
Transfer-Aware Kernels, Priors and Latent Spaces
from Simulation to Real Robots

RIKA ANTONOVA

Doctoral Thesis
Stockholm, Sweden 2020

TRITA-EECS-AVL-2020:54
ISBN 978-91-7873-669-0

Division of Robotics, Perception and Learning
School of Electrical Engineering and Computer Science

KTH Royal Institute of Technology
SE-100 44 Stockholm, Sweden

Public defense:
Friday, November 20, 2020, 14.00
F3, KTH, Lindstedtsvägen 26, 114 28 Stockholm
Subject: Computer Science. Specialisation: Robotics, Perception and Learning.

© 2020 Rika Antonova, except where otherwise stated.

Tryck: Universitetsservice US AB

iii

Abstract

Consider challenging sim-to-real cases lacking high-fidelity simulators and
allowing only 10-20 hardware trials. This work shows that even imprecise
simulation can be beneficial if used to build transfer-aware representations.

First, the thesis introduces an informed kernel that embeds the space of
simulated trajectories into a lower-dimensional space of latent paths. It uses a
sequential variational autoencoder (sVAE) to handle large-scale training from
simulated data. Its modular design enables quick adaptation when used for
Bayesian optimization (BO) on hardware. The thesis and the included publi-
cations demonstrate that this approach works for different areas of robotics:
locomotion and manipulation. Furthermore, a variant of BO that ensures
recovery from negative transfer when using corrupted kernels is introduced. An
application to task-oriented grasping validates its performance on hardware.

For the case of parametric learning, simulators can serve as priors or
regularizers. This work describes how to use simulation to regularize a VAE’s
decoder to bind the VAE’s latent space to simulator parameter posterior.
With that, training on a small number of real trajectories can quickly shift
the posterior to reflect reality. The included publication demonstrates that
this approach can also help reinforcement learning (RL) quickly overcome the
sim-to-real gap on a manipulation task on hardware.

A longer-term vision is to shape latent spaces without needing to mandate
a particular simulation scenario. A first step is to learn general relations
that hold on sequences of states from a set of related domains. This work
introduces a unifying mathematical formulation for learning independent
analytic relations. Relations are learned from source domains, then used
to help structure the latent space when learning on target domains. This
formulation enables a more general, flexible and principled way of shaping
the latent space. It formalizes the notion of learning independent relations,
without imposing restrictive simplifying assumptions or requiring domain-
specific information. This work presents mathematical properties, concrete
algorithms and experimental validation of successful learning and transfer of
latent relations.

iv

Sammanfattning

Betänk komplicerade fall av simulering-till-verklighet där det saknas si-
mulatorer med hög precision och endast 10-20 hårdvaruförsök tillåts. Detta
arbete visar att även oprecis simulering kan vara till nytta i dessa fall, om det
används för att skapa överföringsbara representationer.

Avhandlingen introducerar först en informerad kärna som bäddar in rum-
met av simulerade trajektorier i ett lågdimensionellt rum med latenta banor.
Denna använder en så kallad sekventiell variational autoencoder (sVAE) för
att hantera storskalig träning utifrån simulerade data. Dess modulära design
medför snabb anpassning till den nya domänen då den används för Bayesi-
ansk optimering (BO) på verklig hårdvara. Avhandlingen och de inkluderade
publikationerna visar att denna metod fungerar för flera olika områden inom
robotik: rörelse och manipulation av objekt. Dessutom introduceras en variant
av BO som garanterar återhämtning från negativ överföring om korrupta
kärnor används. En tillämpning inom uppgiftsanpassade handgrepp bekräftar
metodens prestanda på hårdvara.

När det gäller parametrisk inlärning, kan simulatorer tjäna som aprioriför-
delningar eller regulariserare. Detta arbete beskriver hur man kan använda
simulering för att regularisera en VAEs avkodare för att koppla ihop det
latenta VAE rummet till simuleringsparametrarnas aposteriorifördelning. I
och med detta kan träning på ett litet antal verkliga banor snabbt anpassa
aposteriorifördelningen till att återspegla verkligheten. Den inkluderade publi-
kationen demonstrerar att detta tillvägagångssätt också kan hjälpa så kallad
förstärkningsinlärning (RL) att snabbt överbrygga gapet mellan simulering
och verklighet för en manipulationsuppgift på hårdvara.

En långsiktig vision är att skapa latenta rum utan att behöva förutsätta
ett specifikt simuleringsscenario. Ett första steg är att lära in generella relatio-
ner som håller för sekvenser av tillstånd i en mängd angränsande domäner.
Detta arbete introducerar en enhetlig matematisk formulering för att lära in
oberoende analytiska relationer. Relationerna lärs in från källdomäner och
används sedan för att strukturera det latenta rummet under inlärning i måldo-
mänen. Denna formulering medger ett mer generellt, flexibelt och principiellt
sätt att skapa det latenta rummet. Det formaliserar idén om inlärning av
oberoende relationer utan att påtvinga begränsande antaganden eller krav på
domänspecifik information. Detta arbete presenterar matematiska egenskaper,
konkreta algoritmer och experimentell utvärdering av framgångsrik träning
och överföring av latenta relationer.

Thanks to Ylva Jansson and Mårten Björkman for translating the abstract to Swedish.

To my father, Геннадий Антонов
твоя улыбка осталась

vi

Acknowledgments

To Danica Kragic:
Thank you very much for advising,
inspiring & supporting me at KTH.

To Silvia Cruciani, Mia Kokic,
—Johannes Stork, Martin Hwasser,
—Anastasiia Varava & others@RPL:
Thanks for collaborations at KTH.

To Akshara Rai:
Thank you for being an amazing
long-term collaborator, despite
different continents & time zones,
always enthusiastic about our next
robot learning adventure together!

To Thomas Schön:
Thanks for welcoming me to
your group meetings at Uppsala.

To Emma Brunskill & Chris Atkeson:
Thanks for the best introduction to
the world of RL & Robotics at CMU.

To Ylva Jansson, Ioanna Mitsioni
— Diogo Almeida, João·Carvalho:
Thanks for making my days in
Sweden a bit warmer and brighter.

To Sam Devlin & Katja Hofmann,
— Cheng Zhang & Yingzhen Li,
— Kamil Ciosek &
— Sebastian Tschiatschek:
Thanks for insightful discussions
during my visit to MSR Cambridge
and for your further support.

To Matt Kretchmar & Jessen Havill,
— Ravi Sundaram & Guevara Noubir :
Thanks for helping make my first steps
in undergraduate and graduate CS.

To Sep Kamvar, Uygar Oztekin &
— search ranking team at Google;
— Ray Smith & OCR+Books+
— StreetView teams:
Thanks for the best work environment an
engineer could dream of; these memories
gave me positive energy to last a lifetime.

- To Maksim Maydanskiy:
Thanks for all that math :-]

To Irina Antonova:
Thank you for being a wonderful
mother – it is the hardest role!

To Carlos Ponguillo:
Thanks for supporting my initial
East→West journey & further help.

To the grading committee:
Marc Deisenroth,
Joelle Pineau,
Sebastian Trimpe:
Thanks for examining the defense.

To Jens Kober :
Thanks for taking part in
the defense as the opponent.

vii

List of Papers

This thesis is based on the following papers:

Bayesian Optimization in Variational Latent Spaces with Dynamic
Compression.
R. Antonova1, A. Rai1, T. Li, D. Kragic
In Conference on Robot Learning (CoRL),
Proceedings of Machine Learning Research (PMLR) 100:456-465, 2019.

Using Simulation to Improve Sample-Efficiency of Bayesian Optimiza-
tion for Bipedal Robots.
A. Rai1, R. Antonova1, F. Meier, C. Atkeson.
In Journal of Machine Learning Research (JMLR), PMLR 20(49):1-24, 2019.

Deep Kernels for Optimizing Locomotion Controllers.
R. Antonova1, A. Rai1, C. Atkeson.
In Conference on Robot Learning (CoRL), PMLR 78:47-56, 2017.

Bayesian Optimization Using Domain Knowledge on the ATRIAS
Biped.
A. Rai1, R. Antonova1, S. Song, W. Martin, H. Geyer, C. Atkeson.
In IEEE International Conference on Robotics and Automation (ICRA), 2018.

Global Search with Bernoulli Alternation Kernel for Task-oriented
Grasping Informed by Simulation.
R. Antonova1, M. Kokic1, J. A. Stork, D. Kragic.
In Conference on Robot Learning (CoRL), PMLR 87:641-650, 2018.

Variational Auto-Regularized Alignment for Sim-to-Real Control.
M. Hwasser, D. Kragic, R. Antonova.
In IEEE International Conference on Robotics and Automation (ICRA), 2020.

Analytic Manifold Learning: Unifying and Evaluating Representations
for Continuous Control.
R. Antonova, M. Maydanskiy, D. Kragic, S. Devlin, K. Hofmann.
In arXiv:2006.08718, 2020.

1Equal contribution

viii

The following works have also been produced during the PhD study period
(but are not included in this thesis):

Benchmarking Bimanual Cloth Manipulation.
I. Garcia-Camacho, M. Lippi, M.C. Welle, H. Yin, R. Antonova, A. Varava,
J. Borras, C. Torras, A. Marino, G. Alenya, D. Kragic.
In IEEE Robotics and Automation Letters (RA-L) 2020.

Unlocking the potential of simulators: Design with RL in mind.
R. Antonova1, S. Cruciani1.
Conference on Reinforcement Learning and Decision Making (RLDM) 2017.
Presentation at RLDM was based on results from the following work:
Reinforcement Learning for Pivoting Task.
R. Antonova1, S. Cruciani1, C. Smith, D Kragic.
In arXiv:1703.00472, 2017.

ix

Statement of Contributions

Bayesian Optimization in Variational Latent Spaces with Dynamic Compression.
R. Antonova1, A. Rai1, T. Li, D. Kragic, CoRL 2019
Rika Antonova: formulated the algorithm for embedding trajectories into latent
distributions; constructed sequential VAE architecture based on time-convolutions
and experimented with alternative NN architectures; set up training and simulation
experiments for locomotion and manipulation; set up and ran hardware experiments
for manipulation
Akshara Rai: provided Daisy hexapod simulator and controllers; set up and ran
hardware experiments for locomotion; provided access to large-scale compute infras-
tructure for simulation experiments
T. Li. helped with collecting hardware experiment data for locomotion
D. Kragic: gave advice for manipulation tasks and literature

Deep Kernels for Optimizing Locomotion Controllers.
R. Antonova1, A. Rai1, C. Atkeson. CoRL 2017
Bayesian Optimization Using Domain Knowledge on the ATRIAS Biped.
A. Rai1, R. Antonova1, S. Song, W. Martin, H. Geyer, C. Atkeson. ICRA 2018
Using Simulation to Improve Sample-Efficiency of Bayesian Optimization for Bipedal
Robots.
A. Rai1, R. Antonova1, F. Meier, C. Atkeson. JMLR 2019
Rika Antonova: formulated and constructed NN-based kernels, conducted simulation
experiments; derived equations for interpreting mismatch as part of the kernel;
provided BO background and literature; wrote approach descriptions and justification
from the learning perspective; compared with sparse GP baselines
Akshara Rai: set up ATRIAS simulator and controller; did hardware experiments;
constructed domain-specific DoG kernels; compared with IT&E approach; provided
locomotion literature; experimented with robustness to incorrect dynamics
S. Song: helped with Neuromuscular controller in simulation
W. Martin: helped with setting up and repairing ATRIAS hardware
F. Meier: gave advice for Akshara at MPI; proofread JMLR draft, gave suggestions
on organization & figures
H. Geyer & C. Atkeson: advising for Akshara at CMU

x

Global Search with Bernoulli Alternation Kernel for Task-oriented Grasping Informed
by Simulation.
R. Antonova1, M. Kokic1, J. A. Stork, D. Kragic. CoRL 2018
Rika Antonova: formulated the BO-BAK algorithm and provided its analysis;
constructed BO kernel from CNN; provided BO background, theory and evaluation;
set up and ran hardware experiments for BO; demonstrated BO-BAK success on
hardware for challenging objects and showed recovery with severely degraded kernels
Mia Kokic: set up CNN architecture and training with grasp stability and task
suitability scores; converted Kinect input to voxel grid representation; ran simulation
and hardware experiments for the ‘top-k’ approach based on CNN (without BO)
J. A. Stork: helped with paper writing and organization
D. Kragic: helped with paper organization; advising for Rika & Mia

Variational Auto-Regularized Alignment for Sim-to-Real Control.
M. Hwasser, D. Kragic, R. Antonova. ICRA 2020
Rika Antonova: formulated the initial version of det2stoc algorithm; implemented
comparisons with likelihood-free methods; formulated hardware tasks that allowed
investigating recovery from sim-to-real mismatch; wrote ICRA2020 submission
[& supervised Martin’s MS thesis work that included initial implementation and
simulation experiments]
Martin Hwasser: implemented det2stoc and developed an effective training proce-
dure; created advanced simulation environments for evaluation; set up comparisons
with CVAE baseline; set up and ran hardware experiments
D. Kragic: advising for Rika

Analytic Manifold Learning: Unifying and Evaluating Representations for
Continuous Control.
R. Antonova, M. Maydanskiy, D. Kragic, S. Devlin, K. Hofmann. arXiv 2020
Rika Antonova: formulated the unifying approach as a generalization of learning
with auxiliary losses; developed a benchmark suite for analyzing VAEs training on
non-stationary data stream; constructed NN-based algorithm using the mathemati-
cal formalism; developed VI-based algorithm suitable for sim-to-real and transfer
learning settings
M. Maydanskiy: suggested formalism from abstract algebra and analytic & differ-
ential geometry for rigorous definitions of independence; provided theorem proofs;
helped formalize non-triviality of learned relations
D. Kragic: gave suggestions for robotics tasks and feedback on paper organization
S. Devlin, K. Hofmann: hosted Rika at MSR Cambridge (supported the start of
the project); provided Azure compute resources, detailed discussions about paper
writing & help with communicating the work to the learning community

Contents

Contents xi

I Main 1

1 Introduction: Transfer-aware Methods 3

2 Background 9
2.1 Sim-to-Real: Problem Statement and Challenges 9
2.2 Bayesian Optimization . 10
2.3 Variational Inference and VAEs . 15

3 Bayesian Optimization with Informed Kernels 19
3.1 Kernels from Trajectory Summaries 20
3.2 Informing Prior Mean vs Kernels . 22
3.3 Bayesian Optimization in Variational Latent Spaces 24
3.4 Alternation Kernel Robust to Negative Transfer 31

4 Variational Alignment for Sim-to-Real 39
4.1 The DET2STOC Algorithm . 39
4.2 Experiments on Benchmarks . 41
4.3 Hardware Experiments for Posterior Alignment & RL Fine-tuning . 42

5 Analytic Manifold Learning 47
5.1 Motivation for Learning Latent Relations 48
5.2 Mathematical Formulation for Non-linear Independence 48
5.3 Learning Latent Relations with Neural Networks 51
5.4 Imposing AML Relations During Transfer 53
5.5 Evaluating AML and Latent Space Transfer 54

6 Conclusions and Future Directions 59
6.1 Lifelong Learning: Fast and Slow . 60

Bibliography 63

xi

xii CONTENTS

II Included Publications 73

A Bayesian Optimization in Variational Latent Spaces
with Dynamic Compression A1

B Using Simulation to Improve Sample-Efficiency
of Bayesian Optimization for Bipedal Robots B1

C Deep Kernels for Optimizing Locomotion Controllers C1

D Bayesian Optimization Using Domain Knowledge
on the ATRIAS Biped D1

E Global Search with Bernoulli Alternation Kernel
for Task-oriented Grasping Informed by Simulation E1

F Variational Auto-Regularized Alignment
for Sim-to-Real Control F1

G Analytic Manifold Learning: Unifying and Evaluating
Representations for Continuous Control G1

Part I

Main

Chapter 1

Introduction:
Towards Transfer-aware Methods

“All models are wrong, but some are useful” [1]. In robotics, precise scenario-
specific simulation and models have been widely used since the inception of the
field. However, leveraging imprecise general-purpose simulators is an open problem.
We can consider this problem in the context transfer learning, with simulation as
the source domain and real-world hardware as the target domain. While some
approaches from the general field of transfer learning can be applicable, in the
context of robotics we face a unique combination of challenges. Hence, the term
sim-to-real has been established to concisely express this combination. The main
challenges are: the need for data efficiency when training on hardware and the need
to close the sim-to-real gap. Prior work that aimed to tackle these challenges most
often focused on only one aspect at a time. In contrast, the work presented in this
thesis offers a unified view and proposes a set of transfer-aware methods that are
both data-efficient and non-restrictive in terms of simulation quality needed for
successful sim-to-real transfer.

This work defines a transfer-aware paradigm for constructing sim-to-real al-
gorithms. The core idea of this paradigm is that training on a source domain
(simulation) should be done with the foresight of the need to adjust the resulting
structures/representations on the target domain (reality) with only a few hard-
ware trials/episodes. The algorithms presented in this thesis demonstrate that this
transfer-aware paradigm can be used to construct methods that leverage simulation
in various ways: by constructing informed kernels; by using simulators as regu-
larizers; by learning to describe a simulation-induced data manifold as a set of
independent relations, which can be imposed to structure the latent space during
training on target (real) data. Hence, the overall result is the toolbox of sim-to-real
methods, where each roboticist could hope to find a tool that fits their needs and
preferences. For those who prefer to use structured parametric controllers: the
proposed kernel-based methods for Bayesian optimization (BO) would be the best

3

4 CHAPTER 1. INTRODUCTION: TRANSFER-AWARE METHODS

fit (Chapter 3). For those favoring model-free deep reinforcement learning (RL) and
variational inference (VI): the proposed approach to use simulation as a regularizer
would help obtaining flexible posteriors over simulation parameters and help deep RL
recover from sim-to-real mismatch with few hardware trials (Chapter 4). For those
aiming to make minimal assumptions regarding the source domain: the proposed
approach to automatically encode the latent properties of the source domain in a
set of (non-linearly) independent relations would give most freedom, while helping
to improve data-efficiency on a target domain (Chapter 5).

The proposed methods aim to incorporate components from different sub-fields of
machine learning. Despite this variety, the unifying theme of these algorithms is that
they are constructed with the goal to remove restrictive assumptions about the quality
of the simulation. Representations and structures learned by these methods are
designed to be quickly adjusted from few hardware samples in order to close the sim-
to-real gap in a data-efficient way. For the case of BO, for example, this yields ultra-
data efficient methods that can benefit from as few as 10 hardware trials/episodes.
Experiments presented in this thesis (and in the included publications) show that
previous work, which used generic ways to update representations/structures, could
not achieve such data efficiency for modern higher-dimensional controllers and state
spaces. Hence, the thesis demonstrates the need and the benefit of adhering to
the transfer-aware paradigm, instead of simply hoping that making all components
differentiable would be enough to handle the sim-to-real mismatch effectively.

The Structure of this Thesis
- Chapter 1 (this one) gives an overview of the thesis. [I am a strange loop :-]

- Chapter 2 states challenges & opportunities of the sim-to-real problem, then
outlines the background from the fields of machine learning relevant to this thesis.

- Chapter 3 presents the proposed kernel-based methods. First, it provides justifica-
tion for using simulation-informed kernels for Gaussian processes (GPs) within the
framework of Bayesian optimization (BO). Policy optimization is formulated as BO
on the space of structured parametric controllers. Successful application to bipedal
locomotion on the ATRIAS robot is summarized from [2, 3, 4]. Then, a more gen-
eral domain-agnostic approach is presented: BO-SVAE-DC introduces a modular
sequential variational autoencoder (sVAE) used to embed the space of simulated
trajectories into a lower-dimensional space of latent paths in an unsupervised way.
This yields an encoder used to construct a simulation-informed kernel. The method
also allows to further compress parts of the space containing undesirable regions.
Experiments (summarized from [5]) demonstrate that using the resulting kernels
yields significant improvements over uninformed BO, with only 10 hardware trials
to close the sim-to-real gap. The generality of this approach is demonstrated by
hardware experiments in two different areas of robotics: locomotion (on HEBI
Robotics Daisy hexapod) and manipulation (ABB Yumi robot). The kernels for
these are built using the same sVAE architecture (same sizes and parameters of
the underlying neural networks), and the same BO hyperparameters. Next, a

THE STRUCTURE OF THIS THESIS 5

BO-BAK method is proposed for cases with highly imprecise or severely degraded
kernels. The thesis describes hardware experiments with recovering from negative
transfer, in the setting of task-oriented grasping introduced in [6].

- Chapter 4 shows how to use simulators as regularizers to infer flexible simulator
parameter posteriors from few hardware trajectories. The proposed DET2STOC
approach regularizes a VAE decoder to simulation, with latent space bound to
a subset of simulator parameters, yielding (multimodal) parameter posteriors
aligned to hardware data. Hardware experiments (summarized from [7]) on a
non-prehensile task with an ABB Yumi robot show ability to help RL overcome
severe sim-to-real mismatch. DET2STOC is aimed to be useful for the part of the
community that favors unstructured neural network policies, e.g. those learned by
recently popularized model-free deep RL algorithms.

- Chapter 5 first acknowledges the limitations of unsupervised approaches, such
as VAEs, when handling distribution shift. This has direct negative implications
for sim-to-real. To combat this, previous lines of work proposed imposing hand-
constructed latent relations based on domain knowledge or algorithmic insights (e.g.
expecting/ensuring continuity between consecutive latent states, consistency with
a known forward or inverse model structure, etc). This thesis presents a unifying
mathematical formulation for automatically learning (non-linearly) independent
relations from the latent data manifold. The proposed Analytic Manifold Learning
(AML) obtains analytic relations on source domains (e.g. simulation), then uses
these relations to help structure the latent space when learning on target domains.
Experiments (summarized from [8]) show initial success in transfer of relations
learned from source domains with simple geometric shapes to target (simulated)
domains that contain objects with real textures and 3D scanned meshes. The
generality of AML goes beyond being useful for sim-to-real. Hence, this thesis
presents the general formulation and highlights its potential for areas like continual
and lifelong learning, leaving hardware sim-to-real experiments for future work.

- Chapter 6 presents conclusion and future directions. First, it summarizes the
main contributions offered by the work conducted for this thesis, both from the
algorithmic perspective (i.e. new concrete algorithms that the thesis describes) and
from the conceptual perspective (for example: how the work and arguments from
publications associated with this thesis changed the views and attitudes of the
community towards themes like using simulation-informed kernels). The chapter
concludes by discussing how the proposed algorithms, methods and mathematical
formulations can enable further progress in more challenging sim-to-real settings,
such as manipulation with deformable objects and lifelong learning.

- The above chapters constitute Part I: ‘Main’ part of the thesis. Part II contains
the publications included in this thesis. These are provided in almost exactly the
same form as published, with minor edits to accommodate the thesis paper size
and format.

6 CHAPTER 1. INTRODUCTION: TRANSFER-AWARE METHODS

Note on the Thesis Format: Compilation vs Monograph

Formally, this thesis has the format of a ‘Compilation thesis’ (also known as
‘Cumulative thesis’, ‘Thesis by published works’, ‘Article thesis’), which is encouraged
in the Nordic countries. The compilation thesis format is defined as follows: it starts
with a ‘Kappa’: a summary (15-35 pages) that provides an overview of the thesis
work as a whole and briefly summarizes each work included as a ‘thesis publication’.
Then, the list of published (or submitted) papers is provided, along with a statement
of thesis author’s contributions to each paper.

Some parts of the international community are more used to the ‘Monograph’
format and might find it challenging to evaluate the views and contributions of
the thesis author if they are all embedded in the joint publications. Moreover, the
compilation format encourages breadth, since publications do not necessarily build
on a single algorithm/idea – this can be challenging for the readers due to lack of
a unified mathematical notation and the need for a broad prior background. To
address these points, I wrote this thesis in an extended format. The ‘Main’ part
does start by giving an overview (the ‘Introduction’ above), but is then extended
beyond what would be usually included in a summary/overview ‘Kappa’.

First: I provided the common mathematical notation, algorithmic background
and literature review in Chapter 2.

Second: from the included publications, I selected a subset of approaches for
which I was the main contributor of algorithmic ideas and that exemplify the principle
of being ‘transfer-aware’. Chapters 3,4,5 present these algorithms. Chapters 3,4
are mostly self-contained, so the readers would only need to look at the included
publications to get in-depth details. Chapter 5 gives an overview of the main ideas
presented in [8], however, readers unfamiliar with abstract algebra and differential
geometry would need to refer to the additional explanations in the Appendix in [8]
for a better understanding.

Third: while some paragraphs in this thesis contain text from the included
publications, a large part of the text is new (more appropriate for a higher-level
discussion as opposed to reporting minor details). Furthermore, Chapter 3 contains
several new illustrations, mathematical derivations and hardware experiments (not
contained in the included publications).

Fourth: I included descriptions of some of the hardware experiments I ran in
our lab at KTH. These present examples of my experimental hardware platform.
However, I would not have been satisfied with only one person+platform for the
validation of the proposed algorithms. Hence, I collaborated closely with other
students to design experiments that validated the proposed approaches further. In
the ‘Main’ part of the thesis I only briefly summarize these experiments, focusing on
the results and implications rather than details (the included publications contain
the details of the hardware setups and experiments).

Firth: the goal of the ‘Main’ part of this thesis is to explain how the algorithms
proposed in the included publications address sim-to-real challenges from the per-
spective of active learning. I view sim-to-real problem from a perspective that

THE STRUCTURE OF THIS THESIS 7

is closer to the learning community, which seeks ways to remove dependence on
hand-constructed representations, task-specific structures and assumptions. Hence,
the ‘Main’ part of the thesis includes detailed analysis of the ‘active’ aspects of
the learning process (e.g. Bayesian optimization on hardware, adjusting simulator
posterior and reinforcement learning policies using data from real trajectories, etc).
The details of offline training or domain/task-specific aspects are available in the
included publications, but I do not discuss them in detail in the ‘Main’ part.

Finally: I hope that this extended format would help the audience to quickly
grasp the main ideas of this thesis work, while still allowing the interested readers
to find all the further details within the included publications.

Chapter 2

Background

2.1 Sim-to-Real: Problem Statement and Challenges

Generally speaking, sim-to-real defines a class of transfer learning problems, with
simulation being the source and reality/hardware being the target domain. Methods
tackling the sim-to-real problem aim to leverage simulation to improve efficiency of
learning from real data. The need for data efficiency arises since running experiments
on hardware can be costly, both in terms of time and in terms of wear-and-tear
costs (e.g. research-grade hardware usually contains components that fail in case of
prolonged operation).

Closing the sim-to-real gap is a challenging problem if we do not want to
limit ourselves to utilizing only high-fidelity simulators. Medium- and low-fidelity
simulators are constructed without bounds on how much simulation can deviate from
reality. This implies that utilizing imprecise simulation can cause negative transfer.
Negative transfer occurs when the use of knowledge from the source/prior domain
hurts the learning progress on the target domain. There have been recent (but
limited) attempts to examine this notion formally in the supervised deep learning [9]
and the RL communities [10]. However, it is challenging to formalize and guard
against negative transfer for transfer learning in general, as well as for sim-to-real
in particular. Hence, the vast majority of prior works do not discuss the possibility
of negative transfer and don’t explicitly test what happens as the quality of the
simulator degrades. They side-step this issue by simply assuming that the source
and target domains are ‘related enough’ such that incorporating information from
the source domain in any form is ultimately useful. This thesis work does not make
such assumption, and instead conducts simulation and hardware experiments that
aim to shed light on this important issue.

In recent years, sim-to-real methods have been experimentally shown to work on
tasks in various areas of robotics, for example motion planning [11], navigation [12],
locomotion [13, 14, 15] and manipulation [16, 17]. Early works either relied on
designing domain-specific features and controllers [13] or utilized basic techniques,

9

10 CHAPTER 2. BACKGROUND

such as domain randomization [11, 14, 16, 18]. A scalable example of the latter
demonstrated solving an advanced in-hand manipulation task with a model-free
deep RL policy trained from high-dimensional observations [19]. The downside
of basic domain randomization is that it can yield suboptimal policies. Moreover,
randomizing too aggressively leads to failing to solve advanced tasks even in simula-
tion, while randomizing too little leads to learning policies that fail on hardware.
Hence, there is still a debate within the community as to when sim-to-real using
general-purpose simulators is warranted [20]. The basic argument that could be
put forth is that traditional approaches, such as system identification and building
explicit models from hardware data, should be used when such modeling is tractable,
while sim-to-real should be used when learning a precise and concise model from real
data is intractable. In such cases we could hope to benefit from domain knowledge,
but this knowledge could be in a ‘black-box’ form of a general-purpose simulator.

Building on the initial success of domain randomization, one line of more recent
approaches aims to adapt simulation parameter posteriors using hardware data.
A scalable version of this demonstrated that with a highly parallelized simulation
it is possible to benefits from as little as 10 hardware trajectories [17]. However,
this work was limited to learning unimodal simulation parameter posteriors. More
recent developments proposed approaches that could yield multimodal mixture
posteriors [21], though initially without demonstrating hardware results. The work
presented in Chapter 4 of this thesis proposes an approach capable of producing
mixture posteriors, shows ability to align with reality using 10 hardware trials and
helps an RL policy to close a large sim-to-real gap [7].

Despite succeeding on some domains, the approach of learning simulator param-
eter posteriors is not always tractable. This could be either because, for advanced
scenarios, the simulator might fail to come close to reality with any setting of
simulation parameters or because finding a well-performing parameter distribution
requires a prohibitive amount of hardware data. In such cases, more direct methods
are needed to extract domain knowledge from simulation in flexible ways. One
such family of methods could be obtained by considering data-efficient approaches
like Bayesian optimization (BO). BO could be used to search for well-performing
controller parameters directly, instead of optimizing a model or a simulator to
align with reality. However, BO ‘from scratch’ is still not data efficient enough for
optimizing higher-dimensional controllers or solving advanced robotics tasks. Hence,
this thesis argues for constructing informed kernels from simulation to enhance data
efficiency and representational power of BO (Chapter 3).

2.2 Bayesian Optimization

Background and Mathematical Formulation
Bayesian optimization (BO) is a framework for online, black-box, gradient-free
global search; [22] and [23] provide a comprehensive introduction. The problem
of optimizing controllers can be interpreted as finding controller parameters 𝑥𝑥𝑥*

2.2. BAYESIAN OPTIMIZATION 11

Figure 2.1: Illustration of Bayesian optimization for an example 1D problem. The objective
is to find 𝑥𝑥𝑥 with maximal 𝑓(𝑥𝑥𝑥). Gaussian Process (GP) models the posterior for 𝑓(𝑥𝑥𝑥).
GP has two main components: the mean function 𝑚(𝑥𝑥𝑥) and kernel (covariance) function
𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗). The kernel determines how far the influence of the previously evaluated points
(red pluses) extends. Left: GP posterior after the first two samples. Right: GP posterior
after further samples. The acquisition function (dashed green line on the bottom) uses
posterior mean and covariance to balance exploration and exploitation. BO achieves data
efficiency by sampling more points close to the optimum; BO explores in the rest of the
search space only enough to ensure that a better solution is unlikely (not aiming to decrease
uncertainty uniformly across the search space).

that optimize some objective function 𝑓(𝑥𝑥𝑥). In the context of this thesis work, 𝑥𝑥𝑥
represents a vector that contains parameters of a pre-structured policy. For brevity,
‘controller 𝑥𝑥𝑥’ is used denote a controller with parameters 𝑥𝑥𝑥. The objective 𝑓(𝑥𝑥𝑥) is a
function of the trajectory induced by controller parameters 𝑥𝑥𝑥; it expresses how well
a controller is able to solve a given task.

BO can be used to find controller 𝑥𝑥𝑥* that maximizes an objective function 𝑓 :

𝑓(𝑥𝑥𝑥*) = max
𝑥𝑥𝑥

𝑓(𝑥𝑥𝑥)

Some works use costs instead of objective/reward functions. The optimization
process is analogous in such cases: the same code can be used with just a sign of
the cost negated to do objective maximization instead of cost minimization.

BO is initialized with a prior that expresses a priori uncertainty over 𝑓(𝑥𝑥𝑥) and
helps keep track of the posterior of 𝑓 . A widely used representation for the objective
function 𝑓 is a Gaussian process (GP):

𝑓(𝑥𝑥𝑥) ∼ 𝒢𝒫(𝑚(𝑥𝑥𝑥), 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗))

The prior mean function 𝑚(·) is set to zero when no domain-specific knowledge is
given. The kernel function 𝑘(·, ·) encodes similarity between inputs. If 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) is
large for inputs 𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗 , then 𝑓(𝑥𝑥𝑥𝑖) strongly influences 𝑓(𝑥𝑥𝑥𝑗). One of the most widely
used kernel functions is the Squared Exponential (SE):

𝑘𝑆𝐸(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2
𝑘 exp

(︀
− 1

2 (𝑥𝑥𝑥𝑖 − 𝑥𝑥𝑥𝑗)𝑇 diag(ℓℓℓ)−2(𝑥𝑥𝑥𝑖 − 𝑥𝑥𝑥𝑗)
)︀
, (1)

where 𝜎2
𝑘, ℓℓℓ are signal variance and a vector of length scales respectively. 𝜎2

𝑘, ℓℓℓ are
referred to as ‘hyperparameters’ and can be optimized automatically by maximizing
GP marginal likelihood (see [22], Section V-A).

12 CHAPTER 2. BACKGROUND

The posterior mean and covariance for any point 𝑥𝑥𝑥* can be computed with:

E[𝑓(𝑥𝑥𝑥*)] = 𝑓* = 𝑘𝑘𝑘𝑇* (𝐾 + 𝜎2
𝑛𝐼)−1𝑦𝑦𝑦 (2)

𝑉 𝑎𝑟[𝑓(𝑥𝑥𝑥*)] = V[𝑓*] = 𝑘(𝑥𝑥𝑥*,𝑥𝑥𝑥*)− 𝑘𝑘𝑘𝑇* (𝐾 + 𝜎2
𝑛𝐼)−1𝑘𝑘𝑘* (3)

Here: 𝐾 =𝐾(𝑋,𝑋), meaning 𝐾 is a matrix ∈ R𝑛×𝑛 that has 𝑘(𝑥𝑖, 𝑥𝑗) as 𝑖𝑗-th
entries and is computed using all pairs of points evaluated in trials/episodes {1, ..., 𝑛}
that have been completed so far; 𝑘𝑘𝑘* = 𝑘(𝑋,𝑥𝑥𝑥*) is a vector ∈ R𝑛 that captures the
similarity between a given point 𝑥𝑥𝑥* and each of the 𝑛 points from the completed
trials.

To propose the point/controller 𝑥𝑥𝑥 that should be evaluated next, BO optimizes an
auxiliary function called acquisition function. Two most commonly used options for
the acquisition function are: Expected Improvement (EI) [24] and Upper Confidence
Bound (UCB) [25]. While some works report results being sensitive to the choice
of the acquisition function, the algorithms presented in this thesis showed similar
performance with EI and UCB. Hence, UCB was used in the most recent part of the
work, since UCB is intuitive to understand and has regret bound guarantees [25].
The acquisition function uses GP posterior that incorporates all the data available
so far to balance exploration vs exploitation. It selects points for which the posterior
estimate of the objective 𝑓 is promising, taking into account both posterior mean
and (co)variance. For example, UCB acquisition function selects the next 𝑥𝑥𝑥 using:

𝑥𝑥𝑥𝑈𝐶𝐵 = arg max
𝑥𝑥𝑥∈𝒳

E[𝑓(𝑥𝑥𝑥)] + 𝛽 𝑉 𝑎𝑟[𝑓(𝑥𝑥𝑥)]

𝛽 can be determined by theoretical considerations to ensure theoretical regret
bounds [25] or could be chosen as higher/lower if more/less exploration is desired for
a particular domain. See Figure 2.1 for basic GP posterior and acquisition function
visualizations.

BO ensures data efficiency by keeping track of uncertainty across the search
space and leaving unpromising parts of the search space under-explored. This
approach is well-suited for cases with a small budget of hardware trials (<100).
One straightforward way to incorporate simulation information could be to add
‘fake’ prior points obtained from simulated trials to the GP. However, in this case
computational complexity of GPs may be a deterrent. Computing GP posterior
mean, covariance and marginal likelihood is usually accomplished with algorithms
that involve Cholesky factorization, which has the computational complexity of 𝑛3

6 .
The most expensive operation involved is the matrix inversion (𝐾 + 𝜎2

𝑛𝐼)−1, which
has a smaller asymptotic constant (𝑛2.373 with some recent methods). However,
approaches utilizing Cholesky factorization are considered more numerically stable,
hence are commonly used in GP libraries [26, 27]. See [28] for further details.

To improve scalability of GPs, a number of sparse approximations have been
proposed. Inducing points methods use a small set of 𝑚 inducing points instead of
forming a full covariance matrix [29, 30]. Such methods can reduce the computational
complexity to 𝑂(𝑛𝑚2). Some versions use approximate inference to compute

2.2. BAYESIAN OPTIMIZATION 13

approximations to the posterior [31, 32]. Such methods can scale to 10K+ points,
and experiments in Chapter 3 demonstrate they can be useful for populating GPs
with prior ‘fake’ points from simulation. However, Chapter 3 also shows that this
prior-based way to utilize simulation is not robust in case of using low-fidelity
simulations.

Gaining intuition about GP mean is easier than understanding the effects of the
kernel. Nonetheless, it is especially important to appreciate that kernel choices have
a large impact on BO, since they shape the search space by imposing a similarity
metric on it. The SE kernel from Equation 1 belongs to a broader class of Matérn
kernels, which in general have more free parameters. One common parameter
choice yields Matérn5/2: 𝑘Matérn5/2(𝑟𝑟𝑟) =

(︀
1 +

√
5𝑟𝑟𝑟
ℓℓℓ + 5𝑟𝑟𝑟2

3ℓℓℓ2

)︀
exp

(︀
−

√
5𝑟𝑟𝑟
ℓℓℓ

)︀
. In some cases

carefully choosing kernel parameters improves performance of BO [33]. However,
manually constructed domain-informed kernels can easily out-perform even well-
tuned Matérn kernels [13]. SE and Matérn kernels are stationary: 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) depend
only on 𝑟=𝑥𝑥𝑥𝑖−𝑥𝑥𝑥𝑗 ∀𝑥𝑥𝑥𝑖,𝑗 , and not on individual 𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗 . Stationarity allows avoiding
commitment to domain-specific assumptions, which helps generality, but can be
detrimental to data efficiency and flexibility. This is because all regions of the search
space have to be treated in an equivalent way. Chapter 4 of [28] provides a number
of other choices for the kernel functions. Some uninformed kernels can improve BO
if their assumptions match the needs of a particular domain, e.g. periodic kernels
for domains with cyclic patterns. However, such choice requires domain knowledge
about the properties of the target domain/task. Chapter 3 of this thesis shows that
the need for such expertise can be replaced by leveraging general-purpose simulation
to build informed kernels automatically.

Prior Work in Bayesian Optimization
Gaussian Processes (GPs) have been widely used in robotics for learning models,
for example for reinforcement learning for control [34, 35, 36], motion planing [37],
manipulation [38, 39] and active perception [40, 41]. GPs have also been used as
key structures in active learning algorithms, such as Bayesian optimization. BO
without the use of simulation has shown initial success in a number of areas of
robotics. For example, BO for locomotion has been shown to succeed for snake
robots [42], AIBO quadrupeds [43], and hexapods [13]. BO and continuous Multi-
armed bandit approaches have been useful for grasping: a problem where vision alone
is usually not sufficient to inform about important inertial and frictional properties of
objects [44, 45, 46]. However, the above results have been achieved either with lower-
dimensional controllers (as in the case for locomotion) or with simple objectives, e.g.
grasping an object in any way to avoid slips, without considering how the object
would be used for a subsequent task. Hence, further research was warranted to
improve scalability, data efficiency, and flexibility of BO by using further domain
knowledge.

Domain knowledge from simulation can be incorporated into Gaussian Process
prior used in BO, for example as done in [13]. However, as will be shown in Chapter 3,

14 CHAPTER 2. BACKGROUND

prior-based approaches require carefully tuning the influence of points added from
simulation vs hardware points, especially for the case of imprecise simulators. When
multi-fidelity simulators are available, approaches such as [47, 48] can be used to
trade off computation vs simulation accuracy to select the fidelity level or for the
next trial/evaluation (with real world being the highest-fidelity source). In contrast,
this thesis considers a different setting: a single simulator (with an unknown fidelity
level) and an extremely small number of experiments on a real robot. Hence the
work in this thesis benefits from ability to take a two step approach: learning kernel
transforms in the 1st stage, then running BO on a real robot in the 2nd stage.

Recently, several works proposed using neural networks (NNs) within GP kernels
[49], [50]. This offered improvements for some challenging aspects that arise in
robotics, e.g. [50] showed ability to successfully handle discontinuous objectives.
However, these approaches did not address the problem of incorporating simulation
directly. These prior works aimed to jointly update the NN by propagating gradients
from the GP updates. This could succeed with ample data on the target domain.
However, these prior works did not discuss the challenges of updating such kernels
effectively with a small of data available from hardware BO experiments.

Behavior Based Kernel (BBK) introduced by [51] aimed to enhance GP kernels
with trajectory information. BBK computes an estimate of Jensen-Shannon distance
(a symmetrized version of KL divergence) between trajectories induced by two
controllers, then uses this estimate as a kernel distance metric. However, obtaining
such estimates requires obtaining samples for each controller 𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗 whenever 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗)
is needed. This is impractical, since it requires an evaluation of every controller
considered when doing the internal BO computations to optimize the acquisition
function. The authors propose using BBK in conjunction with a model-based method.
However, as discussed in the previous section, we are particularly interested in
challenging cases when building an accurate model from hardware data is intractable,
either due to a limited budget of hardware trials or because of the complexity of
the problem, e.g. contact-rich tasks, higher-dimensional controllers, etc.

An alternative approach that aims to benefit from simulated trajectories has
been proposed in [13]. This approach defines a behavior metric specific to hexapod
locomotion and collects an ‘elite’ set of points that perform well in simulation. The
behavior metric is used to guide BO in finding walking controllers on hardware with
few trials, and can even cope with damage to the robot. BO on hardware is done in
this hexapod ‘behavior’ space, but it is limited to pre-selected ‘elite’ points from
simulation. Hence, if an optimal point is not pre-selected, BO cannot propose it
during optimization on hardware.

The work described in this thesis utilizes trajectories from simulation to build
feature transforms that can be incorporated into the GP kernel. This direction
is related, in part, to input space warping [52], but goes beyond simply applying
a transform given in a explicit form. Instead, the central part of the work is to
incorporate information from simulation while ensuring that the overall algorithm
facilitates closing the sim-to-real gap. The aim is also to accomplish that in a more
domain-agnostic and scalable manner than prior attempts.

2.3. VARIATIONAL INFERENCE AND VAES 15

prior : 𝑝(𝑧) ; likelihood : 𝑝𝜃(𝑥|𝑧)
marginal likelihood : 𝑝(𝑥) =

∫︀
𝑝𝜃(𝑥|𝑧)𝑝(𝑧)𝑑𝑧

posterior : 𝑝(𝑧|𝑥) = 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)
⧸︀
𝑝(𝑥)

approximate variational posterior : 𝑞𝜑(𝑧|𝑥)(︀
approximates intractable posterior 𝑝(𝑧|𝑥)

)︀
Figure 2.2: Left: a generic graphical model for illustrating VI principles (similar to [55]).
Right: a summary of notation used in VI literature. It is common to use 𝜃,𝜑 to denote
parameters of the distributions, e.g. mean and variance vectors, or alternatively: weights
of a neural network (NN) that outputs mean and variance estimates. For VAEs: 𝜑 denotes
weights of an encoder NN (that takes input data 𝑥𝑥𝑥 and produces parameters of 𝑞, e.g.
mean and covariance if using Gaussian distributions); 𝜃 denotes weights of a decoder NN
(that can decode a latent sample 𝑧𝑧𝑧 obtained from 𝑞(·|𝑥𝑥𝑥) into a ‘reconstruction’ 𝑥𝑥𝑥).

2.3 Variational Inference and VAEs

Background and Notation for Variational Autoencoders

Variational inference (VI) is a class of efficient methods for inference in graphical
models. VI can be used effectively to quickly determine an approximation to a
model’s posterior given data/evidence. VI approaches first select a parametric
family of distributions, then optimize its parameters. [53] provides an extensive
introduction into VI and [54] gives a recent overview.

Consider data 𝑥 = {𝑥(𝑖)}𝑀𝑖=1 that consist of 𝑀 iid (independent and identically
distributed) samples. This constitutes the observed data, indicated by a circle with
gray background in Figure 2.2. We assume that the data is generated by a random
process that involves an unobserved (latent) variable 𝑧, illustrated by a circle with
white background in Figure 2.2. The data generation process consists of 2 steps:
- 𝑧(𝑖) is generated from a prior distribution 𝑝𝜃𝑝𝑟𝑖𝑜𝑟

𝑡𝑟𝑢𝑒
(𝑧)

- 𝑥(𝑖) is generated from a conditional distribution 𝑝𝜃𝑙𝑖𝑘
𝑡𝑟𝑢𝑒

(𝑥|𝑧), called likelihood
It is assumed that: the 𝜃𝑡𝑟𝑢𝑒 parameters are unknown; integrating marginal likelihood
𝑝(𝑥) =

∫︀
𝑝𝜃(𝑥|𝑧)𝑝(𝑧)𝑑𝑧 is intractable; finding the exact posterior density 𝑝(𝑧|𝑥) =

𝑝𝜃(𝑥|𝑧)𝑝(𝑧)/𝑝(𝑥) is also intractable.
Variational autoencoders (VAEs) [55] utilize VI principles to learn an approximate

posterior 𝑞𝜑(𝑧|𝑥) that serves as approximation to 𝑝(𝑧|𝑥) and do so in a scalable and
unsupervised manner. VAEs leverage reparametrization trick (see [55, 56]) to allow
learning 𝑝𝜃𝜃𝜃(𝑥𝑥𝑥|𝑧𝑧𝑧) from data instead of assuming it is given or estimated separately.
Hence, VAEs solve both the learning and the inference problem. 𝑞𝜑𝜑𝜑(𝑧|𝑥𝑥𝑥), 𝑝𝜃𝜃𝜃(𝑥𝑥𝑥|𝑧)
are parameterized by neural networks (NNs). NNs are trained using all of the
available data and 𝑞𝜑𝜑𝜑(𝑧|𝑥𝑥𝑥) is represented by a NN that can be used for any input
point 𝑥𝑥𝑥(𝑖), which means inference is amortized. NN weights are learned via gradient
ascent on the objective called evidence lower bound (ELBO), which is derived below.

16 CHAPTER 2. BACKGROUND

Maximum likelihood estimation suggests optimizing parameters by maximizing
observed data likelihood (evidence), or equivalently: maximizing data log likelihood
log 𝑝(𝑥) = log

∫︀
𝑝(𝑥, 𝑧)𝑑𝑧. To make this tractable, one can instead maximize a lower

bound on log 𝑝(𝑥), i.e. the ELBO, which can obtained by re-writing log 𝑝(𝑥) as
log 𝑝(𝑥)=log

∫︀ 𝑞(𝑧|𝑥)
𝑞(𝑧|𝑥)𝑝(𝑥, 𝑧)𝑑𝑧=log

(︁
E𝑞(𝑧|𝑥)

[︁
𝑝(𝑥,𝑧)
𝑞(𝑧|𝑥)

]︁)︁
& applying Jensen’s inequality:

E𝑞(𝑧|𝑥)

[︁
log 𝑝(𝑥, 𝑧)

𝑞(𝑧|𝑥)

]︁
⏟ ⏞

𝐸𝐿𝐵𝑂

≤ log
(︁
E𝑞(𝑧|𝑥)

[︁𝑝(𝑥, 𝑧)
𝑞(𝑧|𝑥)

]︁)︁
⏟ ⏞

log 𝑝(𝑥)

(4)

The justification for maximizing ELBO can also be derived from the perspec-
tive of minimizing the KL divergence between approximate and true posterior:
min𝜑𝐾𝐿

(︀
𝑞𝜑(𝑧|𝑥)||𝑝(𝑧|𝑥)

)︀
. This KL can be decomposed into log 𝑝(𝑥)− 𝐸𝐿𝐵𝑂:

𝐾𝐿
(︀
𝑞(𝑧|𝑥) || 𝑝(𝑧|𝑥)

)︀
=

∫︁
𝑞(𝑧|𝑥) log 𝑞(𝑧|𝑥)

𝑝(𝑧|𝑥)𝑑𝑧 =
∫︁
𝑞(𝑧|𝑥) log 𝑞(𝑧|𝑥)

𝑝(𝑧, 𝑥)/𝑝(𝑥)𝑑𝑧

=
∫︁
𝑞(𝑧|𝑥) log 𝑝(𝑥) 𝑞(𝑧|𝑥)

𝑝(𝑧, 𝑥)𝑑𝑧

=
∫︁
𝑞(𝑧|𝑥) log 𝑝(𝑥)𝑑𝑧 + E𝑞(𝑧|𝑥)

[︁
log 𝑞(𝑧|𝑥)

𝑝(𝑧, 𝑥)

]︁
= log 𝑝(𝑥)− 𝐸𝐿𝐵𝑂

The optimization problem reduces to minimizing −𝐸𝐿𝐵𝑂 (so maximizing ELBO),
since log 𝑝(𝑥) is constant w.r.t parameters 𝜑.

When ELBO is used as an optimization objective for learning NNs parameterized
by 𝜃,𝜑, it is often written in the following form:

𝐸𝐿𝐵𝑂𝑉𝐴𝐸 = E𝑞𝜑(𝑧|𝑥)
[︀

log 𝑝𝜃(𝑥|𝑧)
]︀⏟ ⏞

reconstruction: data log lik.

− 𝐾𝐿
(︀
𝑞𝜑(𝑧|𝑥) || 𝑝(𝑧)

)︀⏟ ⏞
regularization: diverg. from prior

(5)

This highlights the two parts of the objective: reconstruction and regularization.
Intuition for the reconstruction part can be obtained by noting the connection

to non-variational autoencoders. If the dimensionality of 𝑧 is chosen to be much
smaller than that of 𝑥, then VAEs can be seen as a probabilistic generative version
of deterministic autoencoders. The latter learn to reconstruct a given input 𝑥 by
passing it through a bottleneck that restricts representational capacity to obtain a
reconstruction 𝑥̂. For VAEs, 𝑞𝜑𝜑𝜑(𝑧|𝑥𝑥𝑥) can be interpreted as an encoder that maps
𝑥 ∈ 𝒳 into a lower-dimensional 𝑧 ∈ 𝒵. 𝑝𝜃𝜃𝜃(𝑥𝑥𝑥|𝑧) can be seen as a decoder : it decodes
𝑧̃ ∼ 𝑞𝜑(·|𝑥) into a reconstruction 𝑥̂ ∼ 𝑝𝜃𝜃𝜃(·|𝑧̃). The first term in Equation 5 rewards
making the output 𝑥̂ close to the given input 𝑥.

The intuition for the regularization part of ELBO is that this term encourages the
distribution of the encoder outputs to stay close to the prior 𝑝(𝑧). The prior is usually
chosen as a parameterless standard distribution, e.g. 𝒩 (0, 1). More sophisticated

2.3. VARIATIONAL INFERENCE AND VAES 17

priors have also been proposed [57, 58]. Ultimately, structured variational inference
approaches advocate learning the parameters of the prior as well, leaving only the
structure as fixed, hence providing regularization via structural assumptions. For
example, disentangled sequential autoencoder (DSA) [59] postulates a sequential
Markov structure that separates the effect of static (time-independent) and dynamic
aspects. DSA models the prior using recurrent networks and then uses a sequential
version of ELBO to train weights of NNs that parameterize the prior. Chapter 5
presents descriptions and experiments with several other sequential and structured
VAE variants.

Conditional variational autoencoder (CVAE) [60] is a useful VAE variant that
can condition on auxiliary input. CVAE defines an encoder 𝑞𝜑𝜑𝜑(𝑧 |𝑦,𝑥), a prior
𝑝𝜃𝜃𝜃𝑝𝑟(𝑧 |𝑥) and a decoder 𝑝𝜃𝜃𝜃𝑑𝑒𝑐(𝑦 | 𝑧,𝑥). ELBO for CVAE with the output variable
𝑦 is reformulated as:

𝐸𝐿𝐵𝑂CVAE(𝜑,𝜃𝑑𝑒𝑐,𝜃𝑝𝑟) = log 𝑝𝜃𝜃𝜃𝑑𝑒𝑐(𝑦 | 𝑧,𝑥)−𝐾𝐿
(︀
𝑞𝜑𝜑𝜑(𝑧|𝑦,𝑥)||𝑝𝜃𝜃𝜃𝑝𝑟(𝑧|𝑥)

)︀
(6)

Chapter 4 of this thesis introduces an approach that builds on the CVAE ideas,
but instead of using a fixed prior as a regularizer, it uses simulation to ‘regularize’
the decoder. This allows to use trainable 𝑝𝜃𝜃𝜃𝑝𝑟

(𝑧|𝑥) to represent a flexible (mixture)
distribution and to re-interpret it as posterior distribution over simulation parameters.
This is motivated by the ideas similar to structured variational inference, which also
allows to adapt parameters of the priors. Here, the prior gains an implicit structure
from being ‘bound’ to express the posterior over simulation parameters.

VAEs have been used extensively in recent robotics research to learn low-
dimensional state representations. A recent survey on state representation learning
cites a number of works that developed VAE variants and applied them to robotics
scenarios [61]. However, a significant drawback of VAEs is that these methods are
not particularly data-efficient. Hence, these require either using a large number of
real samples or training from simulated observations, then solving the sim-to-real
problem. To address this issue, Chapter 4 proposes to a novel training procedure
that can utilize ample simulation data for decoder training, and can quickly shift the
approximate posterior expressed by the encoder to incorporate real observations in a
more data-efficient way. Chapter 5 proposes an approach that aims to improve data
efficiency when training on the target domain by retaining latent space structure
from a source domain.

