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ABSTRACT
Uncertainty is a frequently occurring affective state that learners ex-
perience during the acquisition of a second language. This state can
constitute both a learning opportunity and a source of learner frus-
tration. An appropriate detection could therefore benefit the learn-
ing process by reducing cognitive instability. In this study, we use
a dyadic practice conversation between an adult second-language
learner and a social robot to elicit events of uncertainty through
the manipulation of the robot’s spoken utterances (increased lex-
ical complexity or prosody modifications). The characteristics of
these events are then used to analyze multi-party practice conver-
sations between a robot and two learners. Classification models are
trained with multimodal features from annotated events of listener
(un)certainty. We report the performance of our models on different
settings, (sub)turn segments and multimodal inputs.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in collabora-
tive and social computing.
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1 INTRODUCTION
Language learning has seen advantages from incorporating technol-
ogy in training applications. These alternatives are great practice
tools, but generally lack the personal interaction required in second
language (L2) acquisition. Robot assisted language learning (RALL)
aims to mitigate this drawback by including behavioral norms
that resemble characteristics of human interaction. As teachers,
assistants or peer-tutors [16], social robots can engage in activities
designed to develop reading, grammar or speaking skills [24]. In the
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Figure 1: Experiment settings. Left: (New) dyad conversation.
Right: Three-party conversation. [8].

latter, it’s common to apply explicit methods to improve this ability
(e.g. pronunciation), while implicit approaches are less frequent.
Conversation practice, therefore, stands as a novel path in RALL.

In a conversation exercise, as in other educational process, a
learner is destined to experience moments of uncertainty when
the complexity of the conversation is increased to reach the zone
of proximal development. These events are generally examined in
conversation analysis as communication problems, i.e. speaking,
hearing, or understanding difficulties [20]. We can safely assume
that in a language learning environment the occurrence of these
problems tends to increase, and, therefore, an appropriate reaction
from the (robotic) partner who guides the conversation is expected.
In this investigation we focus primarily on listener uncertainty,
i.e. the case of a student failing to understand the information spoken
by the conversational partner. We designed an experiment to elicit
listener uncertainty in a dyadic conversation through increased
lexical complexity and modified prosody in the robot’s spoken utter-
ances. We then extended the analysis to include previously recorded
robot-led practice conversations with pairs of language learners.
Using multimodal features extracted from these recordings, we
explore methods to automatically detect listener uncertainty from
spoken output, physical expressions and time events.

1.1 Related Work
In educational settings, uncertainty has been evaluated in the form
of confusion1, as an affective state related to a student’s learning per-
formance [5, 13]. Various authors have build classification models
by analyzing facial expressions [3], gaze exploration [17], body pos-
tures [7] and speech signals [12] with data extracted from academic
tutoring systems. However, these studies focus on the uncertainty
of the student’s answer, related to a fact-oriented question from
the system, rather than the uncertainty of the student’s semantic
understanding of the question’s content.
1uncertainty about what is happening, intended, or required.
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Furthermore, research on uncertainty in speech production is
in general focused on the Feeling of Knowing (FOK) paradigm [9],
where the speaker struggles to recall or produce an idea, even if
its concept is well understood. Previous studies have used prosody
[19], lexical or linguistic features [6, 21], and audiovisual data [23]
to detect speaker uncertainty. Similar to confusion detection, these
efforts also focus on the certainty level of the students’ response,
which is related to, but not equivalent to, the participant’s under-
standing of the tutor’s utterance.

On the other hand, research on listener understanding or un-
certainty aims to analyze the behavior of a conversation partic-
ipant when communication errors occur. These phenomena are
generally divided into misunderstandings and non-understandings
[10], where the former implies an incorrect interpretation of the
speaker’s intention, while the latter indicates a complete absence
or minimal confidence in any interpretation [22]. Normally, these
problems are resolved in successive turns thorough different repair
mechanism or common-knowledge validation (i.e., grounding), but
L2 learners with low proficiency levels might be unable to handle
problems in this manner, and may instead remain silent.

Close to our research, Kontogiorgos et. al. [11] explored uncer-
tainty in task-oriented interactions where the task-related environ-
ment enabled the grounding of the conversation (notably pointing
or gazing). Our setting, on the other hand, evolves as a social con-
versation with minimum environmental effect.

