rCaster])
111

112 self.BL = caster_estimator(initial_state = initial_state[:2],
113 f_controller = f_controller,
114 dae_solver = dae_solver,
115 dae_opts = dae_opts,
116 model_parameters = [-dxCasterRear,dyCasterRear,hCasterRear,

rCasterRear])
117

118 self.BR = caster_estimator(initial_state = initial_state[2:],
119 f_controller = f_controller,
120 dae_solver = dae_solver,
121 dae_opts = dae_opts,
122 model_parameters = [-dxCasterRear,-dyCasterRear,hCasterRear,

rCasterRear])
123

124 def estimate(self,t_start, t_end, vel_des, vel_odom):
125

126 #estimate states for all caster_wheels
127 self.FL.estimate(t_start = t_start, t_end = t_end, vel_odom = vel_odom, vel_des =

vel_des)
128 self.FR.estimate(t_start = t_start, t_end = t_end, vel_odom = vel_odom, vel_des =

vel_des)
129 self.BL.estimate(t_start = t_start, t_end = t_end, vel_odom = vel_odom, vel_des =

vel_des)
130 self.BR.estimate(t_start = t_start, t_end = t_end, vel_odom = vel_odom, vel_des =

vel_des)

Listing B.4: Class for caster wheel observer

Master of Science Thesis Jon Arrizabalaga

113 B.5. Caster wheel based Path Filter

B.5 Caster wheel based Path Filter

Implements in Python an the extended version of the PF proposed in paper [5] as explained in Section
3.8.

1 from casadi import*
2 import numpy as np
3

4 class caster_path_filter():
5

6

7 def __init__(self, model_parameters, tuning_parameter):
8 #Tuning parameters
9 self.tuning_parameter = tuning_parameter

10

11 #Model parameters
12 self.dxCaster = model_parameters[0] #X-distance from origin to front caster wheel

(m)
13 self.dyCaster = model_parameters[1] #Y-distance from origin to front caster wheel

(m)
14 self.hCaster = model_parameters[2] #Overhang of caster wheel front (m)S
15 self.rCaster = model_parameters[3] #Radius of front caster wheels
16

17 def CasterStateFilter(self, phi_est, gammadot_est, phi_des, gammadot_des):
18

19 #conversion to -pi,pi
20 deltaPhi_raw = phi_des-phi_est
21 n = np.floor((deltaPhi_raw-np.pi)/(2*np.pi))
22 deltaPhi = deltaPhi_raw -2*(n+1)*np.pi
23

24 #filtering term
25 k = min(1.0, abs(gammadot_est/(gammadot_des*self.tuning_parameter)))
26 self.correction_term = k*deltaPhi
27

28 #filtered caster wheel rotation angle
29 self.phi_filt = phi_est+self.correction_term
30

31 #filtered caster wheel rolling angle
32 self.gammadot_filt = gammadot_des
33

34

35

36 def CasterStatetoTwist(self):
37 numb = 1e-3
38

39 #conversion to -pi,pi
40 n = np.floor((self.phi_filt-np.pi)/(2*np.pi))
41 phi_helper = self.phi_filt -2*(n+1)*np.pi
42

43 #calculate w_filt
44 self.w_filt = self.gammadot_filt*sin(self.phi_filt)*self.rCaster/self.dxCaster
45

Jon Arrizabalaga Master of Science Thesis

Appendix B. Scripts 114

46 #calculate v_filt
47 if phi_helper >= -np.pi+numb and phi_helper <= -numb:
48 ycc = self.dyCaster-self.dxCaster*tan(phi_helper+np.pi/2)
49 self.v_filt = self.w_filt*ycc
50

51 elif phi_helper > numb and phi_helper < np.pi-numb:
52 ycc = self.dyCaster-self.dxCaster*tan(phi_helper-np.pi/2)
53 self.v_filt = self.w_filt*ycc
54

55 elif phi_helper > -numb and phi_helper < numb:
56 self.v_filt = self.gammadot_filt*self.rCaster
57