Chapter 3

Bayesian Optimization with
Informed Kernels

Bayesian optimization is particularly promising for robotics, since it provides a
data-efficient way to learn from hardware trials. However, early BO experiments on
hardware mostly involved optimizing low-dimensional controllers. To scale up, BO
needs to incorporate prior knowledge.

This thesis first presents an approach that allows incorporating information from
simulations into GP kernels. This is achieved by using a neural network (NN) to
learn an informed similarity metric from simulated trajectory summaries. This
is used to construct a simulation-informed kernel. Experiments on the ATRIAS
bipedal robot demonstrate that using this kernel during BO on hardware significantly
outperforms uninformed BO using only 10 hardware trials.

Next, the thesis presents comparisons between kernel-based vs prior-based ways
of utilizing simulation data, showing that kernel-based methods can cope with low
simulation fidelity more effectively.

To allow building simulation-informed kernels in a domain-agnostic way, the
thesis presents BO-SVAE-DC: an algorithm that trains from full trajectories. These
could be sampled at high frequency, hence recording a large amount of data per
trajectory. BO-SVAE-DC proposes a model and architecture for a sequential
variational autoencoder that embeds the space of simulated trajectories into a
lower-dimensional space of latent paths in an unsupervised way. BO-SVAE-DC also
allows to further compress the search space for BO by reducing exploration in parts
of the state space that are undesirable, without requiring explicit constraints on
controller parameters. This approach is validated with hardware experiments on a
Daisy hexapod robot and an ABB Yumi manipulator. These experiments show that
BO-SVAE-DC outperforms uninformed BO using 10 hardware trials and confirm
that the same learning procedure succeeds for different areas of robotics: locomotion
and manipulation.

The modular design of SVAE used for BO-SVAE-DC allows updating the latent

19

20 CHAPTER 3. BAYESIAN OPTIMIZATION WITH INFORMED KERNELS

components of SVAE from hardware observations. This can be accomplished by
optimizing GP marginal likelihood and propagating the resulting gradients through
the NNs. Allowing to update only the latent components is key, since the limited
amount of data from hardware trials would be insufficient to significantly alter larger
NNs that work with full trajectories. However, updating simulation-based kernels
might be insufficient to close a severe sim-to-real gap if given a limited budget of
trials. Moreover, some cases might call for additional care to guard against negative
transfer, for example when simulation data could be corrupted or misleading. To
address this, BO-BAK is introduced at the end of this chapter. This approach
proposes to sample the choice of a kernel (simulation-based vs uninformed) at each
BO trial. With this, simulation-informed kernels can help BO to quickly discover
promising regions, but corrupted kernels do not degrade the performance of BO. The
benefits of BO-BAK are demonstrated with a Yumi robot performing task-oriented
grasping. The simulation-informed kernel is constructed via incorporating NN that
maps high-dimensional point cloud input into grasp stability and task suitability
metrics. These experiments demonstrate that BO can be formulated to benefit from
high-dimensional camera input, while successfully utilizing low-fidelity and degraded
simulation kernels.

3.1 Simulation-informed Kernels from Trajectory
Summaries

Initial success of incorporating simulation information into GP kernels for BO was
achieved by extracting task-specific features [13, 62]. While such features can be
useful and robust, constructing them requires domain expertise. Moreover, earlier
approaches could only search over a limited number of points/controllers, since they
required pre-computing the features for each controller that could be evaluated
during hardware trials.

This thesis presents an approach that resolves both issues by first proposing to
train neural networks on trajectory summaries from simulation1. The summaries
can be constructed by simply sub-sampling trajectory readings at fixed intervals.
For example, if the simulator records the state of the robot by keeping track of the
position, velocity and tilt of the torso, one could sub-sample these measurements to
create a low-dimensional vector that roughly characterizes this trajectory. Then, a
neural network (NN) can be trained to output such trajectory summaries given con-
troller parameters as input. This NN can serve as a powerful function approximator
for learning to represent the mapping between the space of controller parameters
and the space of trajectory summaries. During BO this NN can be used to compute
similarities between any controllers, removing the need to pre-compute these from
simulation. An additional benefit is that this approach can be cost-agnostic, since
it defines similarity between trajectory summaries instead of paying attention to
features that could be more directly tied to a particular cost or objective.

1Work presented in this section was published by the thesis author in [2, 4]

3.1. KERNELS FROM TRAJECTORY SUMMARIES 21

Figure 3.1: Left: A visualization of 𝜑trajNN output (i.e. approximate trajectory summaries)
given a range of inputs (i.e. controllers with various parameters). 8D trajectory sum-
maries from simulation (using controller from Section 4.4 in [4]) are projected into 3D
for visualization. The color indicates cost (from low:blue to yellow:high). The high-cost
(yellow) points appear close together, since the robot falls quickly with failing controllers
(start-tilt-fall trajectories). Right: results for BO on hardware with a 9D reactive-stepping
controller; shaded regions indicate 1 st. dev. (the right plot is from Section 5.1.2 of [4]).

Algorithm trajNN: Train 𝜑trajNN

// construct dataset 𝒟𝑠𝑖𝑚
𝒟𝑠𝑖𝑚 ← {}; 𝑀 ← desired dataset size
for 𝑖 = 1, ...,𝑀 do

sample controller parameters 𝑥𝑥𝑥(𝑖)

// (e.g. from a Sobol grid)
run simulation using 𝑥𝑥𝑥(𝑖) for control
summary 𝜉𝜉𝜉(𝑖)

𝑥𝑥𝑥 ← readings every 𝑘𝑡ℎ step
// (e.g. CoM, torso angle, etc)

𝒟𝑠𝑖𝑚 ← 𝒟𝑠𝑖𝑚 ∪ {(𝑥𝑥𝑥(𝑖), 𝜉𝜉𝜉
(𝑖)
𝑥𝑥𝑥)}

// train 𝜑trajNN: NN with inp. 𝑥𝑥𝑥, outp. 𝜉𝜉𝜉𝑥𝑥𝑥
while not converged do

grad. descent on minibatches from 𝒟𝑠𝑖𝑚
using 𝐿𝑜𝑠𝑠𝑁𝑁 = 1

2
∑︀𝑁
𝑖=1 ||𝜉𝑥𝑥𝑥𝑖 − 𝜉𝑥𝑥𝑥𝑖 ||2

// NN output 𝜉𝜉𝜉𝑥𝑥𝑥 = 𝜑trajNN(𝑥𝑥𝑥)
// is the ‘reconstructed’ traj. summary

Algorithm trajNN outlines the
steps for NN training. First, a dataset
for NN to fit is obtained from simu-
lation: 𝒟𝑠𝑖𝑚 = {(𝑥𝑥𝑥(𝑖), 𝜉𝜉𝜉

(𝑖)
𝑥𝑥𝑥)}, where

𝑥𝑥𝑥 is a vector of controller parame-
ters of a parametric controller, 𝜉𝜉𝜉𝑥𝑥𝑥 is
a trajectory summary obtained when
running simulation and using 𝑥𝑥𝑥 for
control. Then NN is trained using a
standard gradient descent on a com-
monly used L2 loss (L1 can also be
used and often yields faster training).
The resulting NN can be seen as a
function 𝜑trajNN(·) that outputs ap-
proximate trajectory summary 𝜉𝜉𝜉𝑥𝑥𝑥 for
an given input controller 𝑥𝑥𝑥. Hence,
𝜑trajNN can be used as a kernel trans-
form and BO can use a simulation-
informed kernel 𝑘𝑡𝑟𝑎𝑗NN :

𝑘trajNN(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2
𝑘 exp

(︀
− 1

2𝑡𝑡𝑡
𝑇
𝑖𝑗 diag(ℓℓℓ)−2𝑡𝑡𝑡𝑖𝑗

)︀
; 𝑡𝑡𝑡𝑖𝑗 = 𝜑trajNN(𝑥𝑥𝑥𝑖)− 𝜑trajNN(𝑥𝑥𝑥𝑗) (7)

Figure 3.1 shows key results obtained for hardware experiments with the ATRIAS
robot (right plot). Section 3.1.2 & Appendix A in [4] give further details regarding
the data collection and NN training, Section 4 in [4] gives details regarding the
hardware setup and controllers used, Section 5.1.3 in [4] describes the experiments.

22 CHAPTER 3. BAYESIAN OPTIMIZATION WITH INFORMED KERNELS

Figure 3.2: ATRIAS robot during our BO trials at CMU. ATRIAS is a human-scale
biped [63]. This experimental platform was used for experiments in [2, 3, 4].

While the informed BO algorithm that uses 𝑘𝑡𝑟𝑎𝑗𝑁𝑁 is easy to describe, it
takes a few additional insights to understand why this approach offers a significant
improvement over uninformed BO. The next section provides comparisons of this
kernel-centric approach with alternative prior-based approaches. Discussion in
the further sections, which propose more advanced kernel-based approaches, gives
intuition as to why kernel-centric methods can yield ultra data-efficient BO.

3.2 Informing Prior Mean vs Kernels

GPs consist of two main components: the mean function and the kernel. Specifying
a prior mean function has been a common way to incorporate prior knowledge.
When a prior mean function could not be constructed manually, the next default
has been to incorporate prior (simulated) observations into a GP as ‘fake’ data.
Then, this GP would be used to further learn from true data on the target (real)
domain. This thesis work argues that embedding prior knowledge into GP kernels
instead provides a more flexible way to capture simulation-based information.

A classic book on GPs for machine learning [28] gives advice on shaping the prior
mean function (Section 2.7 in [28]). It shows that incorporating a fixed deterministic
mean function is straightforward and also gives examples of how to express a prior
mean as a linear combination of a given set of basis functions. This approach has
been used as early as 1975, e.g. with polynomial features ℎ(𝑥𝑥𝑥) = (1,𝑥𝑥𝑥,𝑥𝑥𝑥2, ...) [64].

Modern approaches seek more flexibility. One direction is to initialize GPs with
points from simulated trials directly. This can be formulated as a multi-fidelity
problem, with different fidelities for simulated vs real points [47, 48]. The main
issue is that one needs to carefully weigh the contributions from simulated vs
real trials, since ‘fake’ data from inaccurate simulations can overwhelm the effects
of the real data. This can be done if simulation fidelity is known, but is more
challenging otherwise. Another issue arises if simulation is cheap and the number
of simulated/fake points is too large to be handled by exact GPs. Sparse GPs can

3.2. INFORMING PRIOR MEAN VS KERNELS 23

(a) BO with ‘cost prior’ (b) BO with trajNN kernel

Figure 3.3: Experiments with varying simulator fidelity for BO with a 50D Virtual
Neuromuscular Controller on a bipedal robot model. Plots show best cost so far for mean
over 50 runs for each algorithm, 95% CIs. See Section 5.3 in [4] for further details.

be used in such cases ([26, 27] implement several versions), however this may cause
loss in precision due to approximate inference.

Figure 3.3a illustrates the effects of simulation fidelity on such ‘cost prior’ formed
by adding 35K simulated points 𝑥𝑥𝑥 and the corresponding simulation-based results
𝑐𝑜𝑠𝑡𝑠𝑖𝑚(𝑥𝑥𝑥) to a Sparse GP. Then, this GP is used for BO with a 50-dimensional
virtual neuromuscular controller (VNMC) [65]. These experiments are conducted
in simulation, with a high-fidelity simulator of a bipedal robot used as a surrogate
for reality (labeled ‘original sim’ in the legend). A medium-fidelity simulator
is obtained by replacing the original high-fidelity gear model with a commonly
used approximation for geared systems (this version is called ‘simple gears’ in the
legend). A low-fidelity simulator is obtained by using simple gears and omitting
the computation of the forces exerted by the boom on the robot (labeled ‘no boom’
in the legend). For high- and medium-fidelity simulators the performance of BO
with ‘cost prior’ is excellent. However, for the low fidelity the result is worse than
the baseline (uninformed) BO. This sheds light on why a part of the learning and
control communities might be quite sympathetic to the ‘cost prior’ methods: if
experiments are conducted on synthetic data that matches the target domain fairly
well, then adding ‘fake’ points to the prior offers a good solution. The robotics
community has to deal with real data, and in recent years has become interested in
advanced scenarios for which simple models and accurate simulators are not (yet)
tractable to construct. For such cases ‘cost prior’ approaches could be detrimental
when simulation fidelity is unknown.

Figure 3.3b shows results when using simulation-informed trajNN kernel described
in the previous section. The approach is able to benefit from high- and medium-
fidelity simulations, and eventually significantly outperforms uninformed BO when
using low-fidelity simulation as well. Section 5.3 in [4] provides further comparisons
with several other methods. These experiments indicate that kernel-based approaches
have the potential for being robust to a large sim-to-real gap.

24 CHAPTER 3. BAYESIAN OPTIMIZATION WITH INFORMED KERNELS

3.3 Bayesian Optimization in Variational Latent Spaces

The kernel-based approach described in the previous section required sub-sampling
trajectories. An alternative is to embed full trajectories into the kernel. Conceptually,
this could be similar to Behavior Based Kernel (BBK) [51]. It showed success on
low-dimensional analytic benchmarks. BBK used a particular form of symmetrized
KL

(︀
𝐾𝐿BBK(𝑝, 𝑞) :=𝐾𝐿(𝑝||𝑞)1/2+𝐾𝐿(𝑞||𝑝)1/2)︀

as a distance metric for the kernel:
𝑘BBK = exp

(︀
-𝛼𝐾𝐿BBK

(︀
𝑝(𝜉𝜉𝜉|𝑥𝑥𝑥𝑖), 𝑝(𝜉𝜉𝜉|𝑥𝑥𝑥𝑗)

)︀)︀
. However, the above would not scale

for trajectories from modern full-scale robotic systems with higher-dimensional
controllers and state spaces. Here, ‘higher-dimensional’ does not indicate pixel or
point cloud input, since utilizing robot’s joint angles & velocities and objects’ poses
already presents challenge, especially if trajectories are sampled at high frequencies
(for example: 500𝐻𝑧 − 1𝑘𝐻𝑧 commonly used for modern manipulation systems).

This section presents an approach for embedding the space of simulated trajec-
tories into a lower-dimensional space of latent paths in an unsupervised way2. The
proposed modular sequential variational autoencoder (sVAE) allows learning the
relationship between controller parameters and the latent representation of trajecto-
ries. Furthermore, the approach also allows to achieve ‘dynamic’ compression of
the search space for BO by reducing exploration in parts of the state space that
are undesirable, without requiring explicit constraints on controller parameters.
Figure 3.4 gives an overview of the proposed approach.

Figure 3.4: An overview of BO-SVAE-DC approach: Start by simulating controllers and
collecting their trajectories 𝜉𝜉𝜉, along with the fraction of time spent in undesirable regions
given by 𝐺𝑏𝑎𝑑. Then, learn to embed trajectories into a lower-dimensional a space of latent
paths 𝜏𝜏𝜏 . Next, ‘dynamic’ compression is used to scale distances between latent paths
based on their desirability. This dynamically compressed latent space is used for BO on
hardware. Trajectory data 𝜉𝜉𝜉 consists of high-frequency readings of robot joint angles and
object position/velocity estimates (the framework can accommodate vision-based data in
the future, but this direction is not explored in this part of the work).

2Work presented in this section was published by the thesis author in [5].
——- Some paragraphs reuse the text from [5], which is permitted by CC-BY 4.0 license.

3.3. BAYESIAN OPTIMIZATION IN VARIATIONAL LATENT SPACES 25

SVAE-DC: Graphical Model and ELBO
The problem of learning low-dimensional trajectory embeddings 𝜏𝜏𝜏 is formulated as
a joint variational inference (VI) problem: learning to reconstruct trajectories 𝜉𝜉𝜉
with a VAE-like component, while at the same time learning to associate controller
parameters 𝑥𝑥𝑥 with their corresponding probability distributions over the latent
paths 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥). The training is guided by the Evidence Lower Bound (ELBO) derived
directly from the modeling assumptions and doesn’t require any auxiliary objectives.
The following list summarizes the notation used in this section:
𝑥𝑥𝑥 : a shorthand for denoting controller/policy with parameters 𝑥𝑥𝑥,𝑥𝑥𝑥 ∈ R𝐷; policies
can be either deterministic or stochastic; 𝑥𝑥𝑥 could contain gains for structured con-
trollers, NN weights for NN-based controllers, or any other continuous parameters
𝜉𝜉𝜉 ≡ 𝜉𝜉𝜉1:𝑇 : an original trajectory with high-frequency sensor readings (𝑇 steps)
𝜏𝜏𝜏 ≡ 𝜏𝜏𝜏1:𝐾 : a latent ‘path’ (embedding of a trajectory; can set 𝐾≪𝑇)
𝑝(𝜉𝜉𝜉1:𝑇 |𝑥𝑥𝑥) : a conditional probability distribution over the trajectories induced
by controller 𝑥𝑥𝑥; the relationship between the controller and trajectories could be
probabilistic either because the controller is stochastic, or because the simulator
environment is stochastic, or both
𝑝(𝜏𝜏𝜏1:𝐾 |𝑥𝑥𝑥) : a conditional probability distribution over the space of latent paths
induced controller by 𝑥𝑥𝑥
𝐺𝑏𝑎𝑑 : 𝑆→ {0, 1} a map denoting whether an observation 𝜉𝜉𝜉𝑡 ∈ 𝑆 is within an
undesirable region (𝐺𝑏𝑎𝑑 : 𝑆→ [0, 1] can be used to give probabilities, but for users
it is easier to make rough thresholded estimates, so 𝐺𝑏𝑎𝑑 : 𝑆→{0, 1} is the default)
𝑦 : a fraction of time that 𝜉𝜉𝜉 spends in the undesirable regions; 𝜓𝜓𝜓 would express
the analogous notion for a latent path 𝜏𝜏𝜏 (after training)

Figure 3.5: A sketch of the
generative and inference model.

The goal is to learn 𝑝(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝑥𝑥𝑥), since this is the
main component that will be used for the BO kernel.
𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥) is analogous to 𝑝(𝜉𝜉𝜉|𝑥𝑥𝑥), but the paths 𝜏𝜏𝜏 are
encoded in a lower-dimensional latent space. As a
measure of trajectory ‘quality’, 𝑦 keeps track of how
long each trajectory spends in undesirable regions.
For latent paths the analogous notion is encoded in
𝜓𝜓𝜓=𝜓𝜓𝜓1:𝐾 (this additional modularity can enable fast
online updates). 𝐺𝑏𝑎𝑑, which is used to compute 𝑦,
can be specified approximately, since the optimiza-
tion process used in this work would not impose any
hard constraints. Figure 3.5 summarizes the graphi-
cal model (it is a ‘sketch’, since some independencies
not shown explicitly).

The backbone of the model (considering random variables 𝑥𝑥𝑥,𝜉𝜉𝜉, 𝜏𝜏𝜏 , omitting 𝑦,𝜓𝜓𝜓)
is inspired by the hierarchical models in [66, 67]. However, these works considered

26 CHAPTER 3. BAYESIAN OPTIMIZATION WITH INFORMED KERNELS

supervised and semi-supervised settings, where a discrete label was associated with
each high-dimensional data point (e.g. a label for an image). The model presented
in this work handles sequential trajectory data instead, so the internal structure of
the data is different. Nonetheless, for the moment let us think about each trajectory
as a point in some high-dimensional space. The idea is to interpret controllers 𝑥𝑥𝑥 as
continuous ‘labels’ for trajectories 𝜉𝜉𝜉. In this work 𝑥𝑥𝑥 is observed, because we know
which controller is executed when obtaining a trajectory 𝜉𝜉𝜉 in simulation. Hence,
there is no further uncertainty about 𝑥𝑥𝑥 and the terms involving 𝑝(𝑥𝑥𝑥), 𝑞(𝑥𝑥𝑥|𝜏𝜏𝜏) would
not appear. Such formulation treats 𝑥𝑥𝑥 and 𝜉𝜉𝜉 as observed data, which is in fact what
is available from simulation. The controllers can be sampled at random during data
collection, since this work assumes access to a relatively inexpensive simulator (in a
sense that it is viable to simulate 100K+ trajectories for offline kernel construction).
The ELBO derivation for this backbone part of the model is as follows:

Backbone Generative model: 𝑝(𝜏𝜏𝜏 , 𝜉𝜉𝜉 | 𝑥𝑥𝑥) = 𝑝(𝜏𝜏𝜏1:𝐾 |𝑥𝑥𝑥)
∏︀𝑇
𝑡=1 𝑝(𝜉𝜉𝜉𝑡|𝜉𝜉𝜉𝑡−1, 𝜏𝜏𝜏1:𝐾)

Approximate posterior: 𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉) := 𝑞(𝜏𝜏𝜏1:𝐾 |𝜉𝜉𝜉1:𝑇)

log 𝑝(𝜉𝜉𝜉|𝑥𝑥𝑥) = log
∫︁
𝜏𝜏𝜏

𝑝(𝜉𝜉𝜉, 𝜏𝜏𝜏 |𝑥𝑥𝑥)𝑑𝜏𝜏𝜏 = log
∫︁
𝜏𝜏𝜏

𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)
𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)𝑝(𝜉

𝜉𝜉, 𝜏𝜏𝜏 |𝑥𝑥𝑥)𝑑𝜏𝜏𝜏 = logE𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)

[︁𝑝(𝜉𝜉𝜉, 𝜏𝜏𝜏 |𝑥𝑥𝑥)
𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)

]︁
E𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)

[︁
log 𝑝(𝜉

𝜉𝜉, 𝜏𝜏𝜏 |𝑥𝑥𝑥)
𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)

]︁
⏟ ⏞

𝐸𝐿𝐵𝑂backbone

≤ logE𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)

[︁𝑝(𝜉𝜉𝜉, 𝜏𝜏𝜏 |𝑥𝑥𝑥)
𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)

]︁
⏟ ⏞

log 𝑝(𝜉𝜉𝜉|𝑥𝑥𝑥)

𝐸𝐿𝐵𝑂backbone = E𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)

[︁
log 𝑝(𝜉

𝜉𝜉|𝜏𝜏𝜏 ,𝑥𝑥𝑥)𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥)
𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)

]︁
= E𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)

[︁
log 𝑝(𝜉

𝜉𝜉|𝜏𝜏𝜏)𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥)
𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)

]︁
= E𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)

[︀
log 𝑝(𝜉𝜉𝜉|𝜏𝜏𝜏) + log 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥)− log 𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉)

]︀
The above can be written explicitly as a function of the parameters of the variational
approximation 𝜑𝜑𝜑 = [𝜑𝜑𝜑𝜏] and the parameters of the generative model𝑤𝑤𝑤 = [𝑤𝑤𝑤𝜏 ,𝑤𝑤𝑤𝜉]:

𝐸𝐿𝐵𝑂backbone(𝑤𝑤𝑤,𝜑𝜑𝜑|𝜉𝜉𝜉,𝑥𝑥𝑥) =

=E𝜏𝜏𝜏∼𝑞𝜑𝜑𝜑𝜏 (𝜏𝜏𝜏 |𝜉𝜉𝜉)

[︁
log 𝑝𝑤𝑤𝑤𝜉

(𝜉𝜉𝜉|𝜏𝜏𝜏) + log 𝑝𝑤𝑤𝑤𝜏
(𝜏𝜏𝜏 |𝑥𝑥𝑥)− log 𝑞𝜑𝜑𝜑𝜏

(𝜏𝜏𝜏 |𝜉𝜉𝜉)
]︁ (8)

In this work, 𝜑𝜑𝜑,𝑤𝑤𝑤 are weights of deep neural networks. It is customary to drop the
subscripts indicating NN weight parameters and write 𝑞, 𝑝 for a shorthand notation.

The derivation for 𝐸𝐿𝐵𝑂SVAE-DC follows a similar logic and includes 𝑦,𝜑𝜑𝜑:
Generative model: 𝑝(𝜏𝜏𝜏 ,𝜓𝜓𝜓,𝜉𝜉𝜉, 𝑦 | 𝑥𝑥𝑥) := 𝑝(𝜏𝜏𝜏1:𝐾 ,𝜓𝜓𝜓|𝑥𝑥𝑥)𝑝(𝑦|𝜓𝜓𝜓)

∏︀𝑇
𝑡=1 𝑝(𝜉𝜉𝜉𝑡|𝜉𝜉𝜉𝑡−1, 𝜏𝜏𝜏1:𝐾)

Approximate posterior: 𝑞(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝜉𝜉𝜉, 𝑦) := 𝑞(𝜏𝜏𝜏1:𝐾 ,𝜓𝜓𝜓|𝜉𝜉𝜉1:𝑇 , 𝑦)

log 𝑝(𝜉𝜉𝜉, 𝑦|𝑥𝑥𝑥) = log
∫︁
𝜏𝜏𝜏,𝜓𝜓𝜓

𝑝(𝜉𝜉𝜉, 𝑦, 𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝑥𝑥𝑥)𝑑𝜏𝜏𝜏𝑑𝜓𝜓𝜓 = log
∫︁
𝜏𝜏𝜏,𝜓𝜓𝜓

𝑞(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝜉𝜉𝜉, 𝑦)
𝑞(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝜉𝜉𝜉, 𝑦)𝑝(𝜉

𝜉𝜉, 𝑦, 𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝑥𝑥𝑥)𝑑𝜏𝜏𝜏𝑑𝜓𝜓𝜓

= logE𝑞(𝜏𝜏𝜏,𝜓𝜓𝜓|𝜉𝜉𝜉,𝑦)

[︁𝑝(𝜉𝜉𝜉, 𝑦, 𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝑥𝑥𝑥)
𝑞(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝜉𝜉𝜉, 𝑦)

]︁

3.3. BAYESIAN OPTIMIZATION IN VARIATIONAL LATENT SPACES 27

E𝑞(𝜏𝜏𝜏,𝜓𝜓𝜓|𝜉𝜉𝜉,𝑦)

[︁
log 𝑝(𝜉

𝜉𝜉, 𝑦, 𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝑥𝑥𝑥)
𝑞(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝜉𝜉𝜉, 𝑦)

]︁
⏟ ⏞

𝐸𝐿𝐵𝑂SVAE-DC

≤ logE𝑞(𝜏𝜏𝜏,𝜓𝜓𝜓|𝜉𝜉𝜉,𝑦)

[︁𝑝(𝜉𝜉𝜉, 𝑦, 𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝑥𝑥𝑥)
𝑞(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝜉𝜉𝜉, 𝑦)

]︁
⏟ ⏞

log 𝑝(𝜉𝜉𝜉,𝑦|𝑥𝑥𝑥)

𝐸𝐿𝐵𝑂SVAE-DC = E𝑞(𝜏𝜏𝜏,𝜓𝜓𝜓|𝜉𝜉𝜉,𝑦)

[︁
log 𝑝(𝜉

𝜉𝜉|𝜏𝜏𝜏 ,𝑥𝑥𝑥)𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥)𝑝(𝑦|𝜓𝜓𝜓)
𝑞(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝜉𝜉𝜉, 𝑦)

]︁
= E𝑞(𝜏𝜏𝜏,𝜓𝜓𝜓|𝜉𝜉𝜉,𝑦)

[︁
log 𝑝(𝜉

𝜉𝜉|𝜏𝜏𝜏)𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥)𝑝(𝑦|𝜓𝜓𝜓)
𝑞(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝜉𝜉𝜉, 𝑦)

]︁
= E𝑞(𝜏𝜏𝜏,𝜓𝜓𝜓|𝜉𝜉𝜉,𝑦)

[︀
log 𝑝(𝜉𝜉𝜉|𝜏𝜏𝜏) + log 𝑝(𝑦|𝜓𝜓𝜓) + log 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥)− log 𝑞(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝜉𝜉𝜉, 𝑦)

]︀
Finally, we can write the above as a function of parameters 𝑤𝑤𝑤,𝜑𝜑𝜑 explicitly:

𝐸𝐿𝐵𝑂SVAE-DC(𝑤𝑤𝑤,𝜑𝜑𝜑|𝑥𝑥𝑥,𝜉𝜉𝜉, 𝑦) = E𝜏𝜏𝜏,𝜓̃𝜓𝜓∼𝑞(𝜏𝜏𝜏,𝜓𝜓𝜓|𝜉𝜉𝜉,𝑦)

[︁
log 𝑝𝑤𝑤𝑤𝜉

(𝜉𝜉𝜉|𝜏𝜏𝜏) + log 𝑝𝑤𝑤𝑤𝑦
(𝑦|𝜓̃𝜓𝜓) + log 𝑝𝑤𝑤𝑤𝜏

(𝜏𝜏𝜏 , 𝜓̃𝜓𝜓|𝑥𝑥𝑥)− log 𝑞𝜑𝜑𝜑𝜏
(𝜏𝜏𝜏 , 𝜓̃𝜓𝜓|𝜉𝜉𝜉, 𝑦)

]︁ (9)

The 4 terms inside the expectation in Equation 9 above are the 4 neural networks
whose parameters will be optimized by gradient ascent to maximize 𝐸𝐿𝐵𝑂SVAE-DC.

The above formulation is agnostic to whether controllers are stochastic or
deterministic, and to whether the simulators used to collect samples are stochastic
or deterministic. This is especially convenient, since deterministic controllers and
simulators are used widely in robotics, while the reinforcement learning community
frequently considers stochastic policies and environments. With SVAE-DC model:
the stochasticity of either the controllers or the environment (or both) will be encoded
in 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥). The model is applicable even in the case of deterministic controllers and
environment (i.e. a deterministic relationship between 𝑥𝑥𝑥 and 𝜉𝜉𝜉), because of the
bottleneck 𝜏𝜏𝜏 and randomness coming from the sampling of 𝑥𝑥𝑥 during data collection.

One question could be: why learn an embedding into a lower-dimensional space
of paths jointly with learning 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥), instead of decomposing the problem into
separate dimensionality reduction and 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥) modeling stages. For an arbitrary
space of paths (either low-dimensional, or the original higher-dimensional space of
trajectories) learning the relationship between 𝑥𝑥𝑥 and the corresponding probability
distribution over the paths would be challenging. This is because it involves the
controller properties and the dynamics of the physical environment, both of which
are usually highly non-trivial. In the joint SVAE-DC model: 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥) term can be
seen as a ‘regularization’ part of the ELBO. It encourages the latent encoding to be
well suited for modeling the relationship between 𝑥𝑥𝑥 and 𝜏𝜏𝜏 . The terms pertaining to
‘reconstructing’ original trajectories are the encoder 𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉) and decoder 𝑝(𝜉𝜉𝜉|𝜏𝜏𝜏). The
learning progress for these is fast if there is sufficient capacity in the bottleneck 𝜏𝜏𝜏 .
However, if these make fast progress, but produce encodings that are not easy to
relate to the space of controllers – then 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥) will drop. Hence, the ELBO will be
lower for this ‘inconvenient’ representation of 𝜏𝜏𝜏 , and this would encourage to seek
alternatives. Consequently, the joint learning offered by SVAE-DC allows not only
to embed the space of trajectories in a lower-dimensional space, but also encourages
to find an embedding scheme that simplifies the problem of learning 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥).

28 CHAPTER 3. BAYESIAN OPTIMIZATION WITH INFORMED KERNELS

SVAE-DC Kernel for Bayesian Optimization
The beginning of this chapter outlined the motivation of encoding trajectory infor-
mation into the kernel via symmetrized KL between trajectory distributions 𝑝(𝜉𝜉𝜉|𝑥𝑥𝑥)
induced by the corresponding controllers. Using SVAE-DC, one can instead define
a kernel in the space of lower-dimensional latent paths3:

𝑘latent(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = exp
(︁

-𝛼𝐾𝐿𝑠𝑦𝑚
(︀
𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥𝑖) , 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥𝑗)

)︀)︁
(10)

𝐾𝐿𝑠𝑦𝑚(𝑝, 𝑞) := 𝐾𝐿(𝑝||𝑞) +𝐾𝐿(𝑞||𝑝) ; defined in [68] (11)

One problem is that variational inference tends to under-estimate variances
in theory [69, 70] and in practice [71, 72]. This underestimation could negatively
impact the practical performance of such kernel. As a consequence, it is more
practical to work with the latent means 𝜏𝜏𝜏𝑥𝑥𝑥, 𝜓̄𝜓𝜓𝑥𝑥𝑥 = 𝐸

[︀
𝑝(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝑥𝑥𝑥)

]︀
directly. Hence, this

work starts with 𝑘latent as a target form, makes a common choice of representing
the latent distributions by diagonal Gaussians and derives 𝑘SVAE as follows:

𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥𝑖) =
𝒩𝑖⏞ ⏟

𝒩 (𝜇𝜇𝜇𝑖,Σ𝑖=diag(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖)) ; 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥𝑗) =
𝒩𝑗⏞ ⏟

𝒩 (𝜇𝜇𝜇𝑗 ,Σ𝑗=diag(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑗)) ; 𝜇𝜇𝜇,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∈ R𝐷

𝐾𝐿(𝒩𝑖||𝒩𝑗) = 1
2

[︁
𝑡𝑟(Σ−1

𝑗 Σ𝑖) + log |Σ𝑗 |
|Σ𝑖|
−𝐷 + (𝜇𝜇𝜇𝑗 −𝜇𝜇𝜇𝑖)𝑇Σ−1

𝑗 (𝜇𝜇𝜇𝑗 −𝜇𝜇𝜇𝑖)
]︁

If using a common 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 for 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥), so 𝒩𝑖=𝒩 (𝜇𝜇𝜇𝑖,diag(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣));𝒩𝑗 =𝒩𝑗(𝜇𝜇𝜇𝑗 ,diag(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)) we get:

𝐾𝐿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝒩𝑖||𝒩𝑗) = 1
2

[︁
𝑡𝑟(𝐼) + log 1−𝐷 + (𝜇𝜇𝜇𝑗 −𝜇𝜇𝜇𝑖)𝑇 diag(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)−1(𝜇𝜇𝜇𝑗 −𝜇𝜇𝜇𝑖)

]︁
= 1

2 (𝜇𝜇𝜇𝑗 −𝜇𝜇𝜇𝑖)𝑇 diag(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)−1(𝜇𝜇𝜇𝑗 −𝜇𝜇𝜇𝑖)
=⇒ exp

(︀
-𝛼𝐾𝐿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝒩𝑖||𝒩𝑗)

)︀
= exp

(︀
− 𝛼

2 (𝜇𝜇𝜇𝑗 −𝜇𝜇𝜇𝑖)𝑇 diag(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)−1(𝜇𝜇𝜇𝑗 −𝜇𝜇𝜇𝑖)
)︀

= 1⏟ ⏞
BO hyper
param 𝜎𝑘

· exp
(︀
− 1

2 (𝜇𝜇𝜇𝑗 −𝜇𝜇𝜇𝑖)𝑇 diag(
√
𝛼𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣⏟ ⏞

BO hyper
param ℓℓℓ

)−2(𝜇𝜇𝜇𝑗 −𝜇𝜇𝜇𝑖)
)︀

Hence, define: 𝑘𝑆𝑉𝐴𝐸(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) := 𝜎2
𝑘 exp

(︀
− 1

2𝑟𝑟𝑟
𝑇
𝜏 diag(ℓℓℓ)−2𝑟𝑟𝑟𝜏

)︀
; 𝑟𝑟𝑟𝜏 :=𝜏𝜏𝜏𝑥𝑥𝑥𝑖

−𝜏𝜏𝜏𝑥𝑥𝑥𝑗
(12)

The above shows that we can define 𝑘SVAE by utilizing SE as a ‘shell’ function
applied to the differences between the latent means: using 𝜏𝜏𝜏𝑥𝑥𝑥𝑗

− 𝜏𝜏𝜏𝑥𝑥𝑥𝑖
for 𝜇𝜇𝜇𝑗 − 𝜇𝜇𝜇𝑖.

During BO, 𝜎𝑘 and length scale hyperparameters ℓℓℓ are optimized via automatic rele-
vance determination (see Section V-A in [22]). In practice, this direct optimization
is better than using variances Σ𝑖=diag(𝑣𝑣𝑣𝑖) for 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥𝑖) obtained from VI, because Σ𝑖
estimates are often brittle due to variance underestimation problems of VI. Making
a diagonal Gaussian assumption often works well in practice. Alternatively, using
diagonal Laplace distributions performs well with noisy objectives and was used for

3[51] cites [68] for justifying KL symmetrization with 𝐾𝐿BBK. However, in these papers,
neither 𝐾𝐿BBK nor 𝐾𝐿𝑠𝑦𝑚 from [68] are proven to yield a valid kernel in general. Nonetheless,
𝐾𝐿𝑠𝑦𝑚 from [68] does yield a valid kernel in the Gaussian case, so it is used here to define 𝑘latent.

3.3. BAYESIAN OPTIMIZATION IN VARIATIONAL LATENT SPACES 29

several experiments in this work. In this case L1 norm replaces L2 norm (though
the connection to 𝑘𝑙𝑎𝑡𝑒𝑛𝑡 is not as direct).

To achieve ‘dynamic’ compression the latent representations 𝜏𝜏𝜏𝑥𝑥𝑥 can be scaled
by dc(𝜓̄𝜓𝜓𝑥𝑥𝑥) := 1− E

[︀
𝑦|𝜓̄𝜓𝜓𝑥𝑥𝑥

]︀
. With that, 𝜏𝜏𝜏𝑥𝑥𝑥 that correspond to controllers frequently

visiting undesirable parts of the space are scaled down. Hence undesirable controllers
are brought closer together. This allows BO to reduce the number of samples from
the undesirable parts of the space. ‘Dynamic compression’ here means this search
space transformation is applied after the offline SVAE-DC training phase. This
means it is obtained during BO on hardware in addition to the compression obtained
by dimensionality reduction obtained by working with 𝜏𝜏𝜏𝑥𝑥𝑥 instead of considering
original trajectories 𝜉𝜉𝜉. Hence, 𝑘SVAE-DC kernel is defined as follows:

𝑟𝑟𝑟𝜏 -dc = dc(𝜓̄𝜓𝜓𝑥𝑥𝑥𝑖
)𝜏𝜏𝜏𝑥𝑥𝑥𝑖
− dc(𝜓̄𝜓𝜓𝑥𝑥𝑥𝑗

)𝜏𝜏𝜏𝑥𝑥𝑥𝑗
; dc(𝜓̄𝜓𝜓𝑥𝑥𝑥) :=1− E

[︀
𝑦|𝜓̄𝜓𝜓𝑥𝑥𝑥

]︀
𝑘SVAE-DC(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2

𝑘 exp
(︀
− 1

2𝑟𝑟𝑟
𝑇
𝜏 -dc diag(ℓℓℓ)−2𝑟𝑟𝑟𝜏 -dc

)︀ (13)

The above formulation is convenient in practice, since the form of Equation 13
allows applying existing machinery for optimizing kernel hyperparameters 𝜎2

𝑘, ℓℓℓ. The
scaling can be made non-linear with dc(𝜓̄𝜓𝜓𝑥𝑥𝑥) := 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(︀
𝛼(E[𝑦|𝜓̄𝜓𝜓𝑥𝑥𝑥]− 𝑐)

)︀
. This can

help achieving aggressive compression in settings with a very small budget of trials.
The additional parameters 𝛼, 𝑐, as well as 𝑝(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝑥𝑥𝑥), 𝑝(𝑦|𝜓𝜓𝜓) can be optimized online
in the same way as BO hyperparameters.

Overall, SVAE-DC yields a fully automatic way of learning latent trajectory
embeddings in an unsupervised way. For domains where 𝐺𝑏𝑎𝑑 is easy to specify:
further dynamic compression of the latent space can yield ultra data-efficient BO.
All the components used during BO can be optimized online via the same methods
already implemented for automatically adjusting BO hyperparameters.

BO-SVAE-DC Experiments
Sections 6 & 7 in [5] present detailed descriptions of experiments conducted to vali-
date the proposed BO-SVAE-DC approach. The main results are briefly summarized
here, with a focus on a set of experiments conducted on ABB Yumi robot at KTH.

BO-SVAE-DC has been developed with a goal to generalize beyond domain-
specific kernel methods. To demonstrate this generalization, experiments were
conducted for tasks from different areas of robotics: hexapod locomotion and non-
prehensile manipulation. The kernels were build using the same general-purpose
simulator PyBullet [73] (with 500K trajectories for NN training for each robot).
SVAE-DC NNs used the same architecture and training parameters (see Section 5
in [5] for more details). BO was also run with the same settings for all experiments.

Hexapod locomotion: For hardware experiments, we used a Daisy robot from
Hebi robotics [74]. Simulation for constructing the kernel used a basic robot model
and free-space motion of individual joints generally transferred to hardware well.
However, the overall behavior of the robot revealed a large sim-to-real gap due to

30 CHAPTER 3. BAYESIAN OPTIMIZATION WITH INFORMED KERNELS

Figure 3.6: Left: Daisy hexapod during BO trials. Right: Results for BO on Daisy hardware
(means of 5 runs, 90% CIs). Video of experiments: https://youtu.be/2SvdwGZNrvY. Note:
unlike previous sections that reported experiments with costs (lower was better), starting
from this section the thesis reports objective (reward) maximization (so higher is better).

difficulty of modeling contacts with the ground. Moreover, BO trials were done on a
shallow carpet, without attempts to estimate friction and contact dynamics specific
to this kind of surface.

For control, we used Central Pattern Generators (CPGs) from [75], yielding a
27D controller for simulation experiments, 11D for hardware experiments. Figure 3.6
shows results of BO with an objective to walk forward. BO with SVAE-DC kernel
found walking controllers in all 5/5 runs, yielding controllers that could walk up to
1.5m in 25sec. In contrast, uninformed BO with SE kernel found forward walking
controllers only in 2/5 runs. Best controllers found by BO with SVAE-DC kernel
were also able to walk on a different surface: an outdoor wooden patio.

Manipulation: ABB Yumi robot was used for the hardware experiments
(Figure 3.7a). Additional simulation experiments were conducted with ABB Yumi
and Franka Emika robot models. The manipulation task was to push two objects
from one side of the table to another without tipping them over. Compared to
‘push-to-target’ task, this task had two different challenges. The objects were likely
to come into contact with each other (not only the robot arm). Moreover, they
could easily tip over, especially if forces were applied above an object’s center of
mass. Reward was given only at the end of the task: the distance each upright
object moved in the desired direction minus a penalty for objects that tipped over:
𝑓(𝑥𝑥𝑥) =

∑︀
𝑖

[︀
(𝑦𝑜𝑏𝑗𝑖

𝑓𝑖𝑛𝑎𝑙−𝑦
𝑜𝑏𝑗𝑖

𝑠𝑡𝑎𝑟𝑡)1𝑜𝑏𝑗𝑖∈𝑈𝑝− 𝑦𝑚𝑎𝑥1𝑜𝑏𝑗𝑖∈𝑇𝑖𝑝𝑝𝑒𝑑
]︀
, with 𝑦𝑚𝑎𝑥= table width.

Two types of controllers were tested: 1) joint velocity controller suitable for
robots like ABB Yumi and 2) torque controller suitable for robots like Franka Emika.
These yielded 42D and 48D parametric controllers (see Section 7 in [5] for details).
Simulated trajectories for learning SVAE-DC kernel contained robot joint & object
poses at each time step (1K steps per trajectory). A step 𝑡 on a trajectory 𝜉𝜉𝜉 was
marked ‘undesirable’

(︀
𝐺𝑏𝑎𝑑(𝜉𝜉𝜉𝑡)=1

)︀
if: any object tipped over or was pushed off the

table; robot collided with the table; the end effector was outside of main workspace.
ABB Yumi robot available to for these experiments could operate effectively

only at low velocities (1
5 of simulation maximum). Hence, high-velocity trajectories

https://youtu.be/2SvdwGZNrvY

3.4. ALTERNATION KERNEL ROBUST TO NEGATIVE TRANSFER 31

(a) ‘Stable push’ task with
ABB Yumi robot at KTH (b) BO on Yumi hardware

(5 runs, 90% CIs)
(c) BO on Yumi simulation

(50 runs, 90% CIs)
Figure 3.7: Experiments for a non-prehensile manipulation task to evaluate BO-SVAE-DC.

successful in simulation yielded different results on hardware. To prevent Yumi
from shutting down due to high load, the execution was stopped if the robot’s arm
extended too far outside the main workspace or if it was about to collide with the
table (yielding −2𝑦𝑚𝑎𝑥 reward in such cases). These factors caused a large sim-real
gap. Nonetheless, BO with SVAE-DC kernel was still able to significantly outperform
BO with SE (Figure 3.7b). Even when controllers successful in simulation yielded
very different outcomes on hardware, BO with SVAE-DC kernel was still able to
find well-performing alternatives (more conservative, yet successful on hardware).

Further experiments in simulation were performed to analyze SVAE-based kernel
without dynamic compression, compare to BBK-KL (an approach that used KL
between original trajectories 𝜉𝜉𝜉) and compare to using Matèrn kernel function for
BO. The ‘sim-to-real’ gap was emulated by sampling different object properties
(mass, friction, restitution) at the start of each BO run. Results in Figure 3.7c show
that BO on Yumi with SVAE-DC kernel yielded substantial improvement over all
baselines. BO in the latent space of SVAE (without dynamic compression) was also
able to substantially outperform all baselines. See Section 7 in [5] for further details
and plots for Franka Emika simulation experiments.

3.4 Alternation Kernel Robust to Negative Transfer

As discussed in Section 2.1, one danger of using low-fidelity simulations for sim-
to-real is that this could cause negative transfer. This section presents a variant
of BO that alternates between using informed and uninformed kernels4. This
Bernoulli Alternation Kernel (BAK) ensures that discrepancies between simulation
and reality do not hinder adapting robot control policies online during BO. The
resulting approach, BO-BAK, is applied to a challenging real-world problem of task-
oriented grasping with novel objects. With a large number of hardware experiments
(>1.2K trials conducted on an ABB Yumi robot overall), this section of the thesis

4Work presented in the first part of this section was published by the thesis author in [6].
———Some paragraphs reuse the text and figures from [6], which is permitted by CC-BY 4.0 license.

32 CHAPTER 3. BAYESIAN OPTIMIZATION WITH INFORMED KERNELS

demonstrates5 that BO-BAK can obtain large improvements over baseline BO when
using imprecise simulations; moreover, BO-BAK can quickly recover from negative
transfer even when the simulation-informed kernels are purposefully degraded.

Bayesian Optimization with Bernoulli Alternation Kernel
One way to avoid failures due to a corrupted or highly imprecise simulation-based
kernel is to combine it with an uninformed kernel. For this, using a sum of kernels
could seem appropriate at first. Let 𝑘𝑠𝑢𝑚(𝑥𝑥𝑥,𝑥𝑥𝑥′) = 𝑘𝑆𝐸(𝑥𝑥𝑥,𝑥𝑥𝑥′) + 𝑘𝜑(𝑥𝑥𝑥,𝑥𝑥𝑥′) be a kernel
comprised of 𝑘𝑆𝐸 (Equation 1 in Section 2.2) and 𝑘𝜑 = 𝑘𝑆𝐸(𝜑(𝑥𝑥𝑥), 𝜑(𝑥𝑥𝑥′)), where 𝜑(·)
is akin to a warping function.

Recall that 𝑥𝑥𝑥 denotes a vector of control parameters. 𝜑(𝑥𝑥𝑥) can be obtained by
executing controls 𝑥𝑥𝑥 in simulation and outputting relevant characteristics of the
result. It is useful to embed 𝜑 into the kernel, as demonstrated in Section 3.1. This
can help collapse the space of unsuccessful controls: i.e. failed points/controls could
be similar to each other, but dissimilar from successful regions of control parameters.
Section 3.1 demonstrates this for locomotion trajectory summaries, but a similar
effect can be achieved in other areas of robotics. For example, if 𝑥𝑥𝑥 points represent
grasping controllers, then 𝜑(𝑥𝑥𝑥) could output grasp stability scores computed in
simulation. In this case, the failed points/controls would correspond to those with
poor stability scores. BO can then quickly learn to neglect the non-promising regions,
even if they are far away from each other in the original space of control parameters.

Section 4.1 in [6] demonstrates that 𝑘𝑠𝑢𝑚 could be adversely impacted by the
𝑘𝜑 component if 𝜑 fails to provide high-quality information. To offer a more
robust alternative, this thesis work proposes BO with Bernoulli Alternation Kernel
(BO-BAK), which was first presented in Section 3 in [6] and is summarized here.
BO-BAK takes contributions from both 𝑘𝑆𝐸 and 𝑘𝜑, but ensures that BO cannot be
permanently damaged by a poor choice of 𝜑. At each BO iteration/trial, the choice
of whether 𝑘𝑆𝐸 or 𝑘𝜑 is used is randomized. For this, BO-BAK defines a probability
distribution over kernels and draws a kernel function to be used at each BO trial
independently. Hence, 𝑘𝐵𝐴𝐾 kernel is defined by the following sampling approach:

𝑘𝐵𝐴𝐾(𝑥𝑥𝑥,𝑥𝑥𝑥′) ∼ 1{𝜃≤0.5}𝑘𝑆𝐸(𝑥𝑥𝑥,𝑥𝑥𝑥′) + 1{𝜃>0.5}𝑘𝜑(𝑥𝑥𝑥,𝑥𝑥𝑥′); 𝜃 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) (14)

Note that after each iteration/trial 𝑛, the data for computing the GP posterior
consists of all the points sampled so far: 𝐷𝐷𝐷𝑛 = {(𝑥𝑥𝑥𝑖, 𝑓(𝑥𝑥𝑥𝑖))|𝑖 = 1, ..., 𝑛}. In BO,
posterior is usually re-computed after each new sample. This aspect of BO allows
to make a choice of the kernel function for each iteration separately. So, after
𝑛 iterations/trials, BO-BAK first picks a kernel function 𝑘𝑛 using Equation 14,
then computes GP posterior mean and covariance in a standard manner. For this,
Equation 2 from Section 2.2 is used with 𝑦𝑦𝑦 being a vector of evaluations for the
sampled points: [𝑦𝑦𝑦𝑛]𝑖 = 𝑓(𝑥𝑥𝑥𝑖). Algorithm BO-BAK gives a concise summary.

5Experiments presented at the end of this section are newer, hence are not in [6].

3.4. ALTERNATION KERNEL ROBUST TO NEGATIVE TRANSFER 33

Algorithm BO-BAK
sample 𝑥𝑥𝑥1 randomly, get 𝑦1 =𝑓(𝑥𝑥𝑥1) from real world
initialize: 𝐷𝐷𝐷1 = {(𝑥𝑥𝑥1, 𝑦1)}
for 𝑛 = 1, 2, ... do

sample kernel function 𝑘𝑛 using Equation 14
get posterior GP mean & cov using 𝐷𝐷𝐷𝑛 & Eq.2
select 𝑥𝑥𝑥𝑛+1 by optimizing acquisition function:

𝑥𝑥𝑥𝑛+1 = arg max𝑥𝑥𝑥 𝛼(𝑥𝑥𝑥;𝐷𝐷𝐷𝑛)
get 𝑦𝑛+1 = 𝑓(𝑥𝑥𝑥𝑛+1) from real world
augment data 𝐷𝐷𝐷𝑛+1 = 𝐷𝐷𝐷𝑛 ∪ {(𝑥𝑥𝑥𝑛+1, 𝑦𝑛+1)}

For an intuitive insight,
note that points sampled for
trials when 𝑘𝜑 is used could
provide fast guidance towards
useful parts of the search space.
These points are included in
the data for subsequent pos-
terior computations, enabling
even trials in which 𝑘𝑆𝐸 is used
to propose better next choices.
This is important if probabil-
ity of discovering a promising
region is small, which is frequent in robotics. If 𝑘𝜑 is misleading, choices made
on the trials that use 𝑘𝑆𝐸 are not impacted by poor 𝜑, since with BO-BAK the
acquisition function makes its decisions using only one of the kernels at a time.

Figure 3.8 shows comparisons of BO variants on 2D and 10D version of a
synthetic benchmark used as a challenging test case – the Ackley function [76]:
𝑓𝐴𝐶(𝑥) = -𝑎 · exp

(︀
-𝑏

√︁
1
𝑑

∑︀𝑑
𝑖=1 𝑥

2
𝑖

)︀
− exp

(︀ 1
𝑑

∑︀𝑑
𝑖=1 cos(𝑐𝑥𝑖)

)︀
+ 𝑎 + exp(1), with

𝑎 = 20, 𝑏 = 0.2, 𝑐 = 2𝜋, 𝑥 ∈ R𝑑. The following 𝜑 emulates a case where simula-
tion could provide coarse guidance, but also could be limiting when searching
for the global optimum: [𝜑(𝑥)]1 = -𝑏

√︁
1
𝑑

∑︀𝑑
𝑖=1 𝑥

2
𝑖 ; [𝜑(𝑥)]2 = 1

𝑑

∑︀𝑑
𝑖=1 cos(𝑐𝑥𝑖).

𝜑 has components that capture information from two first addends of the Ackley
function. This gives a kind of ‘collapsing’ of the relevant features, akin to simulation
that aims to capture most salient features needed to approximate real-world output.
Figure 3.8b shows that in 2D using 𝜑 gives a significant advantage to all informed

(a) Ackley function (b) Ackley 2D on [-100, 100] (c) Ackley 10D on [-10, 10]

Figure 3.8: Ackley function presents challenges similar to those in optimization for robotics:
shallow local optima, small low cost region and sharp cost changes, deep local optima. Left:
Ackley function in 2D, with values (costs) normalized to [0, 1]; a small insert shows Ackley
on a larger domain [−100, 100]: only 1% of the space is<0.9. Middle and right: plots of
BO on 2D and 10D versions of Ackley (mean over 40 runs for each kernel type, 95% CIs).