Consequently, in this study we focus on listener uncertainty
derived from non-understandings. Although misunderstandings
are expected as well, the potential disruption of those errors might
not be as drastic for a practice conversation. On the other hand,
non-understandings reflect a stronger case of a miscommunication
that could hinder the practice. Such events could have a bigger
negative effect in the confidence of the learner and augment levels
of stress or frustration. In order to build a system that can handle
these events, we report our efforts to automatically detect listener
uncertainty from video, audio and time signals recorded in dyadic
and three-party practice conversations.

2 EXPERIMENT
We designed the uncertainty-eliciting experiment as a practice con-
versation between a Swedish second language learner and the an-
thropomorphic robot-head Furhat [1], with the setup shown in the
left part of Figure 1. The social robot was controlled through a semi-
automated Wizard-of-Oz interface by a Swedish native speaker.
During the practice conversation, the wizard selected an option
from a dynamically-updated list of up to 10 utterances (e.g. "Where
do you come from?", "Could you elaborate?", "hmm", "yes") on topics
that a learner could find relatable (e.g. "home country", "food prefer-
ences"). In a previous experiment where the system was employed,
the participants reported difficulties of understanding related to
the speed of the synthesizer and the complexity of utterances used
by the robot. In the new experiment, in order to elicit uncertainty,
we emphasized these observations by manipulating the robot ut-
terances at the semantic and acoustic levels. In the former, we use
samples from the TISUS2 exam to define the threshold for high
lexical complexity using the method proposed by Lu et al. [14]. We

2Test in Swedish for University Studies

then introduced utterances that surpassed this level in the dialogue
system. In the latter, we accelerated the pronunciation of a set of
low complexity utterances by modifying the speech rate of the
synthesizer to "extra-fast". These manipulations were distributed
equally along the dialogue. The experiment included a USB camera
and microphone head-set to record the participants.

During the experiment, the participants were informed that they
would interact with a robot in a short practice conversation. In
an adjacent room, the wizard controlled the robot’s interaction by
listening to the participants’ response and choosing the next robot
utterance. The manipulated utterances were displayed in different
colors in the computer interface and the wizards were instructed to
prioritize their selection. After 30 dialogue transitions, the system
presented utterances that could finish the conversation.

2.1 Preliminary Results
A group of 27 learners (16 females and 11 males) with ages between
21 and 51 years (𝑀=30, 𝑆𝐷=8.9), mainly recruited from a Swedish for
Immigrants school and a university-organized Swedish Language
Café, interacted with the robot. All participants had a Swedish
proficiency level between A1 (basic) and B2 (intermediate).

Two thirds of the manipulated utterances resulted in a clear
breakdown in the flow of the conversation. These events were
characterized by the participant requesting a form of clarification
(32 times), but more importantly, instances when the participants
did not reply at all (4 cases), as noted in our preliminary work [4].

3 CHARACTERIZATION OF UNCERTAINTY
We consider four different response states to define different levels
of listening uncertainty, as defined in Table 1. The manifestations of
listener Uncertainty (Clarification request and No Response) differ
considerably from a well understood Certain response (Thinking or
Direct), where the learner follows the conversation with minimal
interruption. As seen in Table 2, one particular difference between
all states could be the length of the Silence Gaps. However, even if
uncertain responses appear to have a longer silence gap between
the question-answer turn, the temporal features are not sufficient to
distinguish between a contemplative –certain– response, where the
answer is first being considered, and an –uncertain– clarification
response, where the repair is slowly requested. Human listeners
tend use situational information about the participant to prepare
for and handle these phenomena, as a robotic partner should. This
means that it is not an alternative to simply let the dialoguemanager
wait a specific amounts of time before handling a delayed response.

Category Criterion

Certain
Thinking R. Contemplation or meditation of

the full answer.
Direct R. No hesitation, immediate response

Uncertain
Clarification Request to repeat, slow down or

rephrase previous utterance.
No Response No reply to the robot.

Table 1: Criteria for each category of (un)certainty.



Detection of Listener Uncertainty in Robot-Led Second Language Conversation Practice ICMI ’20, October 25–29, 2020, Virtual event, Netherlands

Turns Count Length Silence Gap
(Dyad/Triad) M (SD) M (SD)

Certain
Thinking R. 248 (150/98) 20.76 (13.56) 1.84 (1.08)
Direct R. 360 (190/170) 10.13 (7.28) 1.17 (0.60)
Uncertain
Clarification 165 (69/96)+[165] 9.68 (5.96) 2.36 (1.55)
No Response 79 (28/51)+[79] 6.58 (2.52) 4.50 (2.18)

Table 2: Dataset characteristics. Augmented samples shown
in brackets. Length and Silence Gap measured in seconds.

