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Abstract—Spectral precoding is a promising technique to sup-
press out-of-band emissions and comply with leakage constraints
over adjacent frequency channels and with mask requirements
on the unwanted emissions. However, spectral precoding may
distort the original data vector, which is formally expressed as
the error vector magnitude (EVM) between the precoded and
original data vectors. Notably, EVM has a deleterious impact
on the performance of multiple-input multiple-output orthogonal
frequency division multiplexing-based systems. In this paper we
propose a novel spectral precoding approach which constrains
the EVM while complying with the mask requirements. We first
formulate and solve the EVM-unconstrained mask-compliant
spectral precoding problem, which serves as a springboard to
the design of two EVM-constrained spectral precoding schemes.
The first scheme takes into account a wideband EVM-constraint
which limits the average in-band distortion. The second scheme
takes into account frequency-selective EVM-constraints, and
consequently, limits the signal distortion at the subcarrier level.
Numerical examples illustrate that both proposed schemes out-
perform previously developed schemes in terms of important
performance indicators such as block error rate and system-
wide throughput while complying with spectral mask and EVM
constraints.

Index Terms—Sidelobe suppression, spectral precoding,
MIMO, OFDM, EVM, out-of-band emissions, ACLR, Consensus
ADMM, Douglas-Rachford Splitting.

I. INTRODUCTION

Modern wireless communication systems, including fifth-
generation (5G) New Radio (NR), adopt orthogonal frequency
division multiplexing (OFDM) with cyclic prefix [2]. The
reasons are that OFDM has several attractive characteristics
such as robustness to the negative effects of time dispersive
channels and multi-path fading, simplicity in terms of equal-
ization and flexibility in terms of supporting both low and
high symbol rates and thereby supporting a variety of quality
of service requirements. Further, OFDM-based systems can
facilitate dynamic spectrum sharing [3].

Unfortunately, OFDM suffers from high out-of-band emis-
sions (OOBE) due to the discontinuities at the boundaries of
the rectangular window and the high sidelobes associated with
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the sinc functions of the OFDM signal [4]. The OOBE must
be adequately suppressed since high OOBE causes significant
interference to the neighbouring adjacent channels. In practice,
all OFDM systems are designed to comply not only with
OOBE requirements, in terms of adjacent channel leakage
ratio (ACLR) and spectral emission mask, but also in-band
requirements, in terms of error vector magnitude (EVM) and
other signal demodulation/detection requirements [5]. Simply,
the EVM describes the distortion/noise incurred to the useful
(transmit) symbols and ACLR represents the amount of un-
desired power that exists in the neighbouring carriers relative
to the desired carrier power—the detailed description of these
metrics are in the subsequent sections.

There are a plethora of techniques to suppress/reduce OOBE
for the cyclic-prefix based OFDM—see, e.g., [6] and its
references—which can be categorized into time and frequency
domain methods. Amongst them, the methods are, namely,
guard band inclusion, filtering [7], windowing [8], cancellation
carriers [9]–[11], and spectral precoding [1], [12]–[18].

Spectral precoding is one of the promising bandwidth
efficient techniques for OOBE reduction. It spectrally precodes
the data symbols before OFDM modulation [13], [17], [18],
which reduces the OOBE without using the extra spectral re-
sources contrary to cancellation carriers and without increasing
the delay/time dispersion or penalizing the cyclic prefix of the
transmitted signal unlike filtering/windowing. In Section II we
review related works in addition to our contribution.

In this paper, we develop spectral precoding schemes
that comply with EVM-constraints and simultaneously meet
OOBE requirements in terms of mask and ACLR, without
affecting signal processing at the receiver. Our objective
is to design low complexity spectral precoding algorithms
that operate well in wide-band multiple-input multiple-output
(MIMO)-OFDM systems. In the first part of the paper, we
consider the problem of designing mask-compliant spectral
precoding without EVM constraints. In the second part of the
paper, we propose to incorporate wideband and frequency-
selective EVM constraints in addition to mask compliance.
Our goal is to improve key performance indicators, including
out-of-band and in-band performance metrics, because highly
spectral efficient MIMO-OFDM-based systems require low
EVM. Accordingly, we introduce a wideband EVM constraint,
which restricts the wideband average in-band distortion due
to spectral precoding. Finally, the frequency-selective EVM
constraint offers more flexibility—but at the expense of in-
creased complexity—than using wideband constraints, because
the frequency-selective constraints limit the in-band distortion
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power at the subcarrier (or group of subcarriers) level. As
we will show and discuss, these design approaches represent
at least three distinct ways of addressing the complexity-
performance trade-off in the design of MIMO-OFDM spectral
precoders.

The rest of the paper is structured as follows. The next
section, which can be skipped by the reader familiar with
the subject, discusses related work including impact of EVM
and states our contribution. Section III discusses preliminaries
and introduce the system model. Next, Section IV formulates
the EVM-unconstrained problem and develops an alternating
direction method of multipliers (ADMM)-based algorithm
[19], [20] and a coordinate-descent-based algorithm to solve
this unconstrained problem. Section V formulates the EVM-
constrained problem and develops an ADMM-based solution
and yet an alternative approach based on the Douglas-Rachford
algorithm [19], [21]. Section VI presents simulation results
that compare the performance of the proposed schemes with
that of benchmarking schemes, and finally Section VII con-
cludes the paper.

II. RELATED WORKS AND CONTRIBUTIONS

In this section, we first give an overview of the related
frequency domain techniques, then the impact of EVM on
the system performance, and finally highlight our original
contribution.

A. Cancellation Carrier Techniques

The cancellation carrier techniques, such as active in-
terference cancellation [9], cancellation carrier with power
constraint [10], and extended active interference cancellation
[11], utilize the non-data bearing subcarriers solely for OOBE
reduction. These methods generally offer good sidelobe sup-
pression with relatively low complexity, at the expense of
transmit power wastage and spectral resources. Besides signal-
to-noise ratio (SNR) degradation due to transmit power sharing
with the non-data bearing cancellation carriers, the extended
active interference cancellation [11] induces intersymbol and
intercarrier interferences to the desired/useful signal due to
the placement of the non-orthogonal carriers. Additionally,
there are several practical implementation challenges, e.g.,
many cancellation carriers are required to maintain appropriate
power spectral density (PSD) of the composite signals to
avoid the negative impact of intermodulation due to nonlinear
components [22], e.g., power amplifier, and consequently
failing to meet other OOBE requirements—in terms of mask
and ACLR defined in NR-like standards [5].

B. Spectral Precoding Techniques

There are many variants of spectral precoding methods in
the literature to suppress OOBE. We briefly review some of
these techniques subsequently.

In the notching spectral precoder [13], the spectrally pre-
coded signal essentially nulls/notches the OOBE at given
discrete frequencies in the out-of-band spectrum of the OFDM
signal. The precoder is obtained in the closed-form by solv-
ing equality constrained least-squares optimization problem.

Notching the spectrum at well-selected discrete frequencies
often suppresses the whole signal spectrum and consequently
leads to OOBE reduction [13]. However, such a notching
approach has a deleterious impact on the in-band performance,
in terms of increased EVM and block error rate, which
thereby penalizes the system-wide throughput. Notably, the
edge subcarriers have very high EVM—see Fig. 2(c) in the
numerical results Section VI-C—which decreases the through-
put. Recognizing these problems, in [16] a weighted-notching
spectral precoder method is proposed to reduce the EVM at
the edge subcarriers by spreading the total distortion over all
the allocated subcarriers. Another extension of the notching
spectral precoder, proposed in [23], performs precoding jointly
over several consecutive OFDM symbols which improves the
in-band performance slightly over the single OFDM symbol-
based precoding but penalizes the latency since a large number
of OFDM symbols have to be buffered.

2) Constrained Spectral Precoding: On the contrary, mask-
compliant spectral precoder (MSP) improves the in-band per-
formance over notching spectral precoder while only meeting
a target mask instead of creating nulls at the selected dis-
crete frequencies at the expense of increased complexity [1],
[24]. Because MSP is posed as an inequality constrained
convex optimization formulation, it typically does not yield
a closed-form solution. Furthermore, the authors of [15] sug-
gest utilizing a generic optimization solver, which generally
employs interior-point methods [25]. Therefore, the authors
in [1], [24], propose computationally efficient schemes to
obtain mask-compliant spectrally precoded data symbols for
single-input single-output (SISO)-OFDM systems. The authors
in [26] propose three EVM-constrained precoders for SISO
systems, whereby two precoders are developed heuristically,
and one of them is posed as a convex optimization problem.
The optimization-based precoder is obtained by minimizing
the `2-norm of the OOBE at a chosen set of discrete frequency
points subject to the EVM constraint—yielding no closed-
form solution. The former precoders are ad hoc, but can
be seen as a scaled-form of the notching spectral precoder
such that they meet the EVM constraint but penalize the
OOBE in an unsystematic way. Furthermore, the authors
show numerically that the ad hoc precoders render superior
performance compared with the optimization-based precoder
in suppressing OOBE under EVM constraint.