34 CHAPTER 3. BAYESIAN OPTIMIZATION WITH INFORMED KERNELS

kernels: 𝑘𝜑, 𝑘𝑠𝑢𝑚 and 𝑘𝐵𝐴𝐾 . When the low-cost region is small, the performance
of uninformed BO with SE kernel degrades to random search, while the informed
versions get close to the optimum with <40 trials. However, the hint of limitations
induced by using 𝜑 is already visible: for 𝑘𝜑 and 𝑘𝑠𝑢𝑚 the improvement stagnates
after 50 trials. This stagnation is more striking in 10D (Figure 3.8c). There, 𝑘𝜑
and 𝑘𝑠𝑢𝑚 stagnate at a high cost. In contrast, 𝑘𝐵𝐴𝐾 outperforms both informed
and uninformed kernels. See Section 4.1 in [6] for other illustrations with synthetic
benchmarks.

The simple design of BO-BAK makes make it easy to suggest that the method
retains the optimality guarantees of the conventional BO. Intuitively, this is because
in expectation BO-BAK performs 𝑛/2 trials using only SE to choose the next point.
This is no worse than using conventional BO with half of the trials, and it is easy to
anticipate that satisfactory regret bounds could be easily obtained as well. In future
work it would be interesting to investigate whether the guarantees can hold for an
adaptive method, where 𝜃 from Equation 14 is adapted based on the estimates of
the severity of the sim-to-real gap. Preliminary investigations suggest that such
guarantees would be difficult to obtain without making restrictive assumptions
regarding simulator fidelity. Hence, BO-BAK might ultimately provide the best
balance, offering theoretical simplicity and practical benefits.

Task-oriented Grasping Experiments with BO-BAK
This section describes evaluation of BO-BAK on a real-world setting of task-oriented
grasping with an ABB Yumi robot. First, the setup and experiments from [6] are
summarized. Then, a new set of hardware experiments to illustrate robustness to
negative transfer are presented.

For the offline (kernel construction) part: a CNN was trained on a large number
of simulated grasps (605 objects, 4.5K gasps for each) to output grasp stability &
task suitability scores, given a desired task, a voxelized representation of an object,
and grasp parameters. Grasp parameter vectors 𝑥𝑥𝑥 were comprised of: a desired
point 𝑝𝑝𝑝 to approach (on the object’s surface), a surface normal vector, gripper
roll & distance to 𝑝𝑝𝑝. Grasp stability scores were computed (by OpenRave [77]
simulator) and included metrics commonly used in the literature [78]. Hence, 𝜑(𝑥)
for the informed part of the BO-BAK kernel was comprised of the CNN output; the
uninformed part was the standard SE kernel.

Figure 3.9: Left to right: object in the workspace; partial mesh; task
scores 𝜁; ‘CoM’ stability metric for top 100 grasps with 𝜁>0.5.

3.4. ALTERNATION KERNEL ROBUST TO NEGATIVE TRANSFER 35

Figure 3.10: An overview of using BO-BAK for task-oriented grasping. Blue highlights
components trained offline; orange highlights online learning components that guide real-
time decisions made by the robot. A vision system is used to first construct a mesh from
raw point cloud. Then, a set of grasping points, voxelized mesh and task identity are
passed through the network to obtain task suitability and grasp stability scores. These are
used to construct informed kernel for BO. Then, the robot executes online search with
BO to find the best task-appropriate grasp. Video of the hardware setup and experiments:
https://youtu.be/MlCabBaYw7E.

For the online (BO) part: a set of small everyday objects from seven categories
aimed for six different tasks was used for the hardware experiments. The selection
of objects was constrained by limitations of the robot: maximum payload of 500g
(lower in practice), rigid plastic parallel gripper, no force-torque or tactile sensing.
At the start of each trial an object was placed on the table and Microsoft Kinect
camera was used to get a dense point cloud of the scene and segment out the
object. Then, a mesh representation was generated from the partial point cloud. It
was then voxelized, and together with grasp and task representation fed through
the CNN to get stability and task suitability score estimates (see Figure 3.9 for a
visualization). These were utilized for the informed part of the BO-BAK kernel (𝑘𝜑).
Then, BO-BAK would suggest the next controller 𝑥𝑥𝑥 to execute and MoveIt [79] was
used for motion planning to execute the grasp. The grasp execution was assigned
a result ∈ [0, 4], i.e. the objective 𝑓(𝑥𝑥𝑥). Low values indicated MoveIt planning
failures, mid-range values indicated failures to grasp an object in a way that would
be appropriate for the task, the highest value indicated that the grasp was stable
and appropriate for the task. After that, BO would suggest a controller for the next
trial, and so on. Figure 3.10 gives an overview.

Figure 3.12: BO-BAK for challeng-
ing objects, where ‘Best 3 sim’ grasps
failed (mean over 6 runs, 90% CIs).

Figure 3.11 shows BO on objects with a large
sim-to-real mismatch. These were identified by
first executing top 3 grasp approaches suggested
by simulation. This involved generating 4.5K
grasps randomly, obtaining estimates for their
task suitability and grasp stability scores from
the CNN; then retaining only those with task
suitability 𝜁 >0.5 and executing top 3 with high-
est stability score predictions. For the objects
where the grasps failed using this ‘Best 3 sim’
approach: BO was ran for the further 10 trials.
Figure 3.12 summarizes these results, showing

https://youtu.be/MlCabBaYw7E

36 CHAPTER 3. BAYESIAN OPTIMIZATION WITH INFORMED KERNELS

(a) Left: top choices for handover task from 3
stability metrics; Right: the next BO trial.

(b) Left: A BO trial for mug handover task.
Right: A BO trial for pan support task.

Figure 3.11: BO on challenging objects, where grasps selected using stability score estimates
returned by CNN failed (i.e. testing BO-BAK robustness when simulation-informed kernel
quality would be poor either due to a larger sim-to-real gap or due to NN approximation).

quick significant improvement of BO over the initial top choices from the 3 stability
metrics. Qualitatively, the benefits we observed from using BO were: 1) exploring
various parts of the object systematically and efficiently; 2) sampling a variety of
successful controllers that further improve over a merely acceptable controller.

To show ability of BO-BAK to recover from negative transfer, this thesis presents
new experiments that involve further BO 27 runs with various object-task pairs
(hardware setup is same as the experiments from [6] summarized above). Figure 3.13
shows 3 lines: the black line illustrates the performance of baseline (uninformed)
BO with SE kernel (BO-SE does not use any simulation information). The blue line
shows the performance of BO-BAK after executing ‘Best 3 sim’ grasps (selection
procedure for these was described in the previous paragraph). While ‘Best 3 sim’

Figure 3.13: Experiments for: BO-BAK using simulation-based 𝑘𝜑 (blue line); BO-BAK
with a faulty kernel (black line); BO-SE that does not use any simulation data (red line).

3.4. ALTERNATION KERNEL ROBUST TO NEGATIVE TRANSFER 37

is enough for many object-task pairs to obtain a successful grasp, BO-BAK is
instrumental in quickly improving this further, yielding 100% success rate after
further 8 trials. The black line in Figure 3.13 shows the key result: ability of
BO-BAK to recover from negative transfer. Here, BO-BAK is given a faulty kernel
for the 𝑘𝜑 part. This is done by degrading 𝑘𝜑 used in the earlier experiments by
introducing severe noise. After this degradation, top 25 grasps selected by 𝑘𝜑 have
30-100% error rate. This is computed by attempting to execute ‘top 25’ grasps for
each object, which is feasible because many suggested grasps now fail at the MoveIt
planning stage, with fewer full executions needed on the robot. As intended, this
degradation causes negative transfer: the black line is below the red line for trials 1-4,
which implies that simulation-based trials are worse than uninformed BO. However,
on the 5th trial BO-BAK recovers from this negative transfer (black line above red
line). Since trials 1-3 execute top choices from CNN, 5th trial overall means 2nd
trial suggested by BO-BAK, which is notable. Furthermore, BO-BAK proceeds to
benefit from the faint simulation-based signal that remains in the degraded kernel
and ultimately achieves a significant gain over uninformed BO: >80% success rate
using a degraded 𝑘𝜑 vs <60% with uninformed BO.

Chapter 4

Variational Alignment for
Sim-to-Real

This Chapter presents a novel way to use simulators as regularizers1. The approach
leverages a small amount of hardware data to convert a given deterministic simulator
to an approximate stochastic model, hence the name: det2stoc. This is achieved
by regularizing a decoder of a variational autoencoder to a black-box simulation,
with the latent space bound to a subset of simulator parameters. This yields a
data-efficient way to align the result with hardware observations. In addition to
producing flexible simulation parameter posteriors, this approach can be used to help
Reinforcement Learning (RL) overcome the sim-to-real gap. For example, model-free
RL policies can be fine-tuned using the resulting stochastic simulations. Hence,
det2stoc provides an alternative for those who prefer to work with NN-based
model-free policies (instead of using structured parametric controllers discussed in
the previous chapter).

4.1 The DET2STOC Algorithm

Modern general-purpose simulators can be fast, however, some aspects remain
compute-intensive (e.g. contact-rich dynamics). Moreover, most simulators do not
explicitly model uncertainty. In contrast, modern generative modeling incorporates
uncertainty and uses fast neural networks. Hence, a hybrid solution is desirable:
combining deterministic simulators with learnable, stochastic neural network models.

To construct a generative model one could train a CVAE using real data (recall
𝐸𝐿𝐵𝑂CVAE from Equation 6 in Section 2.3. However, this is not data-efficient.
Furthermore, approaches based on variational inference are prone to overfitting
and mode collapse even with medium-to-large datasets. An option of using strong
uninformed regularization penalties (e.g. increasing the weight of KL term) is

1Work presented in this section was published in [7]. Some paragraphs reuse the text from the
——-accepted version of the article, which is permitted by the IEEE copyright terms.

39

40 CHAPTER 4. VARIATIONAL ALIGNMENT FOR SIM-TO-REAL

problematic. It frequently prevents from learning sharp posteriors, and such over-
regularized models fail to ensure enough precision for advance control policies.

det2stoc utilizes simulators as ‘informed’ regularizers. Instead of starting from
random encoder and decoder weights, the decoder function 𝑓𝑑𝑒𝑐 is aligned with the
output of an existing general-purpose simulator f𝑠𝑖𝑚. This implies a soft restriction
on the class of models for the decoder neural network function. Hence, the search
space is reduced to a subspace that aligns more closely with the class of functions
captured by the simulator.

Algorithm DET2STOC
𝜓0 ← initialize sim parameters ; 𝜋 ← random policy
𝜉𝑟𝑒𝑎𝑙 ← get initial real trajectories using 𝜋
for 𝑖 = 0, 1, ..., 𝑛 do

𝜉𝑠𝑖𝑚𝜓𝑖
← get sim trajectories from f𝑠𝑖𝑚𝜓𝑖

using 𝜋
𝑓𝑑𝑒𝑐 ← pre-train decoder on 𝜉𝑠𝑖𝑚𝜓𝑖

𝑓𝑒𝑛𝑐 ← train cvae on 𝜉𝑟𝑒𝑎𝑙 (w. pre-trained 𝑓𝑑𝑒𝑐)
𝜑𝜇,𝜎 ← cvae posterior 𝑞𝜑𝜑𝜑 (𝑓𝑒𝑛𝑐 given 𝜉𝑟𝑒𝑎𝑙)
update posterior sim params: 𝜓𝑖+1 ←− 𝜑𝜇,𝜎
if training RL then

𝜋 ← 𝑅𝐿(f𝑠𝑖𝑚𝜓𝑖+1
)

𝜉𝑟𝑒𝑎𝑙 ← get more real trajectories using 𝜋

First, let’s define notation:
𝜓 : simulation parameters
to infer (a subset of all simu-
lator parameters available)
𝜉𝑠𝑖𝑚𝜓 : simulated observa-
tions from a setting that
roughly matches the target
real-world setting
𝜉𝑟𝑒𝑎𝑙 : real observations
(e.g. positions and veloci-
ties of the robot joints and
the relevant objects)
𝜑𝜇,𝜎: posterior produced
by encoder activations
𝜑𝑚𝑖𝑥: a learnable mixture
‘prior’ that can be used as aggregate posterior (instead of using encoder activations)

Algorithm DET2STOC gives an outline of the approach. First, an initial
distribution for simulation parameters is chosen. This can be a uniform or a wide
truncated Gaussian. 𝜓0 denotes the parameters of this distribution. Then, initial
hardware trajectories 𝜉𝑟𝑒𝑎𝑙 are collected. At the beginning of each det2stoc
iteration 𝑖, trajectories 𝜉𝑠𝑖𝑚𝜓𝑖

= {[..., 𝑠𝑠𝑠𝑡, 𝑎𝑎𝑎𝑡, 𝑠𝑠𝑠𝑡+1, ...]}1:𝑁 are obtained by running
simulations parameterized by 𝜓𝑖. This constitutes the data for aligning decoder 𝑓𝑑𝑒𝑐
with simulation. The data for training 𝑓𝑑𝑒𝑐 is comprised of the tuples (𝑠𝑠𝑠𝑡, 𝑎𝑎𝑎𝑡, 𝑠𝑠𝑠𝑡+1).
The decoder learns a forward model: it is given 𝑠𝑠𝑠𝑡, 𝑎𝑎𝑎𝑡 as input and is trained to
output 𝑠𝑠𝑠𝑡+1. The training is done using a standard negative log likelihood as a
supervised loss. This implies that 𝑓𝑑𝑒𝑐 is pre-trained to be aligned with simulation
that corresponds to the current parameter posterior at each det2stoc iteration.
Then, variational posterior 𝑞𝜑 is trained on 𝜉𝑟𝑒𝑎𝑙 using 𝐸𝐿𝐵𝑂det2stoc defined below:

𝐸𝐿𝐵𝑂det2stoc = log 𝑝𝜃𝜃𝜃(𝑠𝑠𝑠𝑡+1 |𝑠𝑠𝑠𝑡, 𝑎𝑎𝑎𝑡, 𝑧)−𝐾𝐿
(︀
𝑞𝜑(𝑧 |𝑠𝑠𝑠𝑡+1, 𝑠𝑠𝑠𝑡, 𝑎𝑎𝑎𝑡) ‖ 𝑝𝜑𝑚𝑖𝑥

(𝑧𝑧𝑧)
)︀

(15)

𝐸𝐿𝐵𝑂det2stoc can be seen as an extension of 𝐸𝐿𝐵𝑂cvae aimed to support a learn-
able latent mixture prior/posterior 𝑝𝜑𝑚𝑖𝑥

(𝑧𝑧𝑧). The parameters of 𝜑𝑚𝑖𝑥 are optimized
via KL gradients from 𝐸𝐿𝐵𝑂. At the end of each iteration, det2stoc updates

4.2. EXPERIMENTS ON BENCHMARKS 41

simulation parameter distribution 𝜓𝑖+1 to match the learned prior/posterior 𝜑𝑚𝑖𝑥.
Such learnable ‘prior’ still provides regularization, since it is informed by all of the
data in aggregate (while the likelihood term aims to optimize likelihood for each
point individually). An alternative is to use the real data accumulated so far as
input to the encoder and compute the mean and standard deviation of activations:
𝜑𝜇,𝜎. This approach works for the case of unimodal posteriors. Finally, in case
det2stoc is used to jointly train a control policy 𝜋 (e.g. with model-free RL), 𝜋
can be fine-tuned using simulation with the updated posterior 𝜓𝑖+1.

A single iteration of det2stoc can be enough to obtain a good initial fit,
even with a small number of real trajectories. This high data efficiency arises
because decoder gradients are informative immediately after the pre-training step.
Hence, encoder can be trained from few real samples and still meaningfully shift
the posterior. Further iterations are beneficial for more complex scenarios. For
example, 1-20 iterations were ran for various experiments reported in [7]. These
used det2stoc in a ‘batch’ mode: first collecting a set of hardware trajectories,
then using them for all iterations. det2stoc can also be used in a fully incremental
mode: updating the posterior as soon as new hardware data arrives, potentially
even after every timestep.

4.2 Experiments on Benchmarks

Formally, det2stoc takes a choice of a likelihood model 𝑝(𝑥|𝑧). However, the
decoder is parameterized by neural network weights 𝜃, which are learned during
optimization. This yields 𝑝𝜃(𝑥|𝑧): a highly flexible function of the latent input 𝑧. As
expressivity of the neural network increases, distributional assumptions become less
consequential. Hence, comparison to likelihood-free approaches becomes relevant.
BayesSim [21] is a very recent approach that offers likelihood-free and Bayesian
treatment for the problem of estimating posterior for simulator parameters. It also
provides a mixture posterior, unlike previous unimodal approaches, such as [17].

Table 4.1 provides a comparison to BayesSim [21] on a set of standard analytic
RL benchmarks. To evaluate det2stoc posterior, each environment setting is run 6
times with different ‘true’ parameters; log predicted probabilities (densities) are com-
puted for each run. As in [21], we obtain 10 surrogate ‘real’ trajectories/episodes, 200
steps each. The environments and parameter ranges are taken exactly as in [21] to
enable the comparison. The results show that det2stoc offers significantly sharper
densities than the previously proposed methods. It recovers the true parameters
with ease on the standard benchmarks of CartPole, Pendulum and Mountain Car.
On the more challenging Acrobot benchmark, det2stoc significantly outperforms
both variants of BayesSim using the same number of mixture components.

42 CHAPTER 4. VARIATIONAL ALIGNMENT FOR SIM-TO-REAL

Problem Parameter BayesSim BayesSim det2stoc det2stoc
RFF NN k=1 k=5

CartPole pole length -0.609±0.39 -0.657±0.25 4.0284±0.6269 3.1474±0.9581
pole mass 0.973±0.26 0.633±0.52 4.2682±1.1935 3.4865±0.7018

Pendulum dt 3.192±0.30 3.199±0.17 7.0521±0.3946 3.7471±2.9817
Moutn Car power 3.863±0.52 3.901±0.2 6.9967±0.574 6.8696±0.2072
Acrobot link mass 1 2.046±0.37 1.331±0.22 1.0218±0.1687 2.2006±0.6511

link mass 2 0.321±1.85 1.513±0.39 1.6456±0.1137 3.2091±0.3015
link length 1 2.072±0.76 1.856±0.18 1.2212±0.2053 2.5353±0.1816
link length 2 -0.148±0.19 -0.672±0.09 0.1688±0.2601 -0.1276±1.081

Table 4.1: Comparison of det2stoc with likelihood-free methods. The results for BayesSim
are from Table 1 in [21], where BayesSim is shown to outperform Rejection ABC and 𝜖-Free
methods. det2stoc k=1 uses one mixture component; k=5 uses 5 (same as BayesSim).
The table shows mean and standard deviation of log predicted probabilities (densities).

4.3 Hardware Experiments

For hardware experiments we used a dual-arm ABB Yumi robot (2x7DoF) and a
Microsoft Kinect to track a CheezIt box object from the YCB dataset [80]. We
investigated the ability of det2stoc to identify mass distribution and friction. A
heavy block-in-box insert was placed inside the CheezIt box. We varied the position
of the block-in-box within the CheezIt box from one long side (the area with CheezIt
logo) to the other. This gave center of mass (CoM) changes from -0.08m to 0.08m
off-center from the middle of the CheezIt box. Varying CoM yielded significantly
altered dynamics, especially when the block-in-box insert was placed inside at the
CheezIt logo area (appears on the left when the box is lying on its side).

To measure friction we performed an inclined plane test to find approximate
static and kinetic friction coefficients for several cardboard boxes and our table
surface. The results fell in a rather wide range of [0.2, 0.4], with dynamic friction
closer to 0.2. To experiment with alternative friction settings we padded a side of
the CheezIt box with a thin foam pad to obtain a much higher friction.

We then investigated two key questions: whether det2stoc could provide a
reasonable alignment to real-world measurements and whether it could help a policy
trained in simulation to recover from a severe sim-to-real gap.

Posterior Alignment

We obtained 10 trajectories from hardware episodes of Yumi moving and orienting
the CheezIt box. We placed block-in-box insert inside to match the CheezIt logo
area. The top left plot in Figure 4.1 shows that det2stoc was able to correctly
identify the shifted CoM. The friction range was also identified correctly: a wide

4.3. HARDWARE EXPERIMENTS 43

Figure 4.1: det2stoc posterior learned from 10 hardware trajectories. Left: a heavy
block-in-box insert was placed on the left (at CheezIt logo). Middle: block-in-box on the
right; high friction. Right: block-in-box on the left left; high-friction. Top row: CoM; thin
red line shows block-in-box insert placement. Bottom row: friction; parameter range from
real-world estimates shown as a shaded pink region for the low-friction condition (left).

distribution with a mode covering the range we obtained from our measurements.
Middle and right plots in Figure 4.1 show results for the high-friction setting. Top
plots show that det2stoc could identify the CoM changes, bottom plots show that
higher friction was also detected correctly.

Overall, det2stoc was able to recover the latent parameter means and variances
well. One limitation of our setup was the fact that we used a single combined value
to describe friction. The high variance for our manual real-world estimates indicates
that a more granular description with several parameters and more advanced friction
models would be beneficial.

Reinforcement Learning with DET2STOC Alignment

det2stoc formulation could help control algorithms benefit from simulators and
overcome the sim-to-real gap. The decoder learns a forward model 𝑝(𝑠𝑠𝑠𝑡+1 |𝑠𝑠𝑠𝑡, 𝑎𝑎𝑎𝑡),
which can be used for model-based RL and model predictive control (MPC). A
forward pass on a neural network is one of the most optimized operations, and could
support MPC-based methods for a wide range of problems. However, joint-space
control of dual-arm systems could present a challenge for MPC methods. Since
direct MPC on higher-dimensional action spaces (14D in our case) is currently not
very common, the direction of combining det2stoc with MPC is left for future

44 CHAPTER 4. VARIATIONAL ALIGNMENT FOR SIM-TO-REAL

Figure 4.2: Left: Yumi moving and orienting CheezIt box to a goal pose using ‘best PPO’
policy, trained on simulation with medium friction & empty box. Top right: frequent failure
mode when CoM is moved away from the pushing arm and the box is on a high-friction
pad. Bottom right: same policy fine-tuned on simulation with parameter posterior from
det2stoc; the resulting policy adopts a more careful strategy to avoid flips.

work. Instead, we tested a currently common practice of training RL methods in
simulation, then transferring RL policies to hardware.

We utilized two different classes of RL algorithms: on-policy PPO [81] and
off-policy HER [82]. Using MuJoCo simulator [83] we performed several training
runs on a range of simulation parameters that generally matched our task of moving
& orienting a box to a desired goal position & orientation. We allowed for dual-arm
policies to emerge, so both arms could be active. However, we did not use any reward
shaping for whether/when the arms should be engaged. This learning problem
proved to be quite challenging. PPO and HER have been the leading methods in
recent RL-based sim-to-real works. Nevertheless, HER could not learn a useful
policy. The commonly used practice of uninformed domain randomization also
proved detrimental for both HER and PPO. PPO was able to learn a number of
successful policies when trained on non-randomized parameters. It was especially
successful on ‘empty box’ setting, with a low friction set to 0.1 in simulation. Several
policies trained on this setting transferred well to hardware. One of these policies
proved particularly versatile, we refer to it as ‘best-PPO’ policy below.

We ran ‘best-PPO’ policy on the hardware setting that matched its simulated
training data (similar friction coefficient, same box mass). The policy was able to
reliably move and orient the box to the goal. The policy also performed well with a
heavier box, as well as with a lower friction (a smooth plate attached underneath).
On the latter setting the dual-arm aspect became prominent: if the left arm pushed
the box beyond the goal, the right arm was able to re-position it to the target.

4.3. HARDWARE EXPERIMENTS 45

Figure 4.3: Closing the sim-to-real gap.

In the further challenging set of experi-
ments we used a high-friction pad and moved
the block-in-box insert (an hence the CoM
of the box) to the ‘CheezIt’ logo area. ‘Best-
PPO’ policy was not successful on this set-
ting: it either tipped the box, or missed
the box at the start (went past the box but
failed to move it), getting 0% success rate
on the test runs on hardware (see Table 4.2).

To evaluate the capability of det2stoc
for helping RL handle this severe sim-to-real
gap we fine-tuned ‘best-PPO’ using CoM
identified by det2stoc. We performed 20
test runs of the resulting policy on hardware
and found that the adjusted policy could
move the box close to the goal position and orientation in 60% of the episodes for
this very challenging setting. Table 4.2 summarizes this comparison. Figure 4.3
shows that using det2stoc helped RL recover most of its performance in terms of
reward as well. The above result was achieved by using only 10 hardware trajectories
as training data for det2stoc. The rest of the data for training PPO came from
simulation. This is notable, since it demonstrates that a dual-arm system could be
trained to make a good progress on a challenging version of a given task with only
≈5 minutes of hardware data collection. As simulation-based computation becomes
less and less expensive, this opens new possibilities for faster learning and recovery
from the sim-to-real gap.

Result state ‘best PPO’ ‘best PPO’
fine-tuned w/ det2stoc

a) flipped 17 6
b) missed on start 3 2
c) close to goal 0 12

a) b) c)
Table 4.2: Results comparing ‘best PPO’ policy before and after fine-tuning using simulation
adjusted with det2stoc posterior. Video of experiments: https://youtu.be/zgaAEJf9Oc4

https://youtu.be/zgaAEJf9Oc4

Chapter 5

Analytic Manifold Learning for
Modular Latent Space Transfer

Recent popularity of unsupervised learning methods, such as VAEs, yields a promise
of automatically learning low-dimensional representations from high dimensional
observations (e.g. RGB images, point clouds). However, the success of these
approaches has been, in large part, shown either on dataset-oriented benchmarks
or on visually simple domains. This presents a significant challenge for making
such methods applicable to robotics. The shortcomings of the dataset-oriented view
have been recently pointed out by some of the prominent robotics researchers [84].
Work conducted for this thesis also revealed a set of challenges when VAE-based
approaches attempt to learn from non-stationary steams generated during RL
training [8]. These shortcomings have negative implications for sim-to-real: methods
that cannot handle distribution shift (simulated data → real data) would not be
successful in quickly closing the sim-to-real gap.

Prior works attempted to address some of these challenges by manually con-
structing and imposing known/desirable relationships on the structure on the latent
space, the survey in [61] gives an overview. In the context of sim-to-real, this could
help retain latent space properties learned from ample data in simulation during
the hardware adaptation/transfer stage. However, it would be tedious and error
prone to construct a comprehensive set of heuristics that would capture the desired
properties of the latent space for various domains and tasks. This chapter proposes
Analytic Manifold Learning (AML) that can discover such relations automatically.1
AML learns to encode the dynamics properties of simulated/source domains in a
set of independent analytic relations that hold on sequences of low-dimensional
simulation/latent states. We formalize the notion of learning non-linearly indepen-

1The work presented in this chapter is described in [8]. This chapter starts by presenting AML
using the text and figures from sections 3 & 4 in [8], then provides extended explanations for the
points most relevant to the main themes of this thesis. For further mathematical background,
proofs and prior work: the readers are encouraged to see Appendix B in [8].

47

48 CHAPTER 5. ANALYTIC MANIFOLD LEARNING

dent relations, without imposing restrictive simplifying assumptions or requiring
domain-specific information. Defining non-linear independence rigorously allows us
to obtain a valid modular representation and provide guarantees that each relation
captures a new aspect of the dynamics. Relations learned by AML can be imposed
on the latent space when learning on the target domain (e.g. reality) to improve
data efficiency and transfer desirable latent space properties. This formulation
enables a general and flexible way of shaping the latent space.

5.1 Motivation for Learning Latent Relations

Let 𝑥𝑡 denote a high-dimensional (observable) state at time 𝑡 and 𝑠𝑡 denote the
corresponding low-dimensional or latent state. 𝑥𝑡 could be an RGB image of a
scene with a robot & objects, while 𝑠𝑡 could contain robot joint angles, object
poses, and velocities. Consider an example of a latent relation: the continuity
(slowness) principle [85, 86]. It postulates continuity in the latent states, implying
that sudden changes are unlikely. It imposes a loss 𝐿𝑐𝑜𝑛𝑡(𝒟𝑥, 𝜑) = E

[︀
||𝑠𝑡+1 − 𝑠𝑡||2

]︀
,

with 𝐷𝑥={𝑥𝑡, 𝑥𝑡+1, ...} and encoder 𝜑(𝑥)=𝑠. A related heuristic from [87] maximizes
mutual information between parts of consecutive latent states. Such approaches
may be viewed as postulating concrete latent relations: 𝑔(𝑠𝑡, 𝑠𝑡+1) = 𝑐𝜖, where 𝑔
is the squared distance between 𝑠𝑡 and 𝑠𝑡+1 for 𝐿𝑐𝑜𝑛𝑡, and a more complicated
relation for [87]. Ultimately, all these are heuristics coming from intuition or prior
knowledge. However, only a subset of them might hold for a given class of domains.
Moreover, it would be tedious and error-prone to manually compose and incorporate
a comprehensive set of such heuristics into the overall optimization process.

We take a broader perspective. Let 𝑔(𝒟𝜏)=0 define a relation that holds on a set
of sequences 𝒟𝜏 ={𝜏 (𝑖)}𝑀𝑖=1. 𝒟𝜏 could contain state sequences 𝜏=[𝑠𝑡, ..., 𝑠𝑡+𝑇] from
a set of source domains. We start by learning a relation 𝑔1; then learn 𝑔2 that differs
from 𝑔1; then learn 𝑔3 different from {𝑔1, 𝑔2} and so on. Overall, we aim to learn a
set of relations that are (approximately) independent, and we define independence
rigorously. To understand why rigor is important here, recall the significance of
the definition of independence in linear algebra: it is central to the theory and
algorithms in that field. Extending the notion of independence to our more general
nonlinear setting is not trivial, since naive definitions can yield unusable results.
Our contribution is developing rigorous definitions of independence, and ensuring
the result can be analyzed theoretically & used for practical algorithms.

5.2 Mathematical Formulation for Non-linear Independence

Let R𝑁 be the ambient space of all possible latent state sequences 𝜏 (of some fixed
length). Let ℳ be the submanifold of actual state sequences that a dynamical
system from one of our domains could generate (under any control policy). A
common view of discovering ℳ is to learn a mapping that produces only plausible
sequences as output (the ‘mapping’ view). Alternatively, a submanifold can be

5.2. MATHEMATICAL FORMULATION 49

specified by describing all equations (i.e. relations) that have to hold for points in
the submanifold.

We are interested in finding relations that are in some sense independent. In linear
algebra, a dependency is a linear combination of vectors with constant coefficients.
In our nonlinear setting the analogous notion is that of syzygy. A collection of
functions f‡ ={𝑓1, ..., 𝑓𝑘} is called a syzygy if

∑︀𝑘
𝑗=0 𝑓𝑗𝑔𝑗 is zero. Observe that this

sum is a linear combination of relations 𝑔1, ..., 𝑔𝑘 with coefficients in the ring of
functions. If there is no syzygy f‡ s.t.

∑︀𝑘
𝑗=0 𝑓𝑗𝑔𝑗 =0, then 𝑔1, ..., 𝑔𝑘 are independent.

However, this notion of independence is too general for our case, since it deems any
𝑔1, 𝑔2 dependent: 𝑔1 · 𝑔2− 𝑔2 · 𝑔1 = 0 holds for any 𝑔1, 𝑔2. Hence, we define restricted
syzygies.

Definition 5.2.1 (Restricted Syzygy). Restricted syzygy for relations 𝑔1, ..., 𝑔𝑘 is
a syzygy with the last entry 𝑓𝑘 equal to −1, i.e. f = {𝑓1, ..., 𝑓𝑘−1, 𝑓𝑘 =−1} with∑︀𝑘

𝑗=1 𝑓𝑗𝑔𝑗=0.

Definition 5.2.2 (Restricted Independence). 𝑔𝑘 is independent from 𝑔1, ..., 𝑔𝑘−1 in
a restricted sense if the equality

∑︀𝑘
𝑗=1 𝑓𝑗𝑔𝑗=0 implies 𝑓𝑘 ̸= −1, i.e. if there exists

no restricted syzygy for 𝑔1, ..., 𝑔𝑘.
For f={𝑓1, ..., 𝑓𝑘−1, 𝑓𝑘=−1} we denote

∑︀𝑘
𝑗=1 𝑓𝑗(𝜏)𝑔𝑗(𝜏) by f(𝜏, 𝑔1, ..., 𝑔𝑘). Using

the above definitions, we construct a practical algorithm (Section 5.3) for learning
independent relations. The overall idea is: while learning 𝑔𝑘s, we are also looking for
restricted syzygies f(𝜏, 𝑔1, ..., 𝑔𝑘)=0. Finding them would mean 𝑔𝑘s are dependent,
so we augment the loss for learning 𝑔𝑘 to push it away from being dependent. We
proceed sequentially: first learning 𝑔1, then 𝑔2 while ensuring no restricted syzygies
appear for {𝑔1, 𝑔2}, then learning 𝑔3 and so on. For training 𝑔𝑘s we use on-manifold
data: 𝜏 sequences from our dynamical system. Restricted syzygies f are trained using
off-manifold data: 𝜏𝑜𝑓𝑓 ={𝑠𝑜𝑓𝑓𝑡

, 𝑠𝑜𝑓𝑓𝑡+1 , ..., 𝑠𝑜𝑓𝑓𝑇
}, because we aim for independence

of 𝑔𝑘s on R𝑁 , not restricted to ℳ (on ℳ 𝑔𝑘s should be zero). 𝜏𝑜𝑓𝑓 do not lie on
our data submanifold and can come from thickening of on-manifold data or can be
random (when R𝑁 is large, the probability a random sequence satisfies equations of
motion is insignificant). Independence in the sense of Definition 5.2.2 is the same as
saying that 𝑔𝑘 does not lie in the ideal generated by (𝑔1, ..., 𝑔𝑘−1), with ideal defined
as in abstract algebra (see Appendix B.1 in [8]). Hence, the ideal generated by
(𝑔1, ..., 𝑔𝑘−1, 𝑔𝑘) is strictly larger than that generated by (𝑔1, ..., 𝑔𝑘−1) alone, because
we have added at least one new element (the 𝑔𝑘). We prove that in our setting the
process of adding new independent 𝑔𝑘s will terminate (proof in Appendix B.1 in [8]):

Theorem 5.2.1. When using Definition 5.2.2 for independence and real-analytic
functions to approximate 𝑔s, the process of starting with a relation 𝑔1 and iteratively
adding new independent 𝑔𝑘s will terminate.

If ℳ is real-analytic (i.e. is cut out by a finite set of equations of type ℎ(𝜏)=0
for some finite set of real-analytic ℎs), then after the process terminates, the

50 CHAPTER 5. ANALYTIC MANIFOLD LEARNING

set where all relations 𝑔1, .., 𝑔𝑘 hold will be precisely ℳ. Otherwise, the process
will still terminate, having learned all possible analytic relations that hold on ℳ.
By a theorem of Akbulut and King [88] any smooth submanifold of R𝑁 can be
approximated arbitrarily well by an analytic set, so in practice the differences would
be negligible.

To ensure that each new relation decreases the data manifold dimension, we
could additionally prohibit 𝑔1, ..., 𝑔𝑘 from having any syzygy {𝑓1, ..., 𝑓𝑘} in which
𝑓𝑘 itself is not expressible in terms of 𝑔1, ..., 𝑔𝑘−1. With such definition (below)
we could guarantee that a sequence of independent relations 𝑔1, ..., 𝑔𝑘 restricts the
data to a submanifold of codimension at least 𝑘 (Theorem 5.2.2, which we prove in
Appendix B.1 in [8]).

Definition 5.2.3 (Strong Independence). 𝑔𝑘 is strongly independent from 𝑔1, ..., 𝑔𝑘−1
if the equality

∑︀𝑘
𝑗=1 𝑓𝑗𝑔𝑗 = 0 implies that 𝑓𝑘 is expressible as 𝑓𝑘 = ℎ1 · 𝑔1 + ... +

ℎ𝑘−1 · 𝑔𝑘−1.

Theorem 5.2.2. Suppose 𝑔1, . . . , 𝑔𝑘 is a sequence of analytic functions on 𝐵, each
strongly independent of the previous ones. Denote by ℳ𝐵 = {𝑥 ∈ 𝐵|𝑔𝑗(𝑥) =
0 for all 𝑗} the part of the learned data manifold lying in the interior of 𝐵. Then
dimension of ℳ𝐵 is at most 𝑁 − 𝑘.

In addition, we construct an alternative approach with similar dimensionality
reduction guarantees, which ensures that the learned relations differ to first order.
For this we use a notion of independence based on transversality, with the following
definition and lemmas (with proofs in Appendix B.1 in [8]):

Lemma 5.2.1. Dependence as in Definition 5.2.2 implies ∇𝜏𝑔𝑘 and ∇𝜏𝑔1, ...,∇𝜏𝑔𝑘−1
are dependent.

Definition 5.2.4 (Transversality). If for all points 𝜏 (𝑖)∈ℳ the gradients of 𝑔1, .., 𝑔𝑘
at 𝜏 , i.e. ∇𝜏𝑔|𝜏(𝑖) , are linearly independent, we say that 𝑔𝑘 is transverse to the
previous relations: 𝑔𝑘 t 𝑔1, ..., 𝑔𝑘-1.

Using transversality, we deem 𝑔𝑘 to be independent from 𝑔1, ..., 𝑔𝑘−1 if the
gradients of 𝑔𝑘 do not lie in the span of gradients of 𝑔1, ..., 𝑔𝑘−1 anywhere on ℳ.
With this, 𝑔𝑘 that only differs from previous relations in higher-order terms would be
deemed as ‘not new’. This formulation is natural from the perspective of differential
geometry. Let 𝐻𝑔𝑗

be the hypersurface defined by 𝑔𝑗 : the set of points where 𝑔𝑗 =0.
Each 𝐻𝑔1 , ...,𝐻𝑔𝑘

contains ℳ. If gradients of 𝑔𝑘 are linearly independent from
gradients of 𝑔1, ..., 𝑔𝑘−1, then the corresponding hypersurfaces intersect transversely
along ℳ.

Lemma 5.2.2. For once differentiable (𝑔1, .., 𝑔𝑘) s.t. 𝐻𝑔𝑗
s are transverse along their

common intersection 𝐻, this intersection 𝐻 is a submanifold of R𝑁 of dimension
𝑁−𝑘.

5.3. LEARNING LATENT RELATIONS WITH NEURAL NETWORKS 51

The notion of independence defined via transversality is infinitesimal and sym-
metric w.r.t. permuting 𝑔𝑘s. This is useful in settings where many relations could
be discovered, because it is then better to find relations whose first order behav-
ior differs. In cases where guaranteed decrease in dimension is not needed, using
restricted syzygies could allow a flexible search for more expressive relations.

5.3 Learning Latent Relations with Neural Networks

Here we describe the algorithm with relations 𝑔𝑘 and restricted syzygies f approxi-
mated by neural networks. Each 𝑔 is represented by a neural network (NN) that
takes a sequence of latent/low-dimensional states 𝜏 = [𝑠𝑡, 𝑠𝑡+1, ..., 𝑠𝑇], 𝜏 ∈ R𝑁 as
input. The output of 𝑔 is a scalar. We use 𝑔 to denote both the relation and the
NN used to learn it. If 𝑔 outputs 0 for on-manifold data, this implies 𝑔 has learned
a function 𝑔(𝜏) = 0, which captures a relation between states of the underlying
dynamical system. 𝑔 is trained on minibatches of size 𝑏 of on-manifold data points
𝜏 (𝑖) using loss gradients: ∇𝐿=

∑︀𝑏
𝑖=1∇𝑔

[︀
𝐿(𝜏 (𝑖))

]︀
, where ∇𝑔 means gradient w.r.t NN

weights of 𝑔. We need to make 𝑔→0 for on-manifold data, while avoiding trivial
relations (e.g. all NN weights ≈0). Hence, in the loss we minimize 𝑑𝑔(𝜏)= |𝑔(𝜏)|

‖𝑣‖ ,
where 𝑣 is the gradient of 𝑔 with respect to input points 𝜏 (𝑖): 𝑣=∇𝜏 (𝑔)|𝜏(𝑖) , 𝑣∈R𝑁 .
The gradient norm ‖𝑣‖ is the maximal ‘slope’ of the linearization of 𝑔 at 𝜏 , so
𝑑𝑔(𝜏) is the distance from 𝜏 to the nearest point where this linearization vanishes
(𝑑𝑔(𝜏)= height/slope = distance). Hence, 𝑑𝑔(𝜏) is a proxy for the distance from 𝜏
to the vanishing locus of 𝑔. This measure of vanishing avoids scaling problems (see
Appendix B.2 in [8]). We also maximize log ‖𝑣‖ to further regularize 𝑔. Equation 16
summarizes our loss for 𝑔:

𝐿(𝑔) = 𝑑𝑔(𝜏)− log ‖𝑣‖ ; 𝑑𝑔(𝜏) = |𝑔(𝜏)|/ ‖𝑣‖ ; 𝑣 = ∇𝜏 (𝑔)|𝜏 (16)
We proceed sequentially: first learn 𝑔1, then 𝑔2, and so on. This sequential approach
has conceptual parallels with a functional Frank-Wolfe algorithm [89], but without
convex optimization. Learning sequentially helps avoid instabilities, such as those
that could arise from training flexible NN mixtures with EM [90].

Suppose that so far we learned (approximately) independent relations 𝑔1, ..., 𝑔𝑘−1.
We then keep their NN weights fixed and learn an initial version of the next relation
𝑔𝑘. To obtain 𝑔𝑘 that is transverse to 𝑔1, .., 𝑔𝑘−1 (Definition 5.2.4), we augment
the loss as follows. We compute gradients of each 𝑔1, ...𝑔𝑘−1 w.r.t input 𝜏 . For
example, for 𝑔1 we denote this as 𝑣1 =∇𝜏 (𝑔1)|𝜏 . Making 𝑔𝑘 transverse to 𝑔1, ...𝑔𝑘−1
means ensuring that 𝑣𝑘 is linearly independent of 𝑣1, ..., 𝑣𝑘−1. We optimize a
computationally efficient numerical measure of this: maximize the angles between 𝑣𝑘
and all the previous 𝑣1, .., 𝑣𝑘−1. Such measure encourages transversality of subsets of
relations and strongly discourages small angles. Our overall measure of transversality
is the product of sines of pairwise angles, with log for stability (Appendix B.3.1
in [8] gives further discussion):

𝐿𝑡𝑟(𝑔𝑘) = 𝑑𝑔𝑘
(𝜏)− log ‖𝑣𝑘‖ − log

∏︀𝑘−1
𝑗=1 sin2(𝜃𝑣𝑗 ,𝑣𝑘

) (17)

52 CHAPTER 5. ANALYTIC MANIFOLD LEARNING

Algorithm AML
{𝜏 (𝑖)}𝑑𝑖=1 ← rollouts from RL actors
train 𝑔1 with loss L from Eq.16
for 𝑘 = 2, 3, ..., do

if aiming_for_transversality then
train 𝑔𝑘 with loss 𝐿𝑡𝑟 from Eq.17

else // using syzygies
train 𝑔𝑘 with loss 𝐿 from Eq.16
for 𝑗 = 1, 2, ..., do

generate 𝜏𝑜𝑓𝑓 , 𝜏 𝑡𝑒𝑠𝑡𝑜𝑓𝑓

train f𝑗 with 𝐿f = |f𝑗(𝜏𝑜𝑓𝑓)|
if f𝑗 ̸=0 on 𝜏 𝑡𝑒𝑠𝑡𝑜𝑓𝑓 then

break //𝑔𝑘≈indep.
while f𝑗(𝜏 𝑡𝑒𝑠𝑡𝑜𝑓𝑓) ≈ 0 do

freeze f𝑗
train 𝑔𝑘 with 𝐿𝑠𝑦𝑧 (Eq.18)

Figure 5.1: Left: algorithm for learning latent relations. Top right: using transversality.
Bottom right: training with syzygy f to uncover if 𝑔𝑘 is dependent, then using f to modify
𝑔𝑘’s loss. Orange & blue denotes NNs whose weights are being trained. Gray denotes
learned relations whose NNs are frozen.

For independence based on Definition 5.2.2, we instead learn a restricted syzygy
f(𝜏𝑜𝑓𝑓 , 𝑔1, ..., 𝑔𝑘) = 0. Training data for f is comprised of: 1) 𝜏𝑜𝑓𝑓 defined in Section 5.2
and 2) 𝑦𝑔1=𝑔1(𝜏𝑜𝑓𝑓), ..., 𝑦𝑔𝑘

=𝑔𝑘(𝜏𝑜𝑓𝑓), i.e. outputs from 𝑔1, ...𝑔𝑘 with 𝜏𝑜𝑓𝑓 fed as inputs.
𝑦𝑔𝑠 are passed directly to the next-to-last layer, which we denote as f𝐿-1 ∈ R𝑘−1.
The last layer of f computes a dot product of

[︀
f𝐿-1
[1] , ..., f

𝐿-1
[𝑘-1], -1

]︀
and [𝑦𝑔1 , ..., 𝑦𝑔𝑘

].
We use a simple L1 loss for training f. If f outputs 0 at convergence: 𝑔𝑘 is not
independent. In this case, we freeze the weights of f and continue to train 𝑔𝑘 with
augmented loss. We use gradients passed through f to push 𝑔𝑘 away from a solution
that made it possible to learn f:

∇𝐿𝑠𝑦𝑧(𝑔𝑘; f) = ∇𝐿(𝑔𝑘)−∇𝑔𝑘

[︁⃒⃒
f(𝜏𝑜𝑓𝑓 , 𝑔1, ..., 𝑔𝑘)

⃒⃒]︁
(18)

𝐿𝑠𝑦𝑧 encourages adjusting 𝑔𝑘 such that it makes the outputs of (frozen) f non-zero.
Once 𝐿𝑠𝑦𝑧(𝑔𝑘; f) is minimized, we can attempt to learn another syzygy f2, and
so on, until we cannot uncover any new dependencies. Then 𝑔𝑘 can be declared
(approximately) independent of 𝑔1, ...𝑔𝑘−1 and we can proceed to learn 𝑔𝑘+1. All
𝑔𝑘s, fs, 𝐿s are in latent space, so networks are small & quick to train.

An additional benefit of our formulation is that prior knowledge can be incorpo-
rated without restricting the hypothesis space. 𝑔𝑘s can be pre-trained in a supervised
way: to output values that a prior heuristic produces on- and off-manifold. Then,
𝑔𝑘s can be further trained using on-manifold data, and if prior knowledge is wrong,
then 𝑔𝑘 would move away from the wrong heuristic during further training.

5.4. IMPOSING AML RELATIONS DURING TRANSFER 53

5.4 Imposing AML Relations During Transfer

The previous section described how to encode the latent data manifold onto a set
of analytic relations represented by neural networks. This section shows how to
impose these relations into a latent space of a sequential VAE. The model for a
basic sequential VAE could be defined as follows:

Generative model: 𝑝(𝜏, 𝑥1:𝑇) := 𝑝(𝑠1:𝑇)𝑝(𝑥𝑡|𝑥<𝑡, 𝑠1:𝑇)
Approximate posterior: 𝑞(𝜏 |𝑥1:𝑇) := 𝑞(𝑠1:𝑇 |𝑥1:𝑇)

Figure 5.2: Basic sVAE

To model long-term dependencies it is customary to
use recurrent neural networks (e.g. with LSTM, GRU, or
other recurrent units). However, in case of non-stationary
data these can slow down or even stagnate VAE’s learning
progress. Section 2.1 in [8] gives a detailed experimental
analysis of this issue. Hence, a better choice is to use a
convolutional encoder and decoder, with a one or more fully connected layers at the
bottleneck.

Several recent works showed that a further improvement can be achieved by
requiring to predict 𝐿 next frames instead of only reconstructing the given frames [91,
92, 8]. Hence, we use a simple predictive version of a sequential VAE defined as
follows:
𝑃𝑅𝐸𝐷𝑃𝑅𝐸𝐷𝑃𝑅𝐸𝐷: a VAE that, given a sequence of frames 𝑥1, ..., 𝑥𝑇 , constructs a predictive
sequence 𝑥1, ..., 𝑥𝑇+𝐿. First, the convolutional stack is applied to each 𝑥𝑡; then,
the 𝑇 output parts are aggregated and passed through fully connected layers.
Their output constitutes the predictive latent state. To decode: this state is
chunked into 𝑇+𝐿 parts, each fed into deconvolutional stack for reconstruction.

AML relations can be imposed on the latent state of 𝑃𝑅𝐸𝐷 by augmenting the
latent part of the loss as follows:

ℒ𝐴𝑀𝐿
𝑃𝑅𝐸𝐷=E 𝜏1:𝑇 +𝐿∼

𝑞(𝜏1:𝑇 +𝐿|𝑥1:𝑇)

[︁
−

(︁ standard 𝐸𝐿𝐵𝑂 for 𝑃𝑅𝐸𝐷 version of 𝑉𝐴𝐸⏞ ⏟
log 𝑝(𝑥1:𝑇+𝐿|𝜏1:𝑇+𝐿)−𝐾𝐿

(︀
𝑞||𝒩(0,1)

)︀)︁
+

∑︀𝐾
𝑘=1

⃒⃒
𝑔𝑘(𝜏1:𝑇+𝐿, 𝑎1:𝑇+𝐿)

⃒⃒⏟ ⏞
impose 𝐴𝑀𝐿 relations

]︁ (19)

In the above, 𝜏1:𝑇+𝐿 denotes a sample from the approximate posterior 𝑞(𝜏1:𝑇+𝐿|𝑥1:𝑇).
𝑝(𝑥1:𝑇+𝐿|𝜏1:𝑇+𝐿) denotes the likelihood for 𝑃𝑅𝐸𝐷, with magenta color indicating
that decoder outputs a predictive sequence 𝑥̂1:𝑇+𝐿 instead of a reconstruction 𝑥̂1:𝑡.
We would like to validate that imposing AML relations works well when the data is
non-stationary, hence we train 𝑃𝑅𝐸𝐷 on data stream generated during RL training.
In this case, instead of learning relations on a subsequence of states, during AML
training (described in the previous section) we learn relations on subsequences that
include actions: 𝜏 = [𝑠1, 𝑎1, 𝑠2, 𝑎2, ...].

54 CHAPTER 5. ANALYTIC MANIFOLD LEARNING

Figure 5.3: Top row: visualization of the analytic domain and noisy on-manifold data,
followed by AML relations trained using transversality. First, 𝑔1 ∩ 𝑔2 is shown: this is the
intersection of the learned relations (i.e the intersection of the zero-level sets of 𝑔1, 𝑔2). The
zero-level sets of individual relations are shown next. With transversality we get 𝑔1 ∩ 𝑔2 as
two simple relations: a plane and a hollow cylinder. Middle row: AML using transversality
when we insist on getting more than 2 relations: 𝑔1 ∩ 𝑔2 ∩ 𝑔3 ∩ 𝑔4 then includes smoothed
cones. Bottom row: AML using restricted syzygies yields more advanced shapes.

5.5 Evaluating AML and Latent Space Transfer

We evaluate the proposed AML approach with 3 sets of experiments: 1) learning
on an analytic domain and visualizing relations in 3D; 2) handling dynamics with
friction and drag on a block-on-incline domain; 3) employing relations learned on a
source domain to get better latent space properties on the YCB-on-incline as target.

Evaluating AML Training

Figure 5.3 visualizes the results on the analytic domain, for which on-manifold data
comes from an intersection of a hyperboloid and a plane. It illustrates that using
AML with transversality allows us to capture the latent data manifold using a small
number of general relations, i.e. relations with simple shapes. The illustrations
in 3D make it easy to see that these intersect transversely (top row), or attempt
to maximize the angle of intersection (middle row). In contrast, relations found
using syzygies have more complicated shapes and can be similar in some regions, as

5.5. EVALUATING AML AND LATENT SPACE TRANSFER 55

expected (bottom row). This could be useful when we need to avoid large changes,
e.g. for fine-tuning or for flexible partial transfer using subsets of relations.

Figure 5.4: block-on-incline

Next, we evaluate AML on a physics domain: a
block sliding down an incline (Figure 5.4). The block
is given a random initial velocity; gravity, friction
and drag forces then determine its further motion.
On-manifold data consists of noisy position & veloc-
ity of the block at the start and end of trajectories.
Figure 5.5 shows results for AML with transversal-
ity. Appendix B.3 in [8] gives results with syzygies.
Overall, these results show that AML can generalize
beyond training data ranges and capture non-linear
dynamics.

Figure 5.5: Phase space plots showing results for the block-on-incline domain. 1st column:
on-manifold data; 2nd column: the learned manifold encoded by the intersection of AML
relations trained with transversality; rest: zero-level sets of individual AML relations.
Arrows show change in position & velocity after 1𝑠𝑒𝑐 of sliding (scaled to fit). Top row:
plots show the case of a 45∘ incline and demonstrate generalization. AML is only given
training data with start position & velocity ∈ [0, 0.2], but is able to generalize to [0, 0.4].
Middle row: high friction on a 35∘ incline. Bottom row: high drag on a 10∘ incline.

56 CHAPTER 5. ANALYTIC MANIFOLD LEARNING

Latent Space Transfer
Emulating sim-to-real with sim-to-sim: In the final experiment we use a sim-
to-sim setting that attempts to emulate challenges that arise in sim-to-real problems.
We use a simulator with simple geometric shapes that move along an incline as a
source domain. We refer to this source/simulation domain as Geom-on-incline. To
emulate a ‘real’ domain, we use an advanced simulation involving objects with real
mesh scans and RGB images as observations. We refer to this domain as YCB-on-
incline, since it uses objects from the YCB dataset [80]. YCB-on-incline (visualized
in Figure 5.6) yields realistic visual appearances and non-trivial object dynamics.
The dynamics is dictated by meshes obtained from the 3D scans of real objects.
Hence, there is a non-trivial sim-to-‘real’ gap between the dynamics of the simple
shapes of Geom-on-incline domain vs realistic shapes of the YCB-on-incline domain.
Furthermore, instead of building a dataset of RGB images, we train VAE-based
learners directly on the stream of RGB frames that an RL agent generates during
its own training. Hence, we ensure that the distribution of observations obtained
on the target domain is non-stationary. As discussed in the introduction to this
chapter: testing whether methods can handle non-stationary data is important for
ensuring their applicability to robotics.
Measuring encoder distortion: One important quality measure of a latent space
mapping is how much it distorts the true data manifold. For the experiment that
runs on a sim-to-sim setting we have access to the low-dimensional states of the
simulator of the target domain. We denote such sequences of low-dimensional
simulation states as 𝜏 𝑡𝑟𝑢𝑒. We then quantify the distortion of the encoder map

Figure 5.6: Visualizations of the YCB-on-incline domain. The textures of the ground and
the incline plane are initialized randomly at the start of each episode. The sliding objects
are the YCB boxes and cans. This domain is implemented in PyBullet simulator; it returns
64x64 RGB frames as observations; it defines a reward function for RL agents as: distance
of the object to the center of the incline plane. This domain is a part of the evaluation
suite available at https://github.com/contactrika/bulb. See [8] for further details.

https://github.com/contactrika/bulb

5.5. EVALUATING AML AND LATENT SPACE TRANSFER 57

(on 10K test points) as follows: we take pairs of low-dimensional representations
𝜏 𝑡𝑟𝑢𝑒1 , 𝜏 𝑡𝑟𝑢𝑒2 and the corresponding pixel-based representations 𝑥1, 𝑥2, then compute
distortion coefficient 𝜌𝑑𝑖𝑠𝑡𝑜𝑟𝑡 defined below.