3.1 Annotation
We analyzed all dyadic sessions, as well as previously recorded
conversations in the triad configuration, following the formerly
addressed criteria. Both settings share the same interactive char-
acteristics (dialogue content and style, robot behavior and wizard
system), but only the new setup included manipulated utterances.
In total, 42 sessions were annotated, 20 dyad and 22 triad recordings.
Each annotated turn starts and ends at the beginning of consecutive
robot utterances, as shown in Figure 2. Furthermore, we manually
annotated 2 timing events between each turn: the end of the robot’s
utterance and the beginning of the participant’s response. In the
latter case, fillers (or hesitation marks) were not considered as the
start of a participant response, since their precise function in a
conversation can be varied. Two non-expert annotators reviewed
the video recordings, with one of them working only on the dyad
settings. From the videos that were shared between annotators, we
computed a kappa inter-annotator agreement of 0.73. We confirmed
this value by distributing 20 random video turns to two additional
annotators, resulting in a kappa coefficient of 0.67. A total of 852
turns were labeled with class distribution shown in Table 2, along
with a description of the timing events.

4 FEATURE EXTRACTION
The videos of all annotated turns were processed with OpenFace [2]
to obtain the presence and intensity of Facial Action Units (FAUs),
gaze direction angles, head pose coordinates and head rotation
angles from every image frame. Except for FAUs, the time derivative
(Δ) of these features was also included as an additional feature.
Moreover, from the audio segments we extracted spectral features
and voice activity through python’s Librosa [15] and Webrtcvad
packages, respectively. The spectral features included RMS, (13)
MFFCs, and Mel-Bank Spectrogram (13 components). From the
MFCCs, we also computed the time derivatives (Δ and ΔΔ). Finally,
we included the manually annotated time duration of the silence
gap and the complete turn as part of temporal features. Except
for the latter two, the selection of features, and the corresponding
processing software, had the objective of implementing a real-time
system that could detect listener uncertainty.

5 TRAINING AND EVALUATION
We employed a Machine Learning approach that enables the assess-
ment of the input features when training the classification model.

Figure 2: Turn description.

Among different tested methods (e.g. K-NN, SVM, Logistic Reg.),
the Random Forest classifier from Scikit-learn [18], set with 100
estimators (grid searched), produced the best performance. Since
these models do not account on sequential inputs, we processed the
features through an additional step. We calculated the mean of the
feature sequence and merged these statistical values in one vector
that represents a complete (sub)turn. This step is not applied to the
temporal features as these values are scalars (time in seconds).

In order to examine the sequential characteristic of the input
features, we also tested a Bidirectional LSTM with a fix sequence
length input. Since our data segments had varied lengths, we
reduced each sequence by sampling data points on evenly spaced
intervals. In this method, we did not include the Silence Gap value,
as this would ideally be contained in the Voice Activation vector,
and replaced the value of the segment length with an increasing
time vector to represent the time duration of the (sub)turn.

Since the dataset was clearly imbalanced, we augmented the sam-
ple size of the less frequent labels (Clarification and No Response)
by sub-sampling feature arrays of those categories, as shown in
Table 2. Additionally, the models were trained on weighted-class
inputs to decrease the effect of the imbalanced classes. We used a
Leave One Out Cross Validation approach to accurately assess the
model’s performance when data from a completely new participant
is used for testing. We trained with this method until all participant
were tested and averaged all performance results. In the case of the
Bi-LSTM, we randomly choose two additional participants’ data as
validation set and used an Early Stop approach to avoid over-fitting.

Finally, we employed two segments of data from each turn to
train our classifiers: data acquired before the beginning of the par-
ticipants’ speech (BPS: sub-turn) and data from the complete turn
(CT: turn). The former refrains from using full speech data from
the learner, while the latter uses the complete input data to classify
the turn, as shown in Figure 2.

(a) Random F. - BPS. (b) Random F. - CT. (c) Bi-LSTM - CT.