3) Spectral Precoding in MIMO Systems: In [27] several
linear receivers are investigated when notching spectral pre-
coders is employed in a MIMO-OFDM system. In [18, Pa-
per F], the authors extend the SISO-OFDM spectral precoding
to massive MIMO-OFDM for a joint spatial and notching
spectral precoding, which exploits full downlink channel state
information at the transmitter due to channel reciprocity in
time division duplexing, to improve the in-band performance
at the receiver. Recent works analyzed the impact of the EVM
at the receiver or over-the-air specifically in massive MIMO
context. These works reveal that in beamforming systems the
EVM is also beamformed along the same direction as the data,
see e.g., [28]–[31].
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C. Impact of EVM on the System Performance

In practical transceivers, the hardware imperfections stem
from both the digital and the analogue components. These
may include clip noise, filter ripple or distortion, in-phase
and quadrature (IQ) mismatch, non-linearity, local oscillator
inducing phase noise, sampling clock offsets, timing and
frequency error, see, e.g., [32], [33]. These imperfections
have detrimental impact on the MIMO-OFDM performance,
notably in high data rate achieving systems [34]–[39]. In
practice, EVM metric evaluation provides insightful and useful
information on the link quality, in terms of SNR, seen at
the receiver due to the aggregated digital and analogue hard-
ware imperfections [40]–[42]. The NR-like standards mandate
(transmit) EVM requirements, see Table IV, on the composite
inband distortion emanating from the various sources but
measured at the (ideal) receiver by using pilots or reference
signals as described in, e.g., [5, Appendix B].

To minimize the impact of EVM onto the system throughput
performance, in general, there are at least two approaches:
1) constraining the EVM at the transmitter and 2) mitigating
or cancelling the (transmit) EVM seen at the receiver. We
pursue the former approach because NR-like standards [5],
[43] stipulate the minimum EVM requirements according to
the considered modulation alphabet, which must be satisfied
by the base station or user equipment devices. Hence, in
this paper, we constrain the EVM of spectral precoding in
addition to mask compliance (which implicitly may ensure
the fulfilment of minimum ACLR requirements).

D. Contribution of the Paper

In this paper, we design computationally efficient al-
gorithms for the mask-compliant spectral precoding with
(un)constrained EVM for the MIMO-OFDM-based systems
that scale linearly with the number of supported transmit
antennas and do not require additional signal processing at
the receiver. More specifically,
• we propose and accomplish a wideband and frequency-

selective EVM-constrained and mask-compliant spectral
precoding formulation.

• we develop two highly efficient algorithms by decom-
posing the large-scale spectral precoding optimization
problems for both unconstrained and constrained EVM
into subproblems, where each subproblem yields closed-
form or efficient solution, which has a very low com-
putational complexity compared to the general purpose
solver. We propose solutions for (un)constrained EVM: 1)
ADMM-based algorithms, referred to as ADMM/EVM-
constrained ADMM (EADMM) and 2) specialized al-
gorithms, dubbed as semi-analytical spectral precoding
(SSP)/EVM-constrained SSP (ESSP). Note that part of
[1] is used for the EVM-unconstrained part of the present
paper.

• we finally present exhaustive simulations using a 5G NR
(Release-15 compliant) inhouse link-level simulator [1].

E. Notation
Let the set of complex and real numbers be denoted by C

and R, respectively. <{x} denotes the real part of a complex

number x. The i-th element of a vector a∈Cm×1 is denoted
by a[i] ∈ C, and element in the i-th row and j-th column
of the matrix A ∈ Cm×n is denoted by A [i, j] ∈ C. The
i-th row and j-th column vector of a matrix A ∈ Cm×n
are represented as A [i, :] ∈ C1×n and A [:, j] ∈ Cm×1,
respectively. An i-th higher order vector and matrix are
denoted as x[i] ∈ Cm×1 or xi ∈ Cm×1 and X[i] ∈ Cm×n.
We form a matrix by stacking the set of higher order
vectors

{
a[n]∈CM×1

}N
n=1

and
{
b[m]∈C1×N}M

m=1
column-

wise and row-wise as A = [a[1], . . . ,a[N ]] ∈ CM×N and
B = [b[1]; . . . ; b[M ]] ∈CM×N , respectively. The dimensions
of the vectors/matrices are equally applicable for both C and
R. The transpose and conjugate transpose of a vector or
matrix are denoted by (·)T and (·)H, respectively. The complex
conjugate is represented by (·)∗. The K×K identity matrix is
written as IK . The expectation operator is denoted by E{·}.
An i-th iterative update is denoted by (·)(i).

III. PRELIMINARIES

In this section, we introduce the downlink MIMO-OFDM
system model followed by performance metrics useful for the
spectral precoding design.

A. System Model and Out-of-Band Emissions

We consider the OFDM-based single-user MIMO downlink,
where the base station is equipped with NT transmit (Tx)
antennas, and the user equipment (UE) is equipped with NR

receive (Rx) antennas as depicted in Fig. 1. Additionally, we
reckon spatial multiplexing transmission scheme with NL ≤
min {NT, NR} spatial layers.

A spatially precoded symbol vector x[k] at k-th subcarrier
for a given OFDM symbol can be formed by

x[k] = W [k]s[k] ∈ CNT×1, (1)

where, the vector s[k] ∈ SNL×1 belongs to a complex-
valued finite-alphabet set S , e.g., corresponding to a 2Q-
quadrature amplitude modulation (QAM) constellation with
Q ∈ {2, 4, 6, 8}. The given MIMO precoder W [k] ∈ CNT×NL

is chosen, e.g., from a codebook in 3GPP NR [44].
Towards this end, we introduce a frequency-domain

(spatially-precoded) data matrix X by stacking each (column)
vector x [k] (cf. Eq. (1)) column-wise for all the subcarriers
within a given N -point inverse discrete Fourier transform such
that
X := [x [1] , . . . ,x [N ]] :=

[
dT

1 ; . . . ;dT
NT

]
∈ CNT×N , (2)

where we define a spatially precoded vector dj ∈ CN×1 for
j-th transmit antenna as

dj := (X [j, :])
T ∈ CN×1. (3)

Similarly, we define a spectrally precoded frequency-domain
data matrix X as
X := [x [1] , . . . ,x [N ]] :=

[
d

T

1 ; . . . ;d
T

NT

]
∈ CNT×N , (4)

where the spectrally (and spatially) precoded data symbol at
k-th subcarrier is represented as x [k]. Further, we define a
column vector dj ∈ CN×1 of a spectrally precoded vector
corresponding to j-th transmit antenna branch as

dj :=
(
X [j, :]

)T ∈ CN×1. (5)
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Fig. 1: Simplified block diagram of a single-user MIMO-OFDM transceiver with spectral precoding.

B. Performance Metrics

We utilize two figure-of-merits, i.e., OOBE and inband dis-
tortions, for the spectral precoding design and its performance.
The inband distortions are evaluated in terms of EVM and also
block error rate (BLER) (or equivalently throughput). More
specifically, we have employed EVM metric for the spec-
tral precoding design. Nonetheless, there exists a nonlinear
mapping between EVM and BLER or equivalently received
SNR, see, e.g., [41], [45]. Therefore, EVM metric is sufficient
for the spectral precoding design and performance evaluation.
The OOBE requirements are typically characterized by the
spectral mask and ACLR, among others [5], [43]. Based on our
practical experience, if the base station fulfils the spectral mask
requirement with a suitable implementation margin then the
ACLR requirement is also achieved; and the converse is also
true. Therefore, we have solely considered an appropriately
discretized mask as a spectral precoding design parameter.
However, for the numerical performance evaluation, we also
evaluate ACLR for completeness.

1) Out-of-Band Emissions: The OOBE is typically quanti-
fied in terms of the operating band unwanted emissions and
(conducted) ACLR, whose definitions are given below.

Definition 1 (Operating band unwanted emissions [5, Sec-
tion 6.6.4], referred to as mask). Unwanted emissions that
are immediately outside the base station channel bandwidth
resulting from the modulation process and non-linearity in the
transmitter but excluding spurious emissions.

The unwanted OOBE due to the OFDM frequency-domain
signal dj at the M considered discrete frequency points ν =
[ν1, . . . , νM ] can be described by p(ν) = Adj .

We now define A[m, :] := a (νm)
T ∈ C1×N , where

A [m, k] := a(νm, k) can be derived in discrete form as [13]:

a(νm, k) =

(
1√
N

)
exp

(
jπ

(νm − k)

N
(NCP −N + 1)

)
·

·
sin
(
π (νm−k)

N (N +NCP)
)

sin
(
π (νm−k)

N

) , (6)

where NCP corresponds to cyclic prefix length in samples.

Definition 2 (Adjacent channel leakage ratio (ACLR) [5,
Section 6.6.3]). ACLR is the ratio of the filtered mean power
centred on the assigned channel frequency to the filtered mean
power centred on an adjacent channel frequency. The (worst-
case) ACLR can mathematically be expressed as

ACLR:=

∫ BW/2

−BW/2
Sdesiredchannel(f) df

max


−BW

2∫
−3BW

2

Sleftchannel(f) df,

3BW
2∫

BW
2

Srightchannel(f) df


,

where Sdesiredchannel is the PSD in the desired carrier having
BW bandwidth including the guard band; and similarly,
Sleftchannel and Srightchannel correspond to the PSD on the
left and the right side of the desired carrier having same
bandwidth BW as the desired carrier, respectively.

We would like to accentuate that we do not directly use
ACLR for the spectral precoding design, but rather we use the
OOBE power at the considered discrete frequency points.

2) In-Band Distortion: The considered in-band distortion
for the spectral precoding design is EVM, which can be
quantified as a loss in the demodulated signal quality. It can
be described mathematically per j-th transmit antenna as1

EVMj := εj =
E
{∥∥dj − dj∥∥2

2

}
E
{
‖dj‖22

} . (7)

For the spectral precoding design, we assume that the
average transmit signal power per transmit antenna branch
E
{
‖dj‖22

}
is fixed.