𝜌𝑑𝑖𝑠𝑡𝑜𝑟𝑡 = log
𝑑𝐿2

(︀
𝜑𝑒𝑛𝑐(𝑥1), 𝜑𝑒𝑛𝑐(𝑥2)

)︀
𝑑𝐿2

(︀
𝜏 𝑡𝑟𝑢𝑒1 , 𝜏 𝑡𝑟𝑢𝑒2

)︀ (20)

Here, 𝑑𝐿2 is the Euclidean distance. An encoder that yields low variance of these
coefficients preserves the geometry of the low-dimensional manifold better (up to
overall scale). This measure is related to approaches surveyed in [93, 94] (see
Appendix B.3.2 [8]). The above evaluation could be done on an actual sim-to-real
setting as well, if the real part is equipped with additional sensing. For example:
if robot’s joint angles and velocities are accurately reported; object positions and
orientation are accurately estimated by a motion capture system. Such evaluation
would be feasible in well-equipped labs. However, a sim-to-sim evaluation could be
enough to compare the quality of the encoders produced by various algorithms, so
doing this evaluation in an actual sim-to-real setting is not strictly required.

Latent Space Transfer with AML: In this experiment, we compare the results of
imposing AML relations when training 𝑃𝑅𝐸𝐷 on YCB-on-incline to two baselines:
1) 𝑃𝑅𝐸𝐷 without AML relations imposed, and 2) a basic non-sequential 𝑉𝐴𝐸.

First, AML learns relations from Geom-on-incline domain. Incline angle, friction
and object pose are initialized randomly. Actions are random forces that push
objects along the incline. AML is given the incline angle, position & velocity at
two subsequent steps, and the applied action. Note that, for the sim-to-real and
sim-to-sim settings we have access to the simulator state of the source domains.
Hence, we can use the low-dimensional state sequences to as training data for AML
to learn the ‘latent’ data manifold of the source domain. For general cases that do
not involve physics simulators: we could instead learn a VAE-based embedding on
the source domain. This would yield the low-dimensional latents for learning AML
relations on the source domain.

Then, we evaluate the latent space transfer to the target domain. For this,
we train an unsupervised learner (𝑃𝑅𝐸𝐷) on the target domain: YCB-on-incline.
This domain is visualized in Figure 5.6. Recall that this sim-to-sim setup aims to
emulate the challenges of sim-to-real transfer. In this case, Geom-on-incline plays a
role of a simulator, while RGB frames from YCB-on-incline act as surrogates for
‘real’ observations. The distribution of the frames is non-stationary, since they are
sampled using the current (changing) policy of the RL learner. We use PPO [81] to
learn RL policies. The reward for RL is defined to be proportional to how close an
object stays to the middle of the incline, i.e. RL has to learn to counteract gravity
without pushing objects off the narrow incline plane. This task can be challenging,
since several YCB objects we use have rounded shapes, causing them to easily roll
off the sides of the incline plane.

We impose AML relations by extending the latent part of an ELBO-based loss
as defined by Equation 19, explained in detail in the previous section. The left

58 CHAPTER 5. ANALYTIC MANIFOLD LEARNING

Figure 5.7: Results of imposing AML relations trained from Geom-on-incline domain when
training 𝑃𝑅𝐸𝐷 on the target YCB-on-incline. Left plot shows latent state alignment
for object position computed using evaluation suite from [8]. The test observations for
evaluation are obtained using a random policy 𝜋𝑟𝑎𝑛𝑑. This is because we want to ensure
that the alignment is good everywhere, not just in the state space regions that are visited
often by the current RL policy. The results indicate that AMLtrnsv and AMLsyz yield better
alignment. The right plot in Figure 5.7 shows the distortion variability of the encoder map
during training. It indicates that AMLtrnsv and AMLsyz produce less distorting encoders
that those obtained by than 𝑉𝐴𝐸 and 𝑃𝑅𝐸𝐷 without AML relations imposed.

plot in Figure 5.7 shows that the resulting AMLtrnsv (AMLsyz when using syzygies)
gets a better latent state alignment for object position, compared to 𝑉𝐴𝐸 and
𝑃𝑅𝐸𝐷 without AML relations imposed. Latent state alignment with the true
simulation state is obtained using the evaluation suite described in Section 2 in [8].
The right plot in Figure 5.7 confirms that imposing AML relations trained with
either transversality (𝐴𝑀𝐿𝑡𝑟𝑛𝑠𝑣) or syzygies (𝐴𝑀𝐿𝑠𝑦𝑧) yields an encoder with a
lower distortion variability (i.e. lower variance of 𝜌𝑑𝑖𝑠𝑡𝑜𝑟𝑡 coefficients defined by
Equation 20).

Overall, results in Figure 5.7 show that imposing AML relations helps improve
the latent space mapping of 𝑃𝑅𝐸𝐷 when training on RGB frames that come from
a non-stationary data stream of an RL learner.

Chapter 6

Conclusions and Future Directions

This thesis work presented several transfer-aware approaches. The proposed methods
can incorporate large-scale data from imprecise simulations, while still retaining
flexibility and agility for further active learning on hardware.

Methods from Chapter 3 demonstrated closing the sim-to-real gap using only
10 BO trials on a range of hardware platforms and tasks: bipedal locomotion
with ATRIAS, hexapod locomotion with Daisy, task-oriented grasping and non-
prehensile manipulation with ABB Yumi. BO-SVAE-DC method from Section 3.3
demonstrated applicability to different areas of robotics without requiring domain
knowledge beyond setting up a general-purpose simulation of a target task. The code
for this approach is available at https://github.com/contactrika/bo-svae-dc.
It utilizes an open-source physics simulator PyBullet [73] and a recent open-source
scalable BO library: BOTorch [95]. Hence, this code has the potential to be
universally accessible and useful to the robotics community.

Chapter 4 provided an alternative way of utilizing simulation. The det2stoc
method interpreted simulators as regularizers for conditional VAEs. Sim-to-sim
experiments in [7] indicated that det2stoc could achieve better results than a
CVAE that was given 10-100 times more data for training. This thesis focused on
presenting the sim-to-real experiments (also described in [7]) to demonstrate the
ability of det2stoc to close the sim-to-real gap with hardware data. The use of
simulation by det2stoc can also be interpreted as placing an informed prior on
the decoder. This ‘simulation prior’ is more flexible than parametric priors that are
forced to encode information in a set of parameters of a chosen distribution. As a
result, the decoder of det2stoc yields a forward dynamics model 𝑝𝜑𝑚𝑖𝑥(𝑠𝑠𝑠𝑡+1 |𝑠𝑠𝑠𝑡, 𝑎𝑎𝑎𝑡)
that utilizes simulation as a strong prior, but is also adapted to the real data. The
adaptation to reality happens via finding simulation parameter posterior consistent
with the data obtained from hardware. The future direction for this work would
be to investigate the benefits this forward model can offer to methods like model
predictive control (MPC).

59

https://github.com/contactrika/bo-svae-dc

60 CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS

Figure 6.1: A conceptual illustration that shows groceries from two different countries:
objects that are similar in function but substantially different in appearance.

6.1 Lifelong Learning: Fast and Slow
Chapter 5 presented a general approach to learn latent relations on
source domains and transfer them to target domains. AML was applied
to physics and robotics domains. However, in general AML does not
assume that source or target domains are from any particular field.
As as long some relations exist between the subsequences of latent
states – AML would attempt to learn them, and would succeed if a
chosen function approximator is capable of representing them. The
modularity of the resulting latent relations is aimed to enable AML to
tackle challenging future directions, such as lifelong learning.

Consider an autonomous agent that has acquired useful skills appro-
priate to a given environment e.g. a household robot doing a set of house-
hold chores. Suppose this agent is transported to an environment that
has a different appearance, but similar latent rules/regularities/relations
e.g a robot is moved to a different country to perform similar household
tasks. In such cases we would like the agent to:

- quickly adapt to new visual appearances
- leverage experience embedded in the latent space structure,

i.e. rules/regularities/relations inferred from previous experiences
- learn to infer new relations to better reshape the latent space, and

retain ability to quickly re-adapt to the original environment

A sketch of applying AML to this situation could be as follows:
Step 0: Learn a latent embedding on the source domain.
We assume that the source domain has plenty of data.
This data can be from large datasets with real data or
it could be synthetically generated data.
Step 1: Learn relations to capture the latent data manifold.
We can learn a modular set of (non-linearly) independent
relations using AML.

6.1. LIFELONG LEARNING: FAST AND SLOW 61

Step 2: Impose the learnedAMLrelations
to help retain latent space structure when
learning on the target domain.

By imposing AML relations we can ensure
that the latent space does not lose its previ-
ous structure rapidly. We can benefit from
this by gaining an ability to increase encoder
& decoder learning rates. This would help to adapt faster to changes in visual/high-
dimensional aspects of the ‘new world’. Hence, the agent would be able to quickly
adjust to the new visual appearances.

To let the latent space evolve/adapt as
well: we could introduce weights for each
imposed relation and slowly adapt them
(e.g. by propagating gradients through the
weights). We could suppress relations whose
weights decay to zero and could also gradually expand the set by learning new
relations.

We might anticipate that the agent
would return to the ‘old world’ at some point.
However, the agent might not want to store
all 𝑓𝑒𝑛𝑐, 𝑓𝑑𝑒𝑐 NNs from all the new environ-
ments it visits (these NNs would be large).
Nonetheless, the agent could keep all the previously learned relations (small NNs),
even those with weights ≈0. Hence, the old set of the latent relations and weights
could be used upon return to the ‘old world’.

Overall, this alternative way of adapting to new environments could be better
than starting from scratch and better than fine-tuning. Starting from scratch is
not data-efficient. Fine-tuning large NNs is prone to getting stuck in local optima,
causing permanent degradation of performance, especially in case of a non-trivial
gap between the visual appearances (or, in general, some high-dimensional aspects)
of the source and target domains.

Another promising direction would be to learn policy representations (rather
than state representations). If AML could be used to learn policies that are in some
sense independent, then we could provide a way to learn a portfolio of policies that
are complementary. Then, we could construct algorithms for learning diversified
portfolios, such that a system capable of executing any policy in a portfolio could
provide robustness to uncertainty and changes in the environment.

Bibliography

[1] An early “all models are wrong” perspective: Box, George EP. Robustness
in the strategy of scientific model building. Robustness in statistics, pages
201–236, 1979.

[2] Rika Antonova, Akshara Rai, and Christopher G Atkeson. Deep kernels for
optimizing locomotion controllers. In Conference on Robot Learning (CoRL),
2017.

[3] Akshara Rai, Rika Antonova, Seungmoon Song, William Martin, Hartmut
Geyer, and Christopher Atkeson. Bayesian optimization using domain knowl-
edge on the atrias biped. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), 2018.

[4] Akshara Rai, Rika Antonova, Franziska Meier, and Christopher G Atkeson.
Using simulation to improve sample-efficiency of bayesian optimization for
bipedal robots. Journal of Machine Learning Research (JMLR), 2019.

[5] Rika Antonova, Akshara Rai, Tianyu Li, and Danica Kragic. Bayesian opti-
mization in variational latent spaces with dynamic compression. In Conference
on Robot Learning (CoRL), 2019.

[6] Rika Antonova, Mia Kokic, Johannes A Stork, and Danica Kragic. Global
search with bernoulli alternation kernel for task-oriented grasping informed by
simulation. In Conference on Robot Learning (CoRL), 2018.

[7] Matin Hwasser, Danica Kragic, and Rika Antonova. Variational auto-regularized
alignment for sim-to-real control. In To appear in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020.

[8] Rika Antonova, Maksim Maydanskiy, Danica Kragic, Sam Devlin, and Katja
Hofmann. Analytic manifold learning: Unifying and evaluating representations
for continuous control. arXiv preprint arXiv:2006.08718, 2020.

[9] Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing
and avoiding negative transfer. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 11293–11302, 2019.

63

64 BIBLIOGRAPHY

[10] Yusen Zhan, Haitham Bou Ammar, et al. Theoretically-grounded policy advice
from multiple teachers in reinforcement learning settings with applications to
negative transfer. arXiv preprint arXiv:1604.03986, 2016.

[11] Igor Mordatch, Kendall Lowrey, and Emanuel Todorov. Ensemble-cio: Full-
body dynamic motion planning that transfers to physical humanoids. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5307–5314. IEEE, 2015.

[12] Homanga Bharadhwaj, Zihan Wang, Yoshua Bengio, and Liam Paull. A data-
efficient framework for training and sim-to-real transfer of navigation policies.
In 2019 International Conference on Robotics and Automation (ICRA), pages
782–788. IEEE, 2019.

[13] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots
that can adapt like animals. Nature, 521(7553):503–507, 2015.

[14] Marvin Zhang, Xinyang Geng, Jonathan Bruce, Ken Caluwaerts, Massimo
Vespignani, Vytas SunSpiral, Pieter Abbeel, and Sergey Levine. Deep reinforce-
ment learning for tensegrity robot locomotion. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 634–641. IEEE, 2017.

[15] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar
Hafner, Steven Bohez, and Vincent Vanhoucke. Sim-to-real: Learning agile
locomotion for quadruped robots. In Robotics: Science and Systems (RSS),
2018.

[16] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain randomization for transferring deep neural networks
from simulation to the real world. In 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017.

[17] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac,
Nathan Ratliff, and Dieter Fox. Closing the sim-to-real loop: Adapting simula-
tion randomization with real world experience. In International Conference on
Robotics and Automation (ICRA), pages 8973–8979. IEEE, 2019.

[18] Rika Antonova, Silvia Cruciani, Christian Smith, and Danica Kragic. Rein-
forcement learning for pivoting task. arXiv preprint arXiv:1703.00472, 2017.

[19] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz,
Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell,
Alex Ray, et al. Learning dexterous in-hand manipulation. The International
Journal of Robotics Research, 39(1):3–20, 2020.

[20] 2nd Workshop on Closing the Reality Gap in Sim2Real Transfer for Robotics.
https://sim2real.github.io. Robotics: Science and Systems, 2020.

https://sim2real.github.io

BIBLIOGRAPHY 65

[21] Fabio Ramos, Rafael Possas, and Dieter Fox. BayesSim: Adaptive Domain
Randomization Via Probabilistic Inference for robotics simulators. In Robotics:
Science and Systems, 2019.

[22] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando
De Freitas. Taking the Human Out of the Loop: A Review of Bayesian
Optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

[23] Eric Brochu, Vlad M Cora, and Nando De Freitas. A Tutorial on Bayesian Op-
timization of Expensive Cost Functions, with Application to Active User Model-
ing and Hierarchical Reinforcement Learning. arXiv preprint arXiv:1012.2599,
2010.

[24] J Mockus, V Tiesis, and A Zilinskas. Chapter: Bayesian Methods for Seeking
the Extremum. Toward Global Optimization, Volume 2, 1978.

[25] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger.
Gaussian Process Optimization in the Bandit Setting: No Regret and Experi-
mental Design. Proceedings of the 27th International Conference on Machine
Learning (ICML), 2010.

[26] Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine
learning (gpml) toolbox. J. Mach. Learn. Res., 11:3011–3015, December 2010.

[27] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and An-
drew Gordon Wilson. Gpytorch: Blackbox matrix-matrix gaussian process
inference with gpu acceleration. In Advances in Neural Information Processing
Systems, 2018.

[28] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). The
MIT Press, 2005.

[29] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using
pseudo-inputs. In Advances in neural information processing systems, pages
1257–1264, 2006.

[30] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of
sparse approximate gaussian process regression. Journal of Machine Learning
Research, 6(Dec):1939–1959, 2005.

[31] Michalis Titsias. Variational learning of inducing variables in sparse gaussian
processes. In Artificial Intelligence and Statistics, pages 567–574, 2009.

[32] Thang D Bui, Josiah Yan, and Richard E Turner. A unifying framework
for gaussian process pseudo-point approximations using power expectation
propagation. The Journal of Machine Learning Research, 18(1):3649–3720,
2017.

66 BIBLIOGRAPHY

[33] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian
optimization of machine learning algorithms. In Advances in neural information
processing systems (NIPS), pages 2951–2959, 2012.

[34] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian
processes for data-efficient learning in robotics and control. IEEE transactions
on pattern analysis and machine intelligence, 37(2):408–423, 2013.

[35] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research, 32(11):1238–
1274, 2013.

[36] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based
reinforcement learning: Applications on robotics. Journal of Intelligent &
Robotic Systems, 86(2):153–173, 2017.

[37] Mustafa Mukadam, Xinyan Yan, and Byron Boots. Gaussian process motion
planning. In 2016 IEEE international conference on robotics and automation
(ICRA), pages 9–15. IEEE, 2016.

[38] Stanimir Dragiev, Marc Toussaint, and Michael Gienger. Gaussian process
implicit surfaces for shape estimation and grasping. In 2011 IEEE International
Conference on Robotics and Automation, pages 2845–2850. IEEE, 2011.

[39] Zhe Hu, Peigen Sun, and Jia Pan. Three-dimensional deformable object
manipulation using fast online gaussian process regression. IEEE Robotics and
Automation Letters, 3(2):979–986, 2018.

[40] Nawid Jamali, Carlo Ciliberto, Lorenzo Rosasco, and Lorenzo Natale. Active
perception: Building objects’ models using tactile exploration. In 2016 IEEE-
RAS 16th International Conference on Humanoid Robots (Humanoids), pages
179–185. IEEE, 2016.

[41] Sergio Caccamo, Yasemin Bekiroglu, Carl Henrik Ek, and Danica Kragic. Active
exploration using gaussian random fields and gaussian process implicit surfaces.
In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 582–589. IEEE, 2016.

[42] Matthew Tesch, Jeff Schneider, and Howie Choset. Using response surfaces and
expected improvement to optimize snake robot gait parameters. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
1069–1074. IEEE, 2011.

[43] Daniel J Lizotte, Tao Wang, Michael H Bowling, and Dale Schuurmans. Auto-
matic Gait Optimization with Gaussian Process Regression. In International
Joint Conference on Artificial Intelligence (IJCAI), volume 7, pages 944–949,
2007.

BIBLIOGRAPHY 67

[44] OB Kroemer, Renaud Detry, Justus Piater, and Jan Peters. Combining active
learning and reactive control for robot grasping. Robotics and Autonomous
systems, 58(9):1105–1116, 2010.

[45] Luis Montesano and Manuel Lopes. Active learning of visual descriptors for
grasping using non-parametric smoothed beta distributions. Robotics and
Autonomous Systems, 60(3):452–462, 2012.

[46] John Oberlin and Stefanie Tellex. Autonomously acquiring instance-based
object models from experience. In Robotics Research, pages 73–90. Springer,
2018.

[47] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás
Póczos. Multi-fidelity Bayesian Optimisation with Continuous Approximations.
In International Conference on Machine Learning (ICML), pages 1799–1808,
2017.

[48] Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P Schoellig, Andreas
Krause, Stefan Schaal, and Sebastian Trimpe. Virtual vs. real: Trading off
simulations and physical experiments in reinforcement learning with bayesian
optimization. In 2017 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 1557–1563. IEEE, 2017.

[49] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing.
Deep kernel learning. In Artificial Intelligence and Statistics, pages 370–378,
2016.

[50] Roberto Calandra, Jan Peters, Carl Edward Rasmussen, and Marc Peter
Deisenroth. Manifold gaussian processes for regression. In 2016 International
Joint Conference on Neural Networks (IJCNN), pages 3338–3345. IEEE, 2016.

[51] Aaron Wilson, Alan Fern, and Prasad Tadepalli. Using Trajectory Data to
Improve Bayesian Optimization for Reinforcement Learning. The Journal of
Machine Learning Research (JMLR), 15(1):253–282, 2014.

[52] Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for
Bayesian optimization of non-stationary functions. In International Conference
on Machine Learning (ICML), pages 1674–1682, 2014.

[53] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K
Saul. An introduction to variational methods for graphical models. Machine
learning, 37(2):183–233, 1999.

[54] Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Ad-
vances in variational inference. IEEE transactions on pattern analysis and
machine intelligence, 41(8):2008–2026, 2018.

68 BIBLIOGRAPHY

[55] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[56] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic
backpropagation and variational inference in deep latent gaussian models. In
International Conference on Machine Learning, volume 2, 2014.

[57] Jakub Tomczak and Max Welling. Vae with a vampprior. In International
Conference on Artificial Intelligence and Statistics, pages 1214–1223, 2018.

[58] Jan Stuehmer, Richard Turner, and Sebastian Nowozin. Independent subspace
analysis for unsupervised learning of disentangled representations. In Conference
on Artificial Intelligence and Statistics (AISTATS), 2020.

[59] Li Yingzhen and Stephan Mandt. Disentangled sequential autoencoder. In
International Conference on Machine Learning, pages 5670–5679, 2018.

[60] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning Structured Output
Representation using Deep Conditional Generative Models. In Advances in
Neural Information Processing Systems, 2015.

[61] Timothée Lesort, Natalia Díaz-Rodríguez, Jean-Franois Goudou, and David
Filliat. State representation learning for control: An overview. Neural Networks,
108:379–392, 2018.

[62] Rika Antonova, Akshara Rai, and Christopher G Atkeson. Sample efficient
optimization for learning controllers for bipedal locomotion. In 2016 IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids), pages 22–28.
IEEE, 2016.

[63] Christian Hubicki, Jesse Grimes, Mikhail Jones, Daniel Renjewski, Alexander
Spröwitz, Andy Abate, and Jonathan Hurst. ATRIAS: Design and validation of
a tether-free 3D-capable spring-mass bipedal robot. The International Journal
of Robotics Research (IJRR), 35(12):1497–1521, 2016.

[64] BJN Blight and L Ott. A bayesian approach to model inadequacy for polynomial
regression. Biometrika, 62(1):79–88, 1975.

[65] Zachary Batts, Seungmoon Song, and Hartmut Geyer. Toward a virtual
neuromuscular control for robust walking in bipedal robots. In 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
6318–6323. IEEE, 2015.

[66] Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel.
The variational fair autoencoder. International Conference on Learning Repre-
sentations, 2016.

BIBLIOGRAPHY 69

[67] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.
Semi-supervised learning with deep generative models. In Advances in neural
information processing systems, pages 3581–3589, 2014.

[68] Pedro J Moreno, Purdy P Ho, and Nuno Vasconcelos. A kullback-leibler
divergence based kernel for svm classification in multimedia applications. In
Advances in neural information processing systems, pages 1385–1392, 2004.

[69] Tom Minka. Divergence measures and message passing. Technical report,
Microsoft Research, 2005.

[70] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[71] Carlos Riquelme, Matthew Johnson, and Matt Hoffman. Failure modes of
variational inference for decision making. Prediction and Generative Modeling
in RL Workshop (AAMAS, ICML, IJCAI), 2018.

[72] Sebastian Tschiatschek, Kai Arulkumaran, Jan Stühmer, and Katja Hof-
mann. Variational inference for data-efficient model learning in pomdps.
arXiv:1805.09281, 2018.

[73] Pybullet simulator. https://github.com/bulletphysics/bullet3. Accessed:
2019-06.

[74] Hebi Robotics. http://docs.hebi.us. Accessed: 2019-06.

[75] Alessandro Crespi and Auke Jan Ijspeert. Online optimization of swimming
and crawling in an amphibious snake robot. IEEE Transactions on Robotics,
24(1):75–87, 2008.

[76] S Surjanovic and D Bingham. Virtual library of simulation experiments: test
functions and datasets. Simon Fraser University, Burnaby, BC, Canada,
13:2015, 2013.

[77] Rosen Diankov and James Kuffner. Openrave: A planning architecture for
autonomous robotics. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-
TR-08-34, 79, 2008.

[78] Carlos Rubert, Daniel Kappler, Antonio Morales, Stefan Schaal, and Jeannette
Bohg. On the relevance of grasp metrics for predicting grasp success. In Intel-
ligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference
on, pages 265–272. IEEE, 2017.

[79] Nikolaus Correll, Kostas E Bekris, Dmitry Berenson, Oliver Brock, Albert
Causo, Kris Hauser, Kei Okada, Alberto Rodriguez, Joseph M Romano, and
Peter R Wurman. Analysis and observations from the first amazon pick-
ing challenge. IEEE Transactions on Automation Science and Engineering,
15(1):172–188, 2016.

https://github.com/bulletphysics/bullet3
http://docs.hebi.us

70 BIBLIOGRAPHY

[80] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel,
and Aaron M Dollar. The ycb object and model set: Towards common
benchmarks for manipulation research. In International Conference on Advanced
Robotics (ICAR), pages 510–517. IEEE, 2015.

[81] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[82] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech
Zaremba. Hindsight experience replay. In Advances in Neural Information
Processing Systems, pages 5048–5058, 2017.

[83] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine
for model-based control. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 5026–5033. IEEE, 2012.

[84] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox,
Jürgen Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford,
and Peter Corke. The limits and potentials of deep learning for robotics. The
International Journal of Robotics Research, 37(4-5):405–420, 2018.

[85] Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised
learning of invariances. Neural computation, 14(4):715–770, 2002.

[86] Varun Raj Kompella, Matthew Luciw, and Juergen Schmidhuber. Incremental
slow feature analysis: Adaptive and episodic learning from high-dimensional
input streams. arXiv preprint arXiv:1112.2113, 2011.

[87] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre
Côté, and R Devon Hjelm. Unsupervised state representation learning in
ATARI. In Advances in Neural Information Processing Systems 32, pages
8766–8779, 2019.

[88] Selman Akbulut and Henry King. On approximating submanifolds by algebraic
sets and a solution to the nash conjecture. Inventiones mathematicae, 107(1):87–
98, 1992.

[89] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization.
In Proceedings of the 30th international conference on machine learning, number
CONF, pages 427–435, 2013.

[90] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christo-
pher Burgess, Daniel Zoran, Loic Matthey, Matthew Botvinick, and Alexander
Lerchner. Multi-object representation learning with iterative variational infer-
ence. In International Conference on Machine Learning, 2019.

BIBLIOGRAPHY 71

[91] Haiyan Yin, Jianda Chen, and Sinno Jialin Pan. Hashing over predicted future
frames for informed exploration of deep reinforcement learning. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence
(IJCAI), 2018.

[92] Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal,
Katja Hofmann, and Shimon Whiteson. Varibad: A very good method for
bayes-adaptive deep rl via meta-learning. 2020.

[93] Leena Chennuru Vankadara and Ulrike von Luxburg. Measures of distortion
for machine learning. In Advances in Neural Information Processing Systems
31, pages 4886–4895. 2018.

[94] Yair Bartal, Nova Fandina, and Ofer Neiman. Dimensionality reduction: theo-
retical perspective on practical measures. In Advances in Neural Information
Processing Systems, pages 10576–10588, 2019.

[95] M. Balandat, B. Karrer, D. Jiang, B. Letham, S. Daulton, A. Wilson, E. Bakshy.
BoTorch. https://botorch.org/. Accessed: 2019-05.

https://botorch.org/

Part II

Included Publications

Bayesian Optimization in Variational
Latent Spaces with Dynamic Compression

Rika Antonova1

EECS, KTH, Stockholm, Sweden
Akshara Rai1

Facebook AI Research

Tianyu Li
Facebook AI Research

Danica Kragic
EECS, KTH, Stockholm, Sweden

Abstract

Data-efficiency is crucial for autonomous robots to adapt to new tasks
and environments. In this work, we focus on robotics problems with a bud-
get of only 10-20 trials. This is a very challenging setting even for data-
efficient approaches like Bayesian optimization (BO), especially when optimiz-
ing higher-dimensional controllers. Previous work extracted expert-designed
low-dimensional features from simulation trajectories to construct informed
kernels and run ultra sample-efficient BO on hardware. We remove the need for
expert-designed features by proposing a model and architecture for a sequential
variational autoencoder that embeds the space of simulated trajectories into a
lower-dimensional space of latent paths in an unsupervised way. We further
compress the search space for BO by reducing exploration in parts of the state
space that are undesirable, without requiring explicit constraints on controller
parameters. We validate our approach with hardware experiments on a Daisy
hexapod robot and an ABB Yumi manipulator. We also present simulation
experiments with further comparisons to several baselines on Daisy and two
manipulators. Our experiments indicate the proposed trajectory-based kernel
with dynamic compression can offer ultra data-efficient optimization.
Keywords: Bayesian optimization, Variational inference, Data-efficient RL

1 Introduction

Reinforcement learning (RL) is becoming popular in robotics, since in some cases
it can deal with real-world challenges, such as noise in control and measurements,
non-convexity and discontinuities in objectives. However, most flexible RL methods

1Both of these authors contributed equally.

In proceedings of the 3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.
Published by PMLR http://proceedings.mlr.press/v100/antonova20a License: CC-BY 4.0

http://proceedings.mlr.press/v100/antonova20a

A2 PAPER A. BAYESIAN OPTIMIZATION IN LATENT SPACES

Figure 1: An overview of our approach: We start by simulating controllers and collecting
their trajectories 𝜉𝜉𝜉, along with the fraction of time spent in undesirable regions given by
𝐺𝑏𝑎𝑑. Next, we learn to embed trajectories into a lower-dimensional a space of latent
paths 𝜏𝜏𝜏 . We use dynamic compression to scale distances between latent paths based on
their desirability. This dynamically compressed latent space is used for BO on hardware.
Trajectory data 𝜉𝜉𝜉 consists of high-frequency readings of robot joint angles and object
position/velocity estimates (the framework can accommodate vision-based data in the
future, but we do not experiment with it in this work).

require thousands to millions of data samples, which can make direct application
to real-world robotics infeasible. For example, 10,000 30s trials/episodes on a real
robot would require ≈100 hours of operation. Most full-scale platforms, especially in
locomotion, cannot operate this long without maintenance. Nowadays, commercially
available arms can operate for longer, however sophisticated anthropomorphic hands
and advanced grippers are still highly prone to breakage after even a handful of
trials [1]. Hence the need for algorithms that can learn in very few trials, without
causing significant wear-and tear to the hardware.

In this work we focus on cases with a budget of only 10-20 trials. In such settings,
using approaches like Bayesian optimization (BO) to adjust parameters of structured
controllers can help improve data efficiency. However, success of BO on hardware has
been demonstrated either with low-dimensional controllers or with simulation-based
kernels that required hand-designed features. We propose learning simulation-based
kernels in an unsupervised way with a sequential variational autoencoder (SVAE).
Our approach embeds simulated trajectories 𝜉𝜉𝜉 to a space of latent paths 𝜏𝜏𝜏 , and
jointly learns a probability distribution 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥) that controllers with parameters
𝑥𝑥𝑥 induce over the space of latent paths. We were inspired by initial success of
trajectory-based BO kernels [2], however that was demonstrated for BO in low
dimensions (2-4D). Our results show that performance of a kernel based on raw
trajectories deteriorates quickly for higher-dimensional problems. In contrast, our
kernel based on latent paths can still offer gains even for 48-dimensional controllers.

Global optimization in latent space can still suffer from sampling unsuccessful
controllers, especially in the absence of dense rewards. One solution can be adding
domain-specific constraints to point optimization in the right direction. While
these can be hard to define in controller parameter space, frequently they can be
easily expressed in observation/state space. For example, high velocities might be
undesirable if they result in hard impacts. However, formulating this as constrained

2. BACKGROUND AND RELATED WORK A3

optimization could result in overly conservative controllers. Instead, we incorporate
controller desirability into BO by reducing exploration in the part of the trajectory
space that leads to undesirable behavior. We compress the search space during BO
dynamically by scaling the distance between controllers based on their desirability,
initially inferred from simulation. BO can then quickly reject the undesirable parts
of the search space, allowing for more exploration in the desirable parts. Figure 1
gives an overview of the proposed approach.

We test our approach (SVAE-DC: informed SVAE kernel with Dynamic Com-
pression) on a Daisy hexapod and an ABB Yumi manipulator on hardware. We
also conduct further simulation-based analysis on Daisy and two manipulators. On
Daisy, our method consistently learns to walk in less than 10 hardware trials, outper-
forming uninformed BO. We also demonstrate significant gains on a nonprehensile
manipulation task on Yumi. All latent components of our kernel can be adjusted
online (by optimizing marginal likelihood as is done for BO hyperparameters). We
anticipate that such adjustment could be useful for future works for settings with a
medium budget of trials (≈100+). Our code builds on the recently released BoTorch
library [3] that supports highly scalable BO on GPUs. We open source our code for
simulation environments, training and BO2.

2 Background and Related Work

For learning with a small number of trials we turn to Bayesian Optimization
(BO). It can be thought of as a data-efficient RL method that obtains a reward
only at the end of each trial/episode. BO offers a principled way to trade-off
exploration vs exploitation (see BO introduction and overview in [4]). For higher-
dimensional robotics problems BO can benefit significantly from using simulation-
based kernels. However, previous work required defining domain-specific features
to be extracted from large-scale simulation data (see Section 2.1). Variational
Autoencoders (VAEs) [5] provide an unsupervised alternative for embedding high-
dimensional observations into a lower-dimensional space. For example, [6] recently
used VAE in a Gaussian Process (GP) kernel to optimize chemical molecules. In
robotics, VAEs have been used to process visual and tactile data (see [7] for a survey).
We are interested in encoding trajectory data, so a sequential VAE (SVAE) could
be applicable. [8, 9] show SVAEs learning latent dynamics. However, their physics
simulations are low-dimensional (e.g. position of a 2D ball), sequences have length
20-30 steps, and the focus is on visual reconstruction. We aim to develop SVAE
architecture that can easily handle simulations from full-scale robotics systems (state
spaces 27D+) and much longer sequences (lengths 500-1000).

Our original motivation for embedding trajectory data into the kernel was
Behavior Based Kernel (BBK) [2]. On low-dimensional problems it outperformed
PILCO [10], which is one of the most popular model-based RL algorithms and
has been widely used for small domains. For larger domains, such as those in our

2SVAE-DC and BO code: https://github.com/contactrika/bo-svae-dc

https://github.com/contactrika/bo-svae-dc

A4 PAPER A. BAYESIAN OPTIMIZATION IN LATENT SPACES

experiments, scaling PILCO can be difficult or intractable (see Section 5 in [2]).
Instead of a direct comparison to PILCO, we compare our approach to a scalable
version of BBK. BBK is directly applicable only to stochastic policies, but we adapted
it to our setting as BBK-KL baseline. We randomize simulator parameters when
collecting trajectories. Hence, even if the simulator and controllers are deterministic,
each controller still induces a probability distribution over the trajectories. As
proposed for BBK, for kernel distances we used symmetrized KL between trajectory
distributions induced by the controllers. The generation and reconstruction parts of
SVAE were used to estimate this KL. Since this baseline uses a neural network in
the kernel, there is some relation to methods in [11, 12] (though these focused on
GP regression, and did not use trajectories).

A part of our work can be viewed as learning a low-dimensional representation
of trajectories, which is widely studied in robotics. For example, [13] use dynamic
movement primitives (DMPs) to encode human demonstrations. Our locomotion
controller is a variant of a cyclic DMP, which assumes synchronization between
the different joints of the robot. For locomotion, we provide comparisons to BO
with a standard kernel, which gives a sense of the performance of optimizing
DMP parameters with standard BO. However, for manipulation DMPs require
demonstrations for data-efficiency. Since we do not assume access to those, such
approaches cannot be directly compared to our setup.

2.1 BO for Locomotion and Manipulation

Locomotion controllers most commonly used for real systems are structured and
parametric [14, 15, 16]. BO has been used to optimize their parameters, e.g. [17,
18, 19]. Typically, these methods take ≈40 trials for low-dimensional controllers
(3-5D). For high-dimensional controllers further domain information is needed. For
example [20] use simulation and user-defined features to transform the space of a
36-dimensional controller into 6D, making the search for walking controllers of a
hexapod much more data-efficient. [21] employ bipedal locomotion features to build
informed kernels. While a number of other RL methods can succeed in simulation,
obtaining results applicable for locomotion on hardware is challenging. Recently,
[22, 23] showed that a deep RL method (PPO [24]) can be used for locomotion
on hardware. However, they learn conservative controllers in simulation and help
transfer via system identification of actuator dynamics [22] and a user-designed
structured controller [23]. While these methods can help, they do not guarantee
that a controller learned in simulation will perform well on hardware. [25] showed
learning to walk on a Minitaur quadruped in only two hours. Minitaur has 8 motors
that control its longitudinal motion, and no actuation for lateral movements. In
comparison, our hexapod (Daisy) has 18 motors and omni-directional movements.
Hence, learning control for Daisy would require significantly longer training. Since
most present day locomotion robots (including Daisy) get damaged from wear
and tear when operated for long, approaches that succeed for simpler quadruped
controllers could be intractable in this setting.

3. SVAE-DC: LEARNING INFORMED TRAJECTORY EMBEDDINGS A5

In manipulation, active learning and BO have been used, for example, for
grasping [26, 27]. These works did not incorporate simulation into the kernel,
so their performance would be similar to BO with uninformed/standard kernel.
[28] showed advantages of a simulation-based kernel, but needed grasping-specific
features. Somewhat related are works in sim-to-real transfer, like [1], though many
have visuomotor control as the focus (not considered here) and usually do not
adapt online. [29] do adjust simulation parameters to match reality, so it would
be interesting to combine this with BO in the future for global optimality (their
work employs PPO, which is locally optimal). Due to uncertainty over friction
and contact forces, sim-to-real is challenging for non-prehensile problems. However,
such motions can be useful to make solutions feasible (e.g pushing when the object
is too large/heavy to lift or the goal is out of reach). [30, 31] report success
in transfer/adaptation on a push-to-goal task, showing the task is challenging
but feasible. In our experiments we consider a ‘stable push’ task: push two tall
objects across a table without tipping them over. The further challenges come from
interaction between objects and inability to recover from them tipping over.

3 SVAE-DC: Learning Informed Trajectory Embeddings

We model our setting as a joint Variational Inference problem: learning to com-
press/reconstruct trajectories while at the same time learning to associate controllers
with their corresponding probability distributions over the latent paths. For this we
develop a version of sequential VAE (SVAE). The training is guided by ELBO (Evi-
dence Lower Bound) derived for our setting directly from the modeling assumptions
and doesn’t require any auxiliary objectives.
First, we define notation:
𝜋𝑥𝑥𝑥 : policy/controller with parameters 𝑥𝑥𝑥,𝑥𝑥𝑥 ∈ R𝐷; policies can be either determin-
istic or stochastic; for brevity we will refer to 𝜋𝑥𝑥𝑥 simply as ‘controller 𝑥𝑥𝑥’
𝜉𝜉𝜉 ≡ 𝜉𝜉𝜉1:𝑇 : original trajectory for 𝑇 time steps containing high-frequency sensor
readings
𝜏𝜏𝜏 ≡ 𝜏𝜏𝜏1:𝐾 : latent space ‘path’ (embedding of a trajectory)
𝑝(𝜉𝜉𝜉1:𝑇 |𝑥𝑥𝑥) : a conditional probability distribution over the trajectories induced
by controller 𝑥𝑥𝑥; the relationship between the controller and trajectories could be
probabilistic either because the controller is stochastic, or because the simulator
environment is stochastic, or both
𝑝(𝜏𝜏𝜏1:𝐾 |𝑥𝑥𝑥) : a conditional probability distribution over latent space paths induced
controller by 𝑥𝑥𝑥
𝐺𝑏𝑎𝑑 : 𝑆→ {0, 1} a map denoting whether an observation 𝜉𝜉𝜉𝑡 ∈ 𝑆 is within an
undesirable region
𝑦 : fraction of time 𝜉𝜉𝜉 spends in undesirable regions; 𝜓𝜓𝜓 learns analogous notion for
a latent path 𝜏𝜏𝜏

A6 PAPER A. BAYESIAN OPTIMIZATION IN LATENT SPACES

Figure 2: A sketch of
generative and inference
model.

Our goal is to learn 𝑝(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝑥𝑥𝑥). 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥) is analogous to
𝑝(𝜉𝜉𝜉|𝑥𝑥𝑥), only the paths are encoded in a lower-dimensional
latent space. This is useful for constructing kernels for effi-
cient BO on hardware. As a measure of trajectory ‘quality’
we can keep track of how long each trajectory spends in
undesirable regions (𝑦). For the latent paths we learn the
analogous notion (𝜓𝜓𝜓=𝜓1:𝐾), which enables modularity and
fast online updates (discussed in Section 4). We do not
impose hard constraints during optimization, so 𝐺𝑏𝑎𝑑 used
to compute 𝑦 can be specified roughly, with approximate
guesses. Our framework also supports 𝐺𝑏𝑎𝑑 : 𝑆→ [0, 1], but
for users it is frequently easier to make a rough thresholded
estimate rather than providing smooth estimates or proba-
bilities. The graphical model we construct for this setting is shown in Figure 2. Not
all independencies are captured by the illustration. So, explicitly, the generative
model is: 𝑝𝑤𝑤𝑤(𝜏𝜏𝜏 ,𝜓𝜓𝜓,𝜉𝜉𝜉, 𝑦 | 𝑥𝑥𝑥) = 𝑝(𝜏𝜏𝜏1:𝐾 ,𝜓𝜓𝜓|𝑥𝑥𝑥)𝑝(𝑦|𝜓𝜓𝜓)

∏︀𝑇
𝑡=1 𝑝(𝜉𝜉𝜉𝑡|𝜉𝜉𝜉𝑡−1, 𝜏𝜏𝜏1:𝐾).

Approximate posterior is modeled by: 𝑞𝜑𝜑𝜑(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝜉𝜉𝜉, 𝑦) = 𝑞(𝜏𝜏𝜏1:𝐾 ,𝜓𝜓𝜓|𝜉𝜉𝜉1:𝑇 , 𝑦).
We collect trajectories 𝜉𝜉𝜉(𝑖)

1:𝑇 by simulating 𝑁 controllers with parameters 𝑥𝑥𝑥(𝑖) for
𝑇 time steps. We derive ELBO for this setting to maximize log 𝑝(𝐷𝑎𝑡𝑎) =
log 𝑝({𝑥𝑥𝑥(𝑖), 𝜉𝜉𝜉

(𝑖)
1:𝑇 }𝑖=1...𝑁). Using ‘ ˜ ’ over the variables to indicate samples from

the current variational approximation, we get:

ℒ𝐷𝐶(𝑤𝑤𝑤,𝜑𝜑𝜑|𝑥𝑥𝑥,𝜉𝜉𝜉, 𝑦) = E𝜏𝜏𝜏,𝜓̃𝜓𝜓∼𝑞(𝜏𝜏𝜏,𝜓𝜓𝜓|𝜉𝜉𝜉,𝑦)
[︀

log 𝑝(𝜉𝜉𝜉|𝜏𝜏𝜏) + log 𝑝(𝑦|𝜓̃𝜓𝜓)+

log 𝑝(𝜏𝜏𝜏 , 𝜓̃𝜓𝜓|𝑥𝑥𝑥)− log 𝑞(𝜏𝜏𝜏 , 𝜓̃𝜓𝜓|𝜉𝜉𝜉, 𝑦)
]︀ (1)

𝑤𝑤𝑤, 𝜑𝜑𝜑 are weights of deep neural networks optimized by gradient ascent on the ELBO.

4 Bayesian Optimization with Dynamic Compression

In Bayesian Optimization (BO), the problem of optimizing controllers is viewed
as finding controller parameters 𝑥𝑥𝑥* that optimize some objective function 𝑓(𝑥𝑥𝑥):
𝑓(𝑥𝑥𝑥*) = max𝑥𝑥𝑥 𝑓(𝑥𝑥𝑥). At each optimization trial BO optimizes an auxiliary function
to select the next promising 𝑥𝑥𝑥 to evaluate. 𝑓 is commonly modeled with a Gaussian
process (GP): 𝑓(𝑥𝑥𝑥) ∼ 𝒢𝒫(𝑚(𝑥𝑥𝑥), 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗)).

The key object is the kernel function 𝑘(·, ·), which encodes similarity between
inputs. If 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) is large for inputs 𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗 , then 𝑓(𝑥𝑥𝑥𝑖) strongly influences 𝑓(𝑥𝑥𝑥𝑗).
One of the most widely used kernel functions is the Squared Exponential (SE) kernel:
𝑘𝑆𝐸(𝑟𝑟𝑟 ≡ |𝑥𝑥𝑥𝑖−𝑥𝑥𝑥𝑗 |) = 𝜎2

𝑘 exp
(︀
− 1

2𝑟𝑟𝑟
𝑇 diag(ℓℓℓ)−2𝑟𝑟𝑟

)︀
, where 𝜎2

𝑘, ℓℓℓ are signal variance and
a vector of length scales respectively. 𝜎2

𝑘, ℓℓℓ are called ‘hyperparameters’ and are
optimized automatically by maximizing marginal likelihood ([4], Section V-A). SE
belongs to a broader class of Matérn kernels. One common parameter choice yields
Matérn5/2: 𝑘Matérn5/2(𝑟𝑟𝑟) =

(︀
1 +

√
5𝑟𝑟𝑟
ℓℓℓ + 5𝑟𝑟𝑟2

3ℓℓℓ2

)︀
exp

(︀
−

√
5𝑟𝑟𝑟
ℓℓℓ

)︀
. SE and Matérn kernels

are stationary, since they depend on 𝑟𝑟𝑟≡𝑥𝑥𝑥𝑖−𝑥𝑥𝑥𝑗 ∀𝑥𝑥𝑥𝑖,𝑗 , and not on individual 𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗 .

4. BAYESIAN OPTIMIZATION WITH DYNAMIC COMPRESSION A7

Section 2.1 discussed recent work that showed how to effectively remove stationarity
by using informed feature transforms for kernel computations. But these required
extracting domain-specific features manually, or learning to fit a pre-defined set of
features using a deterministic NN in a supervised way.

We propose to use 𝑝(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝑥𝑥𝑥) learned by SVAE-DC. [2] showed that a ‘symmetriza-
tion’ of KL divergence can be used to define a KL-based kernel for trajectories in
the original space:

𝑘𝐾𝐿 = exp(-𝛼𝐷(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗))

𝐷(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) =
√︁
𝐾𝐿(𝑝(𝜉𝜉𝜉|𝑥𝑥𝑥𝑖)||𝑝(𝜉𝜉𝜉|𝑥𝑥𝑥𝑗)) +

√︁
𝐾𝐿(𝑝(𝜉𝜉𝜉|𝑥𝑥𝑥𝑗)||𝑝(𝜉𝜉𝜉|𝑥𝑥𝑥𝑖))

(2)

In theory, we could use this to define an analogous kernel in the latent space:

𝑘𝐿𝐾𝐿 = exp(-𝛼𝐷𝜏 (𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗))

𝐷𝜏 (𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) =
√︁
𝐾𝐿(𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥𝑖)||𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥𝑗)) +

√︁
𝐾𝐿(𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥𝑗)||𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥𝑖))

However, variational inference (VI) tends to under-estimate variances [32, 33, 34, 35].
Hence, our kernel works with latent means 𝜏𝜏𝜏𝑥𝑥𝑥, 𝜓̄𝜓𝜓𝑥𝑥𝑥 = 𝐸

[︀
𝑝(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝑥𝑥𝑥)

]︀
directly. We define

our kernel function with:

𝑟𝑟𝑟𝜏 = 𝐷𝜏 (𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = (1−𝑦𝑥𝑥𝑥𝑖)𝜏𝜏𝜏𝑥𝑥𝑥𝑖 − (1−𝑦𝑥𝑥𝑥𝑗)𝜏𝜏𝜏𝑥𝑥𝑥𝑗 ; 𝑦𝑥𝑥𝑥 ∼ 𝑝(𝑦|𝜓̄𝜓𝜓𝑥𝑥𝑥) (3)
𝑘𝑆𝑉𝐴𝐸-𝐷𝐶(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2

𝑘 exp
(︀
− 1

2𝑟𝑟𝑟
𝑇
𝜏 diag(ℓℓℓ)−2𝑟𝑟𝑟𝜏

)︀
(4)

The form of Equation 4 allows us to apply existing machinery for optimizing kernel
hyperparameters 𝜎2

𝑘, ℓℓℓ directly to the SVAE-DC kernel. Note that diag(ℓℓℓ)−2 is
related to covariance in the case diagonal Gaussians. So BO with 𝜏𝜏𝜏𝑥𝑥𝑥𝑖 − 𝜏𝜏𝜏𝑥𝑥𝑥𝑗 in the
kernel is related to using KL in the case of diagonal Gaussians (with a simplification
to capture variance-only terms by learning 𝜎2

𝑘). We can also conveniently obtain
SVAE-DC-Matérn version of the kernel by simply changing the form of Equation 4
to the Matérn function.

Scaling latent representations by 1−𝑦𝑥𝑥𝑥 yields dynamic compression: latent
representations that correspond to controllers frequently visiting undesirable parts
of the space are scaled down. With this, we retain trajectory-based distance in
the desirable parts of the space, but compress it in undesirable parts to reduce
unwanted exploration. The ‘dynamic compression’ transformation is applied after
SVAE training, in addition to the compression obtained by SVAE. The scaling can
be made non-linear with 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛼(𝑦𝑥𝑥𝑥 − 𝑐)). This achieves aggressive compression
in settings with an extremely small budget of trials. The additional parameters 𝛼, 𝑐,
as well as 𝑝(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝑥𝑥𝑥), 𝑝(𝑦|𝜓𝜓𝜓) can be optimized online (as BO hyperparameters). Note
that because of the multiplicative formulation, two controllers with different 𝜏𝜏𝜏 and
𝑦 can appear similar during optimization. Theoretically, this can also bring the
undesirable space close to a part of desirable space. We address this by updating the
learned components online via GP’s marginal likelihood, as in Deep kernel learning

A8 PAPER A. BAYESIAN OPTIMIZATION IN LATENT SPACES

[11, 12]. However, for large NNs such online updates would only be useful after
a large number of hardware trials. Hence, we provide a modular architecture to
ensure that the multiplicative factors can be updated faster. We structure SVAE
to learn 𝑝(𝑦|𝜓𝜓𝜓) and 𝑝(𝜏𝜏𝜏 ,𝜓𝜓𝜓|𝑥𝑥𝑥), instead of a joint 𝑝(𝑦,𝜏𝜏𝜏 |𝑥𝑥𝑥). This makes the NN for
𝑝(𝑦|𝜓𝜓𝜓) small, facilitating more data-efficient NN updates during BO. Now, during
hardware trials, shifts in 𝑦 will be more pronounced, compared to updates in the
full latent path representation.

In summary, SVAE-DC and the resulting kernel result in a fully automatic way
of learning latent trajectory embeddings in unsupervised way. For domains where
𝐺𝑏𝑎𝑑 is given, we can also achieve dynamic compression of the latent space, making
BO ultra data-efficient. All the components used during BO can be optimized online
via the same methods as those for adjusting BO hyperparameters.

5 SVAE-DC: NN Architecture and Training
We propose to use time convolution architecture for 𝑞(𝜏𝜏𝜏 |𝜉𝜉𝜉), de-convolutions for
𝑝(𝜉𝜉𝜉|𝜏𝜏𝜏). For this we use 1D convolutions for the sequential dimensions 𝑡, 𝑘 and treat
the dimensions of 𝜉𝜉𝜉𝑡, 𝜏𝜏𝜏𝑘 as different channels. With that, for all our experiments (all
different robot and controller architectures) we were able to use the same network
parameters: 3-layer 1D convolutions with [32, 64, 128] channels (reverse order for
de-convolutions; kernel size 4, stride 2) followed by MLP layer for 𝜇, 𝜎 outputs.
We were also able to use same latent space sizes: 3-dimensional 𝜏𝜏𝜏 , latent sequence
length 𝐾=3 for all our experiments. This yielded a small 9D optimization space for
BO, which is highly desirable for optimization with few trials. Notably, this NN
architecture also retained good reconstruction accuracy, not far from results with
larger latent spaces (𝜏𝜏𝜏=6𝐷, 12𝐷;𝐾=5, 15) and hidden sizes (256-1024). We also
used de-convolutional architecture for 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥). Since 𝑝(𝜏𝜏𝜏 |𝑥𝑥𝑥) was one of the key parts
for BO we used 4 layers with [512, 256, 128, 128] channels (though a smaller CNN
could have sufficed). For 𝑝(𝑦|𝜓) we used a 2-layer MLP (hidden size 64). Training
took ≈30-180 minutes on 1 GPU, using 1𝑒-4 learning rate (decayed to 1𝑒-5). We
note that other advanced architectures like RNNs, LSTMs and Quasi-RNNs [36]
did not result in reliably robust training in our experiments.

6 Locomotion Experiments on the Daisy Hexapod

For locomotion experiments, we use a Daisy robot (Figure 3) from Hebi robotics
[37]. It has six legs, each with 3 motors – base, shoulder and elbow. A Vive tracking
system measures the robot’s position in a global frame for rewards. To obtain
simulated trajectories for training SVAE we used PyBullet [38]. The simulator
was fast, but did not have an accurate contact model with the ground. While
free-space motion of individual joints transferred to hardware, the overall behavior
of the robot when interacting with the ground was very different between simulation
and hardware. As a result, rewards obtained by controllers in simulation could be
significantly different on hardware.