58 else:
59 self.v_filt = -self.gammadot_filt*self.rCaster
60

61 #gammadot_filt*cos(phi_filt)*self.rCaster*(1+tan(phi_filt)*self.dyCaster/self.dxCaster
)

62

63 def filter(self, phi_est, phi_des, gammadot_est, gammadot_des):
64

65 #filter caster wheel rotation and rolling angles
66 self.CasterStateFilter(phi_est = phi_est,
67 phi_des = phi_des,
68 gammadot_est = gammadot_est,
69 gammadot_des = gammadot_des)
70

71 #convert filtered caster wheel rotation and rolling angles to filtered command
velocities

72 self.CasterStatetoTwist()
73

74 class path_filter():
75

76 def __init__(self, model_parameters, tuning_parameter):
77

78 #Model parameters
79 dxCaster = model_parameters[0] #X-distance from origin to front caster wheel (m)
80 dyCaster = model_parameters[1] #Y-distance from origin to front caster wheel (m)
81 hCaster = model_parameters[2] #Overhang of caster wheel front (m)S
82 rCaster = model_parameters[3] #Radius of front caster wheels
83

84 #initialize a path filter for each caster-wheel
85 self.FL = caster_path_filter(model_parameters = [dxCaster,dyCaster,hCaster,rCaster],

tuning_parameter = tuning_parameter)
86 self.FR = caster_path_filter(model_parameters = [dxCaster,-dyCaster,hCaster,rCaster],

tuning_parameter = tuning_parameter)
87

88

89 def filter(self, phi_est, phi_des, gammadot_est, gammadot_des):
90

91 self.FL.filter(phi_est = phi_est[0],
92 phi_des = phi_des[0],
93 gammadot_est = gammadot_est[0],

Master of Science Thesis Jon Arrizabalaga

115 B.5. Caster wheel based Path Filter

94 gammadot_des = gammadot_des[0])
95

96 self.FR.filter(phi_est = phi_est[1],
97 phi_des = phi_des[1],
98 gammadot_est = gammadot_est[1],
99 gammadot_des = gammadot_des[1])

Listing B.5: Class for caster wheel based Path Filter

Jon Arrizabalaga Master of Science Thesis

TRITA ITM-EX 2020:477

www.kth.se

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Problem statement
	Purpose
	Methodology
	Delimitations and Limitations
	Delimitations
	Limitations

	Deposition

	Fundamentals
	Modelling of DDMR with Caster Wheels
	DDMR
	Caster Wheels

	Caster wheel awareness in mobile robots
	Formulation
	Implementation

	MPC based motion planning
	Path following

	Case Identification
	Hypotheses statement
	Hypotheses simulation
	Hypotheses implication

	Summary

	Concept
	Plant Model
	Differential Drive Mobile Robot
	Caster Wheel
	Formulation of the plant model

	Objective function
	Navigation term
	Caster wheel aware term
	Formulation of objective function

	Observer
	Observer model
	Stability analysis

	Horizon and sampling time
	Sampling time
	Time and control horizon

	Constraints
	Formulation of OCP
	Implementation of the MPC
	Integration
	OCP solver

	Extension of PF
	Summary

	Simulations
	Observer
	Case study I: Navigation across a global path
	Case study II: Forward-Backward case

	Comparison of MPC based local planners
	Procedure
	Evaluation criteria
	Case Study I: Rotation on the spot
	Case Study II: Rotate and navigate in a straight line
	Case Study III: Navigation across given global paths

	Summary

	Field Test
	Definition of case studies
	Experimental setup
	Layout
	Network
	Navigation algorithm
	Implementation

	Case study I: Rotation on spot
	Path Filter
	MPC based local planners
	Conclusions

	Case study II: Navigation across a given global path
	Validation of the observer
	Results
	Analysis
	Conclusions

	Summary

	Conclusions
	Discussion
	Summary
	Future Work
	Research Tasks
	Research Directions

	References
	Figures
	Fundamentals - Case Identification
	Experiments - Sensors

	Scripts
	Local planner
	MPC local planner
	Navigation local planner
	Caster wheel estimator
	Caster wheel based Path Filter