IV. EVM-UNCONSTRAINED LARGE-SCALE MSP
(LS-MSP) IN MIMO-OFDM

In this section, we first consider a previously proposed
mask-compliant spectral precoding without EVM constraint
that utilizes a generic convex optimization solver. It is known
that it suffers from high computational complexity, notably
in large-scale systems. Afterwards, to mitigate the complex-
ity of computing the LS-MSP, we propose a divide-and-
conquer approach that breaks the original problem into smaller
rank 1 quadratic-constraint problems, where each small prob-
lem yields a closed-form solution. Lastly, based on these so-
lutions, we develop two specialized first-order low-complexity
algorithms. In particular, the first one is based on the consensus
ADMM while the second one is derived by employing the
coordinate descent scheme of a dual variable and capitalizing
on closed-form of the rank 1 constraint.

1EVM measurements in NR standard are stipulated with a zero-forcing
receiver, see, e.g., [5, Annex B], which can be seen as an equalized EVM
measure. On contrast, the EVM for the spectral precoding design can be
defined as an unequalized EVM since the unequalized EVM value would be
conservative, i.e., it can not be less than the equalized EVM, see, e.g., [46].
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A. EVM-Unconstrained Proposed Problem Formulations

The work in [13] was extended in [15] for single-antenna
OFDM, referred to as MSP, such that only the mask constraint
needs to be fulfilled, i.e.,

minimize
dj∈CN×1

∥∥dj − dj∥∥2

2
subject to

∣∣A dj∣∣2 � γ, (8)

where the inequality constraint is element-wise and the target
mask γ ∈ RM×1 is given. The solution could not be expressed
in (semi) closed-form and thereby the authors proposed to
solve this MSP problem via a generic quadratic programming
solver [15], e.g., CVX [47].

Based on our key observation, we rewrite the problem
(8) as described below, without any loss of convexity. More
specifically, the constraint in (8) can be decomposed into M
rank 1 constraints such that it becomes

minimize
dj

∥∥dj − dj∥∥2

2

subject to d
H

j Am dj ≤ γm, ∀m=1 . . . ,M, (9)

where

Am = a (νm)
∗
a (νm)

T ∈ CN×N (10)

and rank{Am} = 1. Problem (9) is referred to as LS-MSP
that facilitates large-scale optimization.

B. Efficient Algorithms for EVM-Unconstrained LS-MSP

The proximal operator, prox, is used for the algorithm
design, whose definition is given below.

Definition 3 (proximal mapping [48], [49]). Given a proper
closed convex function f : domf 7→ (−∞ , +∞], then the
proximal mapping of f is the operator given by

proxλf (x) = arg min
z∈domf

{
f(z) +

1

2λ
‖x− z‖22

}
(11)

for any x ∈ domf , where domf corresponds to the domain of
function f and λ > 0.

Definition 4 (proximal mapping of the indicator function [48],
[49]). Let f : domf 7→ (−∞ , +∞] be an indicator function,
f(x) :=XC (x) where C is a nonempty set XC (x)=0 if x∈C
otherwise XC (x)=+∞, then the proximal mapping of a given
set C is an orthogonal projection operator projC onto the
same set, i.e.,

proxλXC
(x) = arg min

z∈domf

{
XC (x) +

1

2λ
‖x− z‖22

}
= arg min

z∈C

{
1

2
‖x− z‖22

}
= projC (x) .

If M = 1, the orthogonal projection onto the rank 1
quadratic constraint is obtained in closed-form as described
in the following theorem:

Theorem 1 (projection onto the rank 1 quadratic con-
straint). Let C ⊆ CN×1 and C 6= ∅ given by C ={
x ∈ CN×1 : xHÃx− b ≤ 0

}
, where Ã = uuH ∈ CN×N

is rank 1 matrix and b ∈ R≥0, then the proximal operator

proxXC
(x) = projC (x)

Algorithm 1 ADMM

Inputs:
{
dj ∈ CN×1

}NT

j=1
, {γm; a (νm)}Mm=1, ρ ∈ R>0

Output(s): d(I)j ∈ CN×1 ∀j = 1, . . . , NT

1: Initialization: y(0)m = 0N×1 and z(0)m = 0N×1

2: for i = 1, 2, . . . , I do

d
(i)
j =

1

(1+ρM)

[
dj + ρ

M∑
m=1

(
y
(i−1)
m + z

(i−1)
m

)]
(12a)

3: parfor m = 1, . . . ,M do . % run parallel

y
(i)
m = projCm

(
d
(i)
j − z

(i−1)
m

)
(12b)

z
(i)
m = z

(i−1)
m + y

(i)
m − d

(i)
j (12c)

4: end parfor
5: end for
6: return d(I)j

=

x+

( √
b−|uHx|

‖u‖22|uHx|

)
u
(
uHx

)
, if xHÃx > b

x, if xHÃx ≤ b.
(13)

Proof. See Appendix B. �

If M > 1, then no closed-form is known yet. Hence, in the
sequel, we propose low-complexity algorithms that essentially
break down the LS-MSP problem into smaller subproblems,
where each subproblem admits closed-form solution capital-
izing on Theorem 1.

1) EVM-Unconstrained ADMM LS-MSP (referred to as
ADMM): In our first proposal, we utilize ADMM with con-
sensus optimization to solve the LS-MSP problem by rewriting
Problem (9)

minimize
dj ,ym∈CN×1

f
(
dj
)

+

M∑
m=1

XCm (ym)

subject to ym = dj ∀m=1, . . . ,M,

where the (non-equalized) squared EVM f
(
dj
)

:=∥∥dj − dj∥∥2

2
is a convex and differentiable function.

The non-differentiable indicator function XCm
(ym)

with the rank 1 constraint set is given by
Cm =

{
ym : yH

m Am ym − γm ≤ 0
}

.
Algorithm 1 summarizes the proposed recipe for the

ADMM-based spectral precoding, cf. [1] for details, where
I denotes the total number of iterations. The convergence
analysis of the ADMM algorithm is given in Appendix A.

2) EVM-Unconstrained SSP LS-MSP (referred to as SSP):
In our second proposal, we derive an optimal semi-analytical
algorithm, dubbed as SSP, based on the Karush-Kuhn-Tucker
(KKT) conditions [25] for the constrained optimization (9).

We form the Lagrangian of (9) by introducing the Lagrange
multipliers {µm} as follows:

L
(
dj , {µm}

)
=
∥∥dj − dj∥∥2

2
+

M∑
m=1

µm

(
d

H

j Amdj − γm
)
.

(14)
Utilizing the KKT conditions, the stationarity condition yields
(15c) and the Lagrange multipliers {µm} are obtained iter-
atively in a coordinate descent fashion [50] as outlined in
Algorithm 2—see Appendix C for a detailed derivation.
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TABLE I: Comparison of online complexity of various EVM-unconstrained and mask-compliant algorithms

Method Complexity: Real Multiplications Complexity: Real Additions
MSP [15] O

(
N4.5NT

)
[24] –

ADMM I (9MN+M+N+1)NT I (14MN+2N+M+1)NT

SSP
([

5MN+I
(
4M2N2+12MN2+5M2N+3MN+M

)])
NT

([
2MN+I

(
2M2N2+6MN2+6M2N−2MN+M2

)])
NT

Algorithm 2 SSP

Inputs:
{
dj ∈ CN×1

}NT

j=1
,
{
γm∈R; λm1 = ‖a (νm) ‖22

}M
m=1

.

Output(s): d(I)j ∈ CN×1 ∀j = 1, . . . , NT

1: Initialization:

2:
{
µm = 1

λm
1

(∣∣∣a (νm)T dj

∣∣∣√(λm
1
γm

)
− 1

)}
∀m=1, . . . ,M (cf.

Lemma 1); φ = 0.
3: for i = 1, . . . , I do
4: for m = 1, . . . ,M do

G−1
\m =

IN +
M∑

n=1;n 6=m
µnAn

−1

(using Lemma 2)

(15a)

α1 = a (νm)TG−1
\m dj ; α2 = a (νm)TG−1

\m a (νm)∗

µm ← <
{
α1 exp (−ιφ)−√γm

√
γm α2

}
(15b)

5: end for
6: end for
7: return

dj =

(
IN +

M∑
m=1

µm Am

)−1

dj (using Lemma 2) (15c)

C. Complexity Analysis
We analyze the run-time complexity, in terms of required

real-valued multiplications and real-valued additions but ig-
nore the offline complexity. Notice, we convert all the com-
plex multiplications and additions into equivalent real-valued
multiplications and additions, i.e., 1 complex multiplication is
equivalent to 4 real multiplications and 2 real additions, and 1
complex addition corresponds to 2 real additions. Furthermore,
we assume that all the subcarriers are allocated, which will
give the worst-case complexity analysis. Table I summarizes
the complexity of the mask-compliant precoding schemes.

ADMM: The initialization step requires no multiplica-
tions/additions. In step (12a), there are (M+1)N complex
additions, N + 1 real multiplications, and 1 real addition
per iteration and transmit antenna. The dominating online
algebraic complexity is in the computation of the prox
operator in step (12b), which is in the order of 2MN com-
plex multiplications, 2MN complex additions, M (N+1) real
multiplications, and M real additions per iteration and transmit
antenna. However, due to distributed nature of consensus
ADMM, the M subiterations can run in parallel per iteration
cycle at the expense of increased memory requirements. In
step (12c), we need 2MN complex additions. Thus, ignoring
parallelization, the total run-time complexities for I iterations
and NT transmit antennas are I (9MN+M+N+1)NT and
I (14MN+2N+M+1)NT in terms of real multiplications
and real additions, respectively.