6. LOCOMOTION EXPERIMENTS ON THE DAISY HEXAPOD A9

Figure 3: Daisy hexapod used in this
work.

Daisy Controllers: We used Central Pat-
tern Generators (CPGs) from [39]. CPGs are
a variant of rhythmic DMPS [13], capable of
generating a large number of locomotion gaits
by changing the frequency, amplitude, and off-
set of each joint, as well as the relative phase
differences between joints. Different CPG pa-
rameters can be restricted to obtain controllers
with various dimensionalities. We experimented
with 11D controller on hardware and 27D in
simulation. For hardware, we assume that all
joints have the same amplitude, frequency and offset (3 parameters), all base motors
have independent phases (6 parameters), all shoulders and elbows have the same
phase difference w.r.t. the base (2 parameters). This assumption implies that all
joints are treated identically, which doesn’t always hold, since each motor has slightly
different tracking and bandwidth. In the future, we would like to use alternatives
that allow each motor to learn independently. For simulation: base, shoulder and
elbow joints were allowed to have independent amplitudes, frequencies and offsets,
but fixed across the six legs (9 parameters); each of the 18 joints was allowed to
have an independent phase (18 parameters).

Daisy Hardware Experiments: To construct SVAE-DC kernel for BO we
trained SVAE using 500, 000 simulated trajectories (1000 time steps each, ≈16.5𝑠).
For dynamic compression the states were marked as undesirable if they had: high
joint velocities (more than 10rad/sec); robot base tilting by more than 60°in roll
and pitch, elbows hitting the ground; height of the base outside of [0.1, 0.7]cm from
the ground. These aimed to reduce the chance of the robot breaking: controllers
with high joint velocities can harm the motors on impact with the ground; tilting
the torso can cause the robot to fall on its back; scraping the ground or lifting off
and then falling can cause further damage. Since our BO trials were in a narrow
walkway, we marked as undesirable states deviating more than 0.5m from the
starting 𝑥-coordinate of the base.

Figure 4: BO on Daisy hardware
(means over 5 runs, 90% CIs).

The objective for BO was: 𝑓(𝑥𝑥𝑥)=10 · 𝑦𝑓𝑖𝑛𝑎𝑙−
𝑁ℎ𝑖𝑔ℎ_𝑣𝑒𝑙, where 𝑦𝑓𝑖𝑛𝑎𝑙 was the final 𝑦-coordinate
of the robot (how much the robot walked forward),
𝑁ℎ𝑖𝑔ℎ_𝑣𝑒𝑙 was the number of timesteps with ve-
locities exceeding 10rad/sec. All BO experiments
used UCB acquisition function (with 𝛽=1). We
completed 5 runs of BO on the Daisy robot hard-
ware, initializing with 2 random samples, followed
by 10 trials of BO (Figure 4). We also conducted
baseline experiments with SE kernel by directly
searching in the space of CPG parameters. This
served as a comparison to more traditional trajec-
tory compression methods that optimize DMPs

A10 PAPER A. BAYESIAN OPTIMIZATION IN LATENT SPACES

(since CPG can be seen as a DMP variant). For Daisy robot, the controller would
be considered acceptable if it walked forward for more than 1.5𝑚 during a trial of 25
seconds on hardware. For comparison to random search we sampled 60 controllers
at random. Of these only 2 were able to walk forward a distance of over 1.5𝑚 in 25𝑠.
So the problem was challenging, as the chance of randomly sampling a successful
controller was <4%. BO with SVAE-DC kernel found walking controllers reliably
in all 5/5 runs within fewer than 10 trials. In contrast, both BO with SE found
forward walking controllers only in 2/5 runs.

Further experiments in simulation: We created an artificial ‘sim-to-real’
gap, allowing to gauge the potential for simulation-based kernels without running
all the experiments on hardware. For each BO run we randomly sampled ground
restitution parameters, and kept them fixed for all trials within a run. Hence,
simulation-based kernels did not have full information about the exact properties of
the environment used during BO. The range of parameters was the same for BO

Figure 5: BO for Daisy in
simulation (means over 50
runs, 90% CIs).

and for data collection, so informed kernels could iden-
tify controllers that perform well on average across set-
tings. But such informed kernel could have caused neg-
ative transfer by lagging to identify controllers best for
a particular BO setting, and instead favoring conserva-
tive (crawling) best-across-settings controllers. Figure 5
shows BO with 27D controller. BO with SVAE-DC
outperformed all baselines. BBK-KL kernel obtained
smaller improvements over SE and Random baselines.
This indicated that a trajectory-based kernel was useful
even when optimizing a high-dimensional controller, al-
though BBK-KL benefits were greatly diminished com-
pared to BBK results for 2-4 dimensional controllers
reported in prior work. In these experiments, SVAE without dynamic compression
was very similar to SE (omitted from the plot for clarity, since it was overlapping
with SE). This showed that dimensionality reduction alone does not guarantee
improvement (even when the latent space contains information needed to decode
back into the space of original trajectories).

7 Manipulation Experiments

Our manipulation task was to push two objects from one side of the table to another
without tipping them over. We used ABB Yumi robot for our hardware experiments
(Figure 6), and conducted additional simulation experiments with Yumi and Franka
Emika robot models. We used PyBullet for simulation. For Yumi environment the
objects had mass and inertial properties similar to paper towel rolls (mass of 150g,
22cm height, 5cm radius); for Franka these had properties similar to wooden rolls
(2kg, 22cm height, 8cm radius). Compared to ‘push-to-target’ task, our task had
two different challenges. The objects were likely to come into contact with each

7. MANIPULATION EXPERIMENTS A11

other (not only the robot arm). Moreover, they could easily tip over, especially
if forces were applied above an object’s center of mass. Reward was given only
at the end of the task: the distance each upright object moved in the desired
direction minus a penalty for objects that tipped over (with 𝑦𝑚𝑎𝑥 being table width):
𝑓(𝑥𝑥𝑥) =

∑︀
𝑖

[︀
(𝑦𝑜𝑏𝑗𝑖

𝑓𝑖𝑛𝑎𝑙−𝑦
𝑜𝑏𝑗𝑖

𝑠𝑡𝑎𝑟𝑡)1𝑜𝑏𝑗𝑖∈𝑈𝑝− 𝑦𝑚𝑎𝑥1𝑜𝑏𝑗𝑖∈𝑇𝑖𝑝𝑝𝑒𝑑
]︀
.

Figure 6: “Stable push” task with Yumi

Controllers: We tested our approach on
two types of controllers: 1) joint velocity con-
troller suitable for robots like ABB Yumi and
2) torque controller suitable for robots like
Franka Emika. The first was parameterized
by 6 joint velocity “waypoints”, one target
velocity for each joint of the robot arm (so
6·7=42 parameters for a 7DoF arm). Each
“waypoint” also had a duration parameter
that specified the fraction of time to be spent
attaining the desired joint velocities. Overall
this yielded a 48-dimensional parametric controller. The second controller type
was aimed to be safe to use on robots with torque control that are more powerful
than ABB Yumi. Instead of exploring randomly in torque space, we designed a
parametric controller with desired waypoints in end-effector space. Each of the
6 waypoints had 6 parameters for the pose (3D position, 3D orientation) and 2
parameters for controller proportional and derivative gains. Overall this yielded a
48-dimensional parametric controller: 6 ·(6+2). This controller interpolated between
the waypoints using a 5𝑡ℎ order minimum jerk trajectory for positions, and used
linear interpolation for orientations. End effector Jacobian for the corresponding
robot model was used to convert to joint torques.

Figure 7: BO on ABB Yumi hard-
ware (means over 5 runs, 90% CIs).

Yumi Hardware Experiments: For con-
structing SVAE-DC kernel used during BO
on hardware we simulated 500,000 trajectories.
These contained joint angles of the robot and
object poses at each time step (1000 steps per
trajectory). A step 𝑡 on a trajectory 𝜉𝜉𝜉 was marked
as undesirable

(︀
𝐺𝑏𝑎𝑑(𝜉𝜉𝜉𝑡) = 1

)︀
when: any object

tipped over or was pushed beyond the table; robot
collided with the table; the end effector was out-
side of main workspace (not over the table area).
Mass, friction and restitution of the objects were
randomized at the start of each episode/trajectory.
Randomization ranges were set to roughly resem-
ble variability of how real-world objects behaved.
ABB Yumi robot available to us could operate effectively only at low velocities (1

5
of simulation maximum). High-velocity trajectories successful in simulation yielded
different results on hardware. To prevent Yumi from shutting down due to high load

A12 PAPER A. BAYESIAN OPTIMIZATION IN LATENT SPACES

Figure 8: BO with various kernels on Franka Emika simulation. Left: SVAE trained with
same parameters as in all the previous experiments. Middle: SVAE with larger latent
space and NNs. Right: Matern used as outer function for all kernel. The plots show means
over 50 runs, 90% CIs.

we stopped execution if the robot’s arm extended too far outside the main workspace,
also stopped if it was about to collide with the table (giving −2𝑦𝑚𝑎𝑥 reward in
such cases). These factors caused a large sim-real gap. Nonetheless, BO with
SVAE-DC kernel was still able to significantly outperform BO with SE (Figure 7).
Even when controllers successful in simulation yielded very different outcomes on
hardware, SVAE-DC kernel was still able to find well-performing alternatives (more
conservative, yet successful on hardware).

Further Yumi and Franka experiments in simulation: We emulated ‘sim-
to-real’ gap as with Daisy simulation: sampled different object properties (mass,
friction, restitution) at the start of each BO run. Results in Figure 9 show that BO
on Yumi with SVAE-DC kernel yielded substantial improvement over all baselines.
BO in the latent space of SVAE (without dynamic compression) was also able to
substantially outperform all baselines, matching SVAE-DC gains after ≈15 trials.

Figure 9: BO on ABB Yumi sim-
ulation (mean of 50 runs, 90%
CIs).

Figure 8 shows BO results on Franka Emika simu-
lation (left). Kernels were built in the same way as
for Yumi, but from shorter trajectories (500 steps).
Furthermore, we analyze how increasing the size of
SVAE latent space and NNs impacts performance
(middle). The larger latent space is 6·5=30D (vs 9D
in other experiments), the hidden layer size of NNs
is increased from 128 to 256. Larger latent space im-
plies larger search space for BO, which could impair
data efficiency. BO with SVAE kernel (no DC) still
outperforms BBK-KL and SE kernels, but only after
10 trials. BO with SVAE-DC offers immediate gains
with low variance between runs (well-performing
points are found more reliably). This indicates that
dynamic compression could counter-balance increase in kernel dimensionality. Fi-
nally, we experimented with Matérn kernel (right plot in Figure 8), but it did

8. CONCLUSION A13

not show benefits over using SE kernel. We attempted changing hyperparameter
prior and restricting hyperparameter ranges, but it did not consistently outperform
random search (same held for SE in high dimensions). The performance of BO with
SVAE kernel using Matérn as outer kernel function showed modest improvement
over baselines. In contrast, BO with SVAE-DC kernel still offered substantial
improvements.

8 Conclusion

In this work, we employed BO to optimize robot controllers with a small budget
of trials. Previously, the success of BO has been either limited to low-dimensional
controllers or required kernels with domain-specific features. We proposed an
unsupervised alternative with sequential variational autoencoder. We used it to
embed simulated trajectories into a latent space, and to jointly learn relating
controllers with latent space paths they induce. Furthermore, we provided a
mechanism for dynamic compression, helping BO reject undesirable regions quickly,
and explore more in other regions. Our approach yielded ultra-data efficient BO in
hardware experiments with hexapod locomotion and a manipulation task, using the
same SVAE-DC architecture and training settings across experiments.

Acknowledgments

This research was supported in part by the Knut and Alice Wallenberg Foundation.

References

[1] OpenAI. Learning Dexterous In-Hand Manipulation. arXiv:1808.00177, 2018.

[2] A. Wilson, A. Fern, and P. Tadepalli. Using Trajectory Data to Improve Bayesian
Optimization for Reinforcement Learning. Journal of Machine Learning Research, 15
(1):253–282, 2014.

[3] M. Balandat, B. Karrer, D. Jiang, B. Letham, S. Daulton, A. Wilson, E. Bakshy.
BoTorch. https://botorch.org/. Accessed: 2019-05.

[4] B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. de Freitas. Taking the Human
Out of the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE, 104
(1):148–175, 2016.

[5] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv:1312.6114,
2013.

[6] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-
Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and
A. Aspuru-Guzik. Automatic chemical design using a data-driven continuous repre-
sentation of molecules. ACS Central Science, 4(2):268–276, 2018.

https://botorch.org/

A14 PAPER A. BAYESIAN OPTIMIZATION IN LATENT SPACES

[7] T. Lesort, N. Díaz-Rodríguez, J.-F. Goudou, and D. Filliat. State representation
learning for control: An overview. Neural Networks, 2018.

[8] L. Yingzhen and S. Mandt. Disentangled sequential autoencoder. In International
Conference on Machine Learning, pages 5656–5665, 2018.

[9] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther. A disentangled recognition
and nonlinear dynamics model for unsupervised learning. In Advances in Neural
Information Processing Systems, pages 3601–3610, 2017.

[10] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach
to policy search. In Proceedings of the 28th International Conference on machine
learning (ICML-11), pages 465–472, 2011.

[11] R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisenroth. Manifold gaussian
processes for regression. In 2016 International Joint Conference on Neural Networks
(IJCNN), pages 3338–3345. IEEE, 2016.

[12] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Deep kernel learning. In
Artificial Intelligence and Statistics, pages 370–378, 2016.

[13] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal. Online movement adaptation
based on previous sensor experiences. In 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 365–371. IEEE, 2011.

[14] N. Thatte, H. Duan, and H. Geyer. A method for online optimization of lower limb
assistive devices with high dimensional parameter spaces. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 1–6. IEEE, 2018.

[15] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson. Optimization-based Full Body
Control for the DARPA Robotics Challenge. Journal of Field Robotics, 32(2):293–312,
2015.

[16] Y. Gong, R. Hartley, X. Da, A. Hereid, O. Harib, J.-K. Huang, and J. Grizzle.
Feedback control of a cassie bipedal robot: Walking, standing, and riding a segway.
arXiv:1809.07279, 2018.

[17] R. Calandra. Bayesian Modeling for Optimization and Control in Robotics. PhD
thesis, Darmstadt University of Technology, Germany, 2017.

[18] D. J. Lizotte, T. Wang, M. H. Bowling, and D. Schuurmans. Automatic Gait
Optimization with Gaussian Process Regression. In International Joint Conference
on Artificial Intelligence (IJCAI), volume 7, pages 944–949, 2007.

[19] M. Tesch, J. Schneider, and H. Choset. Using response surfaces and expected improve-
ment to optimize snake robot gait parameters. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1069–1074. IEEE, 2011.

[20] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots that can adapt like animals.
Nature, 521(7553):503–507, 2015.

8. CONCLUSION A15

[21] A. Rai, R. Antonova, F. Meier, and C. G. Atkeson. Using simulation to improve
sample-efficiency of bayesian optimization for bipedal robots. Journal of Machine
Learning Research, 20(49):1–24, 2019.

[22] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and
V. Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots.
arXiv:1804.10332, 2018.

[23] T. Li, A. Rai, H. Geyer, and C. G. Atkeson. Using deep reinforcement learning to
learn high-level policies on the atrias biped. arXiv:1809.10811, 2018.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[25] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine. Learning to walk via
deep reinforcement learning. In Robotics: Science and Systems (RRS), 2019.

[26] O. Kroemer, R. Detry, J. Piater, and J. Peters. Combining active learning and reactive
control for robot grasping. Robotics and Autonomous Systems, 58(9):1105–1116, 2010.

[27] L. Montesano and M. Lopes. Active learning of visual descriptors for grasping using
non-parametric smoothed beta distributions. Robotics and Autonomous Systems, 60
(3):452–462, 2012.

[28] R. Antonova, M. Kokic, J. A. Stork, and D. Kragic. Global search with bernoulli
alternation kernel for task-oriented grasping informed by simulation. In Conference
on Robot Learning, pages 641–650, 2018.

[29] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox.
Closing the sim-to-real loop: Adapting simulation randomization with real world
experience. arXiv:1810.05687, 2018.

[30] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 1–8. IEEE, 2018.

[31] I. Arnekvist, D. Kragic, and J. A. Stork. VPE: Variational Policy Embedding for
Transfer Reinforcement Learning. In 2019 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2019.

[32] T. Minka. Divergence measures and message passing. TR-2005-173 Microsoft Research,
2005.

[33] C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.

[34] C. Riquelme, M. Johnson, and M. Hoffman. Failure modes of variational inference
for decision making. Prediction and Generative Modeling in RL Workshop (AAMAS,
ICML, IJCAI), 2018.

[35] S. Tschiatschek, K. Arulkumaran, J. Stühmer, and K. Hofmann. Variational inference
for data-efficient model learning in pomdps. TR-2018-15 Microsoft Research, 2018.

A16 PAPER A. BAYESIAN OPTIMIZATION IN LATENT SPACES

[36] J. Bradbury, S. Merity, C. Xiong, and R. Socher. Quasi-recurrent neural networks.
International Conference on Learning Representations, 2017.

[37] Hebi Robotics. http://docs.hebi.us. Accessed: 2019-06.

[38] Pybullet simulator. https://github.com/bulletphysics/bullet3. Accessed: 2019-
06.

[39] A. Crespi and A. J. Ijspeert. Online optimization of swimming and crawling in an
amphibious snake robot. IEEE Transactions on Robotics, 24(1):75–87, 2008.

http://docs.hebi.us
https://github.com/bulletphysics/bullet3

Using Simulation to Improve Sample-
Efficiency of Bayesian Optimization for

Bipedal Robots

Akshara Rai1

Robotics Institute, School of Computer Science
Carnegie Mellon University, PA, USA
Rika Antonova1

Robotics, Perception and Learning, EECS
KTH Royal Institute of Technology, Stockholm, Sweden
Franziska Meier
Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, WA, USA
Christopher G. Atkeson
Robotics Institute, School of Computer Science
Carnegie Mellon University, PA, USA

1Both of these authors contributed equally.

Editor: Bayesian Optimization Special Issue
Journal of Machine Learning Research 20 (2019) 1-24
Submitted 4/18; Revised 12/18; Published 2/19; License: CC-BY 4.0
https://www.jmlr.org/papers/volume20/18-196/18-196.pdf

Abstract

Learning for control can acquire controllers for novel robotic tasks, paving
the path for autonomous agents. Such controllers can be expert-designed
policies, which typically require tuning of parameters for each task scenario. In
this context, Bayesian optimization (BO) has emerged as a promising approach
for automatically tuning controllers. However, sample-efficiency can still be an
issue for high-dimensional policies on hardware. Here, we develop an approach
that utilizes simulation to learn structured feature transforms that map the
original parameter space into a domain-informed space. During BO, similarity
between controllers is now calculated in this transformed space. Experiments

B1

https://www.jmlr.org/papers/volume20/18-196/18-196.pdf

B2 PAPER B. IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDS

on the ATRIAS robot hardware and simulation show that our approach
succeeds at sample-efficiently learning controllers for multiple robots. Another
question arises: What if the simulation significantly differs from hardware?
To answer this, we create increasingly approximate simulators and study
the effect of increasing simulation-hardware mismatch on the performance of
Bayesian optimization. We also compare our approach to other approaches
from literature, and find it to be more reliable, especially in cases of high
mismatch. Our experiments show that our approach succeeds across different
controller types, bipedal robot models and simulator fidelity levels, making it
applicable to a wide range of bipedal locomotion problems.
Keywords: Bayesian Optimization, Bipedal Locomotion, Transfer Learning

1 Introduction

Figure 1: ATRIAS robot.

Machine learning can provide methods for learning con-
trollers for robotic tasks. Yet, even with recent advances
in this field, the problem of automatically designing and
learning controllers for robots, especially bipedal robots,
remains difficult. It is expensive to do learning exper-
iments that require a large number of samples with
physical robots. Specifically, legged robots are not ro-
bust to falls and failures, and are time-consuming to
work with and repair. Furthermore, commonly used
cost functions for optimizing controllers are noisy to
evaluate, non-convex and non-differentiable. In order
to find learning approaches that can be used on real
robots, it is thus important to keep these considerations
in mind.

Deep reinforcement learning approaches can deal with noise, discontinuities and
non-convexity of the objective, but they are not data-efficient. These approaches
could take on the order of a million samples to learn locomotion controllers [23],
which would be infeasible on a real robot. For example, on the ATRIAS robot,
10, 000 samples would take 7 days, in theory. But practically, the robot needs to
be “reset" between trials and repaired in case of damage. Using structured expert-
designed policies can help minimize damage to the robot and make the search for
successful controllers feasible. However, the problem is black-box, non-convex and
discontinuous. This eliminates approaches like PI2 [33] which make assumptions
about the dynamics of the system and PILCO [8] which assumes a continuous cost
landscape. Evolutionary approaches like CMA-ES [13] can still be prohibitively
expensive, needing thousands of samples [29].

In comparison, Bayesian optimization (BO) is a sample-efficient optimization
technique that is robust to non-convexity and noise. It has been recently used in a
range of robotics problems, such as Calandra et al. [6], Marco et al. [19] and Cully
et al. [7]. However, sample-efficiency of conventional BO degrades in high dimensions,

2. BACKGROUND AND RELATED WORK B3

even for dimensionalities commonly encountered in locomotion controllers. Because
of this, hardware-only optimization becomes intractable for flexible controllers
and complex robots. One way of addressing this issue is to utilize simulation to
optimize controller parameters. However, simulation-only optimization is vulnerable
to learning policies that exploit the simulation and, because of that, perform well
in simulation but poorly on the actual robot. This motivates the development
of hybrid approaches that can incorporate simulation-based information into the
learning method and then optimize with few samples on hardware.

Towards this goal, our previous work in Antonova, Rai, and Atkeson [1],
Antonova et al. [2], Rai et al. [24] presents a framework that uses information from
high-fidelity simulators to learn sample-efficiently on hardware. We use simulation
to build informed feature transforms that are used to measure controller similarity
during BO. Thus, during optimization on hardware, the similarity between controller
parameters is informed by how they perform in simulation. With this, it becomes
possible to quickly infer which regions of the input space are likely to perform well
on hardware. This method has been tested on the ATRIAS biped robot (Figure 1)
and shows considerable improvement in sample-efficiency over traditional BO.

In this article, we present in-depth explanations and empirical analysis of our
previous work. Furthermore, for the first time, we present a procedure for systemat-
ically evaluating robustness of such approaches to simulation-hardware mismatch.
We extend our previous work incorporating mismatch estimates [24] to this setting.
We also conduct extensive comparisons with competitive baselines from prior work,
e.g. [7].

The rest of this article is organized as follows: Section 2 provides background
for BO, then gives an overview of related work on optimizing locomotion controllers.
Section 3.1 describes the idea of incorporating simulation-based transforms into BO;
Section 3.2 explains how we handle simulation-hardware mismatch. Sections 4.1-4.5
describe the robot and controllers we use for our experiments; Section 4.6 explains
the motivation and construction of simulators with various kinds of simulation-
hardware mismatch. Section 5 summarizes hardware experiments on the ATRIAS
robot. Section 5.2 shows generalization to a different robot model in simulation.
Section 5.3 presents empirical analysis of the impact of simulator quality on the
performance of the proposed algorithms and alternative approaches.

2 Background and Related Work
This section gives a brief overview of Bayesian optimization (BO), the state-of-the-art
research on optimizing locomotion controllers, and utilizing simulation information
in BO.

2.1 Background on Bayesian Optimization
Bayesian optimization (BO) is a framework for online, black-box, gradient-free
global search ([26] and [4] provide a comprehensive introduction). The problem of
optimizing controllers can be interpreted as finding controller parameters 𝑥𝑥𝑥* that

B4 PAPER B. IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDS

optimize some cost function 𝑓(𝑥𝑥𝑥). Here 𝑥𝑥𝑥 contains parameters of a pre-structured
policy; the cost 𝑓(𝑥𝑥𝑥) is a function of the trajectory induced by controller parameters
𝑥𝑥𝑥. For brevity, we will refer to ‘controller parameters 𝑥𝑥𝑥’ as ‘controller 𝑥𝑥𝑥’. We use
BO to find controller 𝑥𝑥𝑥*, such that: 𝑓(𝑥𝑥𝑥*) = min

𝑥𝑥𝑥
𝑓(𝑥𝑥𝑥).

BO is initialized with a prior that expresses the a priori uncertainty over the
value of 𝑓(𝑥𝑥𝑥) for each 𝑥𝑥𝑥 in the domain. Then, at each step of optimization, based
on data seen so far, BO optimizes an auxiliary function (called acquisition function)
to select the next 𝑥𝑥𝑥 to evaluate. The acquisition function balances exploration vs
exploitation. It selects points for which the posterior estimate of the objective 𝑓 is
promising, taking into account both mean and covariance of the posterior. A widely
used representation for the cost function 𝑓 is a Gaussian process (GP):

𝑓(𝑥𝑥𝑥) ∼ 𝒢𝒫(𝜇(𝑥𝑥𝑥), 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗))

The prior mean function 𝜇(·) is set to 0 when no domain-specific knowledge is
provided. The kernel function 𝑘(·, ·) encodes similarity between inputs. If 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗)
is large for inputs 𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗 , then 𝑓(𝑥𝑥𝑥𝑖) strongly influences 𝑓(𝑥𝑥𝑥𝑗). One of the most
widely used kernel functions is the Squared Exponential (SE):

𝑘𝑆𝐸(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2
𝑘 exp

(︀
− 1

2 (𝑥𝑥𝑥𝑖 − 𝑥𝑥𝑥𝑗)𝑇 diag(ℓℓℓ)−2(𝑥𝑥𝑥𝑖 − 𝑥𝑥𝑥𝑗)
)︀
,

where 𝜎2
𝑘, ℓℓℓ are signal variance and a vector of length scales respectively. 𝜎2

𝑘, ℓℓℓ are
referred to as ‘hyperparameters’ in the literature.

The SE kernel belongs to a broader class of Matérn kernels, which in general have
more free parameters. In some cases, carefully choosing kernel parameters improves
performance of BO [27]. However, domain-informed kernels can easily out-perform
even well-tuned Matérn kernels [7]. SE and Matérn kernels are stationary: 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗)
depend only on 𝑟=𝑥𝑥𝑥𝑖−𝑥𝑥𝑥𝑗 ∀𝑥𝑥𝑥𝑖,𝑗 . We aim to remove this limitation in a manner
informed by simulation. In future work, incorporating other approaches that relax
stationarity (e.g. [21]) could further improve BO.

2.2 Optimizing Locomotion Controllers
Parametric locomotion controllers can be represented as 𝑢𝑢𝑢 = 𝜋𝑥𝑥𝑥(𝑠𝑠𝑠), where 𝜋 is a
policy structure that depends on parameters 𝑥𝑥𝑥. For example, 𝜋 can be parameterized
by feedback gains on the center of mass (CoM), reference joint trajectories, etc.
Vector 𝑠𝑠𝑠 is the state of the robot, such as joint angles and velocities, used in
closed-loop controllers. Vector 𝑢𝑢𝑢 represents the desired control action, for example:
torques, angular velocities or positions for each joint on the robot. The sequence
of control actions yields a sequence of state transitions, which form the overall
‘trajectory’ [𝑠𝑠𝑠0,𝑢𝑢𝑢1, 𝑠𝑠𝑠1,𝑢𝑢𝑢2, 𝑠𝑠𝑠2, ...]. This trajectory is used in the cost function to judge
the quality of the controller 𝑥𝑥𝑥. In our work, we use structured controllers designed
by experts. State of the art research on walking robots featuring such controllers
includes Feng et al. [10] and Kuindersma et al. [17]. The overall optimization then
includes manually tuning the parameters 𝑥𝑥𝑥. An alternative to manual tuning is to

2. BACKGROUND AND RELATED WORK B5

use evolutionary approaches, like CMA-ES, as in Song and Geyer [29]. However,
these require a large number of samples and can usually be conducted only in
simulation. Optimization in simulation can produce controllers that perform well in
simulation, but not on hardware. In comparison, BO is a sample-efficient technique
which has become popular for direct optimization on hardware. Recent successes
include manipulation [9] and locomotion [6].

BO for locomotion has been previously explored for several types of mobile
robots. These include: snake robots [31], AIBO quadrupeds [18], and hexapods
[7]. [31] optimize a 3-dimensional controller for a snake robot in 10-40 trials (for
speeds up to 0.13𝑚/𝑠). [18] use BO to optimize gait parameters for a AIBO robot in
100-150 trials. [7] learn 36 controller parameters for a hexapod. Even with hardware
damage, they can obtain successful controllers for speeds up to 0.4𝑚/𝑠 in 12-15
trials.

Hexapods, quadrupeds and snakes spend a large portion of their gaits with their
center of mass within their support polygon (convex hull of the feet on the ground).
Ignoring velocity, this is statically stable. In contrast, bipedal walking can be highly
dynamic, especially for point-feet robots like ATRIAS. ATRIAS, like most bipeds,
spends a significant time of its gait being “unstable", or dynamically stable. In our
experiments on hardware, ATRIAS goes up to speeds of 1𝑚/𝑠. All of this leads to
a challenging optimization setting and discontinuous cost function landscape. [6]
use BO for optimizing gaits of a dynamic biped on a boom, needing 30-40 samples
for finding walking gaits for a 4-dimensional controller. While this is promising,
optimizing a higher-dimensional controller needed for complex robots would be even
more challenging. If significant number of samples lead to unstable gaits and falls,
they could damage the robot. Hence, it is important to develop methods that can
learn complex controllers fast, without damaging the robot.

2.3 Incorporating Simulation Information into Bayesian
Optimization

The idea of using simulation to speed up BO on hardware has been explored before.
Information from simulation can be added as a prior to the GP used in BO, such
as in [7]. While such methods can be successful, one needs to carefully tune the
influence of simulation points over hardware points, especially when simulation is
significantly different from hardware.

More generally, approaches such as [16] and [19] address trading off computation
vs simulation accuracy when selecting the source for the next trial/evaluation (with
real world viewed as the most expensive source). Instead, we consider a setting
with ample compute resources for simulation, but an extremely small number of
experiments on a real robot. This is appropriate for bipedal locomotion with full-
scale robots, since these can be expensive to run. Hence, our work does not fall
into the ‘multi-fidelity’ BO paradigm, and we instead take a two step approach:
pre-computing information needed for kernel transforms in the first stage, then
running an ultra-sample efficient version of BO in the second stage on a real robot.

B6 PAPER B. IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDS

Recently, several approaches proposed incorporating Neural Networks (NNs)
into the Gaussian process (GP) kernels (Wilson et al. [36], Calandra et al. [5]). The
strength of these approaches is that they can jointly update the GP and the NN.
Calandra et al. [5] demonstrated how this added flexibility can handle discontinuities
in the cost function landscape. However, these approaches do not directly address
the problem of incorporating a large amount of data from simulation in hardware
BO experiments.

Wilson et al. [35] explored enhancing GP kernel with trajectories. Their Behavior
Based Kernel (BBK) computes an estimate of a symmetric variant of the KL
divergence between trajectories induced by two controllers, and uses this as a
distance metric in the kernel. However, getting an estimate would require samples
for each controller 𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗 whenever 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) is needed. This can be impractical, as it
involves an evaluation of every controller considered. To overcome this, the authors
suggest combining BBK with a model-based approach. But building an accurate
model from hardware data might be an expensive process in itself.

Cully et al. [7] utilize simulation by defining a behavior metric and collecting best
performing points in simulation. This behavior metric then guides BO to quickly
find controllers on hardware, and can even compensate for damage to the robot.
The search on hardware is conducted in behavior space, and limited to pre-selected
“successful" points from simulation. This helps make their search faster and safer on
hardware. However, if an optimal point was not pre-selected, BO cannot sample it
during optimization.

In our work, we utilize trajectories from simulation to build feature transforms
that can be incorporated in the GP kernel used for BO. Our approaches incorporate
trajectory/behavior information, but ensure that 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) is computed efficiently
during BO. Our work is related, in part, to input space warping, as described in
[28], but we construct our transforms from simulated data. Our simulation-informed
kernels bias the search towards regions that look promising, but are able to ‘recover’
and search in other parts of the space if simulation-hardware mismatch becomes
apparent.

3 Proposed Approach: Bayesian Optimization with
Informed Kernels

In this section, we offer in-depth explanation of approaches from our work in Antonova,
Rai, and Atkeson [1], Antonova et al. [2], and Rai et al. [24]. This work proposes
incorporating domain knowledge into BO with the help of simulation. We evaluate
locomotion controllers in simulation, and collect their induced trajectories, which
are then used to build an informed transform. This can be achieved by using a
domain-specific feature transform (Section 3.1.1) or by learning to reconstruct short
trajectory summaries (Section 3.1.2). This feature transform is used to construct
an informed distance metric for BO, and helps BO discover promising regions
faster. Figure 2 gives an overview. In Section 3.2 we discuss how to incorporate

3. BAYESIAN OPTIMIZATION WITH INFORMED KERNELS B7

Figure 2: Overview of our proposed approach. Here, 𝜋𝑥𝑥𝑥(𝑠𝑠𝑠) is the policy (Section 2.2); 𝑥𝑥𝑥 is
a vector of controller parameters; 𝑠𝑠𝑠 is the state of the robot; 𝜉(𝑥𝑥𝑥) is a trajectory observed
in simulation for 𝑥𝑥𝑥; 𝜑(·) is the transform built using 𝜉(·); 𝑓(𝑥𝑥𝑥) is the cost of 𝑥𝑥𝑥 evaluated on
hardware. BO uses 𝜑(𝑥𝑥𝑥) and evaluated costs 𝑓(𝑥𝑥𝑥) to propose next promising controller
𝑥𝑛𝑒𝑥𝑡.

simulation-hardware mismatch in to the transform, ensuring that BO can benefit
from inaccurate simulations as well.

3.1 Constructing Flexible Kernels using Simulation-based
Transforms

High dimensional problems with discontinuous cost functions are very common with
legged robots, where slight changes to some parameters can make the robot unstable.
Both of these factors can adversely affect BO’s performance, but informed feature
transforms can help BO sample high-performing controllers even in such scenarios.

In this section, we demonstrate how to construct such transforms 𝜑(𝑥𝑥𝑥) utilizing
simulations for a given controller 𝑥𝑥𝑥. We then use 𝜑 to create an informed kernel
𝑘𝜑(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) for BO on hardware:

𝑡𝑡𝑡𝑖𝑗=𝜑(𝑥𝑥𝑥𝑖)−𝜑(𝑥𝑥𝑥𝑗)

𝑘𝜑(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2
𝑘 exp

(︁
− 1

2𝑡𝑡𝑡
𝑇
𝑖𝑗 diag(ℓℓℓ)−2𝑡𝑡𝑡𝑖𝑗

)︁ (1)

Note that the functional form above is the same as that of Squared Exponential
kernel, if considered from the point of view of the transformed space, with 𝜑(𝑥𝑥𝑥)
as input. Using a low-dimensional 𝜑 could improve sample efficiency by reducing
dimensionality. More notably, crucial gains arise when 𝜑 brings controllers that
perform similar in simulation closer together, as compared to the original parameter
space. For locomotion, this could bring failing controllers close together to occupy
only a small portion of the transformed space, as illustrated in [24]. In essence, this
means that the resultant kernel, though stationary in 𝜑, is non-stationary in 𝑥𝑥𝑥.

3.1.1 The Determinants of Gait Transform

We propose a feature transform for bipedal locomotion derived from physiological
features of human walking called Determinants of Gaits (DoG) [15]. 𝜑𝐷𝑜𝐺 was
originally developed for human-like robots and controllers [1], and then generalized
to be applicable to a wider range of bipedal locomotion controllers and robot
morphologies [24]. It is based on the features in Table B.1.

B8 PAPER B. IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDS

𝑀1 (Swing leg retraction) – If the maximum ground clearance of the
swing foot 𝑥𝑓 is more than a threshold, 𝑀1 =1 (0 otherwise); ensures
swing leg retraction.

𝑀2 (Center of mass height) – If CoM height 𝑧 stays about the same at
the start and end of a step, 𝑀2 =1 (0 otherwise); checks that the robot
is not falling.

𝑀3 (Trunk lean) – If the average trunk lean 𝜃 is the same at the start
and end of a step, 𝑀3 =1 (0 otherwise); ensures that the trunk is not
changing orientation.

𝑀4 (Average walking speed) – Average forward speed 𝑣 of a controller
per step, 𝑀4 = 𝑣𝑎𝑣𝑔; 𝑀4 helps distinguish controllers that perform
similar on 𝑀1−3.

Table B.1: Illustration of the features used to construct DoG transform.

𝜑𝐷𝑜𝐺 combines features 𝑀1−4 per step and scales them by the normalized
simulation time to obtain the DoG score of controller 𝑥𝑥𝑥:

𝑠𝑐𝑜𝑟𝑒𝐷𝑜𝐺 = 𝑡𝑠𝑖𝑚
𝑡𝑚𝑎𝑥

·
𝑁∑︁
𝑠=1

4∑︁
𝑘=1

𝑀𝑘𝑠 (2)

Here, subscript 𝑘 identifies the feature metric, 𝑠 is the step number, 𝑁 is the total
number of steps taken in simulation, 𝑡𝑠𝑖𝑚 is time at which simulation terminated
(possibly due to a fall), 𝑡𝑚𝑎𝑥 is total time allotted for simulation. Since larger
number of steps lead to higher DoG, some controllers that chatter (step very fast
before falling) could get misleadingly high scores; we scale the scores by 𝑡𝑠𝑖𝑚

𝑡𝑚𝑎𝑥
to

prevent that. 𝜑𝐷𝑜𝐺(𝑥𝑥𝑥) for controller parameters 𝑥𝑥𝑥 now becomes the computed
𝑠𝑐𝑜𝑟𝑒𝐷𝑜𝐺 of the resulting trajectories when 𝑥𝑥𝑥 is simulated. 𝜑𝐷𝑜𝐺 essentially aids in
(soft) clustering of controllers based on their behaviour in simulation. High scoring
controllers are more likely to walk than low scoring ones. Since 𝑀1−4 are based
on intuitive gait features, they are more likely to transfer between simulation and
hardware, as compared to direct cost. The thresholds in 𝑀1−3 are chosen according
to values observed in nominal human walking from [37].

3.1.2 Learning a Feature Transform with a Neural Network

While domain-specific feature transforms can be extremely useful and robust, they
might be difficult to generate when a domain expert is not present. This motivates
directly learning such feature transforms from trajectory data. In this section we de-
scribe our approach to train neural networks to reconstruct trajectory summaries [2]
that achieves this goal of minimizing expert involvement.

Trajectory summaries are a convenient choice for reparametrizing controllers into
an easy to optimize space. For example, controllers that fall would automatically

3. BAYESIAN OPTIMIZATION WITH INFORMED KERNELS B9

be far away from controllers that walk. If these trajectories can be extracted from a
high-fidelity simulator, we would not have to evaluate each controller on hardware.
However, conventional implementations of BO evaluate the kernel function for
a large number of points per iteration, requiring thousands of simulations each
iteration. To avoid this, a Neural Network (NN) can be trained to reconstruct
trajectory summaries from a large set of pre-sampled data points. NN provides
flexible interpolation, as well as fast evaluation (controller → trajectory summary).
Furthermore, trajectories are agnostic to the specific cost used during BO. Thus the
data collection can be done offline, and there is no need to re-run simulations in
case the definition of the cost is modified.

We use the term ‘trajectory’ in a general sense, referring to several sensory
states recorded during a simulation. To create trajectory summaries for the case of
locomotion, we include measurements of: walking time (time before falling), energy
used during walking, position of the center of mass and angle of the torso. With
this, we construct a dataset for NN to fit: a Sobol grid of controller parameters
(𝑥𝑥𝑥1:𝑁 , 𝑁≈0.5 million) along with trajectory summaries 𝜉𝑥𝑥𝑥𝑖

from simulation. NN is
trained using mean squared loss:

NN input: 𝑥𝑥𝑥 – a set of controller parameters
NN output: 𝜑trajNN(𝑥𝑥𝑥) = 𝜉𝑥𝑥𝑥 – reconstructed trajectory summary
NN loss: 1

2
∑︀𝑁
𝑖=1 ||𝜉𝑥𝑥𝑥𝑖

− 𝜉𝑥𝑥𝑥𝑖
||2

The outputs 𝜑trajNN(𝑥𝑥𝑥) are then used in the kernel for BO:

𝑘trajNN(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2
𝑘 exp

(︀
− 1

2𝑡𝑡𝑡
𝑇
𝑖𝑗 diag(ℓℓℓ)−2𝑡𝑡𝑡𝑖𝑗

)︀
; 𝑡𝑡𝑡𝑖𝑗 = 𝜑trajNN(𝑥𝑥𝑥𝑖)− 𝜑trajNN(𝑥𝑥𝑥𝑗) (3)

Appendix A describes our data collection and training. We did not carefully select
the sensory traces used in the trajectory summaries. Instead, we used the most
obvious states, aiming for an approach that could be easily adapted to other domains.
To apply this approach to a new setting, one could simply include information that
is customarily tracked, or used in costs. For example, for a manipulator, the
coordinates of the end effector(s) could be recorded at relevant points. Force-torque
measurements could be included, if available.

3.2 Kernel Adjustment for Handling Simulation-Hardware
Mismatch

Approaches described in previous sections could provide improvement for BO when a
high-fidelity simulator is used in kernel construction. In Rai et al. [24] we presented
promising results of experimental evaluation on hardware. However, it is unclear how
the performance changes when simulation-hardware mismatch becomes apparent.

In Rai et al. [24], we also proposed a way to incorporate information about
simulation-hardware mismatch into the kernel from the samples evaluated so far. We
augment the simulation-based kernel to include this additional information about
mismatch, by expanding the original kernel by an extra dimension that contains the
predicted mismatch for each controller 𝑥𝑥𝑥.

B10 PAPER B. IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDS

A separate Gaussian process is used to model the mismatch experienced on
hardware, starting from an initial prior mismatch of 0: 𝑔(𝑥𝑥𝑥)∼𝒢𝒫(0, 𝑘𝑆𝐸(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗)).
For any evaluated controller 𝑥𝑥𝑥𝑖, we can compute the difference between 𝜑(𝑥𝑥𝑥𝑖) in
simulation and on hardware: 𝑑𝑥𝑥𝑥𝑖

=𝜑𝑠𝑖𝑚(𝑥𝑥𝑥𝑖)−𝜑ℎ𝑤(𝑥𝑥𝑥𝑖). We can now use mismatch
data {𝑑𝑥𝑥𝑥𝑖

|𝑖 = 1...𝑛} to construct a model for the expected mismatch: 𝑔(𝑥𝑥𝑥). In the
case of using a GP-based model, 𝑔(·) would denote the posterior mean. With this,
we can predict simulation-hardware mismatch in the original space of controller
parameters for unevaluated controllers. Combining this with kernel 𝑘𝜑 we obtain an
adjusted kernel:

𝜑𝜑𝜑𝑎𝑑𝑗𝑥𝑥𝑥 =
[︂
𝜑𝑠𝑖𝑚(𝑥𝑥𝑥)
𝑔(𝑥𝑥𝑥)

]︂
, 𝑡𝑡𝑡𝑎𝑑𝑗𝑖𝑗 =𝜑𝜑𝜑𝑎𝑑𝑗𝑥𝑥𝑥𝑖

−𝜑𝜑𝜑𝑎𝑑𝑗𝑥𝑥𝑥𝑗

𝑘𝜑𝑎𝑑𝑗
(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2

𝑘 exp
(︁
− 1

2 (𝑡𝑡𝑡𝑎𝑑𝑗𝑖𝑗)𝑇 diag
(︁ [︂
ℓ1ℓ1ℓ1
ℓ2ℓ2ℓ2

]︂)︁−2
𝑡𝑡𝑡𝑎𝑑𝑗𝑖𝑗

)︁ (4)

The similarity between points 𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗 is now dictated by two components: repre-
sentation in 𝜑 space and expected mismatch. This construction has an intuitive
explanation: Suppose controller 𝑥𝑖𝑥𝑖𝑥𝑖 results in walking when simulated, but falls
during hardware evaluation. 𝑘𝜑𝑎𝑑𝑗

would register a high mismatch for 𝑥𝑥𝑥𝑖. Controllers
would be deemed similar to 𝑥𝑥𝑥𝑖 only if they have both similar simulation-based 𝜑(·)
and similar estimated mismatch. Points with similar simulation-based 𝜑(·) and low
predicted mismatch would still be ‘far away’ from the failed 𝑥𝑥𝑥𝑖. This would help
BO sample points that still have high chances of walking in simulation, but are in a
different region of the original parameter space. In the next section, we present a
more mathematically rigorous interpretation for 𝑘𝜑𝑎𝑑𝑗

.

3.2.1 Interpretation of Kernel with Mismatch Modeling

Let us consider a controller 𝑥𝑥𝑥𝑖 evaluated on hardware. The difference between
simulation-based and hardware-based feature transform for 𝑥𝑥𝑥𝑖 is 𝑑𝑥𝑥𝑥𝑖

= 𝜑𝑠𝑖𝑚(𝑥𝑥𝑥𝑖)−
𝜑ℎ𝑤(𝑥𝑥𝑥𝑖). The ‘true’ hardware feature transform for 𝑥𝑖𝑥𝑖𝑥𝑖 is 𝜑ℎ𝑤(𝑥𝑖𝑥𝑖𝑥𝑖) = 𝜑𝑠𝑖𝑚(𝑥𝑖𝑥𝑖𝑥𝑖)− 𝑑𝑥𝑖𝑥𝑖𝑥𝑖 .
After 𝑛 evaluations on hardware, {𝑑𝑥𝑥𝑥𝑖 |𝑖 = 1...𝑛} can serve as data for modeling
simulation-hardware mismatch. In principle, any data-efficient model 𝑔(·) can be
used, such as GP (a multi-output GP in case 𝜑(·) > 1𝐷). With this, we can obtain
an adjusted transform: 𝜑ℎ𝑤(𝑥𝑥𝑥) = 𝜑𝑠𝑖𝑚(𝑥𝑥𝑥) − 𝑔(𝑥𝑥𝑥), where 𝑔(·) is the output of the
model fitted using {𝑑𝑥𝑥𝑥𝑖

|𝑖 = 1, ...𝑛}.
Suppose 𝑥𝑥𝑥𝑛𝑒𝑤 has not been evaluated on hardware. We can use 𝜑ℎ𝑤(𝑥𝑥𝑥𝑛𝑒𝑤) =

𝜑𝑠𝑖𝑚(𝑥𝑥𝑥𝑛𝑒𝑤) − 𝑔(𝑥𝑥𝑥𝑛𝑒𝑤) as the adjusted estimate of what the output of 𝜑 should
be, taking into account what we have learned so far about simulation-hardware
mismatch.

Let’s construct kernel 𝑘𝑣2
𝜑𝑎𝑑𝑗

(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) that uses these hardware-adjusted estimates

4. ROBOTS, SIMULATORS AND CONTROLLERS USED B11

directly:

𝑞𝑞𝑞𝑎𝑑𝑗𝑖𝑗 = 𝜑ℎ𝑤(𝑥𝑥𝑥𝑖)− 𝜑ℎ𝑤(𝑥𝑥𝑥𝑗)
= (𝜑𝑠𝑖𝑚(𝑥𝑥𝑥𝑖)− 𝑔(𝑥𝑥𝑥𝑖))− (𝜑𝑠𝑖𝑚(𝑥𝑥𝑥𝑗)− 𝑔(𝑥𝑥𝑥𝑗))
= (𝜑𝑠𝑖𝑚(𝑥𝑥𝑥𝑖)− 𝜑𝑠𝑖𝑚(𝑥𝑥𝑥𝑗))⏟ ⏞

𝑣𝑣𝑣𝜑

− (𝑔(𝑥𝑥𝑥𝑖)− 𝑔(𝑥𝑥𝑥𝑗))⏟ ⏞
𝑣𝑣𝑣𝑔

𝑘𝑣2
𝜑𝑎𝑑𝑗

(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2
𝑘𝑣0

exp
(︁
− 1

2 (𝑞𝑞𝑞𝑎𝑑𝑗𝑖𝑗)𝑇 diag(ℓℓℓ)−2𝑞𝑞𝑞𝑎𝑑𝑗𝑖𝑗

)︁
= 𝜎2 exp

(︁
− 1

2
[︀
(𝑣𝑣𝑣𝜑 − 𝑣𝑣𝑣𝑔)𝑇 diag(ℓℓℓ)−2(𝑣𝑣𝑣𝜑 − 𝑣𝑣𝑣𝑔)

]︀)︁
= 𝜎2 exp

(︁
− 1

2
[︀
𝑣𝑣𝑣𝑇𝜑 diag(ℓℓℓ)−2𝑣𝑣𝑣𝜑 + 𝑣𝑣𝑣𝑇𝑔 diag(ℓℓℓ)−2𝑣𝑣𝑣𝑔 − 𝑝𝑟𝑜𝑑𝑖𝑗

]︀)︁
where 𝑝𝑟𝑜𝑑𝑖𝑗 = 2𝑣𝑣𝑣𝑇𝜑 diag(ℓℓℓ)−2𝑣𝑣𝑣𝑔

Using exp(𝑎+ 𝑏+ 𝑐) = exp(𝑐) · exp(𝑎+ 𝑏), we have:

𝑘𝑣2
𝜑𝑎𝑑𝑗

(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2 exp(𝑝𝑟𝑜𝑑𝑖𝑗) exp
(︁
− 1

2
[︀
𝑣𝑣𝑣𝑇𝜑 diag(ℓℓℓ)−2𝑣𝑣𝑣𝜑 + 𝑣𝑣𝑣𝑇𝑔 diag(ℓℓℓ)−2𝑣𝑣𝑣𝑔

]︀)︁
Which can be written as:

𝑘𝑣2
𝜑𝑎𝑑𝑗

(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2 exp(𝑝𝑟𝑜𝑑𝑖𝑗) exp
(︁
− 1

2 (𝑡𝑡𝑡𝑎𝑑𝑗𝑖𝑗)𝑇 diag
(︁ [︂
ℓℓℓ
ℓℓℓ

]︂)︁−2
𝑡𝑡𝑡𝑎𝑑𝑗𝑖𝑗

)︁
𝑡𝑡𝑡𝑎𝑑𝑗𝑖𝑗 =

[︂
𝑣𝑣𝑣𝜑
𝑣𝑣𝑣𝑔

]︂
=

[︂
𝜑𝑠𝑖𝑚(𝑥𝑥𝑥𝑖)− 𝜑𝑠𝑖𝑚(𝑥𝑥𝑥𝑗)

𝑔(𝑥𝑥𝑥𝑖)− 𝑔(𝑥𝑥𝑥𝑗)

]︂
Compare this to 𝑘𝜑𝑎𝑑𝑗

from Equation 4:

𝑘𝜑𝑎𝑑𝑗
(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2

𝑘 exp
(︁
− 1

2 (𝑡𝑡𝑡𝑎𝑑𝑗𝑖𝑗)𝑇 diag
(︁ [︂
ℓ1ℓ1ℓ1
ℓ2ℓ2ℓ2

]︂)︁−2
𝑡𝑡𝑡𝑎𝑑𝑗𝑖𝑗

)︁
(5)

Now we see that 𝑘𝑣2
𝜑𝑎𝑑𝑗

and 𝑘𝜑𝑎𝑑𝑗
have a similar form. Hyperparameters ℓ1ℓ1ℓ1, ℓ2ℓ2ℓ2 provide

flexibility in 𝑘𝜑𝑎𝑑𝑗
as compared to having only vector ℓℓℓ in 𝑘𝑣2

𝜑𝑎𝑑𝑗
. They can be adjusted

manually or with Automatic Relevance Determination. For 𝑘𝑣2
𝜑𝑎𝑑𝑗

, the role of signal
variance is captured by 𝜎2 exp(−𝑝𝑟𝑜𝑑𝑖𝑗). This makes the kernel nonstationary in
the transformed 𝜑 space. Since 𝑘𝜑𝑎𝑑𝑗

is already non-stationary in 𝑥𝑥𝑥, it is unclear
whether non-stationarity of 𝑘𝑣2

𝜑𝑎𝑑𝑗
in the transformed 𝜑 space has any advantages.

The above discussion shows that 𝑘𝜑𝑎𝑑𝑗
proposed in [24] is motivated both in-

tuitively and mathematically. It aims to use a transform that accounts for the
hardware mismatch, without adding extra non-stationarity in the transformed space.
While the above analysis shows the connection between 𝑘𝜑𝑎𝑑𝑗

and 𝑘𝑣2
𝜑𝑎𝑑𝑗

, a more
systematic empirical analysis would be beneficial as part of future work.

4 Robots, Simulators and Controllers Used

In this section we give a concise description of the robots, controllers and simulators
used in experiments with BO for bipedal locomotion. Our approach is applicable to

B12 PAPER B. IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDS

a wide range of bipedal robots and controllers, including state-of-the-art controllers
[10]. We work with two different types of controllers – a reactively stepping controller
and a human-inspired neuromuscular controller (NMC). The reactively stepping
controller is model-based: it uses inverse-dynamics models of the robot to compute
desired motor torques. In contrast, NMC is model-free: it computes desired torques
using hand-designed policies, created with biped locomotion dynamics in mind.
These controllers exemplify two different and widely used ways of controlling bipedal
robots. In addition to this, we show results on two different robot morphologies –
a parallel bipedal robot ATRIAS, and a serial 7-link biped model. Our hardware
experiments are conducted on ATRIAS; the 7-link biped is only used in simulation.
Our success on both robots shows that the approaches developed in this paper are
widely applicable to a range of bipedal robots and controllers.