Figure 3: Normalized Confusion Matrix for Audio + Visual +
Temporal features, trained on All settings data.
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BPS CT
Modality Setting Acc. F1 Acc. F1

Dyad 0.499 0.454 0.581 0.572
Visual Triad 0.473 0.445 0.547 0.533

All 0.484 0.460 0.565 0.545
Dyad 0.389 0.344 0.488 0.453

Audio Triad 0.360 0.319 0.440 0.400
All 0.379 0.333 0.476 0.440
Dyad 0.526 0.489 0.640 0.613

Audio + Visual Triad 0.493 0.463 0.596 0.583
All 0.501 0.472 0.612 0.616

Audio + Visual Dyad 0.548 0.517 0.658 0.640
+ Triad 0.516 0.506 0.696 0.687

Temporal All 0.572 0.544 0.669 0.653
Table 3: Model performance on Accuracy and F1-score.
Training data divided in different types and conversation
settings. *Majority Baseline Accuracy at 0.33.

6 RESULTS
When we look at the different settings in Table 3, the models with
one participant (dyadic) appear to have a better performance than
the models trained on multi-party data. This difference might be
explained by the skewed positioning of the camera and the expected
additional noise from the recordings with a conversational partner.
Nevertheless, when we merge the data from all settings, the results
tend to fall between the values of the individual settings’ score.
Hence, to simplify our analysis, we used the joined settings data
("All") for our further examination.

In terms of multimodal data, it’s clear that the combination of
modalities improves the performance of the models. Nonetheless,
it’s relevant to point that models trained on audio data alone exhibit
the worst values for both segments of input data (BPS and CT).
Naturally, the contribution of audio is slightly higher on the CT
data, as these segments include speech from the participant, but the
visual components remain more informative. This characteristic
is visible in Figure 4, where the cumulative importance of FAUs
can easily outweigh other type of features (e.g. CT: FAU pres. + int.
= 0.28). Furthermore, for both segments of data (BPS and CT) the
inclusion of temporal data does indeed improve the performance
of the models, but this contribution is not as important when we
compare them to the collective importance of other types of features.
For example, FAUs consist of 34 values —representing the presence
and intensity for 17 units—, which individually are insignificant, but
united form an essential information source, i.e. facial expressions
are substantial for this analysis.

The most notorious difference is found between the two eval-
uated segments of data. As expected, the models trained on the
complete turn (CT) have a higher score (Acc/F1: 0.67/0.65) compared
to models trained on segments of data before the participants speak
(BPS) (Acc/F1: 0.57/0.54). From Figure 3a and 3b, we notice that
the biggest improvement is found in the classification of Thinking
Response. Nevertheless, even these best results are far from optimal,
since the models appear to have a high difficulty differentiating
Thinking and Clarifications Response from a Direct Response. On

(a) Random Forest - BPS. (b) Random Forest - CT.

Figure 4: Feature Importance (Audio + Visual + Temporal).

the other hand, No Responses appear to be correctly classified most
of the times, even when we only consider the BPS segments.

The Bi-LSTM model performed below expectations even after
performing regularization and model reduction techniques. For
consistency, we report the highest score corresponding to the full
set of data types and complete turn (CT) segments: Acc/F1: 0.46/0.44.
As seen in Figure 3c, this model struggled to classify most classes.

7 DISCUSSION
The task of detecting listening uncertainty in L2 (social) practice
conversations is a complex one. In our effort to understand this
phenomena, we proposed a novel interpretation of (un)certainty
that expands the simple binary approach. With this annotation
scheme, we found good classification results for No Responses and
Direct Responses, but the intermediate classes were modest at best.
The classification of these –certain– Thinking and –uncertain–
Clarification responses became one of the harder tasks for the
models. This distinction can be problematic for human partners
as both responses could often be confused by a shared "thinking
face". In these cases, people tend to rely on additional lexical data,
which could be explored in our future work. Even if our results are
not optimal, it does indicate that the correct detection of different
response states is a favorable path. We acknowledge that averaging
sequential data had a negative effect in our approach, as important
information might have been removed, but we expected the Bi-
LSTM model to account on these characteristics and improve on
the results. Unfortunately, this method requires a large quantity
of data to encode these properties. Hence, in our future work we
plan to increase the size of our data samples. Nevertheless, it’s
evident that the integration of various modalities generates the
best results, but the particular contribution of facial expressions (i.e.
FAUs) and commonly utilized audio spectral features (i.e. MFCCs
and Mel Spectrogram) is meaningful. In particular, the detection of
No Response is important for RALL systems, as this quality would
enable a dialogue manager to prepare an adequate response when
the system detects a this state of listening uncertainty, that might
not be repaired by the learner alone.
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