SSP: The initialization step needs N complex and real
multiplications, respectively for each m-th frequency point
and antenna, where {λm1 } can be computed offline. The

main computational complexity of step (15a) is due to the
matrix inversion, but no online inversion is necessary due
to the sum of rank 1 matrices—see Lemma 2, which are
(M−1)N2 + NM complex multiplications, 2 (M−1)N
complex additions, (M−1)N real multiplications, and
(M−1) real additions for each frequency point, iteration,
and transmit antenna. The complexity of the computation
of both α1 and α2 are

(
2N2

)
for each frequency point,

iteration, and transmit antenna. The step (15b) need N
complex multiplications, 1 real multiplication, and 1 real
addition. Hence, the total online real multiplications and
real additions for I iterations and NT transmit antennas are(([

5MN+I
(
4M2N2+12MN2+5M2N+3MN+M

)])
NT

)
and
(([

2MN+I
(
2M2N2+6MN2+6M2N−2MN+M2

)])
NT

)
,

respectively.

V. EVM-CONSTRAINED LS-MSP IN MIMO-OFDM

In this section, we firstly extend the LS-MSP Problem (9)
such that the spectrally precoded symbol yearns to keep the
EVM below the desired level by sacrificing OOBE perfor-
mance in terms of ACLR, referred to as EVM-constrained
MSP (EMSP). Unfortunately, adding EVM constraint in ad-
dition to the mask constraint poses challenges to develop a
computationally efficient algorithm. Thanks to ADMM, which
offers a divide-and-conquer approach, incorporating EVM
constraint becomes easy and the algorithm is referred to as
EADMM. However, SSP becomes prohibitively complex to
support EVM constraint. Therefore, we have proposed an
alternative operator splitting framework based on the Douglas-
Rachford algorithm [19], [21], referred to as EVM-constrained
SSP (ESSP), that employs the iterative SSP algorithm inter-
nally for the mask constraint and the outer loop of Douglas-
Rachford supports the EVM constraint.

A. EVM-Constrained Proposed Problem Formulations

We pose wideband and frequency-selective EVM con-
strained mask-compliant spectral precoding optimization prob-
lems and then develop low-complexity algorithms. We firstly
perform the epigraph transformation [51] of Problem (9),
without losing convexity, such that the proposed wideband
EVM-constrained optimization problem reads as:

minimize
X∈CNT×N ,∆t∈R

∆t (16a)

subject to
∥∥X −X∥∥

F
≤ εavg (16b)∣∣∣AXT

∣∣∣2 � Γ�∆t1M×NT , (16c)

where � represents element-wise multiplication, and εavg

denotes the desired wideband averaged EVM over all the
allocated subcarriers (frequency-domain) and also over all the
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transmit antennas2. The target mask is Γ ∈ RM×NT , e.g.,
Γ [:, j] = [γ1; . . . ; γm] and 1M×NT is an all-ones M × NT

matrix. Note that the mask constraints can be the same for
all the transmit antenna branches. Furthermore, the constraint
(16c) can be decomposed for each j-th transmit antenna and
each m-th discrete frequency point such that the constraint can
be read as d

H

j Am dj≤∆tγm.
To support more flexibility in terms of defining differ-

ent EVM constraints to different subcarriers, we extend the
wideband EVM-constrained Problem (16) that offers different
EVM constraint for each subcarrier. A frequency-selective
EVM-constrained optimization problem is

minimize
X∈CNT×N ,∆t∈R

∆t

subject to
∥∥X[:, k]−X[:, k]

∥∥
2
≤ ε [k] ∀k∈T (17a)∣∣∣AXT

∣∣∣2 � Γ�∆t1M×NT ,

where ε [k] is the desired EVM at k-th subcarrier and the set
T denotes all activated subcarriers.

The main benefit of Problem (17) is that the EVM constraint
per subcarrier or the group of subcarriers can be defined by the
upper layers depending on the channel link quality and/or the
allocation of the data/pilots appropriately. In other words, such
frequency-selective EVM constraint may have a high threshold
(or high allowable EVM) for the lower supported modulation
alphabet, e.g., for QPSK modulation—cf. Table IV. In contrast,
the EVM constraint may have a low threshold for the higher
modulation alphabet, e.g., for 64QAM.

An optimal solution to both problems (16) and (17) can
be obtained via a general purpose optimization solver, e.g.,
CVX [47]. However, as motivated in the previous section,
such general purpose algorithms employ interior-point-based
methods whose complexity is prohibitively high. Hence, in
order to develop efficient algorithms for the EVM-constrained
and mask-compliant spectral precoding problems, we now in-
stead transform the problems (16) and (17) into the feasibility
problems by omitting the ∆t variable, i.e., problems (18) and
(19), respectively. If ∆t ≤ 1 in problems (16) and (17), then
the respective problems (18) and (19) are feasible. In other
words, we make an assumption that the problem is feasible
or has at least one solution, which implies ∆t ≤ 1, then the
mask constraint (16c) can be expressed as following:∣∣∣AXT

∣∣∣2 � Γ�∆t1M×NT

∆t≤1

� Γ.

Consequently, we omit ∆t from the the mask constraint in
(16)/(17) for the feasibility problem. A wideband EVM con-
straint Problem (16) can be posed as the following feasibility
problem:

find X ∈ CNT×N

subject to
∥∥X −X∥∥

F
≤ εavg (18a)∣∣∣AXT

∣∣∣2 � Γ. (18b)

Similarly, Problem (17), i.e., a frequency-selective EVM
constraint with mask-compliant problem, can be posed as the

2It is straightforward to modify the problem to support wideband EVM-
constraint per transmit antenna branch.

following feasibility problem:

find X ∈ CNT×N

subject to
∥∥X[:, k]−X[:, k]

∥∥
2
≤ ε [k] ∀k ∈ T (19a)∣∣∣AXT

∣∣∣2 � Γ.

Now, the respective mask and wideband and frequency-
selective EVM constraint sets are defined as following. The
m-th mask constraint set corresponds to the rank 1 quadratic
inequality, i.e.,

Cm :=
{
X : d

H

j Amdj − γm ≤ 0;∀j = 1, . . . , NT

}
, (20)

and the wideband EVM constraint set can be described by

Ewb :=
{
X :

∥∥X −X∥∥
F
− εavg ≤ 0

}
, (21)

whereas the frequency-selective EVM set can be expressed as

Efs :=
{
X :
∥∥X[:, k]−X[:, k]

∥∥
2
− ε [k]≤0; ∀k ∈ T

}
. (22)

We will denote the EVM constraint set as E , which can be
wideband Ewb and/or frequency-selective Efs, unless stated
otherwise.

Now, we rewrite the feasibility problems (18) and (19) as
the following unconstrained problem amenable to the latter
proposed efficient algorithms

minimize
X∈CNT×N

F
(
X
)

:=

{
XE
(
X
)

+

M∑
m=1

XCm

(
X
)}

, (23)

where the composite function F
(
X
)

is a sum of non-
differentiable indicator functions, i.e., XE (·) and XCm

(·), of
constraint sets corresponding to the wideband or frequency-
selective EVM, and mask defined in (21) or (22) and (20),
respectively. Hence, we seek efficient methods to solve such
a problem.

Prior to developing the algorithms for the constrained EVM,
we present the following theorems which are utilized for the
subsequent algorithm development.

Theorem 2. If a function f (X) =
∑n
k=1 fi (xk)

is separable across the variables column-wise
X = [x1, . . . ,xn] or row-wise X = [x1; . . . ;xNT ],
then the respective prox operators can be shown
as proxf (X) =

[
proxf1 (x1) , . . . ,proxfn (xn)

]
or

proxf (X)=
[
proxf1 (x1) ; . . . ; proxfNT

(xNT)
]
.

Proof. Following the proximal operator Definition 3, the min-
imization of the separable function is equivalent to minimiza-
tion of respective functions {fk} independently [48], [49]. �

Theorem 3 (projection onto Frobenius norm ball [49,
Lemma 6.26]). Let E ⊆ Cp×q and E 6= ∅ be given by
E := B‖·‖2 [C, r] = {X∈Cp×q : ‖X−C‖F ≤r}, then the
proximal or orthogonal projection operator for the Frobenius
(or `2) norm ball, i.e., B‖·‖F [C, r] with a given center C and
the radius r, is

proxλXE
(X) =projB‖·‖F [C,r] (X)

=C+

(
r

max {‖X−C‖F , r}

)
(X−C) .
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TABLE II: Complexity comparison of various EVM-constrained and mask-compliant algorithms

Method Complexity: Real Multiplications Complexity: Real Additions
EMSP O

(
N4.5NT

)
–

EADMM (I (9MN+M+6N+2)NT) (I (14MN+10N+M−1)NT)

ESSP
(
I
[
(5M+7)N+1+I ′

(
4M2N2+12MN2+5M2N+3MN+M

)]
NT

) (
I
[
2MN+14N−2+I ′

(
2M2N2+6MN2+6M2N−2MN+M2

)]
NT

)
Algorithm 3 EADMM

Inputs: X , {γm; a (νm)}Mm=1, and εavg∈R; {ε[k]∈R}Nk=1

Output(s): X(I) ∈ CNT×N

1: Initialization: Y (0)
m = 0NT×N and Z(0)

m = 0NT×N
2: for i = 1, 2, . . . , I do

U =
1

M

M∑
m=1

(
Y

(i−1)
m +Z

(i−1)
m

)
X

(i)
=projE (U) ≡ select

{
projB‖·‖F [X,εavg] (U)

projB‖·‖2 [X,ε] (U)
(25a)

3: parfor m = 1, . . . ,M do . % run parallel

Y
(i)
m = projCm

(
X

(i) −Z(i−1)
m

)
(25b)

Z
(i)
m = Z

(i−1)
m + Y

(i)
m −X

(i) (25c)

4: end parfor
5: end for
6: return X(I)

B. Efficient Algorithms for EVM-Constrained LS-MSP

In this section, we develop two computationally efficient
algorithms to solve the aforementioned EVM-constrained
problem (23).