4.1 ATRIAS Robot
Our hardware platform is an ATRIAS robot (Figure 1). ATRIAS is a parallel
bipedal robot, weighing ≈ 64𝑘𝑔. The legs are 4-segment linkages actuated by 2
Series Elastic Actuators (SEAs) in the sagittal plane and a DC motor in the lateral
plane. Details can be found in [14]. In this work we focus on planar motion around
a boom. ATRIAS is a highly dynamic system due to its point feet, with static
stability only in double stance on the boom.

4.2 Planar 7-link Biped
The second robot used in our experiments is a 7-link biped [32]. It has a trunk and
segmented legs with ankles, with actuators in the hip, knees and ankles. The inertial
properties of its links are similar to an average human [37]. This 7-link model is
a canonical simulator for testing bipedal walking algorithms, for example in Song
and Geyer [29]. It is a simplified two-dimensional simulator for a large range of
humanoid robots, like Atlas [10]. We use this simulator to study the generalizability
of our proposed approaches to systems different from ATRIAS.

4.3 Feedback Based Reactive Stepping Policy
We design a parametric controller for controlling the CoM height, torso angle and
the swing leg by commanding desired ground reaction forces and swing foot landing
location.

𝐹𝑥 = 𝐾𝑝𝑡(𝜃𝑑𝑒𝑠− 𝜃)−𝐾𝑑𝑡𝜃

𝐹𝑧 = 𝐾𝑝𝑧(𝑧𝑑𝑒𝑠− 𝑧)−𝐾𝑑𝑧 𝑧̇

𝑥𝑝 = 𝑘(𝑣 − 𝑣𝑡𝑔𝑡) + 𝐶𝑑+ 0.5𝑣𝑇

Here, 𝐹𝑥 is the desired horizontal ground reaction force (GRF), 𝐾𝑝𝑡 and 𝐾𝑑𝑡

are the proportional and derivative feedback gains on the torso angle 𝜃 and velocity
𝜃. 𝐹𝑧 is the desired vertical GRF, 𝐾𝑝𝑧 and 𝐾𝑑𝑧 are the proportional and derivative

4. ROBOTS, SIMULATORS AND CONTROLLERS USED B13

gains on the CoM height 𝑧 and vertical velocity 𝑧̇. 𝑧𝑑𝑒𝑠 and 𝜃𝑑𝑒𝑠 are the desired
CoM height and torso lean. 𝑥𝑝 is the desired foot landing location for the end of
swing; 𝑣 is the horizontal CoM velocity, 𝑘 is the feedback gain that regulates 𝑣
towards the target velocity 𝑣𝑡𝑔𝑡. 𝐶 is a constant and 𝑑 is the distance between the
stance leg and the CoM; 𝑇 is the swing time.

The desired GRFs are sent to ATRIAS inverse dynamics model that generates
desired motor torques 𝜏𝑓 , 𝜏𝑏. Details can be found in [24]. This controller assumes
no double-support, and the swing leg takes off as soon as stance is detected. This
leads to a highly dynamic gait, posing a challenging optimization problem.

To investigate the effects of increasing dimensionality on our optimization, we
construct two controllers with different number of free parameters:

• 5-dimensional controller : optimizing 5 parameters [𝐾𝑝𝑡,𝐾𝑑𝑡, 𝑘, 𝐶, 𝑇]
(𝑧𝑑𝑒𝑠, 𝜃𝑑𝑒𝑠 and the feedback on 𝑧 are hand tuned)

• 9-dimensional controller : optimizing all 9 parameters of the high-level policy
[𝐾𝑝𝑡,𝐾𝑑𝑡, 𝜃𝑑𝑒𝑠,𝐾𝑝𝑧,𝐾𝑑𝑧, 𝑧𝑑𝑒𝑠, 𝑘, 𝐶, 𝑇]

4.4 16-dimensional Neuromuscular Controller

We use neuromuscular model policies, as introduced in [12], as our controller for
the 7-link planar human-like biped model. These policies use approximate models
of muscle dynamics and human-inspired reflex pathways to generate joint torques,
producing gaits that are similar to human walking.

Each leg is actuated by 7 muscles, which together produce torques about the
hip, knee and ankle. Most of the muscle reflexes are length or force feedbacks on the
muscle state aimed at generating a compliant leg, keeping knee from hyperextending
and maintaining torso orientation in stance. The swing control has three main
components – target leg angle, leg clearance and hip control due to reaction torques.
Together with the stance control, this leads to a total of 16 controller parameters,
described in details in [1].

Though originally developed for explaining human neural control pathways, this
controller has recently been applied to prosthetics and bipeds, for example Thatte
and Geyer [32] and Van der Noot et al. [34]. This controller is capable of generating
a variety of locomotion behaviours for a humanoid model – walking on rough ground,
turning, running, and walking upstairs, making it a very versatile controller [29].
This is a model-free controller as compared to the reactive-stepping controller, which
was model-based.

4.5 50-dimensional Virtual Neuromuscular Controller

Another model-free controller we use on ATRIAS is a modified version of [3]. VNMC
maps a neuromuscular model, similar to the one described in Section 4.4 to the
ATRIAS robot’s topology and emulates it to generate desired motor torques. We
adapt VNMC by removing some biological components while preserving its basic

B14 PAPER B. IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDS

functionalities. The final version of the controller consists of 50 parameters including
low-level control parameters, such as feedback gains, as well as high level parameters,
such as desired step length and desired torso lean. Details can be found in [24].
When optimized using CMA-ES, it can control ATRIAS to walk on rough terrains
with height changes of ±20 cm in planar simulation [3].

4.6 Increasingly Inaccurate Simulators

To compare the performance of different methods that can be used to transfer infor-
mation from simulation to hardware, we create a series of increasingly approximate
simulators. These simulators emulate increasing mismatch between simulation and
hardware and its effect on the information transfer. In this setting, the high-fidelity
ATRIAS simulator [20], which was used in all the previous simulation experiments
becomes the “hardware”. Next we make dynamics approximations to the original
simulator, which are used commonly in simulators to decrease fidelity and increase
simulation speed. For example, the complex dynamics of harmonic drives are ap-
proximated as a torque multiplication, and the boom is removed from the simulation,
leading to a two-dimensional simulator. These approximate simulators now become
the “simulators”. As the approximations in these simulators are increased, we expect
the performance of methods that utilize simulation for optimization on hardware to
deteriorate.
The details of the approximate simulators are described in the two paragraphs
below:
1. Simulation with simplified gear dynamics : We replace the original high-
fidelity gear model with a commonly used approximation for geared systems –
multiplying the rotor torque by the gear ratio. This reduces the simulation time to
about a third of the original simulator, but leads to an approximate gear dynamics
model.
2. Simulation with no boom and simplified gear dynamics : The ATRIAS
robot walks on a boom in our hardware experiments. In our second approximation,
we remove the boom from the original simulator and constraint the motion of the
robot to a 2-dimensional plane. This is a common approximation for two-dimensional
robots. However, the boom leads to lateral forces on the robot, which have vertical
force components that are not modelled anymore.

The advantage of such an arrangement is that we can test the effect of un-modelled
and wrongly modelled dynamics on information transfer between simulation and
hardware. Even in our high-fidelity original simulator, there are several un-modelled
components of the actual hardware. For example, the non-rigidness of the robot
parts, misaligned motors and relative play between joints. In our experiments,
we find that the 50-dimensional VNMC is a sensitive controller, with little hope
of directly transferring from simulation to hardware. Anticipating this, we can
now test several methods of compensating for this mismatch using our increasingly
approximate simulators.

5. EXPERIMENTS B15

Figure 3: ATRIAS during BO with DoG-based kernel (video: https://youtu.be/hpXNFREgaRA)

5 Experiments

We will now present our experiments on optimizing controllers that are 5, 9, 16
and 50 dimensional. We split our experiments into three categories: hardware
experiments on the ATRIAS robot, simulation experiments on the 7-link biped and
experiments using simulators with different levels of mismatch. We demonstrate
that our proposed approach is able to generalize to different controllers and robot
structures and is also robust to simulation inaccuracies. The sections below present
experimental results, while Appendix A gives further details on data collection, BO
implementation and kernel generation.

5.1 Hardware Experiments on the ATRIAS Robot
In this section we describe experiments conducted on the ATRIAS robot (hardware
from Section 4.1). These experiments were conducted around a boom. The cost
function used in our experiments is a slight modification of the cost used in [29]:

𝑐𝑜𝑠𝑡 =
{︃

100− 𝑥𝑓𝑎𝑙𝑙, if fall
||𝑣𝑎𝑣𝑔 − 𝑣𝑡𝑔𝑡||, if walk

(6)

where 𝑥𝑓𝑎𝑙𝑙 is distance covered before falling, 𝑣𝑎𝑣𝑔 is average speed per step and 𝑣𝑡𝑔𝑡
contains target velocity profile, which can be variable. This cost function heavily
penalizes falls, and encourages walking controllers to track target velocity.

We do multiple runs of each algorithm on the robot. Each run typically consists
of 10 experiments on the robot. All BO runs start from scratch, with an uninformed
GP prior. At the end of the run, the GP posterior has 10 data points, depending
on the experiment. Each robot trial is designed to be between 30𝑠 to 60𝑠 long and
the robot is reset to its “home” position between trials.

We will present two sets of hardware experiments in the following subsections.
First we describe experiments with the DoG-based kernel on the 5 and 9 dimensional
controllers (first reported in Rai et al. [24]). The second set describes a new set of
experiments for optimizing a 9-dimensional controller using a Neural Network based
kernel on hardware.

5.1.1 Experiments with a 5-dimensional controller and DoG kernel

In our first set of experiments on the robot, we investigated optimizing the
5-dimensional controller from Section 4.3. For these experiments we picked a

https://youtu.be/hpXNFREgaRA

B16 PAPER B. IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDS

(a) BO for 5D controller. BO with SE finds
walking points in 4/5 runs within 20 trials.
BO with DoG-based kernel finds walking
points in 5/5 runs within 3 trials.

(b) BO for 9D controller. BO with SE
doesn’t find walking points in 3 runs. BO
with DoG-based kernel finds walking points
in 3/3 runs within 5 trials.

Figure 4: BO for 5D and 9D controller on ATRIAS robot hardware. Plots show mean best
cost so far. Shaded region shows ± one standard deviation. Plots from Rai et al. [24]

challenging variable target speed profile:
0.4𝑚/𝑠 (15 steps) - 1.0𝑚/𝑠 (15 steps) - 0.2𝑚/𝑠 (15 steps) - 0𝑚/𝑠 (5 steps).

The controller was stopped after the robot took 50 steps. To evaluate the difficulty
of this setting, we sampled 100 random points on hardware. 10% of these randomly
sampled controllers could walk. In contrast, in simulation the success rate of random
sampling was ≈27.5%. This indicates that the simulation was easier, which could
be potentially detrimental to algorithms that rely heavily on simulation, because a
large portion of controllers that walk in simulation fall on hardware. Nevertheless,
using a DoG-based kernel offered significant improvements over a standard SE kernel
(Figure 4a).

We conducted 5 runs of BO with DoG-based kernel and 5 runs of BO with SE,
10 trials for DoG-based kernel per run, and 20 for SE kernel. In total, this led
to 150 experiments on the robot (excluding the 100 random samples, which were
not used during BO). BO with DoG-based kernel found walking points in 100% of
runs within 3 trials. In comparison, BO with SE found walking points in 10 trials
in 60% runs, and in 80% runs in 20 trials (Figure 4a). Although BO could find
walking controllers as early as the second trial (with no prior hardware information),
it is worth noting that the optimization did not converge after only a few trials.
Sampling more could possibly lead to better walking controllers, but our goal was
to find the best controller with a budget of only 10 to 20 trials.

5.1.2 Experiments with a 9-dimensional controller and DoG kernel

Our next set of experiments optimized the 9-dimensional controller from Section 4.3.
First, we sampled 100 random points for the variable speed profile described above,
but this led to no walking points. To ensure that we have a reasonable baseline
we decided to simplify the speed profile for this setting: 0.4𝑚/𝑠 for 30 steps. We

5. EXPERIMENTS B17

evaluated 100 random points on hardware, and 3 walked for the easier speed profile.
In comparison, the success rate in simulation was 8% for the tougher variable-speed
profile, implying an even greater mismatch between hardware and simulation than
the 5-dimensional controller. For experiments in Sections 5.1.1 and 5.1.2 the inertial
measurement unit (IMU) of the robot was broken, and we replaced its functionality
with external boom sensors. These were lower resolution than the IMU, leading to
noisier readings and larger time delays. As a result, the system did not have a good
estimation of vertical height of the CoM, leading to poor control authority. However,
the IMU on ATRIAS is a very expensive fiber-optic IMU that is not commonly used
on humanoid robots, and most robots use simple state estimation methods. So, this
is a common setting for humanoid robots, even if it presents a challenge for the
optimization methods.

We conducted 3 runs of BO with DoG-based kernel and BO with SE, 10 trials
for DoG-based kernel per run, and 10 for SE. In total, this led to 60 experiments on
the hardware (excluding the random samples, which were not used for BO). BO
with DoG-based kernel found walking points in 5 trials in 3/3 runs. BO with SE
did not find any walking points in 10 trials in all 3 runs. These results are shown in
Figure 4b.

Based on these results, we concluded that BO with DoG-based kernel was
indeed able to extract useful information from simulation and speed up learning on
hardware, even when there was mismatch between simulation and hardware.

5.1.3 Experiments with a 9-dimensional controller and NN kernel

Figure 5: BO for 9D controller on
ATRIAS robot hardware. Shaded
region shows ± one standard dev.

In the next set of experiments, we evaluated
performance of the NN-based kernel described
in Section 3.1.2. We optimize the 9-dimensional
controller from Section 4.3.

The target of hardware experiments was to
walk for 30 steps at 0.4𝑚/𝑠, similar to Section
5.1.2. For these experiments the IMU was re-
paired, leading to better state estimation on the
robot. For a fair comparison, we re-ran exper-
iments with the baseline for this setting and the
baseline performed slightly better than the base-
line of earlier experiments (because of improved
sensing).

Figure 5 shows comparison of BO with NN-based kernel and SE kernels. We
conducted 5 runs of both algorithms with 10 trials in each run, leading to a total of
100 robot trials. BO with the NN-based kernel found walking points in all 5 runs
within 6 trials, while BO with SE kernel only found walking points in 2 of 5 runs in
10 trials. Hence, even without explicit hand-designed domain knowledge, like the
DoG-based kernel, the NN-based kernel is able to extract useful information from
simulation and successfully guide hardware experiments.

B18 PAPER B. IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDS

(a) Using smooth cost from Equation 7 (b) Using non-smooth cost from Equation 8
Figure 6: BO for the Neuromuscular controller. trajNN and DoG kernels were constructed
with undisturbed model on flat ground. BO is run with mass/inertia disturbances on
different rough ground profiles. Means of 50 runs, 95% CIs. Plots from Antonova et al. [2]

5.2 Simulation Experiments on a 7-link Biped
This section describes simulation experiments with a 16-dimensional Neuromuscular
controller (Section 4.4) on a 7-link biped model. These experiments, from Antonova
et al. [2], highlight the cost-agnostic nature of our approach by optimizing two very
different costs.

Figure 6 shows BO with DoG-based kernel, NN-based kernel and SE kernel for
two different costs from prior literature. The first cost promotes walking further
and longer before falling, while penalizing deviations from the target speed [1]:

𝑐𝑜𝑠𝑡𝑠𝑚𝑜𝑜𝑡ℎ = 1/(1 + 𝑡) + 0.3/(1 + 𝑑) + 0.01(𝑠− 𝑠𝑡𝑔𝑡), (7)

where 𝑡 is seconds walked, 𝑑 is the final CoM position, 𝑠 is speed and 𝑠𝑡𝑔𝑡 is the
desired walking speed (1.3𝑚/𝑠 in our case). The second cost function is similar to
the cost used in Section 5. It penalizes falls explicitly, and encourages walking at
desired speed and with lower cost of transport:

𝑐𝑜𝑠𝑡𝑛𝑜𝑛-𝑠𝑚𝑜𝑜𝑡ℎ =
{︃

300− 𝑥𝑓𝑎𝑙𝑙, if fall
100||𝑣𝑎𝑣𝑔 − 𝑣𝑡𝑔𝑡||+ 𝑐𝑡𝑟, if walk

(8)

where 𝑥𝑓𝑎𝑙𝑙 is the distance covered before falling, 𝑣𝑎𝑣𝑔 is the average speed of walking,
𝑣𝑡𝑔𝑡 is the target velocity, and 𝑐𝑡𝑟 captures the cost of transport. The changed
constants is to account for a longer simulation time. Figure 6a shows that the
NN-based kernel and the DoG-based kernel offer a significant improvement over
BO with the SE kernel in sample efficiency when using the 𝑐𝑜𝑠𝑡𝑠𝑚𝑜𝑜𝑡ℎ, with more
than 90% of runs achieving walking after 25 trials. BO with the SE kernel takes 90
trials to get 90% success rate. Figure 6b shows that similar performance by the two
proposed approaches is observed on the non-smooth cost. With the NN-based kernel,
70% of the runs find walking solutions after 100 trials, similar to the DoG-based
kernel. However, optimizing non-smooth cost is very challenging for BO with the
SE kernel: a walking solution is found only in 1 out of 50 runs after 100 trials.

We attribute the difference in performance of the SE kernel on the two costs to
the nature of the costs. If a point walks some distance 𝑑, Equation 7 reduces in

5. EXPERIMENTS B19

(a) Informed kernels generated using simu-
lator with simplified gear dynamics

(b) Informed kernels generated using sim-
plified gear dynamics without a boom

Figure 7: BO is run on the original simulator. Informed kernels perform well despite
significant mismatch, when kernels are generated using simulator with simplified gear
dynamics (left). In the case of severe mismatch, when the boom model is also removed,
informed kernels still improve over baseline SE (right). Plots show best cost for mean over
50 runs for each algorithm, 95% CIs.

terms of 1
𝑑 and Equation 8 reduces by −𝑑. A sharper fall in the first cost encourages

BO to exploit around points that walk some distance, quickly finding points that
walk forever. BO with the second cost continues to explore, as the signal is too
weak. However the success of both NN-based and DoG-based kernels on both costs
shows that the same kernel can indeed be used for optimizing multiple costs robustly,
without any further tuning needed.

5.3 Experiments with Increasing Simulation-Hardware
Mismatch

In this section, we describe our experiments with increasing simulation-hardware
mismatch and its effect on approaches that use information from simulation during
hardware optimization. The quality of information transfer between simulation
and hardware depends not only on the mismatch between the two, but also on the
controller used. For a robust controller, small dynamics errors would not cause a
significant deterioration in performance, while for a sensitive controller this might
be much more detrimental.

In the rest of this section, we provide experimental analyses of settings with
increasing simulated mismatch and their effect on optimization of the 50-dimensional
VNMC from Section 4.5. We compare several approaches that improve sample-
efficiency of BO and investigate if the improvement they offer is robust to mismatch
between the simulated setting used for constructing kernel/prior and the setting on
which BO is run.

First, we examine the performance of our proposed approaches with informed
kernels: 𝑘𝐷𝑜𝐺, 𝑘trajNN and 𝑘𝐷𝑜𝐺𝑎𝑑𝑗

. Figure 7a shows the case when informed kernels
are generated using the simulator with simplified gear dynamics while BO is run on

B20 PAPER B. IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDS

(a) BO with cost prior: straightforward ap-
proach useful for low-to-medium mismatch;
but no improvement if mismatch is severe

(b) Performance of IT&E algorithm (our
implementation of Cully et al. [7], adapted
to bipedal locomotion)

Figure 8: BO using prior-based approaches. Mean of 50 runs for each algorithm, 95% CIs.

the original simulator. After 50 trials, all runs with informed kernels find walking
solutions, while for SE only 70% have walking solutions.

Next, Figure 7b shows performance of 𝑘𝐷𝑜𝐺, 𝑘trajNN and 𝑘𝐷𝑜𝐺𝑎𝑑𝑗
when the

kernels are constructed using a simulator with simplified dynamics and without a
the boom. In this case the mismatch with the original simulator is larger than before
and we see the advantage of using adjustment for DoG-based kernel: 𝑘𝐷𝑜𝐺𝑎𝑑𝑗

finds
walking points in all runs after 35 trials. 𝑘trajNN also achieves this, but after 50 trials.
𝑘𝐷𝑜𝐺 finds walking points in ≈90% of the runs after 50 trials. The performance of
SE stays the same, as it uses no prior information from any simulator.

This illustrates that while the original DoG-based kernel can recover from slight
simulation-hardware mismatch, the adjusted DoG-kernel is required for higher
mismatch. 𝑘trajNN seems to recover from the mismatch, but might benefit from an
adjusted version. We leave this to future work.

5.3.1 Comparisons of Prior-based and Kernel-based Approaches

In this section, we classify approaches that use simulation information in hardware
optimization as prior-based or kernel-based. Prior-based approaches use costs from
the simulation in the prior of the GP used in the BO. This can help BO a lot
if the costs are similar between simulation and hardware, and the cost function
is fixed. However, in the presence of large mismatch, controllers that perform
well in simulation might fail on hardware. A prior-based method can be biased
towards sampling promising points from simulation, resulting in worse performance
than uninformed BO. Kernel-based approaches consist of methods that incorporate
information from simulation into the kernel of the GP. These can be less sample-
efficient as compared to prior-based method, but not as likely to be biased towards
unpromising regions in the presence of mismatch. They also easily generalize to
multiple costs, so that there is no need to re-run simulations for data collection
if the cost is changed. This is important because a lot of these approaches can

5. EXPERIMENTS B21

take several days of computation to generate a cost prior or informed kernel. For
example, [7] report taking 2 weeks on a 16-core computer to generate their map.

It is possible to also combine both prior-based and kernel-based methods, as
in [7]. We classify these as ‘prior-based’ methods, since in our experiments prior
outweighs the kernel effects for such cases. In our comparison with [7], we implement
a version with and without the prior points. We do not add a cost prior to BO
using DoG-based kernel, as this would limit us to a particular cost and high-fidelity
simulators, and both of these can be major obstacles in real robot experiments.

Figure 8a shows the performance when using simulation cost in the prior during
BO. BO with a cost prior created using the original version of the simulator illustrates
what would happen in the best case scenario. When the simulator with simplified
gear dynamics is used for constructing the prior, we observe significant improvements
over uninformed BO prior. However, when the prior is constructed from simplified
gear dynamics and no boom setting, the approach performs slightly worse than
uninformed BO. This shows that while an informed prior can be very helpful when
created from a simulator close to hardware, it can hurt performance if simulator is
significantly different from hardware.

Next, we discuss experiments with our implementation of Intelligent Trial and
Error (IT&E) algorithm from Cully et al. [7]. This algorithm combines adding a
cost prior from simulated evaluations with adding simulation information into the
kernel. IT&E defines a behavior metric and tabulates best performing points from
simulation on their corresponding behavior score. The behavior metric used in our
experiments is duty-factor of each leg, which can go from 0 to 1.0. We discretize the
duty factor into 21 cells of 0.05 increments, leading to a 21× 21 grid. We collect
the 5 highest performing controllers for each square in the behavior grid, creating
a 21× 21× 5 grid. Next, we generate 50 random combinations of a 21× 21 grid,
selecting 1 out of the 5 best controllers per grid cell. Care was taken to ensure that
all 5 controllers had comparable costs in the simulator used for creating the map.
Cost of each selected controller is added to the prior and BO is performed in the
behavior space, like in [7].

Figure 8b shows BO with IT&E constructed using different versions of the
simulator. IT&E constructed using simplified gear dynamics simulator is slightly less
sample-efficient than the straightforward ‘cost prior’ approach. When constructed
with the simulator with no boom, IT&E is able to improve over uninformed BO.
However, it only finds walking points in 77% of the runs in 50 trials in this case,
as some of the generated maps contained no controllers that could walk on the
‘hardware’. This is a shortcoming of the IT&E algorithm, as it eliminates a very
large part of the search space and if the pre-selected space does not contain a walking
point, no walking controllers can be sampled with BO. This problem could possibly
be avoided by using a finer grid, or a different behavior metric. However tuning
such hyper-parameters can turn out to be expensive, in computation and hardware
experiment time.

To separate the effects of using simulation information in prior mean vs kernel,

B22 PAPER B. IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDS

(a) BO using our implementation of IT&E
without cost prior (from Cully et al. [7])

(b) BO using 𝑘𝐷𝑜𝐺𝑎𝑑𝑗 constructed from sim-
ulators with various levels of mismatch

Figure 9: BO with kernel-based approaches. Mean of 50 runs for each algorithm, 95% CIs

we evaluated a kernel-only version of IT&E algorithm (Figure 9a). It shows that the
cost prior is crucial for the success of IT&E and performance deteriorates without it.
Hence, it is not practical to use IT&E on a cost different than what it was generated
for. Nonetheless, Figure 7 showed that BO with adjusted DoG kernel is able to
handle both moderate and severe mismatch with kernel-only information, collected
in Figure 9b.

Summarizing this section, we created two simulators with increasing modelling
approximations, and studied the effect of using these to aid optimization on the
original simulator. We found that while methods that use cost in the prior of BO can
be very sample-efficient in low mismatch, their performance worsens as mismatch
increases. IT&E, introduced in [7], uses simulation information in both prior mean
and kernel, and is very sample-efficient in cases of low mismatch. Even with high
mismatch, it performed better than just prior-based BO but doesn’t find walking
controllers reliably. In comparison, adjusted DoG-based kernel performed well in all
the tested scenarios, and can reliably improve sample-efficiency of BO even when
the mismatch between simulation and hardware is high.

6 Conclusion

In this paper, we presented and analyzed in detail our work from Antonova et al.
[1], Antonova et al. [2] and Rai et al. [24]. These works introduce domain-specific
feature transforms that can be used to optimize locomotion controllers on hardware
efficiently. The feature transforms project the original controller space into a
space where BO can discover promising regions quickly. We described a transform
for bipedal locomotion designed with the knowledge of human walking and a
neural network based transform that uses more general information from simulated
trajectories. Our experiments demonstrate success at optimizing controllers on
the ATRIAS robot. Further simulation-based experiments also indicate potential
for other bipedal robots. For optimizing sensitive high-dimensional controllers,

6. CONCLUSION B23

we proposed an approach to adjust simulation-based kernel using data seen on
hardware. To study the performance of this, as well as compare our approach to
other methods, we created a series of increasingly approximate simulators. Our
experiments show that while several methods from prior literature can perform well
with low simulation-hardware mismatch (sometimes even better than our proposed
approach), they suffer when this mismatch increases. In such cases, our proposed
kernels with hardware adjustment can yield reliable performance across different
costs, simulators and robots.

Acknowledgments

This research was supported in part by National Science Foundation grant IIS-
1563807, the Max-Planck-Society, & the Knut and Alice Wallenberg Foundation.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the
funding organizations.

Appendix A: Implementation Details

In this appendix we provide a summary of data collection and implementation details.
Our implementation of BO was based on the framework in Gardner et al. [11]. We
used Expected Improvement (EI) acquisition function [22]. We also experimented
with Upper Confidence Bound (UCB) [30], but found that performance was not
sensitive to the choice of acquisition function. Hyper-parameters for BO were
initialized to default values: 0 for mean offset, 1.0 for kernel length scales and signal
variance, 0.1 for 𝜎𝑛 (noise parameter). Hyperparameters were optimized using the
marginal likelihood ([26], Section V-A). For all algorithms, we started optimizing
hyperparameters after a low-cost controller was found (to save compute resources
and avoid premature hyperparameter optimization). The search space boundaries
for controller parameters was designed with physical constraints of the ATRIAS
robot in mind.

𝑘trajNN discussed in Section 3.1.2 was constructed by training a fully connected
neural network (NN) with 3 hidden layers, using L1 loss to reconstruct features
encoded by trajectory summaries. For experiments with 16D controller in Section 5.2,
for example, the hidden layers contained 512, 128, 32 units; NN was trained on
100K simulated examples to reconstruct 8D trajectory summaries (see next-to-last
row of Table B.2). We experimented with various hidden layer sizes for 9D and
50D controllers, but did not find the overall BO performance to be sensitive to size
or other training parameters, like NN learning rate. This was likely because NN
used to construct an informed kernel only needs to approximately learn to separate
well-performing parts from failing parts of the control parameter space. This is the
benefit of our choice not to put the output of NN directly into a GP posterior.

To create cost prior for experiments in Section 5.3 we collected 50,000 evaluations
of 30s trials for a range of controller parameters. Then we conducted 50 runs, using

B24 PAPER B. IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDS

Kernel Controller # Sim Sim Kernel Features
type dim points duration dim in kernel

𝑘𝐷𝑜𝐺 5 20K 3.5s 1 𝑠𝑐𝑜𝑟𝑒𝐷𝑜𝐺

9 100K 5s 1 𝑠𝑐𝑜𝑟𝑒𝐷𝑜𝐺

50 200K 5s 1 𝑠𝑐𝑜𝑟𝑒𝐷𝑜𝐺

𝑘trajNN 9 100K 5s 4 𝑡𝑤𝑎𝑙𝑘, 𝑥𝑒𝑛𝑑, 𝜃𝑎𝑣𝑔, 𝑣𝑥,𝑎𝑣𝑔

16 100K 5s 8 𝑡𝑤𝑎𝑙𝑘, 𝑥𝑒𝑛𝑑, 𝜃𝑒𝑛𝑑, 𝑣𝑥,𝑒𝑛𝑑

𝑐𝜏 , 𝑦𝑒𝑛𝑑, 𝑣𝑦,𝑒𝑛𝑑, 𝜃𝑒𝑛𝑑

50 200K 5s 13 𝑡𝑤𝑎𝑙𝑘, 𝑥𝑒𝑛𝑑, 𝑐𝜏 , trajtrajtraj𝑥, trajtrajtraj𝜃

Table B.2: Simulation data collection details. 𝑠𝑐𝑜𝑟𝑒𝐷𝑜𝐺 was described in Section 3.1.1.
For 𝑘trajNN: 𝑡𝑤𝑎𝑙𝑘 is time walked in simulation before falling, 𝑥𝑒𝑛𝑑 and 𝑦𝑒𝑛𝑑 are the 𝑥 and
𝑦 positions of Center of Mass (CoM) at the end of the short simulation, 𝜃 is the torso
angle, 𝜃 is the torso velocity, 𝑣 is the CoM speed (𝑣𝑥 is the horizontal and 𝑣𝑦 is the vertical
component), 𝑐𝜏 is the squared sum of torques applied; trajtrajtraj𝑥, trajtrajtraj𝜃 denote vectors with
mean CoM and 𝜃 measurements every second.

random subsets of 35,000 evaluations to construct the prior. The numbers were
chosen such that this approach used similar amount of computation as our kernel-
based approaches. To accommodate GP prior with a large number of points we
used a sparse GP construction provided by [25].

References

[1] Rika Antonova, Akshara Rai, and Christopher G Atkeson. Sample efficient opti-
mization for learning controllers for bipedal locomotion. In IEEE-RAS International
Conference on Humanoid Robots (Humanoids), pages 22–28. IEEE, 2016.

[2] Rika Antonova, Akshara Rai, and Christopher G Atkeson. Deep Kernels for Optimizing
Locomotion Controllers. In Conference on Robot Learning (CoRL), PMLR 78, pages
47–56, 2017.

[3] Zachary Batts, Seungmoon Song, and Hartmut Geyer. Toward a virtual neuromuscular
control for robust walking in bipedal robots. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 6318–6323. IEEE, 2015.

[4] Eric Brochu, Vlad M Cora, and Nando De Freitas. A Tutorial on Bayesian Opti-
mization of Expensive Cost Functions, with Application to Active User Modeling and
Hierarchical Reinforcement Learning. arXiv preprint arXiv:1012.2599, 2010.

[5] Roberto Calandra, Jan Peters, Carl Edward Rasmussen, and Marc Peter Deisenroth.
Manifold Gaussian processes for regression. In International Joint Conference on
Neural Networks (IJCNN), pages 3338–3345. IEEE, 2016.

6. CONCLUSION B25

[6] Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian
Optimization for Learning Gaits Under Uncertainty. Annals of Mathematics and
Artificial Intelligence, 76(1-2):5–23, 2016.

[7] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that
can adapt like animals. Nature, 521(7553):503–507, 2015.

[8] Marc Deisenroth and Carl E Rasmussen. PILCO: A model-based and data-efficient
approach to policy search. In International Conference on Machine Learning (ICML),
pages 465–472, 2011.

[9] Peter Englert and Marc Toussaint. Combined Optimization and Reinforcement
Learning for Manipulation Skills. In Robotics: Science and Systems, 2016.

[10] Siyuan Feng, Eric Whitman, X Xinjilefu, and Christopher G Atkeson. Optimization-
based Full Body Control for the DARPA Robotics Challenge. Journal of Field Robotics,
32(2):293–312, 2015.

[11] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John
Cunningham. Bayesian Optimization with Inequality Constraints. In International
Conference on Machine Learning (ICML), pages 937–945, 2014.

[12] Hartmut Geyer and Hugh Herr. A Muscle-reflex Model that Encodes Principles of
Legged Mechanics Produces Human Walking Dynamics and Muscle Activities. IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 18(3):263–273, 2010.

[13] Nikolaus Hansen. The CMA evolution strategy: a comparing review. In Towards a
new evolutionary computation, pages 75–102. Springer, 2006.

[14] Christian Hubicki, Jesse Grimes, Mikhail Jones, Daniel Renjewski, Alexander Spröwitz,
Andy Abate, and Jonathan Hurst. ATRIAS: Design and validation of a tether-free
3D-capable spring-mass bipedal robot. The International Journal of Robotics Research
(IJRR), 35(12):1497–1521, 2016.

[15] Verne T Inman, Howard D Eberhart, et al. The major determinants in normal and
pathological gait. Journal of Bone and Joint Surgery (JBJS), 35(3):543–558, 1953.

[16] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás Póczos.
Multi-fidelity Bayesian Optimisation with Continuous Approximations. In Interna-
tional Conference on Machine Learning (ICML), pages 1799–1808, 2017.

[17] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela, Hongkai Dai,
Frank Permenter, Twan Koolen, Pat Marion, and Russ Tedrake. Optimization-based
locomotion planning, estimation, and control design for the atlas humanoid robot.
Autonomous Robots, 40(3):429–455, 2016.

[18] Daniel J Lizotte, Tao Wang, Michael H Bowling, and Dale Schuurmans. Automatic Gait
Optimization with Gaussian Process Regression. In International Joint Conference
on Artificial Intelligence (IJCAI), volume 7, pages 944–949, 2007.

B26 PAPER B. IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDS

[19] Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P Schoellig, Andreas Krause,
Stefan Schaal, and Sebastian Trimpe. Virtual vs. real: Trading off simulations and
physical experiments in reinforcement learning with Bayesian optimization. In IEEE
International Conference on Robotics and Automation (ICRA), pages 1557–1563.
IEEE, 2017.

[20] William C Martin, Albert Wu, and Hartmut Geyer. Robust spring mass model
running for a physical bipedal robot. In IEEE International Conference on Robotics
and Automation (ICRA), pages 6307–6312. IEEE, 2015.

[21] Ruben Martinez-Cantin. Funneled Bayesian optimization for design, tuning and
control of autonomous systems. IEEE transactions on cybernetics, (99):1–12, 2018.

[22] J Mockus, V Tiesis, and A Zilinskas. Toward Global Optimization, Volume 2, Chapter:
Bayesian Methods for Seeking the Extremum. 1978.

[23] Xue Bin Peng, Glen Berseth, and Michiel van de Panne. Terrain-adaptive locomotion
skills using deep reinforcement learning. ACM Transactions on Graphics (TOG), 35
(4):81, 2016.

[24] Akshara Rai, Rika Antonova, Seungmoon Song, William Martin, Hartmut Geyer, and
Christopher Atkeson. Bayesian optimization using domain knowledge on the ATRIAS
biped. In IEEE International Conference on Robotics and Automation (ICRA), pages
1771–1778. IEEE, 2018.

[25] Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine learning
(gpml) toolbox. J. Mach. Learn. Res., 11:3011–3015, December 2010. ISSN 1532-4435.
URL http://dl.acm.org/citation.cfm?id=1756006.1953029.

[26] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas.
Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proceedings
of the IEEE, 104(1):148–175, 2016.

[27] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization
of machine learning algorithms. In Advances in neural information processing systems
(NIPS), pages 2951–2959, 2012.

[28] Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for
Bayesian optimization of non-stationary functions. In International Conference on
Machine Learning (ICML), pages 1674–1682, 2014.

[29] Seungmoon Song and Hartmut Geyer. A Neural Circuitry that Emphasizes Spinal
Feedback Generates Diverse Behaviours of Human Locomotion. The Journal of
Physiology, 593(16):3493–3511, 2015.

[30] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian
process optimization in the bandit setting: no regret and experimental design. In
International Conference on Machine Learning (ICML), pages 1015–1022. Omnipress,
2010.

http://dl.acm.org/citation.cfm?id=1756006.1953029

6. CONCLUSION B27

[31] Matthew Tesch, Jeff Schneider, and Howie Choset. Using response surfaces and
expected improvement to optimize snake robot gait parameters. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1069–1074.
IEEE, 2011.

[32] Nitish Thatte and Hartmut Geyer. Toward Balance Recovery with Leg Prostheses
Using Neuromuscular Model Control. IEEE Transactions on Biomedical Engineering,
63(5):904–913, 2016.

[33] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A generalized path integral
control approach to reinforcement learning. Journal of Machine Learning Research
(JMLR), 11(Nov):3137–3181, 2010.

[34] Nicolas Van der Noot, Luca Colasanto, Allan Barrea, Jesse van den Kieboom, Renaud
Ronsse, and Auke J Ijspeert. Experimental validation of a bio-inspired controller for
dynamic walking with a humanoid robot. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 393–400. IEEE, 2015.

[35] Aaron Wilson, Alan Fern, and Prasad Tadepalli. Using Trajectory Data to Improve
Bayesian Optimization for Reinforcement Learning. The Journal of Machine Learning
Research (JMLR), 15(1):253–282, 2014.

[36] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep
kernel learning. In Artificial Intelligence and Statistics, pages 370–378, 2016.

[37] DA Winter and HJ Yack. EMG profiles during normal human walking: stride-to-stride
and inter-subject variability. Electroencephalography and clinical neurophysiology, 67
(5):402–411, 1987.

Deep Kernels for Optimizing
Locomotion Controllers

Rika Antonova1

EECS, KTH, Stockholm, Sweden

Akshara Rai1 Christopher G. Atkeson
Robotics Institute, Carnegie Mellon University, USA

Abstract

Sample efficiency is important when optimizing parameters of locomotion
controllers, since hardware experiments are time consuming and expensive.
Bayesian Optimization, a sample-efficient optimization framework, has recently
been widely applied to address this problem, but further improvements in
sample efficiency are needed for practical applicability to real-world robots and
high-dimensional controllers. To address this, prior work has proposed using
domain expertise for constructing custom distance metrics for locomotion. In
this work we show how to learn such a distance metric automatically. We use a
neural network to learn an informed distance metric from data obtained in high-
fidelity simulations. We conduct experiments on two different controllers and
robot architectures. First, we demonstrate improvement in sample efficiency
when optimizing a 5-dimensional controller on the ATRIAS robot hardware.
We then conduct simulation experiments to optimize a 16-dimensional con-
troller for a 7-link robot model and obtain significant improvements even when
optimizing in perturbed environments. This demonstrates that our approach
is able to enhance sample efficiency for two different controllers, hence is a
fitting candidate for further experiments on hardware in the future.
Keywords: Bayesian optimization, Sim-to-Real transfer, Biped Locomotion

1 Introduction

1Both of these authors contributed equally.

In proceedings of the 1st Conference on Robot Learning (CoRL 2017), Mountain View, CA, US.
Published by PMLR http://proceedings.mlr.press/v78/antonova17a License: CC-BY 4.0

NOTE: The JMLR2019 article included trajNN kernel from this work and reported new hardware
experiments. This CoRL2017 paper shows cost landscape and cost-based asymNN kernel results.

http://proceedings.mlr.press/v78/antonova17a

C2 PAPER C. DEEP KERNELS FOR LOCOMOTION CONTROLLERS

Figure 1: ATRIAS robot.

Bayesian Optimization (BO) is rapidly becoming a pop-
ular approach for optimizing controllers in robotics. It
offers sample-efficient, black-box and gradient-free op-
timization, well suited for many problems in the field.
Recently, some success has also been achieved when opti-
mizing controllers directly on hardware [1, 2, 3]. Hence,
this sample-efficient optimization framework has the
potential to alleviate the need for manual tuning by ex-
perts, to a large extent. However, for high-dimensional
controllers and challenging cost functions the perfor-
mance of conventional BO often degrades. Without an
informative prior, the number of data points required
could be prohibitively expensive for hardware-only op-
timization. Hence, it seems ideal to exploit simulation
to speed up learning, as proposed in [4] and [3]. These prior approaches, however,
need extensive expert domain knowledge to define the problem-specific informed
distance metric.

In this work we demonstrate how to construct an informed metric automatically,
without relying heavily on domain experts. We propose to learn a distance metric
with a neural network, utilizing data obtained from a high-fidelity simulator. This
involves first running short simulations of a locomotion controller on a large grid
of control parameters and recording the behavior of each set of parameters. The
neural network then learns a mapping between input controller parameters and
simulation output/behavior. We propose two ways of defining the target to be
learned by the network. The first approach is based on the cost function that is
to be optimized with BO on hardware, or a perturbed simulator. The second is
cost-agnostic: learning to reconstruct a summary of robot trajectories obtained from
simulation. This provides a useful re-parameterization: controller parameters that
produce similar walking trajectory summaries are closer in this re-parameterized
space.

In our first set of experiments we optimize a 5-dimensional controller on the
ATRIAS robot hardware (Figure 1). We demonstrate that using cost-based kernel
obtained with our approach outperforms using an uninformed kernel for BO. The
setting we consider for ATRIAS experiments yields a proof-of-concept rather than a
large-scale optimization problem. Nonetheless, we believe that its an important step
towards optimizing locomotion policies for complex humanoid robots on hardware.

Prior Bayesian Optimization studies often used simpler robots. For example,
[5] use snake robots, [3] use a hexapod, which often have statically stable gaits, or
spend a significant amount of gait duration in a statically stable state. [1] use a
smaller biped with a finite-state-machine controller, which is not widely used. In
contrast, ATRIAS is a complex bipedal robot, which cannot be statically stable
in single support because of point feet. Hence, it is likely to fall with unstable
controllers. Moreover, our control framework is in line with most state-of-the-art
robot controllers [6], [7]. Hence, results on our testbed can be transferred to other

2. BACKGROUND C3

systems.
Our second set of experiments is on the Neuromuscular model [8]. We optimize

a 16-dimensional controller for a 7-link robot model in simulation. Our approach
of reconstructing trajectory summaries again yields a significant improvement over
using uninformed kernels for BO. This is the case for both a smooth and a challenging
non-smooth cost suggested in prior literature [9]. Hence the proposed approach
offers a promising way to construct cost-agnostic kernels for BO automatically.

2 Background

2.1 Optimizing Bipedal Locomotion Controllers
Approaches to optimizing locomotion controllers range from manual tuning to fully
automatic optimization. For complex controllers fully manual tuning is sometimes
infeasible or excessively time consuming. In such cases, approaches like CMA-ES
have been used to find points yielding good performance in simulation first [9]. A
domain expert could then use such points as starting points to later manually adjust
the parameters such that they are effective on hardware.

Recently there has been significant interest in developing methods for automatic
parameter optimization. Bayesian Optimization has been suggested as one of the
promising approaches due its sample efficiency. However, it still can take 30-40
samples to optimize a 4 dimensional controller [1]. To enhance kernel flexibility [10]
suggests supervised learning of a feature transform during regression. However, this
approach does not directly support incorporating a very large amount of data from
simulation. Even if it is extended to pre-train on simulated data, it is not clear
whether further joint optimization would be desirable: 10-100 hardware samples
might not be enough to meaningfully affect the transform built from hundreds of
thousands of points from simulation.

Recent works proposed using simulation to aid learning on hardware, for example
[2], [3], [4]. Authors of [2] propose adding noisy evaluations from simulation to BO
posterior directly. The limitation is the need to carefully balance the influence of
the samples obtained from simulation versus hardware. Authors of [3] tabulate
best performing points versus their average score on a behavioural metric – average
contact time of their hexapod system in simulation. This metric guides trial-and-
error learning to quickly find behaviours that compensate for damage of the robot.
The search is done in behaviour space, and limited to pre-selected “successful”
points from simulation. This helps make their search faster and potentially safer.
However, if an optimal point was not pre-selected, BO cannot sample it during
optimization. “Best points” are cost-specific (the map needs to be re-generated
for each cost) and problem specific, so expert-knowledge is needed to apply the
method to other systems. Authors of [4] propose a new distance metric using domain
knowledge about bipedal locomotion. Short simulations are used to compute this
metric for a large number of points (sets of control parameters), thus distinguishing
points based on their behaviour in simulation, rather than the Euclidean distance

C4 PAPER C. DEEP KERNELS FOR LOCOMOTION CONTROLLERS

between them. The method generalizes to different costs and locomotion controllers.
However, the distance metric is specifically designed for bipedal locomotion. Further
domain-specific expertise would be needed to adapt this approach to other settings.

Another recent direction for learning locomotion controllers utilized deep neural
networks. [11] formulates the problem of learning locomotion gaits as actor-critic
Reinforcement Learning with neural networks as function approximators for policy
and value functions. However, it is not straightforward to make such approaches
data-efficient enough for real hardware ([11] uses 10 million state-action transitions
for training). So in our work we are interested in combining sample efficiency of
an approach like Bayesian Optimization with the flexibility and scalability of deep
neural networks.

2.2 Background on Bayesian Optimization

Bayesian Optimization is a framework for sample-efficient global search ([12] gives a
recent overview). The goal is to find 𝑥𝑥𝑥* that optimizes a given objective function
𝑓(𝑥𝑥𝑥), while executing as few evaluations of 𝑓 as possible. In order to select the
most promising points to evaluate next, an “acquisition” function is defined. One
example is Expected Improvement (EI) function that selects 𝑥𝑥𝑥 to maximize expected
improvement over the value of the best result obtained so far [13]. EI requires defining
the prior/posterior mean and variance of 𝑓 , and Gaussian Process is frequently used
for this: 𝑓(𝑥𝑥𝑥) ∼ 𝒢𝒫(𝜇(𝑥𝑥𝑥), 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗))

Here 𝜇 is a mean function and 𝑘 defines a kernel. 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) encodes the similarity of
two inputs 𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗 . The value of 𝑓(𝑥𝑥𝑥𝑖) has a significant influence on the posterior value
of 𝑓(𝑥𝑥𝑥𝑗) if 𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗 have high similarity according to the kernel. Squared Exponential
kernel is widely used:

𝑘𝑆𝐸(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2
𝑘 exp

(︀
− 1

2 (𝑥𝑥𝑥𝑖 − 𝑥𝑥𝑥𝑗)𝑇 diag(ℓℓℓ)−2(𝑥𝑥𝑥𝑖 − 𝑥𝑥𝑥𝑗)
)︀
,

where hyperparameters: 𝜎2
𝑘, ℓℓℓ are signal variance and a vector of length scales

respectively. It is customary to adjust these automatically during optimization to
learn the overall variance and how quickly 𝑓 varies in each input dimension.

Gaussian Process conditioned on evidence represents a posterior distribution for 𝑓 .
After evaluating 𝑓 at points 𝑥𝑥𝑥1, ...,𝑥𝑥𝑥𝑡 the predictive posterior 𝑃 (𝑓𝑡+1|𝑥𝑥𝑥1:𝑡, 𝑦𝑦𝑦,𝑥𝑥𝑥𝑡+1) ∼
𝒩

(︀
𝜇𝑡(𝑥𝑥𝑥𝑡+1), 𝑐𝑜𝑣𝑡(𝑥𝑥𝑥𝑡+1)

)︀
can be computed in closed form with mean and covariance:

𝜇𝑡(𝑥𝑥𝑥𝑡+1) = 𝑘𝑘𝑘𝑇 [𝐾𝐾𝐾+𝜎2
𝑛𝑜𝑖𝑠𝑒𝐼𝐼𝐼]−1𝑦𝑦𝑦 𝑐𝑜𝑣𝑡(𝑥𝑥𝑥𝑡+1) = 𝑘(𝑥𝑥𝑥𝑡+1,𝑥𝑥𝑥𝑡+1)−𝑘𝑘𝑘𝑇 [𝐾𝐾𝐾+𝜎2

𝑛𝑜𝑖𝑠𝑒𝐼𝐼𝐼]−1𝑘𝑘𝑘,

where 𝑘𝑘𝑘 ∈ R𝑡, with 𝑘𝑘𝑘𝑖 = 𝑘(𝑥𝑥𝑥𝑡+1,𝑥𝑥𝑥𝑖); 𝐾𝐾𝐾 ∈ R𝑡×𝑡 with 𝐾𝐾𝐾𝑖𝑗 = 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗); 𝐼𝐼𝐼 is an
identity ∈ R𝑡×𝑡, and 𝑦𝑦𝑦 is a vector of values obtained after evaluating 𝑓(𝑥𝑥𝑥1), ..., 𝑓(𝑥𝑥𝑥𝑡),
assuming Gaussian noise with variance 𝜎2

𝑛𝑜𝑖𝑠𝑒: 𝑦𝑖 = 𝑓(𝑥𝑥𝑥𝑖)+𝜖𝒩 (0,𝜎2
𝑛𝑜𝑖𝑠𝑒

). More details
can be found in [14].

3. PROBLEM FORMULATION C5

3 Problem Formulation

In this work we aim to automatically optimize parameters of controllers for bipedal
locomotion with respect to some commonly used cost functions. We assume that for
a 𝑑-dimensional controller there is a bounded region of interest (a hypercube) defined
by low/high limits on the values of controller parameters: 𝑥𝑥𝑥 ∈ [𝑥𝑥𝑥𝑙𝑜𝑤,𝑥𝑥𝑥ℎ𝑖𝑔ℎ] ⊂ R𝑛.
Some parts of this region contain points corresponding to parameter sets of the
controller that yield the desired walking behavior. Such regions might comprise a
large part of the space with numerous local optima, or might comprise only a small
part of the space (e.g. less than 1%). In other words: we do not impose any overly
restrictive assumptions on the space of controller parameters, local/global optima,
or structure and properties of the cost functions of interest.

The first setting we consider is the case of optimizing 5-dimensional parameters
for Raibert locomotion controller of the ATRIAS robot similar to [15], [16] and
[17]. This controller has a Raibert-like foot placement policy [18]. It uses a linear
feedback law operating on horizontal speed and displacement of the center of mass
(CoM) to determine a desired foot touch down point:

𝑥𝑝 = 𝑘(𝑣 − 𝑣𝑡𝑔𝑡) + 𝐶 · 𝑑+ 0.5 · 𝑣 · 𝑇

Here, 𝑥𝑝 is the desired location for the end of swing; 𝑣 is the current speed of the
CoM; 𝑘 is a feedback term that regulates 𝑣 towards the target speed 𝑣𝑡𝑔𝑡; 𝐶 is a
constant and 𝑑 is the measured distance between the stance leg and the CoM; 𝑇 is
the step time. The term 0.5 · 𝑣 · 𝑇 is a feedforward term, similar to [18]. The swing
foot trajectory is defined as a 5th order spline ending at 𝑥𝑝.

In stance, we regulate both the torso pitch and CoM height to maintain constant
desired values:

𝐹𝑥 = 𝐾𝑝𝑡(𝜃𝑑𝑒𝑠 − 𝜃) +𝐾𝑑𝑡(𝜃𝑑𝑒𝑠 − 𝜃) 𝐹𝑧 = 𝐾𝑝𝑧(𝑧𝑑𝑒𝑠 − 𝑧) +𝐾𝑑𝑧(𝑧̇𝑑𝑒𝑠 − 𝑧̇)

These desired forces are sent to an inverse dynamics solver to return the corresponding
joint torques that produce these desired ground reaction forces. Our 5-dimensional
controller consists of [𝑘,𝐶,𝑇,𝐾𝑝𝑡,𝐾𝑑𝑡]. Other parameters can be included, but the
performance is not sensitive to them. This controller does not specify a target CoM
trajectory. Instead it tries to maintain a constant height and torso angle in stance.
The foot-placement strategy determines the resulting motion and speed.

To demonstrate applicability to a challenging setting with a higher-dimensional
controller we also experiment with a Neuromuscular model for control [9]. Since it
has not yet been fully adapted to work on ATRIAS in hardware, for this setting
we evaluate our work on a 7-link planar model [19]. To facilitate comparison of
our results with prior work in [4], we optimize over a 16-dimensional subspace of
controller parameters. Description of the Neuromuscular controller and detailed
information about the 16 parameters that are optimized can be found in Section III
of [4]. We collect training data from simulations on flat ground. We conduct the
evaluation of our approaches on perturbed models to create a simulated mismatch
between simulation and hardware. We generate a set of model disturbances for each

C6 PAPER C. DEEP KERNELS FOR LOCOMOTION CONTROLLERS

link of the robot, perturbing the mass, inertia and center of mass location up to
±15% of the original value. In addition, instead of walking on flat ground, we use a
set of randomly generated rough ground profiles with step height of up to ±6 𝑐𝑚.

4 Proposed Approach

The aim of our approach is to automatically learn an informed kernel for optimizing
bipedal locomotion controllers with Bayesian Optimization. An uninformed kernel,
like Squared Exponential, operates with vectors that represent controller parameters
directly. In contrast, we learn a re-parameterization that incorporates information
from simulation. We run short simulations for a range of parameter sets and record
the resulting costs from the same cost function as that used in Bayesian Optimization.
Costs obtained during short simulations serve as approximate indicators of the quality
of the controller parameters. Our idea is to train a neural network to reconstruct the
cost landscape of short simulations while focusing on the more promising parts of the
space. Section 4.1 describes how this approach yields an informed kernel that helps
focus the search on the well-performing regions. We also develop a cost-agnostic
approach of reconstructing trajectory summaries instead of cost landscape from
short simulations. This is described in Section 4.2.

4.1 Regression with Implicitly Asymmetric Loss
We consider a cost function focused on matching the desired walking speed and
heavily penalizing falls:

𝑐𝑜𝑠𝑡𝑎𝑡𝑟𝑖𝑎𝑠 =
{︃

100− 𝑥𝑓𝑎𝑙𝑙, if fall
10 · ||𝑣𝑣𝑣𝑡𝑔𝑡 − 𝑣𝑣𝑣𝑎𝑐𝑡𝑢𝑎𝑙||2, if walk

(1)

where 𝑥𝑓𝑎𝑙𝑙 is the distance travelled before falling, 𝑣𝑣𝑣𝑡𝑔𝑡 is the target velocity and
𝑣𝑣𝑣𝑎𝑐𝑡𝑢𝑎𝑙 is the vector containing actual velocities of the robot. This kind of cost
function is of interest because it helps easily distinguish points that walk from
points that fall. Similar costs have been considered in prior work when optimizing
locomotion controllers [9, 4].

Figure 2: 2D slice of cost landscape.

Figure 2 shows a scatter plot of applying
cost from Equation 1 to simulations of Raibert
controller for the ATRIAS robot as introduced
in Section 3. For visualization we restrict at-
tention to a 2-dimensional subspace of the pa-
rameter space. We pick a well-performing set
of parameters (in 5D), then vary the first two
dimensions to obtain a 2D subspace. The chal-
lenge comes from the fact that the boundary
between the well-performing (blue) and poorly
performing (yellow) parameters is discontinuous. This is a typical landscape for
bipedal systems, where a controller that makes the robot fall is much worse than

4. PROPOSED APPROACH C7

one than walks, and the boundary is extremely sharp. Fitting such cost function
with regression could be difficult. Learning to reconstruct the boundary exactly
using the training set might result in overfitting and poor performance on the test
set. Applying regularization is likely to yield high loss and uncertainty about points
close to the boundary. This is particularly problematic if poorly performing points
lie close to the most promising regions of the parameter space, which is the case in
our setting.

We propose to use a transformation of the cost as the target for the supervised
learning. Our approach is to train a deep neural network to reconstruct a reflected
shifted softplus function of the cost:

scoreNN = 𝜁
(︀
𝑐𝑤𝑎𝑙𝑘 − 𝑓𝑠𝑖𝑚(𝑥𝑥𝑥)

)︀
(2)

Here 𝜁 is a softplus function: 𝜁(𝑎) = 𝑙𝑛
(︀
1 + 𝑒𝑎

)︀
, 𝑐𝑤𝑎𝑙𝑘 is the average cost for the

parameter sets that walk during short simulations, 𝑓𝑠𝑖𝑚(𝑥𝑥𝑥) is the cost computed by
the simulator for vector 𝑥𝑥𝑥 of controller parameter values. Using this transformation
yields a “score” function such that parameter sets which produce poor results in
simulation are mapped to values close to zero. With this, the differences in scores
of the poorly performing parameter sets become small or zero. In contrast, the
differences in scores of the parameter sets yielding potentially promising results
remain proportional to the difference in the corresponding costs. Figure 3 gives a
visualization of this transformation.

Figure 3: Cost transform.

Cost transformation in Equation 2 serves to essen-
tially create an asymmetric loss for neural network
training. This loss is minimized when the promis-
ing (low-cost, high-score) points are reconstructed
correctly. For the poorly performing (high-cost, low-
score) points, it only matters that the output of the
neural network is close to zero. Such asymmetric
loss can be interpreted as implementing a hybrid of
regression and “soft” classification. The regression
aspect aims to fit the promising points which correspond to walking behaviors. The
“soft” classification aspect gives an increase in the loss only if a poorly performing
point is “mis-classified” as well-performing.

When training the neural network we apply L1 loss instead of the usual L2
loss. With this, errors in reconstructing points on the boundary contribute only
linearly to the overall loss. This helps achieve a better fit of the stable parts of the
parameter space, instead of focusing on the boundary. We utilize the reconstructed
transformed costs to define asymNN kernel for Bayesian Optimization:

𝑘asymNN(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2
𝑘 exp

(︀
− 1

2ℓ2 |scoreNN(𝑥𝑥𝑥𝑖)− scoreNN(𝑥𝑥𝑥𝑗)|2
)︀

(3)

with hyperparameters 𝜎2
𝑘, ℓ as described in Section 2.2. The proposed approach is

able to clearly separate the unpromising part of the parameter space. Under the
resulting distance metric poorly performing sets of parameters are close together
and far from well-performing ones.

C8 PAPER C. DEEP KERNELS FOR LOCOMOTION CONTROLLERS

4.2 Reconstructing Cost-agnostic Trajectory Summaries

Utilizing costs obtained from short simulations provides a way to build an informed
kernel without specifying any additional domain knowledge. If simulations are
computationally expensive it is desirable to minimize the need to repeat data
collection. Often, the cost function needs to be modified to accommodate different
objectives, hence, there is a need for a cost-agnostic approach. For such cases we
propose to train a neural network to reconstruct summaries of trajectories that
are cost-agnostic, then utilize these trajectory summaries for constructing kernel
distance metric.

We summarize trajectories by recording fairly generic aspects of locomotion:
walking time (time before falling), energy used during walking, position of the
torso, angle of the torso, coordinates of the center of mass at the end of the short
simulation runs. These summaries of simulated trajectories are collected for a range
of controller parameters and comprise the training set for the neural network to fit
(input: 𝑥𝑥𝑥 – a set of control parameters; output: 𝑡𝑟𝑎𝑗𝑥𝑡𝑟𝑎𝑗𝑥𝑡𝑟𝑎𝑗𝑥 – the corresponding trajectory
summary obtained from simulation). The outputs of the (trained) neural network
offer the reconstructed/approximate trajectory summaries: 𝑓NN(𝑥𝑥𝑥) = ̂︂𝑡𝑟𝑎𝑗𝑥̂︂𝑡𝑟𝑎𝑗𝑥̂︂𝑡𝑟𝑎𝑗𝑥, where
𝑥𝑥𝑥 is the input controller parameters, and ̂︂𝑡𝑟𝑎𝑗𝑥̂︂𝑡𝑟𝑎𝑗𝑥̂︂𝑡𝑟𝑎𝑗𝑥 is the corresponding reconstructed
trajectory summary. These are then used to construct an informed cost-agnostic
kernel for Bayesian Optimization:

𝑘trajNN(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) = 𝜎2
𝑘 exp

(︀
− 1

2𝑡𝑡𝑡
𝑇
𝑖𝑗 diag(ℓℓℓ)−2𝑡𝑡𝑡𝑖𝑗

)︀
, 𝑡𝑡𝑡𝑖𝑗 = 𝑓NN(𝑥𝑥𝑥𝑖)− 𝑓NN(𝑥𝑥𝑥𝑗) (4)

The general concept of utilizing trajectory data to improve sample efficiency of
BO has been proposed before, for example in [20]. However, prior work assumed
obtaining trajectory data is possible every time kernel values 𝑘(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) need to be
evaluated. This is not the case in our setting. Trajectory summaries are initially
obtained via costly high-fidelity simulations, and it would be infeasible to compute
trajectory information via simulation during BO. Hence, our approach is to train
a neural network to learn reconstructing trajectory summaries first. Running a
forward pass of the neural network is a relatively inexpensive operation, hence
reconstructed/approximate trajectory summaries can be quickly obtained during
BO whenever 𝑘trajNN(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗) needs to be computed.

When defining trajectory summaries we did not focus on carefully selecting what
aspects to include/exclude. Our goal was an approach that could be quickly adapted
to other domains. When applying this approach to a new domain, the strategy
could be simply to include trajectory information used to compute cost functions
that are of interest/relevance in the domain. For example, for a manipulator, the
coordinates of end-effector(s) could be recorded at relevant points. In principle,
our approach also could utilize domain- and task-specific ‘descriptors’, like those
proposed in [4, 3].

5. EXPERIMENTAL RESULTS C9

5 Experimental Results

In this section we describe our experiments with cost-based and trajectory-based
kernels. We first consider the setting of optimizing a 5-dimensional controller for
the ATRIAS robot. We show that the cost-based kernel is able to improve sample
efficiency over standard Bayesian Optimization. We present hardware experiments
to demonstrate that our kernel allows obtaining a set of parameters close to optimal
on the second trial. We then discuss simulation experiments with a 16 dimensional
controller that utilizes a Neuromuscular model [9]. These experiments show that
our trajectory-based kernel is able to significantly outperform standard Bayesian
Optimization for a higher-dimensional controller even when a sharply discontinuous
cost is used during optimization.

5.1 Experiments with Raibert controller on the ATRIAS robot
For our experiments on the ATRIAS robot we used a high-fidelity ATRIAS sim-
ulator [17] to generate the kernel. We did an initial analysis of the performance
of our approach in simulation, followed by hardware experiments. As described in
Section 4.1, we trained a neural network to reconstruct cost information obtained
from short simulations. We created a sobol grid on the input parameter space with
20K points and ran short 3.5 second simulations on each of the corresponding 20K
parameter sets to compute the costs. We then trained a fully connected network
with 4 hidden layers (128, 64, 16, 4 units) to reconstruct scoreNN (the transformation
of the cost described in Section 4.1).

Figure 4: Initial tests of Bayesian Opti-
mization for 5-dimensional controller in
simulation. The plot shows mean of best
cost so far over 30 runs for each kernel,
error bars are 95% confidence intervals.

In Figure 4 we first compare the perfor-
mance of BO that used our neural network-
based kernel (asymNN) versus using a stan-
dard Squared Exponential kernel (SE) in
simulation. For these experiments we used
the cost from Equation 1, Section 4.1 with
target velocity of 1𝑚/𝑠. Simulations with
cost less than 50 yielded walking behavior,
those with cost less than 20 yielded stable
walking close to the target speed. BO with
asymNN kernel reliably found stable walk-
ing points after only 8 trials. In contrast,
BO with SE kernel did not find stable walk-
ing solutions in the first 20 trials reliably.
We also compare with a recently proposed Determinants of Gait (DoG) kernel [4].
DoG utilized more specific domain knowledge to construct an informed kernel for
BO of locomotion controllers for a fixed set of points. asymNN was able to closely
match the performance of DoG in this setting after 8 trials.

After experiments in simulation suggested that asymNN kernel can yield a
significant improvement in sample efficiency of BO, we conducted a set of ex-

C10 PAPER C. DEEP KERNELS FOR LOCOMOTION CONTROLLERS

(a) Best cost so far during BO (mean over
3 runs, shaded region shows ± 1 st. dev.)

(b) Number of “walking” points sampled
(out of 10 trials in each run)

Figure 6: Hardware experiments on the ATRIAS robot.

periments on the ATRIAS robot. We completed 6 sets of runs of BO: 3 using
asymNN kernel and 3 using a standard SE kernel with 10 trials each, leading to a
total of 60 hardware experiments.

Figure 5: ATRIAS during BO with asymNN
kernel.

Since ATRIAS walks around a rather
short boom in 2D, walking at high
speeds needs a lot of torque from the
robot motors. This means higher lat-
eral forces between the robot and the
boom, which do not affect our direction
of motion but can lead to a lot of in-
ternal forces, eventually breaking the
robot. So, in our first attempt, we tried to start with lower speeds of 0.4𝑚/𝑠 so
that we could do hardware experiments and analyze the validity of our approach
on hardware without breaking the robot too often. In this setting with low target
speed, stable walking points comprised ≈1

6 of the parameter space. We anticipated
it would be challenging to improve over BO with SE kernel, since it was able to
find stable walking solutions after only 3-4 trials.

Figure 6a shows the performance of BO with SE versus asymNN kernel. SE
obtains a stable walking solution on the 3rd trial in one run, and on the 4th trial
in the two other runs. asymNN kernel is able to find the best-performing set of
parameters on the second trial in each of the 3 runs. This confirms that using
asymNN kernel offers an improvement over using SE kernel in this setting. We
suggest that asymNN reliably selects an excellent point on the 2nd trial because such
points lie far from poorly performing subspace of parameters (under the distance
metric constructed with asymNN). asymNN kernel also helped sampling more
walking points overall (Figure 6b). This is desirable as stable points are less likely
to break the robot.

While in the above hardware setup most methods are likely to sample walking
points within 10 trials, we believe our experimentation is an important step towards
optimizing locomotion policies for complex humanoid robots. BO studies in the past
also used real robot hardware (e.g. [1, 3, 5]). However, [5, 21, 3] used robots which

5. EXPERIMENTAL RESULTS C11

(a) Using smooth cost from Equation 5 (b) Using non-smooth cost from Equation 6
Figure 7: Bayesian Optimization for the Neuromuscular model controller in simulation.
trajNN and DoG kernels were constructed with undisturbed model on flat ground. BO is
run with mass/inertia disturbances on different rough ground profiles to simulate mismatch.
Plots show means over 50 runs, 95% confidence intervals.

are statically stable for significant parts of their gait, making discontinuities in the
cost function landscape less likely and in turn making the optimization easier. In
contrast, ATRIAS is a complex bipedal system which is likely to fall with unstable
controllers due to point feet. [1] use a walking robot similar to ours. However, their
controller parametrization is very different, and not widely used, unlike our inverse
dynamics and force-based controller which is more modern and state-of-the-art [7],
[22], [6]. While with our hardware setting it might be hard to show improvement
over simpler approaches at low constant target speeds, we believe the setting is
adequate, because our testbed is fairly complex and our problem formulation is
widely applicable. In Appendix A we describe initial results for variable target speed
experiments, with SE kernel not finding walking solutions reliably even after 20
trials and asymNN succeeding after the first 10 trials.

5.2 Experiments with the Neuromuscular Model
16-dimensional controller of the Neuromuscular model (described in Section 3)
yielded a challenging optimization setting: walking points comprised less than
2% of the parameter space in simulation. Here we describe our experiments with
cost-agnostic approach for constructing an informed kernel introduced in Section 4.2.
We created a grid of 100K points in the input parameter space and ran short 5
second simulations on each of the corresponding 100K parameter sets to collect the
trajectory summaries. We then trained a fully connected network with 3 hidden
layers (512, 128, 32 units) with L1 loss to reconstruct 8-dimensional trajectory
summaries (as described in Section 4.2). All experiments were done on perturbed
models, as described in Section 3.

Figure 7 compares using trajNN versus SE kernel for BO with two different costs
from prior literature. The first cost promotes walking further and longer before
falling, while penalizing deviations from the target speed [4]:

𝑐𝑜𝑠𝑡𝑠𝑚𝑜𝑜𝑡ℎ = 1/(1 + 𝑡) + 0.3/(1 + 𝑑) + 0.01(𝑠− 𝑠𝑡𝑔𝑡), (5)

C12 PAPER C. DEEP KERNELS FOR LOCOMOTION CONTROLLERS

where 𝑡 is seconds walked, 𝑑 is the final hip position, 𝑠 is mean speed and 𝑠𝑡𝑔𝑡 is the
desired walking speed (1.3𝑚/𝑠 in our case). The second cost function is a simplified
version of the cost used in [9]. It penalizes falls explicitly, and encourages walking
at desired speed and with lower cost of transport:

𝑐𝑜𝑠𝑡𝑛𝑜𝑛-𝑠𝑚𝑜𝑜𝑡ℎ =
{︃

300− 𝑥𝑓𝑎𝑙𝑙, if fall
100||𝑣𝑎𝑣𝑔 − 𝑣𝑡𝑔𝑡||+ 𝑐𝑡𝑟, if walk

(6)

where 𝑥𝑓𝑎𝑙𝑙 is the distance covered before falling, 𝑣𝑎𝑣𝑔 is the average speed of walking,
𝑣𝑡𝑔𝑡 is the target velocity, and 𝑐𝑡𝑟 captures the cost of transport.

Figure 6a shows that trajNN offers a significant improvement in sample efficiency
when using 𝑐𝑜𝑠𝑡𝑠𝑚𝑜𝑜𝑡ℎ. Points with cost less than 0.2 correspond to robust walking
behavior. With trajNN, more than 90% of runs obtain walking solutions after only
25 trials. In contrast, using SE requires more than 90 trials for such success rate.
The performance of trajNN matches that of a DoG kernel from prior work [4]. This
is notable, since trajNN is learned automatically, whereas DoG kernel is constructed
using domain expertise. Figure 7b shows that trajNN also provides a significant
improvement when using the second cost. Points with cost less than 100 correspond
to walking. With trajNN, 70% of the runs find walking solutions after 100 trials. In
contrast, optimizing non-smooth cost is very challenging for BO with SE kernel: a
walking solution is found only in 1 out of 50 runs after 100 trials. The difference in
performance on the two costs is due to the nature of the costs. For example, if a
point walks some distance 𝑑, Equation 5 includes a term 1

𝑑 and Equation 6 includes
−𝑑. A sharper fall in the first cost causes BO to exploit around points that walk
some distance. It then quickly finds points that walk forever, while BO with the
second cost continues to explore.

6 Conclusion and Future Work

In this work we proposed learning informed kernels for Bayesian Optimization of
locomotion controllers without relying heavily on domain experts. We optimized
a 5-dimensional controller on the ATRIAS robot and showed that our cost-based
kernel offered an improvement over using an uninformed kernel. We also proposed
a cost-agnostic alternative. Experiments with a 16-dimensional Neuromuscular
controller in simulation showed a significant improvement with different costs.

In future work it would be interesting to further analyze various approaches
that enhance sample efficiency of BO. Approaches that embed simulation-based
information into the kernel (like those we proposed) can enhance sample efficiency
dramatically by focusing BO on regions that look promising in simulation. Ap-
proaches that use simulation-based samples in BO posterior mean directly (e.g.
[2]) could be more robust to simulation-based inaccuracies after collecting a larger
amount of data from hardware experiments. However, they can only incorporate
cost-based information (e.g. no way to add trajectory information directly to the
posterior mean). Perhaps there is an effective way to combine the two directions.

6. CONCLUSION AND FUTURE WORK C13

Another promising line for future work is learning flexible models of simulation-vs-
hardware mismatch. Such models could help decrease the influence of distortion from
incorrect simulations and could help enhance both ‘kernel-based’ and ‘mean-based’
methods.

Acknowledgments

This research was supported in part by National Science Foundation grant IIS-
1563807, the Max-Planck-Society, & the Knut and Alice Wallenberg Foundation.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the
funding organizations.

References

[1] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth. Bayesian Optimization for
Learning Gaits Under Uncertainty. Annals of Mathematics and Artificial Intelligence,
76(1-2):5–23, 2016.

[2] A. Marco, F. Berkenkamp, P. Hennig, A. P. Schoellig, A. Krause, S. Schaal, and
S. Trimpe. Virtual vs. real: Trading off simulations and physical experiments in
reinforcement learning with bayesian optimization. arXiv preprint arXiv:1703.01250,
2017.

[3] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots that can adapt like animals.
Nature, 521(7553):503–507, 2015.

[4] R. Antonova, A. Rai, and C. G. Atkeson. Sample efficient optimization for learning
controllers for bipedal locomotion. In Humanoid Robots (Humanoids), 2016 IEEE-RAS
16th International Conference on, pages 22–28. IEEE, 2016.

[5] M. Tesch, J. Schneider, and H. Choset. Using response surfaces and expected im-
provement to optimize snake robot gait parameters. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, pages 1069–1074. IEEE, 2011.

[6] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson. Optimization-based full body
control for the darpa robotics challenge. Journal of Field Robotics, 32(2):293–312,
2015.

[7] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen,
P. Marion, and R. Tedrake. Optimization-based locomotion planning, estimation, and
control design for the atlas humanoid robot. Autonomous Robots, 40(3):429–455, 2016.

[8] H. Geyer and H. Herr. A Muscle-reflex Model that Encodes Principles of Legged Me-
chanics Produces Human Walking Dynamics and Muscle Activities. IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 18(3):263–273, 2010.

C14 PAPER C. DEEP KERNELS FOR LOCOMOTION CONTROLLERS

[9] S. Song and H. Geyer. A Neural Circuitry that Emphasizes Spinal Feedback Generates
Diverse Behaviours of Human Locomotion. The Journal of Physiology, 593(16):
3493–3511, 2015.

[10] R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisenroth. Manifold gaussian
processes for regression. In Neural Networks (IJCNN), 2016 International Joint
Conference on, pages 3338–3345. IEEE, 2016.

[11] X. B. Peng, G. Berseth, and M. van de Panne. Terrain-adaptive locomotion skills
using deep reinforcement learning. ACM Transactions on Graphics (TOG), 35(4):81,
2016.

[12] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the
Human Out of the Loop: A Review of Bayesian Optimization. Proceedings of the
IEEE, 104(1):148–175, 2016.

[13] J. Mockus, V. Tiesis, and A. Zilinskas. Toward Global Optimization, volume 2,
chapter Bayesian Methods for Seeking the Extremum. 1978.

[14] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-
ing (Adaptive Computation and Machine Learning). The MIT Press, 2005. ISBN
026218253X.

[15] W. C. Martin, A. Wu, and H. Geyer. Experimental evaluation of deadbeat running
on the atrias biped. IEEE Robotics and Automation Letters, 2(2):1085–1092, 2017.

[16] C. Hubicki, A. Abate, P. Clary, S. Rezazadeh, M. Jones, A. Peekema, J. Van Why,
R. Domres, A. Wu, W. Martin, et al. Walking and running with passive compliance:
Lessons from engineering a live demonstration of the atrias biped. IEEE Robotics and
Automation Magazine, 2(4.1):4–1, 2016.

[17] W. C. Martin, A. Wu, and H. Geyer. Robust spring mass model running for a
physical bipedal robot. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 6307–6312. IEEE, 2015.

[18] M. H. Raibert. Legged robots that balance. MIT press, 1986.

[19] 16D Simulator for Neuromuscular Models for Biped Locomotion. Code available from
https://github.com/nthatte/Neuromuscular-Transfemoral-Prosthesis-Model.

[20] A. Wilson, A. Fern, and P. Tadepalli. Using Trajectory Data to Improve Bayesian
Optimization for Reinforcement Learning. The Journal of Machine Learning Research,
15(1):253–282, 2014.

[21] D. J. Lizotte, T. Wang, M. H. Bowling, and D. Schuurmans. Automatic gait op-
timization with gaussian process regression. In IJCAI, volume 7, pages 944–949,
2007.

[22] A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and L. Righetti. Mo-
mentum control with hierarchical inverse dynamics on a torque-controlled humanoid.
Autonomous Robots, 40(3):473–491, 2016.

Bayesian Optimization Using Domain
Knowledge on the ATRIAS Biped

Akshara Rai1S, Rika Antonova1*, Seungmoon SongS,
William MartinS, Hartmut GeyerS, Christopher G. AtkesonS

SRobotics Institute, Carnegie Mellon University, USA
*EECS, KTH, Stockholm, Sweden

Abstract

Robotics controllers often consist of expert-designed heuristics, which
can be hard to tune in higher dimensions. Simulation can aid in optimizing
these controllers if parameters learned in simulation transfer to hardware.
Unfortunately, this is often not the case in legged locomotion, necessitating
learning directly on hardware. This motivates using data-efficient learning
techniques like Bayesian Optimization (BO) to minimize collecting expensive
data samples. BO is a black-box data-efficient optimization scheme, though
its performance typically degrades in higher dimensions. We aim to overcome
this problem by incorporating domain knowledge, with a focus on bipedal
locomotion. In our previous work, we proposed a feature transformation
that projected a 16-dimensional locomotion controller to a 1-dimensional
space using knowledge of human walking. When optimizing a human-inspired
neuromuscular controller in simulation, this feature transformation enhanced
sample efficiency of BO over traditional BO with a Squared Exponential
kernel. In this paper, we present a generalized feature transform applicable
to non-humanoid robot morphologies and evaluate it on the ATRIAS bipedal
robot, in both simulation and hardware. We present three different walking
controllers and two are evaluated on the real robot. Our results show that
this feature transform captures important aspects of walking and accelerates
learning on hardware and simulation, as compared to traditional BO.

1Both of these authors contributed equally.

Published in the proceedings of the 2018 IEEE International Conference on Robotics and
Automation (ICRA). Available at: https://ieeexplore.ieee.org/abstract/document/8461237

https://ieeexplore.ieee.org/abstract/document/8461237

Global Search with Bernoulli
Alternation Kernel for Task-oriented

Grasping Informed by Simulation

Rika Antonova1, Mia Kokic1, Johannes A. Stork, Danica Kragic
Robotics, Perception and Learning, EECS

KTH Royal Institute of Technology Sweden, Stockholm, Sweden

Abstract

We develop an approach that benefits from large simulated datasets and
takes full advantage of the limited online data that is most relevant. We
propose a variant of Bayesian optimization that alternates between using
informed and uninformed kernels. With this Bernoulli Alternation Kernel
we ensure that discrepancies between simulation and reality do not hinder
adapting robot control policies online. The proposed approach is applied to a
challenging real-world problem of task-oriented grasping with novel objects.
Our further contribution is a neural network architecture and training pipeline
that use experience from grasping objects in simulation to learn grasp stability
scores. We learn task scores from a labeled dataset with a convolutional
network, which is used to construct an informed kernel for our variant of
Bayesian optimization. Experiments on an ABB Yumi robot with real sensor
data demonstrate success of our approach, despite the challenge of fulfilling
task requirements and high uncertainty over physical properties of objects.
Keywords: Bayesian optimization, Deep learning, Task-oriented grasping

1 Introduction

Recent advances in deep learning motivated using data-driven methods in robotics.
However, collecting large amounts of training data is challenging, since it requires
actual execution on a real system. One way to trim hours of execution time is to use
simulation. Simulators make simplifying assumptions, so often there is mismatch
between simulation and real world. We propose to bridge this gap by using a variant

1Both of these authors contributed equally.

In proceedings of the 2nd Conference on Robot Learning (CoRL 2018), Zürich, Switzerland.
Published by PMLR http://proceedings.mlr.press/v87/antonova18a License: CC-BY 4.0

http://proceedings.mlr.press/v87/antonova18a

E2 PAPER E. BERNOULLI ALTERNATION KERNEL FOR TOG

Figure 1: Overview of the overall approach. Blue highlights components trained offline;
orange highlights online learning components that guide real-time decisions made by the
robot. A vision system is used to first construct a mesh from raw point cloud. Then, a set of
grasping points, voxelized mesh and task identity are passed through the network to obtain
task suitability and grasp stability scores. These are used to construct informed kernel
for BO. Then, the robot executes online search with BO to find the best task-appropriate
grasp.

of Bayesian optimization (BO) that incorporates simulation-based information in a
way that is robust to mismatch between simulation and reality. Furthermore, we
apply this to the problem of task-oriented grasping. The challenge is that successful
grasps are limited to specific object parts that afford the execution of a task. This
presents a highly constrained problem.

Our first contribution is a variant of BO that alternates between using informed
and uninformed kernels. This allows us to explore grasp adjustments online, while
exploiting simulation-based information and feedback from previous grasp attempts.
To inform the kernel for our BO algorithm, we propose a task-oriented grasp
model. This further contribution is a deep neural network architecture that maps
raw visual observation of an object to task-oriented grasp scores. The network is
trained on large amounts of synthetic data. This allows us to compute task-oriented
grasp candidates for previously unseen objects from online perceptual information.
Simulation-based knowledge provides additional guidance for online search, making
it more sample-efficient. Overall, our approach aims to emulate the human-like
strategy of attempting several adjustments until a successful grasp is accomplished;
Figure 1 gives a brief visual overview. We conduct experiments on an ABB Yumi
robot with real sensor data, and demonstrate success of our approach to fulfill
task requirements when grasping novel objects, despite high uncertainty over their
physical properties.

2 Background and Related Work

2.1 Bayesian Optimization Informed By Simulation

Bayesian optimization (BO) is a data-efficient global search method (see [1] for an
overview). Let 𝑥𝑥𝑥 be a set of control parameters (e.g. for grasping: the approach
direction and orientation of the end-effector). The problem is to find 𝑥𝑥𝑥 that optimizes
a given objective/cost function 𝑓(𝑥𝑥𝑥). The objective function encodes characteristics
of the desired outcome: e.g. low score for failing to grasp an object, high score

2. BACKGROUND AND RELATED WORK E3

for grasping and completing the desired task. BO starts with a prior expressing
uncertainty over 𝑓(𝑥𝑥𝑥). After each real-world trial, BO constructs a posterior based
on data obtained so far. It then uses an auxiliary function (acquisition function)
to choose the next 𝑥𝑥𝑥 to evaluate. The acquisition function selects points for which
the posterior estimate of the objective 𝑓 is promising. It takes into account both
the posterior mean and covariance. Gaussian Process (GP) is commonly used to
model the cost function: 𝑓(𝑥𝑥𝑥) ∼ 𝐺𝑃 (𝜇(𝑥𝑥𝑥), 𝑘(𝑥𝑥𝑥,𝑥𝑥𝑥′)). Its kernel function captures
similarity between inputs: if 𝑘(𝑥𝑥𝑥,𝑥𝑥𝑥′) is large for 𝑥𝑥𝑥,𝑥𝑥𝑥′, then 𝑓(𝑥𝑥𝑥) has high influence
on 𝑓(𝑥𝑥𝑥′). Squared Exponential (SE) kernel is frequently the default choice (its
hyperparameters 𝜎2

𝑘, ℓℓℓ can be optimized automatically):

𝑘𝑆𝐸(𝑥𝑥𝑥,𝑥𝑥𝑥′) = 𝜎2
𝑘 exp

(︀
− 1

2 (𝑥𝑥𝑥− 𝑥𝑥𝑥′)𝑇 diag(ℓℓℓ)−2(𝑥𝑥𝑥− 𝑥𝑥𝑥′)
)︀
, (1)

BO with standard kernels (SE or, more generally, Matérn kernels) is effective
in cases with low noise, smooth objective/cost functions or limited search space.
In contrast, robotics problems exhibit high noise, sharp transitions between low-
and high-cost regions, inability to limit the search space a priori without excluding
optimal regions. Previous work explored using kernels informed by simulation [2, 3]
and by the domain dynamics [4], in some cases allowing to learn kernel transforms
automatically [5]. However, these assumed access to high-fidelity simulators/models.
For many areas of robotics such simulators are not available. High anticipated
simulation-reality mismatch prevents us from using simulation-based information in
standard ways, like constructing the prior of the mean function for the Gaussian
Process in BO. As noted in [6], in practice it can be challenging to specify prior mean
effectively. Recent experiments in robotics show that performance of ‘prior-based’
BO can degrade in cases with significant simulation-reality mismatch [7]. Hence,
embedding simulation-based information into the kernel could be a more robust
alternative.

2.2 Task-oriented Grasping

Grasping simulators [8] can help generating a set of grasps labeled with quality
measures, which can be used to select the best grasp for execution on a real robot.
However, these quality measures often rely on access to full 3D geometry of an object,
which is often not obtainable in real-world scenarios. To overcome this, recent work
investigated learning to predict grasp success from partial visual inputs [9], [10], [11].
Vision alone often does not provide enough information about important object
properties: it is difficult to infer inertial and, even more so, friction properties.
Hence, several works proposed learning adaptively with feedback from real robot
trials [12, 13, 14]. Some proposed constructing priors from simulation, but as noted
in the BO background subsection, directly adding prior points or using a fixed prior
mean is problematic with high simulation-reality mismatch. In the case of grasping:
only medium- to low-fidelity simulators are generally available; their results only
align with reality if crucial parameters, like friction, are measured and modelled

E4 PAPER E. BERNOULLI ALTERNATION KERNEL FOR TOG

meticulously. We do not assume access to estimates of friction or inertial properties
of objects, and do not require modeling these in simulation either. Our main goal is
to develop a method whose performance does not degrade due to incorporating data
from highly inaccurate simulations. Hence, we draw inspiration from approaches that
embed simulation-based information into the kernel (e.g. [15], though this prior work
investigated convergence of MABs with a large number of pick-and-place simulated
grasps across objects, while we emphasize finding successful task-oriented grasps
with only a few BO trials on the real robot and adapt to each object separately).

Approaches from prior work described above can be successful for grasping an
object in a stable manner. However, in most scenarios the ultimate goal is to allow
an execution of a manipulation task, for example cutting or pouring. This problem
is known as Task-oriented Grasping (TOG) [16], [17] and is vastly more challenging
than just stable grasping. The first challenge is to find grasps that are stable and
also task compliant. For example, when grasping a mug most of the stable grasps
for smaller parallel grippers are on the rim. However, if we want to use the mug for
pouring, fingers should avoid the opening area and instead aim for the handle. This
is challenging when vision is imperfect, since small task-relevant areas of the object
could be obscured or distorted. The second challenge is that a robot must be able
to reason about geometric properties of an object and how they relate to tasks (e.g.
openings & pouring, blades & cutting). This is know as affordance learning and
many authors have addressed this problem in the past. While some works focus
solely on reasoning about object affordances, others utilize them for purpose of
TOG. In [18] authors trained a CNN to predict part affordances, which are used to
formulate task constraints, namely the ones on the location and orientation of the
gripper. These constraints are given to optimization-based grasp planner, which
executes task-oriented grasps. Similarly, [19] trained task-oriented CNNs to identify
the regions a robot is allowed to contact to fulfill a task; they use a part-based
approach that finds object parts with shape that is compatible with the gripper. In
[20] authors proposed training TOG Network to optimize for task-oriented grasp and
manipulation policy. They decomposed the problem into 1) finding task-agnostic
grasps for which they use Dex-Net 2.0 [10] and 2) finding task-oriented grasps for
which they train a CNN. Our work differs from this in several ways. We train
a network that jointly predicts grasp stability and task suitability. Furthermore,
although we could use a single score (like Dex-Net 2.0) for predicting stability, we
chose to incorporate three different metrics. This provides a richer signal for BO:
different metrics could be of varying importance for different tasks (e.g. one metric
could score grasps based on the distance from the center of mass of the object, while
another might be most sensitive to positions of the finger joints). Moreover, we train
our network on a large data set of realistic 3D objects and six different tasks, while
[20] use procedurally generated objects based on shape primitives and consider only
two tasks (pounding and sweeping). Hence, in our case the complexity of learning
object-task-grasp relationships is significantly higher.

3. PROPOSED METHOD E5

3 Proposed Method

3.1 Bayesian Optimization with Bernoulli Alternation Kernel

Our aim is to develop an approach robust to high simulation-reality mismatch. This
motivates us to look beyond solutions that put simulation-based information into
GP prior or rely on simulation-based kernels alone. We first note that using a sum
of kernels could be beneficial. Let 𝑘𝑠𝑢𝑚(𝑥𝑥𝑥,𝑥𝑥𝑥′) = 𝑘𝑆𝐸(𝑥𝑥𝑥,𝑥𝑥𝑥′) + 𝑘𝜑(𝑥𝑥𝑥,𝑥𝑥𝑥′) be a kernel
comprised of 𝑘𝑆𝐸 (Equation 1) and 𝑘𝜑 = 𝑘𝑆𝐸(𝜑(𝑥𝑥𝑥), 𝜑(𝑥𝑥𝑥′)), where 𝜑(·) is akin to
a warping function. Recall that in our case 𝑥𝑥𝑥 is a vector of control parameters.
To obtain 𝜑(𝑥𝑥𝑥) we could execute controls 𝑥𝑥𝑥 in simulation and output relevant
characteristics of the result (e.g. stability metrics for a grasp). It is useful to embed
𝜑 into the kernel, because we can collapse the space of unsuccessful controls. For
example, 𝜑 could give near zero stability scores to grasps that miss or barely touch
objects. This would indicate that all such failed points/controls are similar to each
other, but dissimilar from successful regions of control parameters. BO can then
quickly learn to neglect the non-promising regions, even though they could be far
away from each other in the original space of control parameters. However, when 𝜑
fails to provide high-quality information, 𝑘𝑠𝑢𝑚 could be adversely impacted by the
𝑘𝜑 component.

To offer a more robust alternative, we propose an approach that takes contribu-
tions from both 𝑘𝑆𝐸 and 𝑘𝜑, but ensures BO can not be mislead by a poor choice
of 𝜑. At each BO iteration/trial, we randomize the choice of whether 𝑘𝑆𝐸 or 𝑘𝜑 is
used. For this, we define a probability distribution over kernels and draw a kernel
function to be used at each BO trial independently. This defines 𝑘𝑏𝑎𝑘 as:

𝑘𝑏𝑎𝑘(𝑥𝑥𝑥,𝑥𝑥𝑥′) ∼ 1{𝜃≤0.5}𝑘𝑆𝐸(𝑥𝑥𝑥,𝑥𝑥𝑥′) + 1{𝜃>0.5}𝑘𝜑(𝑥𝑥𝑥,𝑥𝑥𝑥′); 𝜃 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) (2)

Note that after each iteration/trial 𝑛, the data for computing the GP posterior
consists of all the points sampled so far: 𝐷𝐷𝐷𝑛 = {(𝑥𝑥𝑥𝑖, 𝑓(𝑥𝑥𝑥𝑖))|𝑖 = 1, ..., 𝑛}. In BO,
posterior is usually re-computed after each new sample. This aspect of BO allows
us to make a choice of the kernel function for each iteration separately. So, after
𝑛 iterations/trials, we first pick a kernel function 𝑘𝑛 using Equation 2. We then
compute GP posterior mean and covariance (notation from [6]):

𝑚𝑒𝑎𝑛(𝑓*) = 𝑘𝑘𝑘𝑇*𝑛
(𝐾𝑛 + 𝜎2

𝑛𝑜𝑖𝑠𝑒𝐼)−1𝑦𝑦𝑦𝑛

𝑐𝑜𝑣(𝑓*) = 𝑘𝑛(𝑥𝑥𝑥*,𝑥𝑥𝑥*)− 𝑘𝑘𝑘𝑇*𝑛
(𝐾𝑛 + 𝜎2

𝑛𝑜𝑖𝑠𝑒𝐼)−1𝑘𝑘𝑘*𝑛

(3)

where 𝑥𝑥𝑥* is a new point whose cost we want to predict; 𝑓* := 𝑓(𝑥𝑥𝑥*); 𝐾𝑛 is 𝑛×𝑛
matrix with 𝐾𝑖𝑗 =𝑘𝑛(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑗); 𝑘𝑘𝑘*𝑛

∈R𝑛 is a vector of covariances between 𝑥𝑥𝑥* and each
𝑥𝑥𝑥𝑖, 𝑖=1, ..., 𝑛; 𝑦𝑦𝑦𝑛 is a vector of evaluations for the sampled points: [𝑦𝑦𝑦𝑛]𝑖 = 𝑓(𝑥𝑥𝑥𝑖).
Algorithm 1 gives a concise summary.

E6 PAPER E. BERNOULLI ALTERNATION KERNEL FOR TOG

Algorithm 1: BO-BAK
sample 𝑥𝑥𝑥1 randomly, get 𝑦1 = 𝑓(𝑥𝑥𝑥1) from real
world

initialize: 𝐷𝐷𝐷1 = {(𝑥𝑥𝑥1, 𝑦1)}
for 𝑛 = 1, 2, ... do

sample kernel function 𝑘𝑛 using Equation 2
get posterior GP mean & cov using 𝐷𝐷𝐷𝑛 & Eq.3
select 𝑥𝑥𝑥𝑛+1 by optimizing acquisition function:

𝑥𝑥𝑥𝑛+1 = arg max𝑥𝑥𝑥 𝛼(𝑥𝑥𝑥;𝐷𝐷𝐷𝑛)
get 𝑦𝑛+1 = 𝑓(𝑥𝑥𝑥𝑛+1) from real world
augment data 𝐷𝐷𝐷𝑛+1 = 𝐷𝐷𝐷𝑛 ∪ {(𝑥𝑥𝑥𝑛+1, 𝑦𝑛+1)}

For an intuitive insight,
note that points sampled for
trials when 𝑘𝜑 is used could
provide fast guidance towards
useful parts of the search space.
These points are included in
the data for subsequent pos-
terior computations, enabling
even trials in which 𝑘𝑆𝐸 is used
to propose better next choices.
This is important if probability
of discovering a promising re-
gion is small, which is frequent
in robotics. If 𝑘𝜑 is not useful, or even misleading, choices made on the trials that
use 𝑘𝑆𝐸 are not impacted by poor 𝜑, since with our approach BO’s acquisition
function makes its decisions using only one of the kernels at a time.

In Section 4.1 we evaluate on analytic functions that exhibit challenges similar
to our target domain. We confirm that informed kernels can provide significant
improvement over conventional BO. 𝑘𝜑 and 𝑘𝑠𝑢𝑚 appear somewhat sensitive to the
quality of the warping function 𝜑, while 𝑘𝑏𝑎𝑘 appears to be more robust empirically.
As a preliminary theoretical comment, we observe that 𝑘𝑏𝑎𝑘 retains optimality
guarantees of the conventional BO. Intuitively, this is because in expectation we
perform N/2 trials using only SE to choose the next point. This is no worse than
using conventional BO in half of the trials, and we anticipate that satisfactory
consistency and regret bounds could be derived. We leave this theoretical analysis to
future work. In this work, we investigate whether 𝑘𝑏𝑎𝑘 is beneficial in complex real-
world robotics scenarios. These pose a further challenge, since often the assumptions
made to obtain consistency and regret bounds for conventional BO do not hold in
practice.

3.2 Task-oriented Grasping, Network Architecture and Training
The objective of our TOG CNN is to learn to output several grasp stability scores
𝜉𝑖 and a task suitability score 𝜁, given as input a task 𝑡 and a grasp 𝑥𝑥𝑥 on an object.
A grasp is parameterized by 𝑥𝑥𝑥 := (𝑝𝑝𝑝,𝑛, 𝜓, 𝑑)∈R8, where 𝑝𝑝𝑝∈R3 is a point on the
surface of the object and 𝑛∈R3 is its corresponding unit normal, 𝜓 is a gripper
roll and 𝑑 is an offset from the surface of the object. A task 𝑡 is defined as a single
manipulation action that starts with a grasp. To fully exploit the power of 3D
representations we use volumetric architecture in convolutional layers. For this, we
scale an object mesh to fit inside 50× 50× 50 binary voxel grid (for learning, we
also scale the grasping points). The actual input to the network is then: a voxel
grid of an object (𝑉𝑉𝑉), a grasp (𝑥𝑥𝑥), and a task (𝑡, encoded as 1× 6 one-hot vector).
For details of network architecture see Figure 2. To handle noisy data that can be
encountered in the real-world, the network is trained with dropout (ratio of 0.5) in

3. PROPOSED METHOD E7

Task Object Class Grasp Requirements

handover all objects leave handle(s) clear
screw screwdrivers avoid the shaft
cut knife and scissors avoid blade(s)

pour bottle, can, mug, wine glass avoid the opening area
support pan, spatula, spoon, fork avoid the supporting area
pound hammer avoid a hammer head

Figure 2: Objects, tasks and grasps requirements in our dataset.

the first layer. Furthermore, for training we randomly rotate objects to account
for possible orientations for tabletop grasping. The training was performed using
Tensorflow on a Titan X GPU.

A single CNN is trained for all object categories and tasks (no need to classify
the object explicitly). The kernel for BO is constructed “on the fly” with a forward
pass on the trained CNN. To grasp a new object the steps are: 1) vision processes
the object (point cloud → mesh → voxel grid); 2) voxel grid & task id are fed as
input to CNN; 3) we get as output predicted stability & task scores for any sets
of grasp parameters, which enables computing kernel distances quickly during BO.
Once the CNN is trained, we have quick access to a kernel for any object type and
task that are included in CNN training. BO is run for each object instance “from
scratch”, but with informed kernel incorporated into the search. In collaborative
industrial settings (where the same objects could be used for many days) our method
could identify optimal task-specific grasping parameters and these can be utilized
for a given tool without re-optimizing. If it is unlikely that the robot will deal with
the same tool/object again, BO would run each time for each new object instance.
This relieves us from making restrictive assumptions about object properties that
can’t be inferred from vision only.

3.3 Data Generation
To obtain learning targets for our network, we simulate grasping various objects
in OpenRave [8] with a parallel gripper. We provide the simulator with a “free-
floating” 3D model of the gripper and objects. The objects dataset consists of 605
mesh models from ShapeNET [21] and ModelNet40 [22], containing objects from 13
different categories. For training we align each mesh with a reference frame that
coincides with object’s principal axes and meshes are scaled to real-world size based
on object’s category.

We label the objects with target task scores by assigning positive/negative labels
to parts of the object suitable/unsuitable for the task. Figure 2 shows the tasks we
consider and relations to applicable objects. We execute 4500 grasps on each object
with grasp parameters as follows:

- point & normal (𝑝𝑝𝑝,𝑛): randomly sample 500 points on object’s surface
(along with the corresponding normal directions)

E8 PAPER E. BERNOULLI ALTERNATION KERNEL FOR TOG

- gripper roll 𝜓: try angles 𝜓 ∈ {0, 𝜋/2, 𝜋/4}
- offset 𝑑: try offsets 𝑑∈{0, 2cm, 4cm}

Figure 3: Data generation for support on spoon
(with 𝜓= 0, 𝑑= 0). For task scores, red area
denotes points suitable for grasping.

Grasps are simulated by approaching
a point on an object along the normal
direction and closing the fingers. Once
the fingers close, we extract scores for
three of the grasp stability metrics re-
cently analyzed by [23]:
𝜉1 – Grasp Isotropy Index [24];
𝜉2 – Distance from Center of Mass [25,
26, 27, 28];
𝜉3 – Grasp Finger Posture [29, 30, 31].

4 Experiments

4.1 Performance of BO Variants on Synthetic Benchmarks

To anticipate the challenges of running optimization on a real-world robotics system,
we first test the performance of BO variants on synthetic benchmarks. From the
commonly used optimization test functions [32] we select 3 settings which exemplify
the main challenges that frequently occur in robotics: numerous shallow local optima,
small low-cost region and sharp cost function drops/rises, deep local optima difficult
to overcome when searching for global optimum. Figure 4 visualizes the settings we
consider. Figure 4a shows the Ackley function with numerous shallow local minima,
defined as:

𝑓𝐴𝐶(𝑥) = -𝑎 · exp
(︀
-𝑏

√︁
1
𝑑

∑︀𝑑
𝑖=1 𝑥

2
𝑖

)︀
− exp

(︀ 1
𝑑

∑︀𝑑
𝑖=1 cos(𝑐𝑥𝑖)

)︀
+ 𝑎+ exp(1)

𝑎=20, 𝑏=0.2, 𝑐=2𝜋, 𝑥 ∈ R𝑑

For a further challenge we consider this function on a much larger domain [−100, 100].
This is similar to considering Easom function, which is commonly used to test
robustness to steep ridges/drops in the search space. Figure 4b shows the Ackley
function on this larger domain.

We are interested in emulating a setting where simulation could provide coarse
guidance, but also could be limiting when searching for the global optimum. For
the synthetic setting we pick 𝜑 with components that capture information from two
first addends of the Ackley function:

[𝜑(𝑥)]1 = -𝑏
√︁

1
𝑑

∑︀𝑑
𝑖=1 𝑥

2
𝑖 ; [𝜑(𝑥)]2 = 1

𝑑

∑︀𝑑
𝑖=1 cos(𝑐𝑥𝑖)

This gives a kind of ‘collapsing’ of the relevant features, akin to simulation that
aims to capture most salient features needed to approximate real-world output.

4. EXPERIMENTS E9

(a) Ackley function with
challenging local minima

(b) Ackley on a larger domain:
only 1% of the space is<0.9

(c) Rastrigin: highly multi-
modal, deep local minima

Figure 4: High-dimensional analytic functions for testing optimization algorithms. Ackley
and Rastrigin functions present challenges similar to those most frequent in optimization
for robotics: (a) shallow local optima, (b) small low cost region & sharp cost changes, (c)
deep local optima difficult to overcome. Figures show functions in 2D, with values (costs)
normalized to [0, 1]. We test on 2- to 10-dimensional versions of these.

(a) Ackley 2D on [-10, 10] (b) Ackley 2D on [-100, 100]

(c) Ackley 10D on [-10, 10] (d) Rastrigin 10D on [-5, 5]

Figure 5: BO on analytic functions. Plots of mean over
40 runs for each kernel type, 95% CIs. Comparison with
random search (‘random’ in the legend) shows relative
difficulty of each setting.

Figure 5 shows compar-
isons of BO variants on 2D
and 10D versions of the Ack-
ley function. In 2D, using 𝜑
gives a significant advantage
to all the informed versions of
BO (with 𝑘𝜑, 𝑘𝑠𝑢𝑚 and 𝑘𝑏𝑎𝑘
kernels). When the low-cost
region is small, the gains are
even more striking. In this
case the performance of unin-
formed BO with SE kernel de-
grades to random search, while
the informed versions get close
to the optimum in less than
40 trials. However, the hint of
limitations induced by using 𝜑
is already visible: in the case
of 𝑘𝜑 and 𝑘𝑠𝑢𝑚 the improve-
ment stagnates after 50 trials.
This stagnation is even more
striking when 10-dimensional
version of the Ackley function
is optimized. There, even the
uninformed BO with SE kernel improves over 𝑘𝜑 and 𝑘𝑠𝑢𝑚 after 30 trials. In contrast,
𝑘𝑏𝑎𝑘 is able to ‘recover’ and outperform both informed and uninformed kernels.

E10 PAPER E. BERNOULLI ALTERNATION KERNEL FOR TOG

To test robustness to deep local minima we use Rastrigin function:
𝑓𝑅𝐴(𝑥) =

∑︀𝑑
𝑖 𝑥

2
𝑖 −

∑︀𝑑
𝑖 𝑎 cos(𝑐𝜋𝑥𝑖) + 𝑎 · 𝑑; 𝑎=10, 𝑐=2, 𝑥∈R𝑑

Figure 4c shows a 2D version of the function. As before, 𝜑 summarizes the first two
addends:

[𝜑(𝑥)]1 =
∑︀𝑑
𝑖 𝑥

2
𝑖 ; [𝜑(𝑥)]2 =

∑︀𝑑
𝑖 𝑎 cos(𝑐𝜋𝑥𝑖)

Figure 5d shows results for the BO variants in 10D. In this case, all informed kernels
improve over uninformed SE kernel. Overall, the results on test benchmarks appear
promising. Therefore we proceed with experiments on hardware, since we believe
this step is crucial for validating applicability of our approach to robotics problems.

4.2 Experimental Setup for Task-oriented Grasping
To evaluate performance on a real-world setting we construct Everyday Objects
Dataset (EOD), then do task-oriented grasping with an ABB Yumi robot. The
objects (shown in Figure 7) are from seven categories and can be used for six different
tasks. Our selection of objects is constrained by limitations of the robot: maximum
payload of 500g (lower in practice), rigid plastic parallel gripper, no force-torque or
tactile sensing. Once an object is placed on the table, we use Microsoft Kinect to
get a dense point cloud of the scene and segment out the object. We then generate
a mesh representation from the partial point cloud and attach a coordinate frame
to the object2. Then we compute grasp points, discarding those in collision with
the table. The object is voxelized and together with grasp and task representation
fed through the CNN to get stability and task score estimates.

Figure 6: Three objects from EOD and vi-
sualization of task & stability scores. From
left to right: object in the workspace, partial
mesh, 𝜁 task scores, 𝜉2 stability metric for top
100 grasps with 𝜁>0.5.

Black pan

Red pan

Knife

Red screwdriver

Black screwdriver

Spatula

Red hammer

Black hammer

Pen

Mug

Figure 7: Ten objects from our EOD
(Everyday Objects Dataset).

2Object coordinate frame is positioned in the center of the mesh bounding box and has the
same orientation in the world coordinate frame as the april tag which we use to segment the object,
for details see [33].

4. EXPERIMENTS E11

We execute grasps on the robot and report the results using the following scores:
[0.0-0.99] No plan: planning failed or returned partial plan
[1.0] No lift: failed to grasp the object
[2.0] Lift failed: robot grasped the object but failed to lift it (object slipped)
[3.0] Wrong grasp: grasped a wrong part of object (unsuitable for the task)
[4.0] Success: task-appropriate grasp was successful

After each execution, operator re-positions the object in the workspace if needed
and starts next trial.

Task maxF1 MAP
handover 0.892 0.930

screw 0.988 0.990
cut 0.764 0.877

pour 0.874 0.963
support 0.952 0.964
pound 0.940 0.948

overall 0.909 0.943

Stability scores 𝜉1 𝜉2 𝜉3

RMSE 0.184 0.173 0.206
Precision@100 0.651 0.902 0.688

Table E.1: CNN evaluation on synthetic
testset.

Before starting experiments on hard-
ware, for an initial test of our CNN we
evaluated its performance on a synthetic
test set. For task suitability: we report
task-specific and overall MaxF1 and MAP
scores in Table E.1 (top). Overall, the
network learns to recognize parts of ob-
jects that are suitable for grasping given
a task. The most challenging task is cut,
since blade and handle parts of a knife can
have very similar appearance. For grasp
stability: in Table E.1 (bottom) we report
RMSE for each of the stability metrics.
Since we are interested in using the pre-
dicted scores for task-oriented grasping,
we also report precision at top 100 for task-appropriate points (𝜁 > 0.5).

4.3 Hardware Experiments for Top-k Grasps

Task Scores (for each trial)
Spatula

support 4 4 4 4 4 2 4 4 4 1
White pan

handover 4 4 4 4 4 4 3 3 4 3
support 4 4 4 4 4 1 4 1 4 4

Black pan
handover 1 2 2 1 4 2 4 4 4 4
support 1 1 1 1 4 4 1 2 1 4

Red hammer
handover 1 2 4 4 2 4 2 4 4 1

pound 4 4 4 4 4 1 4 1 4 4
Table E.2: Top-10 grasps on EOD.