1) EVM-Constrained ADMM LS-MSP solution (referred to
as EADMM): We firstly express (23) amenable to ADMM:

minimize
X,Y m∈CNT×N

XE
(
X
)
+

M∑
m=1

XCm

(
Y m

)
subject to Y m=X ∀m=1, . . . ,M,

The scaled-form consensus ADMM for the above problem can
be expressed as [19], [20]

X ←arg min
X

XE
(
X
)
+ρ

M∑
m=1

∥∥Y m−X+Zm
∥∥2

F
(24a)

Y m ←arg min
Y m

XCm

(
Y m

)
+ρ
∥∥Y m−X+Zm

∥∥2

F
∀m

(24b)

Zm ←Zm + Y m −X ∀m=1, . . . ,M . (24c)

In the first step of our proposed EADMM LS-MSP algo-
rithm, taking the derivative with respect to X and setting to
zero yields X=prox(1/M)XE

(
1
M

∑M
m=1

(
Y m +Zm

))
, i.e.,

the orthogonal projection onto the wideband or frequency-
selective EVM constraint (25a) —`2 norm ball (cf. Theo-
rem 3). The second step is an orthogonal projection onto the
rank 1 quadratic constraint (cf. Theorem 1) yielding (25b).
Algorithm 3 summarizes the proposed recipe for the EADMM
based mask-compliant spectral precoding. The convergence
analysis of the EADMM algorithm is given in Appendix A.

2) EVM-Constrained SSP LS-MSP solution (referred to
as ESSP): We layout the definition of Douglas-Rachford
algorithm and subsequently propose the modifications to in-
corporate SSP algorithm for the mask constraint.

Algorithm 4 ESSP

Inputs: X , {γm; a (νm)}Mm=1, and
{
ε ∈ RNSC

}
or εavg ∈ R

Output(s): X(I) ∈ CNT×N

1: Initialization: X(0)
m =X and Z(0)

m = 0NT×N
2: for i = 1, 2, . . . , I do

Y
(i)

=proxXC

(
2X

(i−1)−Z(i−1)
)
(solve SSP Alg. 2)

(26a)

Z
(i)

= Z
(i−1)

+ λi

(
Y

(i) −X(i−1)
)

(26b)

X
(i)

=projE

(
Z

(i)
)
≡ select

projB‖·‖F [X,εavg]

(
Z

(i)
)

projB‖·‖2 [X,ε]

(
Z

(i)
)

(26c)

3: end for
4: return X(I)

Theorem 4 (Douglas-Rachford algorithm). Consider the fol-
lowing problem

minimize
X∈CNT×N

G
(
X
)

+ H
(
X
)
, (27)

where G and H are proper closed convex functions, and which
has at least one solution. Consider τ ∈ (0,∞) and a sequence
of relaxation parameters λi ∈ (0, 2) ∀i ≥ 0 and satisfy∑
i λi (2−λi) = +∞ with some arbitrary initial Z, then the

following iterative scheme

X ← proxτG

(
Z
)

(28a)

Z ← Z + λi
(
proxτH

(
2X −Z

)
−X

)
(28b)

converges weakly to a solution to (27).

Proof. See, e.g., [21] [52, Corollary 5.2]. �

Strikingly, if the problem (27) is infeasible, then for some
cases one could still find an approximate solution through
Douglas-Rachford method—see, e.g., [53], [54].

The Douglas-Rachford algorithm is described for two func-
tions. However, the problem (23) at hand has more than two
functions3. Thus, we reformulate (23) as

minimize
X∈CNT×N

XE
(
X
)

+ XC
(
X
)
, (29)

where XC
(
X
)

:=
∑M
m=1 XCm

(
X
)

such that the two-
operator Douglas-Rachford splitting can be employed. Since
the proximal operator corresponding to the sum of M indicator
functions XC

(
X
)

=
∑M
m=1 XCm

(
X
)
, i.e., proxXC

doesn’t
yield a closed-form, we approximate it by employing SSP.
We will show numerically that ESSP framework also requires
relatively less number of iterations compared to EADMM to
reach desired level of performance in terms of EVM and
ACLR metrics at the cost of extra computational complexity

3One could reformulate Douglas-Rachford as consensus ADMM. However,
we would like to employ SSP algorithm that offers a solution to the EVM-
constrained LS-MSP.
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TABLE III: Simulation Parameters for FDD NR (Rel-15) PDSCH Type-A
Parameters Test 1 Test 2 Test 3
Subcarrier Spacing 15 kHz
Carrier Bandwidth (PRB alloc.) 5 MHz (25 PRBs)
Carrier Spacing for ACLR 5 MHz upper and lower adjacent channels [5]
DL SU-MIMO NT, NR 2Tx, 2Rx 8Tx, 2Rx 2/8Tx, 2Rx
Spatial Layers (rank) Fixed rank 1 adaptive (10% BLER)
Spatial Precoding (codebook-based) adaptive (10% BLER)
Modulation 64QAM adaptive (10% BLER)
Code-rate 1/2 5/6 adaptive (10% BLER)
Channel Model TDL-A (300ns, 10Hz) & spatial correlation Low [43]
Channel & Noise power Practical LMMSE based
HARQ max transmissions 4 (3 max retransmissions with rv {0, 2, 3, 1}) [55]
Other Information LDPC; LMMSE-IRC receiver; no other impairments

compared to EADMM, yet offering lower cost compared to
the generic interior-point based solvers.

The proximal operator corresponding to the indicator func-
tion for EVM constraint, either wideband XEwb

(
X
)

or
frequency-selective constraint XEfs

(
X
)
, is an orthogonal pro-

jection onto Euclidean norm ball (cf. Theorem 3).
The ESSP framework is summarized in Algorithm 4, where

we have performed a cyclic rotation of the Douglas-Rachford
algorithm steps such that the proximal operator corresponding
to the mask constraint occurs first in the given iteration cycle.

C. Complexity Analysis

In this section, we analyze the worst-case run-time complex-
ity, in terms of required real-valued multiplications and real-
valued additions but ignore the offline complexity as described
in Section IV-C—see the summary in Table II.

EMSP: The computational complexity of solving the opti-
mization problems (16) and (17)—almost similar to MSP and
using results in [24]—is O

(
N4.5NT

)
.

EADMM: The step (25a) is additional compared to ADMM
Algorithm 1. So, the prox operator in the step (25a)
corresponding to the EVM constraint requires total com-
plex multiplications (INNT), (I (3N−1)NT), and N + 1
real multiplications. Hence, ignoring parallelization, the total
run-time complexities are (I (9MN+M+6N+2)NT) and
(I (14MN+10N+M−1)NT) in terms of real multiplica-
tions and real additions, respectively.

ESSP: In step (26a), there are N complex multiplications
and N real multiplications besides the computational com-
plexity of (iterative) prox operator (26a) approximated by
the SSP algorithm. We need 2N complex additions and N
real multiplications in the step (26b). Finally, in the prox
operator (26c) corresponding to the EVM constraint same as
in EADMM need to be considered. Therefore, the total online
complexities in terms of real multiplications and additions are
given in Table II, where I ′ corresponds to inner iterations using
SSP Algorithm 2.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms for mask-compliant spectral precoding that are both
EVM-unconstrained and EVM-constrained utilizing a 5G NR
(Rel-15) compliant inhouse link-level simulator. Moreover, we
compare the performance of the proposed algorithms with the
conventional spectral precoding algorithms, accordingly.

TABLE IV: EVM Requirements [5]
Modulation Scheme EVM Threshold
QPSK 17.5 %
16QAM 12.5 %
64QAM 8.0 %

A. Performance Measures

We analyze the spectral precoding performance in terms of
two figure-of-merits, namely OOBE and in-band distortions,
in particular assuming base station supporting sub-6 GHz, e.g.,
frequency ranges between 410 MHz and 7.125 GHz—referred
to as FR1 in 5G NR [5, Section 5.1].

1) Out-of-Band Distortion: As mentioned in Section
III-B1, mask and (conducted) ACLR are typically the per-
formance metrics to quantify the operating band unwanted
emissions.

In practical systems, the (digital) spectrum shaping is fol-
lowed by other (non-linear) digital and analog processing as
illustrated in Fig. 1. Consequently, there is some spectral
regrowth phenomenon due to such (non-linear) components
in the transmitter after spectrum shaping. Thus, an imple-
mentation margin in terms of ACLR and mask requirements
are necessary to cope with spectral regrowth. Hence, OOBE
performance must render better performance than the (overall)
stipulated mask in the standard due to spectrum shaping to
account for the margin.

We have considered ACLR corresponding to the 1st ad-
jacent carrier in both upper and lower frequencies, where
the minimum requirement is 45 dB—worst-case of measured
ACLR in the upper and lower channels [5, Section 6.6.3]. It is
worth highlighting that these ACLR requirements are for the
complete radio chain, i.e., measurements need to be performed
at the antenna connector. Thus, spectrum shaping may have
some aggressive mask and ACLR requirements to meet the
minimum requirements at the antenna connector.

2) In-Band Distortion: In these simulations, the in-band
distortion is not only quantified in terms of EVM but also in
terms of BLER [56] and throughput [57].

For our link simulations, we present normalized through-
put, i.e., normalizing the throughput results by the maxi-
mum achievable throughput without any spectral precoding
or OOBE reduction and other hardware impairments or im-
perfections.

B. Simulation Parameters and Assumptions

The key simulation parameters for the physical downlink
shared channel (PDSCH) with type-A4 and the three investi-
gated test scenarios are summarized in Table III, see, e.g., [5],
[58], for the detailed NR physical layer and performance
requirements. We have considered 15 kHz subcarrier spacing
for the NR numerology unless otherwise mentioned. Further-
more, no supporting signals are transmitted besides PDSCH
along with the demodulation reference signal (DMRS) for
the practical channel and noise variance estimation at the UE
side. Note that for simulations purpose, we have considered
relatively narrow 5 MHz channel bandwidth with 25 physical

4These data types refer to different PDSCH demodulation reference signals
allocation [44].
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Fig. 2: (a) Convergence behaviour of EVM-unconstrained algorithms considering two different target masks, while (b) and (c) are achieved PSD and EVM
at the final iteration.

resource block (PRB)s allocation, even though the proposed
methods can be employed for arbitrary bandwidths. Further-
more, we have employed a low spatial correlation model, but
the complexities of the proposed algorithms are oblivious of
spatial correlation—cf. Table I and II. However, the inband
performance may degrade with increasing correlation, notably
for high spatial rank setup. In Table IV, we have provided
3GPP NR wideband average EVM5 requirements [5] as a
reference according to the considered modulation alphabet.

In addition to the parameters given in Table III, the discrete
frequencies for mask compliant precoders are selected as
ν∈{∓5010,∓4995,∓2565,∓2550} kHz, where the negative
and positive frequencies correspond to the left and right side
of the out-of-band (OOB) of the occupied signal spectrum,
respectively. Notice that these discrete frequencies can be
asymmetrically selected for the OOBE suppression. The con-
sidered mask, referred to as mask-1 is γmask−1 := γ1 =
[−75,−75,−65,−65] dBm/100 kHz, corresponding to left/right
side of the signal spectrum. Furthermore, we have considered
another aggressive target mask-2, i.e., γmask−2 := γ2 =
[−85,−85,−75,−75] dBm/100 kHz for ACLR and EVM per-
formance, particularly. For this work, we have not optimized
the selection of the discrete frequencies’ set for the precoding.

Based on our numerical grid-search utilizing Test 3 with 2
transmit antennas (cf. Table III), we found a suitable ρ = 10
for consensus ADMM algorithm (cf. Algorithm 1). For the
MSP (8) solution, we have employed CVX wrapper with
SDPT3 solver [47]. Note that we do not have any additional
radio hardware impairments at the transmitter and/or receiver
besides the distortion generated at the transmitter by the
considered spectral precoders, if enabled.

Furthermore, for benchmarking purpose, we have also
evaluated notching spectral precoder (NSP) [13] and EVM-
constrained NSP (ENSP) [26], where for each transmit an-
tenna branch NSP and ENSP are performed independently.
More specifically, for each j-th transmit antenna, we perform

dj=Gdj , where G=IN−αAH
(
AAH

)−1

A and A[m, k] in

5The NR standard puts a requirement on the equalized EVM, cf. [5,
Section 6.5.2.2], e.g., for 64QAM, the transmitter is allowed to induce EVM
up to 8%. As mentioned in footnote 1 (Page 4), the unequalized EVM is
an upper bound for the equalized EVM, i.e., unequalized EVM is tougher
requirement than equalized, see, e.g., [46].

(6). For NSP α= 1, and ENSP α∈R is a tunable parameter
to meet the desired EVM.

C. Simulation Results

In this section, we present simulation results for both un-
constrained and constrained EVM spectral precoding methods.

In Fig. 2, we present the convergence behaviour of the
proposed EVM-unconstrained algorithms in terms of OOB and
in-band performance considering Test 3 (cf. Table III) and two
different target masks, i.e., mask-1 and mask-2.

Figure 2(a) shows the ACLR performance against itera-
tions. Evidently, SSP converges in 2-3 iterations for both
target masks to achieve the same ACLR results as rendered
by MSP(CVX). Under relaxed mask-1 constraint, ADMM
requires nearly 80 iterations, while for aggressive mask-2 it
requires approximately 800 iterations. On the other hand, we
have observed that CVX achieves the MSP solution in nearly
25 iterations, but we could not manage to extract the result for
every single iteration; hence, we show the final result rendered
by the CVX solver corresponding to the last iteration in the
figures. We have also observed similar behaviour for EVM
against iterations. For the subsequent EVM-unconstrained
results, we consider mask-1 and fix the iterations of ADMM
and SSP as 80, and 2, respectively. Furthermore, we have
numerically observed that these spectral precoders have a
negligible impact on the peak to average power ratio.

Figure 2(b) exhibits the average PSD versus frequency for
the proposed algorithms and both masks considering final
iterations of the respective algorithms. The NR mask corre-
sponding to a medium range BS with the maximum output of
38 dBm [5, Section 6.6.4] is also shown for the completeness,
but the mask is normalized according to the normalized
transmit signal power of 0 dBm, i.e., approximately −21.5
dBm/100 kHz, in the link simulations. All the proposed methods
in addition to the prior art fulfils the 3GPP NR mask.

Figure 2(c) depicts the average EVM distribution per PRBs
[58]. The edge PRBs have relatively high distortion power
compared to the central PRBs. Notice that the NR bandwidth
is slightly asymmetric with respect to the direct-current carrier.
Moreover, the discrete selected frequency points (ν) are not
symmetric with respect to the direct-current carrier. Therefore,
one could consequently observe that the EVM distribution in
the frequency-domain is asymmetric.
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Fig. 3: Convergence behaviour of wideband 8% EVM-constrained spectral precoding.

Subsequently, we present the performance of EVM-
constrained while considering mask-1 constraint. In Fig. 3, we
exhibit the convergence behaviour of the proposed wideband
EVM-constrained algorithms in terms of the in-band, namely,
EVM, and OOB performance, namely, ACLR and PSD. For
these simulations, we have considered 8% wideband unequal-
ized EVM.

Figure 3(a) illustrates that the problem (23) is infeasible,
i.e., the intersection of the two convex sets corresponding to
mask and EVM constraints are empty, by considering a single
OFDM symbol and by randomly selecting any of the transmit
antenna branch corresponding to Test 3. More specifically, we
show OOBE power to the target mask, i.e.,

(∣∣Adj∣∣2)�(∆tγ),
where � denotes elementwise division. If this ratio is larger
than 1, then it implies that the target mask constraint is
violated at the considered ν-th discrete frequency point. On
the contrast, if this ratio is less than and equal to 1, the
mask constraint is met by the spectrally precoded OFDM
symbol. Notice that, in the case of EMSP, ∆t = 344.17
was obtained from CVX [47] for the given OFDM symbol
and transmit antenna branch, which implies that the original
problem is infeasible. As it can be observed from the figure,
the solution rendered by the MSP naturally meets the mask
constraint since it is an inequality constrained minimization
problem, i.e., this ratio will always be less than or equal
to 1 as it is a feasible problem. The spectrally precoded
symbol generated by ENSP algorithm does not meet any of
the 8 mask constraints while the EVM constraint is kept to
8%. The symbol generated by EMSP meets the target mask
constraints but after considering ∆t = 344.17, which evidently
penalizes the achieved ACLR compared to the ACLR achieved
through MSP algorithm in order to meet the wideband 8%
EVM constraint. Furthermore, the precoded symbol rendered
by EADMM and ESSP apparently show that for some discrete
frequency points mask constraint is met while for some points
it fails. Therefore, long-term average of PSDs or ACLRs over
several slots of OFDM signals generated by the proposed
algorithms outperform significantly heuristic ENSP method in
terms of out-of-band performance. In other words, we can
construe from the figure that the EVM constraint penalizes
the achievable ACLR compared to the ACLR achieved by
unconstrained EVM problem.

Figure 3(b) demonstrate the ACLR performance against
iterations for all the proposed EVM-constrained spectral pre-

coding algorithms. In the case of ESSP, we illustrate the per-
formance with three different internal iterations corresponding
to the prox operator for the sum of the indicator functions
to the mask constraints, i.e., calling SSP algorithm. Strikingly,
the ACLR performance accomplished by ESSP without stop-
ping criterion diverges after typically 2 iterations, although
the wideband EVM performance convergence behaviour is
consistent over the iterations, i.e., meeting the wideband EVM
constraint—see Fig. 3(c). Remarkably, the result rendered by
EADMM do not digress or diverge over iterations, unlike
observed in Douglas-Rachford-based ESSP algorithm without
early stopping criterion. Thus, ESSP requires a stopping crite-
rion to render an approximate solution. We choose to terminate
the outer iterations within ESSP when the ACLR performance
degrades with the increasing iterations. Hence, we employ an
early stopping criterion for the results presented in the sequel,
which typically terminates the algorithm at around 2 outer
iterations (for all the considered test cases).

Figure 4 demonstrates the convergence behaviour of
frequency-selective EVM algorithms. The frequency-selective
EVM constraints are arbitrarily chosen to exhibit the efficacy
of the proposed frequency-selective algorithms. The first lower
and upper edge PRBs were set to have EVM requirement[
20%, 20%, 19%, 19%, 16%, 15%, 14%, 13%, 12.5%, 12.5%,

12.5%, 12.5%
]

such that the edge most subcarrier of the edge
PRB corresponds to 20% EVM and the inner most subcarrier
corresponds to 12.5% EVM. Furthermore, all the subcarriers
of the second, third, and fourth edge PRBs are set to have
the flat target of 12%, 9.5%, and 8% EVM, respectively. The
remaining central subcarriers are set to 7%. This represents
a wideband average EVM of ∼ 8.9% across the subcarriers.
The EVM distribution over subcarriers are shown in Fig. 4(a),
where all the proposed methods meet the frequency-selective
EVM requirement. In Fig. 4(c), all the frequency-selective
EVM algorithms have similar wideband EVM performance.
The imposed mask and frequency-selective EVM constraints
make the problem infeasible which is evident from the
divergence of ACLR metric rendered by ESSP algorithms
without any stopping criterion as depicted in Fig. 4(b). We
observe that the ACLR performance delivered by EADMM
are quite stable over iterations even though the problem is
infeasible. Reiterating that the ENSP can not be employed or
extended to support frequency-selective EVM requirement.

In Fig. 5, we exhibit in-band and OOBE performance
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Fig. 4: Convergence behaviour of frequency-selective EVM-constrained spectral precoding.
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Fig. 5: Performance of wideband 8% EVM-constrained spectral precoding including ESSP with stopping criterion.

of the proposed 8% wideband EVM-constrained algorithms,
where ESSP employs 2 inner and 2 outer iterations (with
stopping criterion) for all the 3 test cases. Further, EADMM
employs 40 iterations for the performance evaluation. More
specifically, we show the in-band performance, in terms of
BLER and (normalized) throughput against received SNR
at the user-equipment and EVM distribution for the final
chosen iterations of the respective algorithms. We also depict
the OOBE performance, in terms of ACLR versus (outer)
iterations and average PSDs of the the final chosen iterations
of the respective algorithms.

Particularly, Figure 5(a) depicts ACLR performance against
iterations utilizing Test 3 (similar results are observed for other
test scenarios). Since the problem was infeasible, the EVM
constraint penalizes the achievable ACLR compared to the
ACLR achieved by unconstrained EVM problem, which can

be corroborated by the EMSP performance comparing with
the performance achieved by the MSP (CVX). Moreover, it
can be noticed that all the algorithms have different ACLR
performance and unfortunately do not meet the minimum
45 dB ACLR requirement for the 1st channel. Still, all the pro-
posed algorithms render the ACLR between 44 dB and 45 dB.
Conspicuously, ESSP achieves 44.95 dB ACLR, which is 0.05
dB below the minimum 45 dB requirement. Moreover, it can
be observed that all the proposed algorithms meet the 3GPP
mask requirement as illustrated in the PSD—see Fig. 5(b).
Therefore, one could employ a relaxed additional spectrum
shaping method, for instance, a transmit windowing or filtering
that would use less than 9% of the cyclic prefix length to meet
the ACLR requirement with some implementation margin.
In other words, one can combine spectral precoding with
other (time-domain) spectrum shaping methods, see, e.g., [18]
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and thereby improve OOBE performance. For completeness,
Fig. 5(c) depicts the distribution of EVM over subcarriers (in
frequency-domain) after the final iterations of the respective
algorithms.

In Fig. 5(a), the ACLR performance rendered by the heuris-
tic ENSP method is, inadequately low, 41.24 dB compared
to the proposed principled methods that are between 44 dB
and 45 dB, i.e., ENSP has 3-4 dB loss in ACLR but sim-
ilar wideband EVM. Furthermore, ENSP fails to meet the
mask requirement, cf. Fig. 5(b). Thus, ENSP would need an
aggressive additional spectrum shaping method, for instance
transmit windowing with nearly more than 30%-40% cyclic
prefix length, to meet both mask and ACLR requirement.
Hence, the gain from such spectral precoding vanishes and
may be futile to employ in a realistic system.

In Fig. 5, we also manifest the in-band performance of
the proposed algorithms considering wideband 8% EVM con-
straint. In particular, we show BLER against received SNR
at the user-equipment for the Test 1 and Test 2 since there
is no link adaptation in these tests except for the spatial
precoding matrix indicator (PMI) adaptation, where all the
proposed EVM-constrained algorithms have similar perfor-
mance. Furthermore, we present normalized throughput versus
received SNR for the Test 3 with 8 transmit antennas since this
test employs fast link adaptation, i.e., spatial precoder (PMI),
rank/layers, and modulation and code rate adaptation (referred
to as channel quality indicator in the 3GPP standard) with 10%
target BLER on long-term average. From these figures, firstly,
we observe that the distribution of the EVM in the frequency
domain matters since meeting minimum 8% wideband EVM
requirement for 64QAM may not be sufficient to meet the
receiver demodulation performance. Secondly, we observe that
increasing number of the transmit antennas from 2 to 8 for the
low-rank scenario does not improve the in-band performance
gain. We have observed even with 8 transmit antennas that the
EVM emanating from spectral precoding is beamformed in the
same direction as the signal, similar observations for (large
scale) MIMO for the EVM stemming from other sources, see,
e.g., [28]–[31]. The EVM-constrained algorithms improve the
receiver demodulation performance compared to the EVM-
unconstrained spectral precoding. However, there is a potential
to improve receiver performance while meeting the OOBE
requirements when the transmitter can be aware of the full
channel state information of the receiver(s), which will be
addressed in future work.

VII. CONCLUSION

In this paper we investigated the problem of spectral precod-
ing with mask compliant properties. The problem is formally
posed as some optimizations that offer an explicit trade-off
between EVM and OOBE suppression for large-scale MIMO-
OFDM systems, but have the disadvantage of not having
closed-form solutions. To mitigate the complexity of such
problems, we proposed a divide-and-conquer approach that
decomposes the spectral precoding problem into smaller prob-
lems having each either a closed-form or an efficient solution.
More specifically, in the first part of the paper, we devel-
oped two computationally efficient algorithms for the EVM-

unconstrained spectral precoding method, namely 1) ADMM
and 2) SSP—which is derived by utilizing KKT conditions,
capitalizing on the closed-form solution of rank 1 quadratic
form, and a coordinate descent scheme. In the second part—in
stark contrast to the unsystematic prior art on wideband EVM-
constrained spectral precoding—we formulated the optimal
wideband and frequency-selective constrained EVM problems
in conjunction with mask-compliant spectral precoding. Sub-
sequently, employing the divide-and-conquer approach, we
extended and developed “hardware-friendly” algorithms for
the EVM-constrained spectral precoding method, referred to as
1) EADMM and 2) ESSP—which uses the Douglas-Rachford
operator splitting technique to meet an EVM constraint while
internally utilizes SSP for mask constraint. The proposed
algorithms should be treated as vendor-specific transmitter
module like filtering, which implies that they are 3GPP NR
standard transparent to the transmitter and the receiver. Nu-
merical results corroborate that the proposed low-complexity
algorithms can meet the target EVM constraints and the 3GPP
NR mask by suppressing OOBE.

This is arguably the first work that proposes computationally
affordable EVM-constrained and yet mask-compliant spectral
precoding.

APPENDIX A
CONVERGENCE ANALYSIS: ADMM—ALGORITHM 1 AND

EADMM—ALGORITHM 3

We present the convergence of Algorithm 1 and Algorithm 3
in a consolidated manner.

Theorem 5 (Global convergence of consensus ADMM or
EADMM). Consider an either EVM unconstrained (9) or
constrained problem (23) that can be unified as, i.e.,

minimize
{Y m∈CNT×N},X∈CNT×N

M∑
m=1

fm
(
Y m

)
+ g

(
X
)

subject to Y m = X,

(30)

where non-differentiable indicator function fm := XCm
to

the mask constraint set (see (20)) for all m = 1, . . . ,M is
closed convex proper (common to both ADMM and EADMM).
The closed convex proper function is either differentiable
g :=

∥∥X−X∥∥
F

(EVM unconstrained) or non-differentiable
indicator function g := XE (for either wideband (21) or
frequency-selective (22) EVM constraint). Suppose (30) has
at least one solution. Now, assume subproblems of ADMM
and EADMM have solutions, and so-called dual residual
limi→+∞

(
X

(i+1)−X(i)
)

=0 and primal residual limi→+∞(
Y

(i+1)

m −X(i+1)
)

= 0, ∀m = 1, . . . ,M , and ρ ∈ R>0 with

some arbitrary initial
{
X

(0)
,Y

(0)

m ,Z
(0)

m

}
. Then, Algorithm 1

and Algorithm 3, at any limit point,
{
X

(i)
}

converge to a
KKT point of (30).

Proof. Towards the convergence analysis goal of the pro-
posed ADMM and EADMM algorithms, we follow the proof
given in, e.g., [20]. Now, we form the (unaugmented) La-
grangian of the unified problem (30) proposed to be solved
by ADMM/EADMM such that
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L
({
Y m

}M
m=1

,X,
{
Zm
}M
m=1

)
:=

M∑
m=1

fm
(
Y m

)
+g
(
X
)
+

M∑
m=1

2<
{

Tr
(
Z

H

m

(
Y m−X

))}
,

(31)

where Tr is a trace operator. Using (31), then according
to KKT optimality conditions—see, e.g., [25], in particular,

stationarity condition at the optimal primal values
{
Y
?

m

}M
m=1

and X
?
, and dual variable

{
Z
?

m

}M
m=1

satisfy

0 ∈ ∂

∂
(
X
?
)∗L

({
Y
?

m

}M
m=1

,X
?
,
{
Z
?

m

}M
m=1

)

⇐⇒0 ∈ ∂g
(
X
?
)
−

M∑
m=1

Z
?

m (32)

0 ∈ ∂

∂
(
Y
?

m

)∗L
({
Y
?

m

}M
m=1

,X
?
,
{
Z
?

m

}M
m=1

)
⇐⇒0 ∈ ∂fm

(
Y
?

m

)
+Z

?

m, (33)

where, for EVM unconstrained, ∂g
(
X
?
)

=
{(
X
?−X

)}
and, for EVM constrained, ∂g

(
X
?
)

=∂XE≡N E , where N E
corresponds to a normal cone (see, e.g., [49, Chapter 3]); and
∂fm

(
Y
?

m

)
=∂XCm≡N Cm . The primal feasibility satisfies

Y
?

m −X
?

= 0 ∀m = 1, . . . ,M. (34)

Towards this end, we analyze the proposed Algorithm 1 and
Algorithm 3, which for sufficiently large iterations satisfy
the abovementioned optimality conditions using the stated
assumptions. In the first step of (E)ADMM, X

(i+1)
mini-

mizes the update step-1 (cf. (24a)), i.e., 0 ∈ ∂g
(
X

(i+1)
)
−∑M

m=1 ρ
(
Y

(i)

m −X
(i+1)

+Z
(i)

m

)
. Using dual variable update

(24c) and rearranging the terms yields 0 ∈ ∂g
(
X

(i+1)
)
−∑M

m=1 ρZ
(i+1)

m +
∑M
m=1 ρ

(
Y

(i+1)

m −Y (i)

m

)
. Now, we state(

Y
(i+1)

m −Y (i)

m

)
→0 when i→∞ because of the assumption

that the dual residual
(
X

(i+1)−X(i)
)
→ 0 and the primal

residual
(
Y

(i+1)

m −X(i+1)
)
→0. Thus, asymptotically,X

(i+1)

update satisfies the stationarity condition (32). Similarly,
we have 0 ∈ ∂fm

(
Y

(i+1)

m

)
+ ρ
(
Y

(i+1)

m −X(i+1)
+Z

(i)

m

)
=

∂fm

(
Y

(i+1)

m

)
+ρZ

(i+1)

m in the step-2 update (cf. (24b)), where
in the last equality have used the dual variable update (24c).
Thus, step-2 always satisfies the stationarity condition (33)
for sufficiently large i.

Finally, primal feasibility (34) is satisfied by the assumption(
Y

(i+1)

m −X(i+1)
)

=0, when i→ +∞. �

APPENDIX B
PROOF OF (13): PROJECTION ONTO RANK 1 ELLIPSOID

The projection problem reads minimize
z

‖x− z‖22
subject to zHÃz−b ≤ 0 where Ã = uuH. So, the Lagrangian

can be formed as L (z, µ) = ‖x− z‖22 + µ
(∣∣uHz

∣∣2 − b).
According to the KKT conditions [25], in particular due to
complementary slackness condition, if the given x is feasible,
that is, fulfils the constraint then z = x and the Lagrange
multiplier would correspond to µ = 0. However, if the given
x does not fulfil the constraint, then µ > 0 and the inequality
constraint can be converted to the equality constraint such
that constraint

∣∣uHz
∣∣2 = b ⇐⇒ uHz =

√
b exp (ιθ) for

some unknown angle θ. Now, we assume that the angle
θ is known, then the Lagrangian can be expressed as
L (z, µ′) = ‖x− z‖22 + µ′

(
uHz −

√
b exp (ιθ)

)
.

Now, according to the KKT conditions, we set gradient of
L (z, µ′) with respect to z to 0, such that z = x − µ′u.
Plugging this in the constraint yields µ′ = uHx−

√
b exp(ιθ)

‖u‖22
.

Thus, z = x − µ′u = x −
(

uHx−
√
b exp(ιθ)

‖u‖22

)
u. Following

[59], the optimal θ that minimizes the objective ‖x− z‖22 =∥∥∥(uHx−
√
b exp(ιθ)

‖u‖22

)
u
∥∥∥2

2
is an angle of xHu. Thus, exp (ιθ) =

uHx
|uHx| . Hence, the projection result follows and given in (13).

APPENDIX C
DERIVATION OF SSP ALGORITHM

We present the derivations of the SSP algorithm, whose
pseudo-code is outlined in Algorithm 2. In the SSP algorithm,

the set of Lagrange multipliers
{
µ

(0)
m

}M
m=1

are initialized
assuming that the considered m-th multiplier is present while
others are absent, i.e., boiling down to rank 1 case where the
multiplier is computed in closed-form by following [59].

Lemma 1. Let M = 1, then a closed-form solution to the
Lagrange multiplier µm is

µm =
1

λm1

(∣∣∣a (νm)
T
dj

∣∣∣√(λm1
γm

)
− 1

)
, (35)

where µ ≥ 0 and λm1 = ‖a (νm) ‖22.

Proof. Following [59, Section IIIB] and performing algebraic
manipulations, we derive the closed-form solution. �

After initialization, at every given iteration, we apply
coordinate descent iterative scheme for the SSP algorithm
that essentially utilizes the closed-form solution for rank 1
scenario.

Using Lagrangian L
(
dj , {µm}

)
(14), the stationarity con-

dition of the KKT conditions, i.e., setting the gradient of L (·)
with respect to dj to 0, yields

dj =

(
IN +

M∑
m=1

µmAm

)−1

dj := G−1dj . (36)

For brevity, we define

G≡G (µm) :=

(
IN+

M∑
m=1

µmAm

)
=
(
G\m+µmAm

)
,

(37)

where G\m := IN +
M∑

n=1\m
µnAn.
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The matrix inversion of G(µm) utilizing Sherman-Morrison
formula [60] is

G(µm)−1 =

(
G−1
\m−

µmG
−1
\mAmG

−1
\m

1+µma (νm)
T
G−1
\ma (νm)

∗

)
, (38)

and noting the fact that the matrix G(µm) is a sum of rank one
matrices then the matrix inversion can be performed iteratively,
cf. Lemma 2. In order to obtain the set of {µm} Lagrange
multipliers, we employ coordinate descent scheme [61]. Let
us say we compute µm in a given cycle, then we fix other
multipliers µn ∀n but excluding µm. We propose to compute
and update all the M Lagrange multipliers cyclically. In a
given iteration cycle, we compute µm Lagrange multiplier
and fixing other multipliers by utilizing the complementary
slackness condition of the KKT conditions and the dual
feasibility condition: 1) If µm = 0, then dj = G\mdj (cf.
(37)), and 2) If µm > 0, then the inequality constraint should
be an equality constraint. By plugging (36) and (37) in the
constraint such that

d
H

j Amdj−γm=d
H

j a (νm)
∗
a (νm)

T
dj − γm=0

⇐⇒a (νm)
T
G (µm)

−1
dj=

√
γm exp (ιφ) , (39)

where φ is a free parameter. We now obtain the Lagrange
multiplier µm from (39) utilizing (38) after some algebraic
manipulation

a (νm)
T (
G\m + µmAm

)−1
dj =

√
γm exp (ιφ) (40)

⇐⇒

(
a (νm)

T
G−1
\mdj−µm

a (νm)
T
G−1
\mAmG

−1
\mdj

1+µma (νm)
T
G−1
\ma (νm)

∗

)
=
√
γm exp (ιφ) . (41)

For brevity, let α1 := a (νm)
T
G−1
\mdj and α2 :=

a (νm)
T
G−1
\ma (νm)

∗ such that (41) can be rewritten as

α1 −
µmα1α2

1 + µmα2
=

α1

1 + µmα2
=
√
γm exp (ιφ)

⇒µm = <
{
α1 exp (−ιφ)−√γm√

γm α2

}
.

APPENDIX D
USEFUL LEMMA

Lemma 2 (Matrix inversion with sum of rank one matrices).
The matrix inversion of Ar+1 = G +

∑r
i=1Hi with sum of

r rank one matrices Hi can be obtained iteratively A−1
k+1 =

A−1
k − gkA

−1
k HkA

−1
k ∀k = 1, . . . , r, where A1 = G and

gk = 1/(1+Tr(A−1
k Hk)).

Proof. Let G and G + H be invertible matrices, and H =∑r
i=1Hi with rank(Hi) = 1. Let Ak+1 = G+

∑k
i=1Hi be

invertible. By initializing A1 = G, then utilizing [62] result,
we achieve A−1

k+1 = A−1
k −gkA

−1
k HkA

−1
k , for k = 1, . . . , r

where gk = 1/(1+Tr(A−1
k Hk)). �
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