To test the performance of our CNN in a real-
world setting, we did task-oriented grasping for
objects in our EOD. We generated 4500 grasps
(as in Section 3.3), then removed those in colli-
sion with the table. For each object-task pair, 10
grasps with highest stability according to score
𝜉2 (and task scores 𝜁 >0.5) were executed on the
robot. We did not perform handover for screw-
drivers and knife, because their blades were not
adequately visible to our camera. Furthermore,
although some high-scoring points were found
on the spatula for handover, they were out of
reach for the robot. For all other object-task
pairs multiple successful task-oriented grasps
were found.

E12 PAPER E. BERNOULLI ALTERNATION KERNEL FOR TOG

Task Scores (for each trial)
Black hammer

handover 4 4 4 4 2 4 4 1 1 2
pound 4 4 4 2 4 4 1 1 1 4

Mug
handover 2 2 4 2 4 2 2 4 2 2

pour 4 4 2 1 4 3 4 4 4 4
Red screwdriver

screw 4 4 4 1 4 4 2 4 4 2
Black screwdriver

screw 2 2 4 2 1 4 2 2 2 2
Knife

cut 1 2 4 2 4 2 2 4 2 4
Pen

handover 4 2 4 2 4 2 4 4 2 2
Table E.3: Top-10 grasps on EOD

Tables E.2&E.3 report scores for each trial
(scoring described in Section 4.2). Our CNN
mostly outputs high scores for grasp points that
are on suitable parts of the object, both from
task and stability perspectives. Of course not
all of these grasps succeed in practice, since the
CNN is trained using simulations that do not
model friction or mass distribution. In reality,
the most stable grasps were on spatula for sup-
port, white pan for both tasks and red hammer
for task pound. The most unstable grasps where
on mug handover, likely because of smooth sur-
face, high mass, severely degraded partial mesh
from vision.

For the above experiments, we reduced max-
imum gripper standoff from 4cm to 3cm. Since
the tabletop was not present during training,
CNN was likely to learn high scores for grasps with small standoff. These would
frequently collide with the table. The alternative grasps with 4cm standoff were still
successful in simulation, but slipped off the object in reality. While we could fix this
issue by simply reducing the maximum standoff in this case, such simulation-reality
mismatch might be harder to fix in general. This motivates experiments with
adaptive search like BO, which we describe next.

4.4 Hardware Experiments for Bayesian Optimization

We ran experiments using the proposed BO approach from Section 3.1. 𝑘𝜑 kernel was
constructed using the stability scores: 𝜑(𝑥𝑥𝑥) = [𝜉1, 𝜉2, 𝜉3], which were obtained from
the trained CNN. The vector of control parameters 𝑥𝑥𝑥=(𝑝𝑝𝑝,𝑛, 𝜓, 𝑑) contained: 3D
coordinates for a point on the object, approach direction, gripper roll and offset (as
in Section 3.2). Choice for 𝑝𝑝𝑝 was constrained to the surface of the object, but other
control parameters were limited only by a choice of [min,max] values. Points on the
object were sampled from the output of the vision system, those with low task scores
were filtered out (for a given task) using the trained CNN. Our implementation
of BO was based on [34, 35]. After each BO trial, 𝑓(𝑥𝑥𝑥) evaluation (expressing the
success of executing grasp with parameters 𝑥𝑥𝑥) was given as described in Section 4.2.

BO usually starts with a random trial, but in our experiments we instead execute
one top choice from each of the 3 stability metrics. For challenging objects this does
not yield any promising points. However, from this BO can infer which regions are
not promising. Handover task for spatula provides a clear example of this. Left side
of Figure 8 shows executing top choice according to each of the 3 stability metrics
(after filtering out planning failures). These choices are not successful, moreover
executing top 20 choices does not yield any successful grasps. Most stable grasps

4. EXPERIMENTS E13

Figure 8: Left: top choices for handover
task from 3 stability metrics; Right: subse-
quent BO trial.

are not reachable due to robot’s joint lim-
its or the need to approach too close to
the table. We obtain a successful handover
on the 4𝑡ℎ trial (1st candidate from BO),
shown in the right part of Figure 8. The
grasp is just above the handle part (the
handle needs to be clear for handover). It
is labeled as acceptable for task comple-
tion, but is unlikely to be among top 𝑘
offline choices. This is because task and
stability scores are higher in other parts of
the object, but those parts are inaccessible.

Figure 9: Left: A trial from BO for
mug handover task. Right: A trial
from BO for pan support task.

Left side of Figure 9 shows success of BO on
the 4𝑡ℎ trial for mug handover (1st candidate from
BO). Right side shows successful pan handover on
the 5𝑡ℎ trial (2nd candidate from BO). In contrast,
top 𝑘 grasps computed offline attempted to grasp
the middle and outer part of the handle, which for
this pan resulted in either slippage or tilting. The
above object-task pairs presented the toughest
challenges for the top-10 approach, while BO
proposed successful task-oriented grasps in the
first few trials.

Figure 10: BO for challenging objects.

Overall, we did 15 runs with BO: 6 full
runs with 10 trials each, 9 partial runs that
we stopped early after 5 trials. We stopped
a run early if the top 3 choices from CNN
already suggested successful approach points,
or if multiple successful grasps were executed
in the first 5 trials. We obtained multiple suc-
cessful task-oriented grasps for spatula, mug,
hammers, pans, screwdrivers. We could not
complete BO on screwdriver handover task,
knife and pen, because these required getting
very close to the surface of the table (within 1-3mm). BO repeatedly proposed
such approaches, but the planning library rejected these as near-collisions. For
the full BO runs we focused on object-task pairs that were challenging for top-10
approach (e.g. ran spatula handover twice to ensure repeated success, since top-10
approach failed for this task). Figure 10 summarizes the results, showing quick
significant improvement of BO over the initial top choices from the 3 stability
metrics. Qualitatively, the benefits we observed from using BO were: 1) exploring
various parts of the object systematically and efficiently; 2) sampling a variety of
successful controllers that further improve over a merely acceptable controller.

E14 PAPER E. BERNOULLI ALTERNATION KERNEL FOR TOG

5 Conclusion and Future Work

We proposed a variant of online global search suitable for simulation-informed
optimization. Our focus was on validating this approach on a challenging robotics
task. We plan to extend evaluation to task-oriented grasping scenarios in clutter,
external disturbances, or real-time requirements for task completion. Our data
generation does not assume a tabletop scenario, since objects are simulated without
a support surface. This is a strength, since there is no need to re-run offline training
when the workspace properties change. However, we need to improve our planning
pipeline to avoid needless planning failures when grasping very small objects from
tabletop. On the theory side, it would be interesting to explore theoretical properties
of the proposed informed BO, investigate which guarantees could be obtained. It
would be useful to put an emphasis on retaining realistic assumptions: no bounds
on simulation-reality mismatch a-priori, non-smooth objective/cost functions.

Acknowledgments

This research was supported in part by the Knut and Alice Wallenberg Foundation.

References

[1] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the
Human Out of the Loop: A Review of Bayesian Optimization. Proceedings of the
IEEE, 104(1):148–175, 2016.

[2] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots that can adapt like animals.
Nature, 521(7553):503–507, 2015.

[3] A. Rai, R. Antonova, S. Song, W. Martin, H. Geyer, and C. G. Atkeson. Bayesian
Optimization Using Domain Knowledge on the ATRIAS Biped. In Robotics and
Automation (ICRA), 2018 IEEE International Conference on, 2018.

[4] A. Marco, P. Hennig, S. Schaal, and S. Trimpe. On the design of LQR kernels for
efficient controller learning. In 56th IEEE Annual Conference on Decision and Control,
CDC, 2017.

[5] R. Antonova, A. Rai, and C. G. Atkeson. Deep kernels for optimizing locomotion
controllers. In Conference on Robot Learning, pages 47–56, 2017.

[6] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-
ing (Adaptive Computation and Machine Learning). The MIT Press, 2005. ISBN
026218253X.

[7] A. Rai, R. Antonova, F. Meier, and C. G. Atkeson. Using simulation to improve sample-
efficiency of bayesian optimization for bipedal robots. arXiv preprint arXiv:1805.02732,
2018.

5. CONCLUSION AND FUTURE WORK E15

[8] R. Diankov and J. Kuffner. Openrave: A planning architecture for autonomous
robotics. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34, 79, 2008.

[9] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. The
International Journal of Robotics Research, 34(4-5):705–724, 2015.

[10] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg.
Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and
analytic grasp metrics. arXiv preprint arXiv:1703.09312, 2017.

[11] P. Schmidt, N. Vahrenkamp, M. Wächter, and T. Asfour. Grasping of unknown
objects using deep convolutional neural networks based on depth images. In 2018
IEEE International Conference on Robotics and Automation (ICRA), 2018.

[12] O. Kroemer, R. Detry, J. Piater, and J. Peters. Combining active learning and reactive
control for robot grasping. Robotics and Autonomous systems, 58(9):1105–1116, 2010.

[13] L. Montesano and M. Lopes. Active learning of visual descriptors for grasping using
non-parametric smoothed beta distributions. Robotics and Autonomous Systems, 60
(3):452–462, 2012.

[14] J. Oberlin and S. Tellex. Autonomously acquiring instance-based object models from
experience. In Robotics Research, pages 73–90. Springer, 2018.

[15] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry, K. Kohlhoff,
T. Kröger, J. Kuffner, and K. Goldberg. Dex-net 1.0: A cloud-based network of 3d
objects for robust grasp planning using a multi-armed bandit model with correlated
rewards. In Robotics and Automation (ICRA), 2016 IEEE International Conference
on, pages 1957–1964. IEEE, 2016.

[16] D. Song, C. H. Ek, K. Huebner, and D. Kragic. Task-based robot grasp planning
using probabilistic inference. IEEE transactions on robotics, 31(3):546–561, 2015.

[17] L. Antanas, P. Moreno, M. Neumann, R. P. de Figueiredo, K. Kersting, J. Santos-
Victor, and L. De Raedt. High-level reasoning and low-level learning for grasping: A
probabilistic logic pipeline. arXiv preprint arXiv:1411.1108, 2014.

[18] M. Kokic, J. A. Stork, J. A. Haustein, and D. Kragic. Affordance detection for
task-specific grasping using deep learning. In Humanoid Robotics (Humanoids), 2017
IEEE-RAS 17th International Conference on, pages 91–98. IEEE, 2017.

[19] R. Detry, J. Papon, and L. Matthies. Taskoriented grasping with semantic and
geometric scene understanding. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2017.

[20] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei, and S. Savarese.
Learning task-oriented grasping for tool manipulation from simulated self-supervision.
arXiv preprint arXiv:1806.09266, 2018.

[21] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

E16 PAPER E. BERNOULLI ALTERNATION KERNEL FOR TOG

[22] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A
deep representation for volumetric shapes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1912–1920, 2015.

[23] C. Rubert, D. Kappler, A. Morales, S. Schaal, and J. Bohg. On the relevance of grasp
metrics for predicting grasp success. In Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference on, pages 265–272. IEEE, 2017.

[24] B.-H. Kim, S.-R. Oh, B.-J. Yi, and I. H. Suh. Optimal grasping based on non-
dimensionalized performance indices. In Intelligent Robots and Systems, 2001. Pro-
ceedings. 2001 IEEE/RSJ International Conference on, volume 2, pages 949–956.
IEEE, 2001.

[25] E. Chinellato, A. Morales, R. B. Fisher, and A. P. Del Pobil. Visual quality measures
for characterizing planar robot grasps. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 35(1):30–41, 2005.

[26] J. Ponce and B. Faverjon. On computing three-finger force-closure grasps of polygonal
objects. IEEE Transactions on robotics and automation, 11(6):868–881, 1995.

[27] J. Ponce, S. Sullivan, A. Sudsang, J.-D. Boissonnat, and J.-P. Merlet. On com-
puting four-finger equilibrium and force-closure grasps of polyhedral objects. The
International Journal of Robotics Research, 16(1):11–35, 1997.

[28] D. Ding, Y.-H. Lee, and S. Wang. Computation of 3-d form-closure grasps. IEEE
Transactions on Robotics and Automation, 17(4):515–522, 2001.

[29] J. Cornella and R. Suárez. Fast and flexible determination of force-closure independent
regions to grasp polygonal objects. In Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Conference on, pages 766–771. IEEE,
2005.

[30] Y.-H. Liu. Computing n-finger form-closure grasps on polygonal objects. The Inter-
national journal of robotics research, 19(2):149–158, 2000.

[31] Y. Li, Y. Yu, and S. Tsujio. An analytical grasp planning on given object with
multifingered hand. In Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE
International Conference on, volume 4, pages 3749–3754. IEEE, 2002.

[32] S. Surjanovic and D. Bingham. Virtual library of simulation experiments: test
functions and datasets. Simon Fraser University, Burnaby, BC, Canada, 13:2015,
2013.

[33] J. Varley, C. DeChant, A. Richardson, J. Ruales, and P. Allen. Shape completion
enabled robotic grasping. In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on, pages 2442–2447. IEEE, 2017.

[34] C. E. Rasmussen and H. Nickisch. Gaussian processes for machine learning (gpml)
toolbox. J. Mach. Learn. Res., 11:3011–3015, Dec. 2010.

[35] J. R. Gardner, M. J. Kusner, Z. E. Xu, K. Q. Weinberger, and J. Cunningham.
Bayesian Optimization with Inequality Constraints. In ICML, pages 937–945, 2014.

Variational Auto-Regularized Alignment
for Sim-to-Real Control

Martin Hwasser, Danica Kragic, Rika Antonova
Northvolt, Sweden EECS, KTH, Stockholm, Sweden

Abstract

General-purpose simulators can be a valuable data source for flexible learn-
ing and control approaches. However, training models or control policies in
simulation and then directly applying to hardware can yield brittle control. In-
stead, we propose a novel way to use simulators as regularizers. Our approach
regularizes a decoder of a variational autoencoder to a black-box simulation,
with the latent space bound to a subset of simulator parameters. This enables
successful encoder training from a small number of real-world trajectories
(10 in our experiments), yielding a latent space with simulation parameter
distribution that matches the real-world setting. We use a learnable mixture
for the latent prior/posterior, which implies a highly flexible class of densities
for the posterior fit. Our approach is scalable and does not require restrictive
distributional assumptions. We demonstrate ability to recover matching pa-
rameter distributions on a range of benchmarks, challenging custom simulation
environments and several real-world scenarios. Our experiments using ABB
YuMi robot hardware show ability to help reinforcement learning approaches
overcome cases of severe sim-to-real mismatch.

Published in the proceedings of the 2020 IEEE International Conference on Robotics and
Automation (ICRA). Available at https://ieeexplore.ieee.org/document/9197130

https://ieeexplore.ieee.org/document/9197130

Analytic Manifold Learning: Unifying
and Evaluating Representations for

Continuous Control

Rika Antonova‡ Maksim Maydanskiy
Danica Kragic‡ Sam DevlinS Katja HofmannS

‡EECS, KTH, Stockholm, Sweden
SMicrosoft Research

Abstract

We address the problem of learning reusable state representations from
streaming high-dimensional observations. This is important for areas like
Reinforcement Learning (RL), which yields non-stationary data distributions
during training. We make two key contributions. First, we propose an evalua-
tion suite that measures alignment between latent and true low-dimensional
states. We benchmark several widely used unsupervised learning approaches.
This uncovers the strengths and limitations of existing approaches that impose
additional constraints/objectives on the latent space.

Our second contribution is a unifying mathematical formulation for learning
latent relations. We learn analytic relations on source domains, then use these
relations to help structure the latent space when learning on target domains.
This formulation enables a more general, flexible and principled way of shaping
the latent space. It formalizes the notion of learning independent relations,
without imposing restrictive simplifying assumptions or requiring domain-
specific information. We present mathematical properties, concrete algorithms
for implementation and experimental validation of successful learning and
transfer of latent relations.

1 Introduction

In this work, we address the problem of learning reusable state representations
from streaming high-dimensional observations. Consider the case when a deep
reinforcement learning (RL) algorithm is trained on a set of source domains. Low-
dimensional state representations could be extracted from intermediate layers of

https://arxiv.org/abs/2006.08718

https://arxiv.org/abs/2006.08718

G2 PAPER G. ANALYTIC MANIFOLD LEARNING

RL networks, but they might not be reusable on a target domain with different
rewards or dynamics. To aid transfer and ensure non-degenerate embeddings, it is
common to add unsupervised learning objectives. However, the quality of resulting
representations is usually not evaluated rigorously. Moreover, constructing and
prioritizing such objectives is done manually: auxiliary losses are picked heuristically
and hand-tuned for transfer to a new set of domains or tasks.

As the first part of our contribution, we provide a set of tools and environments
to improve evaluation of learning representations for use in continuous control. We
evaluate commonly used unsupervised approaches and explain new insights that
highlight the need for critical analysis of existing approaches. Our evaluation suite
provides tools to measure alignment between the latent state from unsupervised
learners and the true low-dimensional state from the physics simulator. Furthermore,
we introduce new environments for manipulation with multiple objects and ability to
vary their complexity: from geometric shapes to mesh scans and visualizations of real
objects. We show that, while alignment with true state is achieved on the simpler
benchmarks, new environments present a formidable challenge: existing unsupervised
objectives do not guarantee robust and transferable state representation learning.

The second part of our contribution is a formalization of learning latent objectives
from a set of source domains. We describe the mathematical perspective of this
approach as finding a set of functionally independent relations that hold for the
data sub-manifold. We explain theoretical properties and guarantees that this
perspective offers. Previous work constructed latent relations based on domain
knowledge or algorithmic insights, e.g. using continuity [1], mutual information with
prior states [2], consistency with a forward or inverse model (see [3] for a survey). Our
formulation offers a unified view, allowing to leverage known relations, discover new
ones and incorporate relations into joint training for transfer to target domains. We
describe algorithms for concrete implementation and visualize the learned relations
on analytic and physics-based domains. In our final set of experiments, we show
successful transfer of relations learned from source domains with simple geometric
shapes to target domains that contain objects with real textures and 3D scanned
meshes. We also show that our approach obtains improved latent space encoder
mappings with smaller distortion variability.

2 Evaluation Suite for Unsupervised Learning for
Continuous Control

Reinforcement learning (RL) has shown strong progress recently [4], and RL for con-
tinuous control is particularly promising for robotics [5]. However, training for each
robotics task from scratch is prohibitively expensive, especially for high-dimensional
observations. Unsupervised learning could help obtaining low-dimensional latent
representations, e.g. with variational autoencoder (VAE) [6] variants. However,
evaluation of these mostly focused on datasets, with a limiting assumption that the
training data distribution is stationary [7]. Moreover, advanced approaches usually

2. EVALUATION SUITE FOR UNSUPERVISED LEARNING G3

Figure 1: Evaluation suite environments. Left: Standard PyBullet envs for which our suite
yields both pixels and low-dimensional state. Right: Proposed domains with YCB objects.

report best-case results, achieved only with exact parameters that the authors find
to work for a given static dataset. Obtaining reconstructions that are clear enough
to judge whether all important information is encoded in the latent state could
still require days or weeks of training [8, 9]. These limitations severely impair the
adoption of unsupervised representation learning in robotics. In stark contrast to the
learning community, a vast majority of roboticists still need to rely on hand-crafted
low-dimensional features.

We propose an evaluation suite that helps analyze the alignment between the
learned latent state and true low-dimensional state. Unsupervised approaches receive
frames that an RL policy yields during its own training: a non-stationary stream
of RGB images. The alignment of the learned latent state and the true state is
measured periodically as training proceeds. For this, we do a regression fit using a
small fully-connected neural network, which takes latents as inputs and is trained to
produce low-dimensional states as outputs (position & orientation of objects; robot
joint angles, velocities, contacts). The quality of alignment is characterized by the
resulting test error rate. This approach helps quantify latent space quality without
the need for detailed reconstructions. To connect our suite to existing benchmarks,
we extend the OpenAI gym interface [10] of widely used robotics domains so that
both pixel- and low-dimensional state is reported. We use an open source simulator:
PyBullet [11]. Simulation environments are parallelized, ensuring scalability. We
introduce advanced domains utilizing meshes from 3D scans of real objects from
the YCB dataset [12]. This yields realistic object appearances and dynamics. Our
RearrangeYCB domain models object rearrangement tasks, with variants for using
realistic vs basic robot arms. The RearrangeGeom domain offers an option with
simple geometric shapes instead of object scans. The YCB-on-incline domain models
objects sliding down an incline, with options to change friction and apply external
forces; Geom-on-incline offers a variant with simple single-color geometric shapes.
Figure 1 gives an overview.

2.1 Benchmarking Latent State Alignment of Unsupervised
Approaches

To demonstrate usage and benefits of the suite we evaluated several widely used
and recently proposed unsupervised learning approaches. Unsupervised approaches
get 64x64 pixel images sampled from replay buffers, filled by PPO RL learners [13].

G4 PAPER G. ANALYTIC MANIFOLD LEARNING

Figure 2: Benchmarking alignment with true low-dimensional state. Plots show mean test
error of NN regressors trained with current latent codes as inputs and true states (robot
positions, velocities, contacts) as outputs. 90% confidence intervals over 6 training runs for
each unsupervised approach are shown (>140 training runs overall). Training uses frames
from replay buffers (1024 frames per batch; 10 batches per epoch, 50 for locomotion). Top
row: performance on frames from current RL policy 𝜋𝑐𝑢𝑟𝑟, middle row: random policy
𝜋𝑟𝑎𝑛𝑑. 1st column shows results for CartPole and InvertedPendulum for position & angle;
2nd column: for velocity. 3rd column shows aggregated results for position, velocity and
contacts for HalfCheetah; 4th column shows these for Ant domain.

Figures 2, 3 show results for the following unsupervised approaches (Appendix A
gives more detailed descriptions and learning parameters): 𝑉𝐴𝐸𝑣0𝑉𝐴𝐸𝑣0𝑉𝐴𝐸𝑣0 [6]: a VAE
with a 4-layer convolutional encoder and corresponding de-convolutional decoder;
𝑉𝐴𝐸𝑟𝑝𝑙𝑉𝐴𝐸𝑟𝑝𝑙𝑉𝐴𝐸𝑟𝑝𝑙: a VAE with a replay buffer that retains 50% of frames from beginning of
training (our modification of VAE for improved performance on a wider range of RL
policies); 𝛽-𝑉𝐴𝐸𝛽-𝑉𝐴𝐸𝛽-𝑉𝐴𝐸 [14]: a VAE with 𝛽 parameter to encourage disentanglement (we
tried several 𝛽 parameters and also included the replay enhancement from 𝑉𝐴𝐸𝑟𝑝𝑙);
𝑆𝑉𝐴𝐸𝑆𝑉𝐴𝐸𝑆𝑉𝐴𝐸: a sequential VAE that reconstructs a sequence of frames 𝑥1, ..., 𝑥𝑡; 𝑃𝑅𝐸𝐷𝑃𝑅𝐸𝐷𝑃𝑅𝐸𝐷:
a VAE that, given a sequence of frames 𝑥1, ..., 𝑥𝑡, constructs a predictive sequence
𝑥1, ..., 𝑥𝑡+𝑘; 𝐷𝑆𝐴𝐷𝑆𝐴𝐷𝑆𝐴 [15]: a sequential autoencoder that uses structured variational
inference to encourage separation of static and dynamic aspects of the latent state;
𝑆𝑃𝐴𝐼𝑅𝑆𝑃𝐴𝐼𝑅𝑆𝑃𝐴𝐼𝑅 [16]: a spatially invariant and faster version of AIR [17] that imposes a
particular structure on the latent state.

Figure 2 shows results on multicolor versions of CartPole, InvertedPendulum,
HalfCheetah and Ant domains (multicolor to avoid learning trivial color-based fea-
tures). We evaluated using two kinds of policies: a current RL learner policy 𝜋𝑐𝑢𝑟𝑟,
and a random policy 𝜋𝑟𝑎𝑛𝑑. Success on 𝜋𝑟𝑎𝑛𝑑 is needed for transfer: when learning
a new task, initial frames are more similar to those from a random policy than a
final source task policy. 𝑉𝐴𝐸𝑣0 performed poorly on 𝜋𝑟𝑎𝑛𝑑. We discovered that this
can be alleviated by replaying frames from initial random policy. The resulting
𝑉𝐴𝐸𝑟𝑝𝑙 offers good alignment for positions. Surprisingly, 𝛽-𝑉𝐴𝐸 offered no improve-
ment over 𝑉𝐴𝐸𝑟𝑝𝑙. We used 𝛽 ∈ {100, 20, 10, 5, 0.5}; the best (𝛽 = 5) performed
slightly worse than 𝑉𝐴𝐸𝑟𝑝𝑙 on pendulum domains (shown in Figure 2), the rest did
significantly worse (omitted from plots). Sequential approaches 𝑆𝑉𝐴𝐸,𝑃𝑅𝐸𝐷,𝐷𝑆𝐴
offered significant gains when measuring alignment for velocity. Despite its simpler

3. ANALYTIC MANIFOLD LEARNING G5

Figure 3: Evaluation on the RearrangeGeom domain (reconstructing YCB objects was
difficult for existing approaches, so RearrangeYCB was too challenging). 𝑉𝐴𝐸𝑟𝑝𝑙 encoded
angle of the main robot joint, location & partly orientation (major axis) of the largest
objects. 𝑆𝑃𝐴𝐼𝑅 encoded (rough) locations quickly, but did not improve with longer
training (bounding boxes not tight).

architecture, 𝑃𝑅𝐸𝐷 performed best on pendulum domains. For aggregated per-
formance on position, velocity and contacts (i.e. whether robot joints touch the
ground) for locomotion: PRED outperformed 𝑉𝐴𝐸𝑟𝑝𝑙 on 𝜋𝑐𝑢𝑟𝑟, but was second-best
on 𝜋𝑟𝑎𝑛𝑑. Overall, this set of experiments was illuminating: simpler approaches
were often better than more advanced ones.

For our newly proposed domains with multiple objects: the first surprising result
was that all of the approaches we tested failed to achieve clear reconstructions of
objects from the YCB dataset. This was despite attempts to use larger architectures,
up to 8 layers with skip connections, similar to [18]. Figure 3 shows results for
𝑆𝑃𝐴𝐼𝑅 vs 𝑉𝐴𝐸𝑟𝑝𝑙. 𝑆𝑃𝐴𝐼𝑅 succeeded to reconstruct RearrangeGeom, while other
approaches failed. This indicates that our multi-object benchmark is a highly needed
addition to the current continuous control benchmark pool. While single-object
benchmarks might still be challenging for control, they could be inherently simpler
for latent state learning and reconstruction.

Overall, our analysis shows that structuring the latent space can be beneficial,
but has to be done such that it does not impair the learning process and resulting
representations. This is not trivial, since seemingly beneficial objectives that worked
well in the past could be detrimental on new domains. However, forgoing structure
completely can fail on more advanced scenes. Hence, in the following sections we
show an alternative direction: a principled way to learn a set of general rules from
source domains, then apply them to structure latent space of unsupervised learners
on target domains.

3 Analytic Manifold Learning

We now motivate the need to unify learning latent relations, then provide a rigorous
and general mathematical formulation for this problem. Let 𝑥𝑡 denote a high-
dimensional (observable) state at time 𝑡 and 𝑠𝑡 denote the corresponding low-
dimensional or latent state. 𝑥𝑡 could be an RGB image of a scene with a robot
& objects, while 𝑠𝑡 could contain robot joint angles, object poses, and velocities.

G6 PAPER G. ANALYTIC MANIFOLD LEARNING

Consider an example of a latent relation: the continuity (slowness) principle [1, 19]. It
postulates continuity in the latent states, implying that sudden changes are unlikely.
It imposes a loss 𝐿𝑐𝑜𝑛𝑡(𝒟𝑥, 𝜑) = E

[︀
||𝑠𝑡+1−𝑠𝑡||2

]︀
, with 𝐷𝑥={𝑥𝑡, 𝑥𝑡+1, ...} and encoder

𝜑(𝑥)=𝑠. A related heuristic from [2] maximizes mutual information between parts
of consecutive latent states. Such approaches may be viewed as postulating concrete
latent relations: 𝑔(𝑠𝑡, 𝑠𝑡+1) = 𝑐𝜖, where 𝑔 is the squared distance between 𝑠𝑡 and 𝑠𝑡+1
for 𝐿𝑐𝑜𝑛𝑡, and a more complicated relation for [2]. Ultimately, all these are heuristics
coming from intuition or prior knowledge. However, only a subset of them might
hold for a given class of domains. Moreover, it would be tedious and error-prone to
manually compose and incorporate a comprehensive set of such heuristics into the
overall optimization process.

We take a broader perspective. Let 𝑔(𝒟𝜏)=0 define a relation that holds on a set
of sequences 𝒟𝜏 ={𝜏 (𝑖)}𝑀𝑖=1. 𝒟𝜏 could contain state sequences 𝜏=[𝑠𝑡, ..., 𝑠𝑡+𝑇] from
a set of source domains. We start by learning a relation 𝑔1; then learn 𝑔2 that differs
from 𝑔1; then learn 𝑔3 different from {𝑔1, 𝑔2} and so on. Overall, we aim to learn a
set of relations that are (approximately) independent, and we define independence
rigorously. To understand why rigor is important here, recall the significance of
the definition of independence in linear algebra: it is central to the theory and
algorithms in that field. Extending the notion of independence to our more general
nonlinear setting is not trivial, since naive definitions can yield unusable results.
Our contribution is developing rigorous definitions of independence, and ensuring
the result can be analyzed theoretically & used for practical algorithms.

3.1 Mathematical Formulation

Let R𝑁 be the ambient space of all possible latent state sequences 𝜏 (of some fixed
length). Let ℳ be the submanifold of actual state sequences that a dynamical
system from one of our domains could generate (under any control policy). A
common view of discovering ℳ is to learn a mapping that produces only plausible
sequences as output (the ‘mapping’ view). Alternatively, a submanifold can be
specified by describing all equations (i.e. relations) that have to hold for points in
the submanifold.

We are interested in finding relations that are in some sense independent. In linear
algebra, a dependency is a linear combination of vectors with constant coefficients.
In our nonlinear setting the analogous notion is that of syzygy. A collection of
functions f‡ ={𝑓1, ..., 𝑓𝑘} is called a syzygy if

∑︀𝑘
𝑗=0 𝑓𝑗𝑔𝑗 is zero. Observe that this

sum is a linear combination of relations 𝑔1, ..., 𝑔𝑘 with coefficients in the ring of
functions. If there is no syzygy f‡ s.t.

∑︀𝑘
𝑗=0 𝑓𝑗𝑔𝑗 =0, then 𝑔1, ..., 𝑔𝑘 are independent.

However, this notion of independence is too general for our case, since it deems any
𝑔1, 𝑔2 dependent: 𝑔1 · 𝑔2− 𝑔2 · 𝑔1 = 0 holds for any 𝑔1, 𝑔2. Hence, we define restricted
syzygies.

3. ANALYTIC MANIFOLD LEARNING G7

Definition 3.1 (Restricted Syzygy). Restricted syzygy for relations 𝑔1, ..., 𝑔𝑘 is
a syzygy with the last entry 𝑓𝑘 equal to −1, i.e. f = {𝑓1, ..., 𝑓𝑘−1, 𝑓𝑘 =−1} with∑︀𝑘

𝑗=1 𝑓𝑗𝑔𝑗=0.

Definition 3.2 (Restricted Independence). 𝑔𝑘 is independent from 𝑔1, ..., 𝑔𝑘−1 in
a restricted sense if the equality

∑︀𝑘
𝑗=1 𝑓𝑗𝑔𝑗=0 implies 𝑓𝑘 ̸= −1, i.e. if there exists

no restricted syzygy for 𝑔1, ..., 𝑔𝑘.
For f={𝑓1, ..., 𝑓𝑘−1, 𝑓𝑘=−1} we denote

∑︀𝑘
𝑗=1 𝑓𝑗(𝜏)𝑔𝑗(𝜏) by f(𝜏, 𝑔1, ..., 𝑔𝑘). Using

the above definitions, we construct a practical algorithm (Section 3.2) for learning
independent relations. The overall idea is: while learning 𝑔𝑘s, we are also looking for
restricted syzygies f(𝜏, 𝑔1, ..., 𝑔𝑘)=0. Finding them would mean 𝑔𝑘s are dependent,
so we augment the loss for learning 𝑔𝑘 to push it away from being dependent. We
proceed sequentially: first learning 𝑔1, then 𝑔2 while ensuring no restricted syzygies
appear for {𝑔1, 𝑔2}, then learning 𝑔3 and so on. Section 5 explains motivations
for learning sequentially. For training 𝑔𝑘s we use on-manifold data: 𝜏 sequences
from our dynamical system. Restricted syzygies f are trained using off-manifold
data: 𝜏𝑜𝑓𝑓 = {𝑠𝑜𝑓𝑓𝑡

, 𝑠𝑜𝑓𝑓𝑡+1 , ..., 𝑠𝑜𝑓𝑓𝑇
}, because we aim for independence of 𝑔𝑘s on

R𝑁 , not restricted to ℳ (on ℳ 𝑔𝑘s should be zero). 𝜏𝑜𝑓𝑓 do not lie on our data
submanifold and can come from thickening of on-manifold data or can be random
(when R𝑁 is large, the probability a random sequence satisfies equations of motion
is insignificant). Independence in the sense of Definition 3.2 is the same as saying
that 𝑔𝑘 does not lie in the ideal generated by (𝑔1, ..., 𝑔𝑘−1), with ideal defined as in
abstract algebra (see Appendix B.1). Hence, the ideal generated by (𝑔1, ..., 𝑔𝑘−1, 𝑔𝑘)
is strictly larger than that generated by (𝑔1, ..., 𝑔𝑘−1) alone, because we have added
at least one new element (the 𝑔𝑘). We prove that in our setting the process of
adding new independent 𝑔𝑘s will terminate (proof in Appendix B.1):

Theorem 3.1. When using Definition 3.2 for independence and real-analytic func-
tions to approximate 𝑔s, the process of starting with a relation 𝑔1 and iteratively
adding new independent 𝑔𝑘s will terminate.

If ℳ is real-analytic (i.e. is cut out by a finite set of equations of type ℎ(𝜏)=0
for some finite set of real-analytic ℎs), then after the process terminates, the
set where all relations 𝑔1, .., 𝑔𝑘 hold will be precisely ℳ. Otherwise, the process
will still terminate, having learned all possible analytic relations that hold on ℳ.
By a theorem of Akbulut and King [20] any smooth submanifold of R𝑁 can be
approximated arbitrarily well by an analytic set, so in practice the differences would
be negligible.

To ensure that each new relation decreases the data manifold dimension, we
could additionally prohibit 𝑔1, ..., 𝑔𝑘 from having any syzygy {𝑓1, ..., 𝑓𝑘} in which
𝑓𝑘 itself is not expressible in terms of 𝑔1, ..., 𝑔𝑘−1. With such definition (below)
we could guarantee that a sequence of independent relations 𝑔1, ..., 𝑔𝑘 restricts the
data to a submanifold of codimension at least 𝑘 (Theorem 3.2, which we prove in
Appendix B.1).

G8 PAPER G. ANALYTIC MANIFOLD LEARNING

Definition 3.3 (Strong Independence). 𝑔𝑘 is strongly independent from 𝑔1, ..., 𝑔𝑘−1
if the equality

∑︀𝑘
𝑗=1 𝑓𝑗𝑔𝑗 = 0 implies that 𝑓𝑘 is expressible as 𝑓𝑘 = ℎ1 · 𝑔1 + ... +

ℎ𝑘−1 · 𝑔𝑘−1.

Theorem 3.2. Suppose 𝑔1, . . . , 𝑔𝑘 is a sequence of analytic functions on 𝐵, each
strongly independent of the previous ones. Denote by ℳ𝐵 = {𝑥 ∈ 𝐵|𝑔𝑗(𝑥) =
0 for all 𝑗} the part of the learned data manifold lying in the interior of 𝐵. Then
dimension of ℳ𝐵 is at most 𝑁 − 𝑘.

In addition, we construct an alternative approach with similar dimensionality
reduction guarantees, which ensures that the learned relations differ to first order.
For this we use a notion of independence based on transversality, with the following
definition and lemmas (with proofs in Appendix B.1):

Lemma 3.1. Dependence as in Definition 3.2 implies ∇𝜏𝑔𝑘 and ∇𝜏𝑔1, ...,∇𝜏𝑔𝑘−1
are dependent.

Definition 3.4 (Transversality). If for all points 𝜏 (𝑖)∈ℳ the gradients of 𝑔1, .., 𝑔𝑘
at 𝜏 , i.e. ∇𝜏𝑔|𝜏(𝑖) , are linearly independent, we say that 𝑔𝑘 is transverse to the
previous relations: 𝑔𝑘 t 𝑔1, ..., 𝑔𝑘-1.

Using transversality, we deem 𝑔𝑘 to be independent from 𝑔1, ..., 𝑔𝑘−1 if the
gradients of 𝑔𝑘 do not lie in the span of gradients of 𝑔1, ..., 𝑔𝑘−1 anywhere on ℳ.
With this, 𝑔𝑘 that only differs from previous relations in higher-order terms would be
deemed as ‘not new’. This formulation is natural from the perspective of differential
geometry. Let 𝐻𝑔𝑗

be the hypersurface defined by 𝑔𝑗 : the set of points where 𝑔𝑗 =0.
Each 𝐻𝑔1 , ...,𝐻𝑔𝑘

contains ℳ. If gradients of 𝑔𝑘 are linearly independent from
gradients of 𝑔1, ..., 𝑔𝑘−1, then the corresponding hypersurfaces intersect transversely
along ℳ.

Lemma 3.2. For once differentiable (𝑔1, .., 𝑔𝑘) s.t. 𝐻𝑔𝑗
s are transverse along their

common intersection 𝐻, this intersection 𝐻 is a submanifold of R𝑁 of dimension
𝑁−𝑘.

The notion of independence defined via transversality is infinitesimal and sym-
metric w.r.t. permuting 𝑔𝑘s. This is useful in settings where many relations could
be discovered, because it is then better to find relations whose first order behav-
ior differs. In cases where guaranteed decrease in dimension is not needed, using
restricted syzygies could allow a flexible search for more expressive relations.

3.2 Learning Latent Relations
Here we describe the algorithm with relations 𝑔𝑘 and restricted syzygies f approxi-
mated by neural networks. Each 𝑔 is represented by a neural network (NN) that
takes a sequence of latent/low-dimensional states 𝜏 = [𝑠𝑡, 𝑠𝑡+1, ..., 𝑠𝑇], 𝜏 ∈ R𝑁 as
input. The output of 𝑔 is a scalar. We use 𝑔 to denote both the relation and the
NN used to learn it. If 𝑔 outputs 0 for on-manifold data, this implies 𝑔 has learned

3. ANALYTIC MANIFOLD LEARNING G9

Algorithm 1:Analytic Manifold Learning
{𝜏 (𝑖)}𝑑𝑖=1 ← rollouts from RL actors
train 𝑔1 with loss 𝐿=𝑔𝑑(𝜏)− log ‖𝑣‖ (Eq.1)
for 𝑘 = 2, 3, ..., do

if aiming_for_transversality then
train 𝑔𝑘 with loss 𝐿𝑡𝑟 from Eq.2

else // using syzygies
train 𝑔𝑘 with loss 𝐿 from Eq.1
for 𝑗 = 1, 2, ..., do

generate 𝜏𝑜𝑓𝑓 , 𝜏 𝑡𝑒𝑠𝑡𝑜𝑓𝑓

train f𝑗 with 𝐿f = |f𝑗(𝜏𝑜𝑓𝑓)|
if f𝑗 ̸=0 on 𝜏 𝑡𝑒𝑠𝑡𝑜𝑓𝑓 then break
//𝑔𝑘≈indep.

while f𝑗(𝜏 𝑡𝑒𝑠𝑡𝑜𝑓𝑓) ≈ 0 do
freeze f𝑗 ; train 𝑔𝑘 w.𝐿𝑠𝑦𝑧 Eq.3

Figure 4: Left: algorithm for learning latent relations. Top right: using transversality.
Bottom right: training with syzygy f to uncover if 𝑔𝑘 is dependent, then using f to modify
𝑔𝑘’s loss. Orange & blue denotes NNs whose weights are being trained. Gray denotes
learned relations whose NNs are frozen.

a function 𝑔(𝜏) = 0, which captures a relation between states of the underlying
dynamical system. 𝑔 is trained on minibatches of size 𝑏 of on-manifold data points
𝜏 (𝑖) using loss gradients: ∇𝐿=

∑︀𝑏
𝑖=1∇𝑔

[︀
𝐿(𝜏 (𝑖))

]︀
, where ∇𝑔 means gradient w.r.t NN

weights of 𝑔. We need to make 𝑔→0 for on-manifold data, while avoiding trivial
relations (e.g. all NN weights ≈0). Hence, in the loss we minimize 𝑑𝑔(𝜏)= |𝑔(𝜏)|

‖𝑣‖ ,
where 𝑣 is the gradient of 𝑔 with respect to input points 𝜏 (𝑖): 𝑣=∇𝜏 (𝑔)|𝜏(𝑖) , 𝑣∈R𝑁 .
The gradient norm ‖𝑣‖ is the maximal ‘slope’ of the linearization of 𝑔 at 𝜏 , so
𝑑𝑔(𝜏) is the distance from 𝜏 to the nearest point where this linearization vanishes
(𝑑𝑔(𝜏) = height/slope = distance). Hence, 𝑑𝑔(𝜏) is a proxy for the distance from
𝜏 to the vanishing locus of 𝑔. This measure of vanishing avoids scaling problems
(see Appendix B.2). We also maximize log ‖𝑣‖ to further regularize 𝑔. Equation 1
summarizes our loss for 𝑔:

𝐿(𝑔) = 𝑑𝑔(𝜏)− log ‖𝑣‖ ; 𝑑𝑔(𝜏) = |𝑔(𝜏)|/ ‖𝑣‖ ; 𝑣 = ∇𝜏 (𝑔)|𝜏 (1)

We proceed sequentially: first learn 𝑔1, then 𝑔2, and so on. Suppose that so far
we learned (approximately) independent relations 𝑔1, ..., 𝑔𝑘−1. We then keep their
NN weights fixed and learn an initial version of the next relation 𝑔𝑘. To obtain
𝑔𝑘 that is transverse to 𝑔1, .., 𝑔𝑘−1 (Definition 3.4), we augment the loss as follows.
We compute gradients of each 𝑔1, ...𝑔𝑘−1 w.r.t input 𝜏 . For example, for 𝑔1 we
denote this as 𝑣1 =∇𝜏 (𝑔1)|𝜏 . Making 𝑔𝑘 transverse to 𝑔1, ...𝑔𝑘−1 means ensuring
that 𝑣𝑘 is linearly independent of 𝑣1, ..., 𝑣𝑘−1. We optimize a computationally
efficient numerical measure of this: maximize the angles between 𝑣𝑘 and all the

G10 PAPER G. ANALYTIC MANIFOLD LEARNING

Figure 5: Learning relations 𝑔1, .., 𝑔𝑘 on a noisy version of the analytic domain.

previous 𝑣1, .., 𝑣𝑘−1. Such measure encourages transversality of subsets of relations
and strongly discourages small angles. Our overall measure of transversality is the
product of sines of pairwise angles, with log for stability (Appendix B.3.1 gives
further discussion):

𝐿𝑡𝑟(𝑔𝑘) = 𝑑𝑔𝑘
(𝜏)− log ‖𝑣𝑘‖ − log

∏︀𝑘−1
𝑗=1 sin2(𝜃𝑣𝑗 ,𝑣𝑘

) (2)

For independence based on Definition 3.2, we instead learn a restricted syzygy
f(𝜏𝑜𝑓𝑓 , 𝑔1, ..., 𝑔𝑘) = 0. Training data for f is comprised of: 1) 𝜏𝑜𝑓𝑓 (defined in
Section 3.1) and 2) 𝑦𝑔1 =𝑔1(𝜏𝑜𝑓𝑓), ..., 𝑦𝑔𝑘

=𝑔𝑘(𝜏𝑜𝑓𝑓), i.e. outputs from 𝑔1, ...𝑔𝑘 with
𝜏𝑜𝑓𝑓 fed as inputs. 𝑦𝑔𝑠 are passed directly to the next-to-last layer, which we denote
as f𝐿-1∈ R𝑘−1. The last layer of f computes a dot product of

[︀
f𝐿-1
[1] , ..., f

𝐿-1
[𝑘-1], -1

]︀
and

[𝑦𝑔1 , ..., 𝑦𝑔𝑘
]. We use a simple L1 loss for training f. If f outputs 0 at convergence:

𝑔𝑘 is not independent. In this case, we freeze the weights of f and continue to train
𝑔𝑘 with augmented loss. We use gradients passed through f to push 𝑔𝑘 away from a
solution that made it possible to learn f:

∇𝐿𝑠𝑦𝑧(𝑔𝑘; f) = ∇𝐿(𝑔𝑘)−∇𝑔𝑘

[︁⃒⃒
f(𝜏𝑜𝑓𝑓 , 𝑔1, ..., 𝑔𝑘)

⃒⃒]︁
(3)

𝐿𝑠𝑦𝑧 encourages adjusting 𝑔𝑘 such that it makes the outputs of (frozen) f non-zero.
Once 𝐿𝑠𝑦𝑧(𝑔𝑘; f) is minimized, we can attempt to learn another syzygy f2, and
so on, until we cannot uncover any new dependencies. Then 𝑔𝑘 can be declared
(approximately) independent of 𝑔1, ...𝑔𝑘−1 and we can proceed to learn 𝑔𝑘+1. All
𝑔𝑘s, fs, 𝐿s are in latent space, so networks are small & quick to train.

An additional benefit of our formulation is that prior knowledge can be incorpo-
rated without restricting the hypothesis space. 𝑔𝑘s can be pre-trained in a supervised
way: to output values that a prior heuristic produces on- and off-manifold. Then,
𝑔𝑘s can be further trained using on-manifold data, and if prior knowledge is wrong,
then 𝑔𝑘 would move away from the wrong heuristic during further training.

4 Evaluating Analytic Manifold Learning (AML)

We evaluate our AML approach with 3 sets of experiments: 1) learning on an analytic
domain and visualizing relations in 3D; 2) handling dynamics with friction and

4. EVALUATING ANALYTIC MANIFOLD LEARNING (AML) G11

drag on a block-on-incline domain; 3) employing learned relations to get improved
representations on the YCB-on-incline target domain.

For our analytic domain on-manifold data comes from an intersection of a
hyperboloid and a plane. The top row of Figure 5 shows results using restricted
syzygies. We visualize 𝑔1 ∩ 𝑔2 ∩ ... ∩ 𝑔5: the intersection of the learned relations
𝑔1, ..., 𝑔5 (i.e. the intersection of the zero-level sets of these relations). The zero-level
sets of individual relations are shown next. On the second row, we show training
with transversality: 𝑔1 ∩ 𝑔2 has two simple relations – a plane and a hollow cylinder;
𝑔1∩𝑔2∩𝑔3∩𝑔4 includes smoothed cones. Transversality allows capturing information
with a small number of general relations. In contrast, relations found using syzygies
have more complicated shapes and can be similar in some regions, as expected. This
could be useful when we need to avoid large changes, e.g. for fine-tuning or for
flexible partial transfer using subsets of relations.

Next, we evaluate AML on a physics domain: a block sliding down an incline.
The block is given a random initial velocity; gravity, friction and drag forces
then determine its further motion. On-manifold data consists of noisy position &
velocity of the block at the start and end of trajectories. Figure 6 shows AML with
transversality (Appendix B.3.3 gives results with syzygies). We visualize phase
space plots: arrows show change in position & velocity after 1𝑠𝑒𝑐 of sliding (scaled
to fit). The left plots show the case of a 45∘ incline and demonstrate generalization.
AML is only given training data with start position & velocity ∈ [0, 0.2], but is able
to generalize to [0, 0.4]. The middle plots show high friction on a 35∘ incline. The
right plots show high drag on a 10∘ incline. Overall, these results show that AML
can generalize beyond training data ranges and capture non-linear dynamics.

Lastly, we show transfer to YCB-on-incline domain (rightmost in Figure 1) and
compare AML to the leading approaches from our earlier experiments: 𝑃𝑅𝐸𝐷 and
𝑉𝐴𝐸𝑟𝑝𝑙. We note that while 𝑆𝑃𝐴𝐼𝑅 did ok on RearrangeGeom, it had significant
problems reconstructing existing benchmarks. Decoding RearrangeYCB was prob-
lematic for all approaches (see Appendix A). Even supervised decoder training
failed (with true states as training input). Decoder design is outside the scope
of this work. Hence, we evaluate AML transfer using YCB-on-incline, which has
challenging dynamics & images, but still tractable for decoding. First, AML learns
relations from Geom-on-incline. Incline angle, friction and object pose are initialized
randomly. Actions are random forces that push objects along the incline. AML is
given incline, position & velocity at two subsequent steps, and the applied action.

Figure 6: Phase space plots for on-manifold data and relations learned with AML for
block-on-incline.

G12 PAPER G. ANALYTIC MANIFOLD LEARNING

Then, we train an unsupervised learner (𝑃𝑅𝐸𝐷) on the target YCB-on-incline
domain. PPO RL drives the distribution of RGB frames. RL gets high rewards for
pushing objects to stay in the middle of the incline. We impose AML relations by
extending the latent part of an ELBO-based loss (with 𝑧𝑡,𝑡+1 as encoder outputs):

ℒ=−
[︀

log 𝑝(𝑥|𝑧𝑡,𝑡+1)−𝐾𝐿
(︀
𝑞(𝑧𝑡,𝑡+1)||𝒩(0,1)

)︀⏟ ⏞
standard 𝐸𝐿𝐵𝑂 for 𝑃𝑅𝐸𝐷 version of 𝑉𝐴𝐸

]︀
+

∑︀𝐾
𝑘=1

⃒⃒
𝑔𝑘(𝑧𝑡,𝑡+1,𝑎𝑡)

⃒⃒⏟ ⏞
impose 𝐴𝑀𝐿 relations

The resulting AMLtrnsv (AMLsyz when using syzygies) gets a better latent state
alignment for object position compared to 𝑉𝐴𝐸𝑟𝑝𝑙 and 𝑃𝑅𝐸𝐷 without AML relations
imposed (see the top plot in Figure 7).

Figure 7: YCB-on-incline:
mean of 6 training runs,
shaded areas show 1 STD.

Another important quality measure of a latent
space mapping is how much it distorts the true data
manifold. We quantify this as follows (on 10K test
points): take pairs of low-dimensional representations
𝜏 𝑡𝑟𝑢𝑒1 , 𝜏 𝑡𝑟𝑢𝑒2 and the corresponding pixel-based repre-
sentations 𝑥1, 𝑥2, then compute distortion coefficient
𝜌𝑑𝑖𝑠𝑡𝑜𝑟𝑡= log

[︀
𝑑𝐿2

(︀
𝜑𝑒𝑛𝑐(𝑥1), 𝜑𝑒𝑛𝑐(𝑥2)

)︀⧸︀
𝑑𝐿2

(︀
𝜏 𝑡𝑟𝑢𝑒1 , 𝜏 𝑡𝑟𝑢𝑒2

)︀]︀
,

with 𝑑𝐿2 as Euclidean distance. An encoder that yields
low variance of these coefficients better preserves the ge-
ometry of the low-dimensional manifold (up to overall
scale). This measure is related to approaches surveyed
in [21, 22] (see Appendix B.3.2). The bottom plot in Fig-
ure 7 confirms that AML helps achieving lower distortion
variability.

Results presented in Figure 7 show that imposing
AML relations helps improve the latent space mapping of
𝑃𝑅𝐸𝐷 when training on RGB frames. The distribution of
the frames is non-stationary, since they are sampled using
the current (changing) policy of an RL learner. Overall,
this above setup aims to demonstrate the potential for sim-to-real transfer. In this
case, Geom-on-incline plays a role of a simulator, while frames from YCB-on-incline
act as surrogates for ‘real’ observations. Note that YCB objects have realistic visual
appearances and their dynamics is dictated by meshes obtained from the 3D scans
of real objects. Hence, there is a non-trivial mismatch between the dynamics of the
simple shapes of Geom-on-incline domain vs realistic shapes of the YCB-on-incline
domain.

5 Related Work

Scalable simulation suites for continuous control [23, 24, 25] bolstered progress
in deep RL. However, advanced benchmarks for unsupervised learning from non-
stationary data are lacking, since the community mainly focused on dataset-oriented
evaluation. [2] provides such a framework for ATARI games, but it is not aimed at

5. RELATED WORK G13

continuous control. [26] includes a limited set of robotics domains and 3 metrics
for measuring representation quality: KNN-based, correlation, RL reward. We
incorporate more standard benchmarks, introduce a variety of objects with realistic
appearances (fully integrated into simulation) and measure alignment to latent
state in a complimentary way (highly non-linear, but not RL-based). In future
work, it would be best to create a combined suite to support both games- and
robotics-oriented domains, and offer a comprehensive set of RL-based and RL-free
evaluation.

Our formulation of learning latent relations is in the general setting of represen-
tation learning. This is a broad field, so in this work we focus on formalization of
learning independent/modular relations that capture the true data manifold. We
also provide a way to transfer relations learned on source domains to target domains.
Unlike meta-learning, we do not assume access to a task distribution and do not
view target task reward as the main focus. Our sequential approach to learning
𝑔1, ..., 𝑔𝑘 has conceptual parallels with a functional Frank-Wolfe algorithm [27], but
without convex optimization. Learning sequentially helps avoid instabilities, e.g.
from training flexible NN mixtures with EM [8]. There is prior work for learning
algebraic (meaning polynomial) relations, but its criterion for relation simplicity
is based on polynomial degree. Such approaches are based on computational al-
gebra and spectral methods from linear algebra. This line of work was initiated
by [28, 29, 30], with extensions [31, 32, 33, 34, 35], applications [36, 37] and learning
theory analysis [38, 39]. Our formulation is more general, since we learn analytic
relations and approximate them with neural networks. We summarize the main
differences & point out potential connections in Appendix B.2.

Conclusion and Future Work

We proposed a suite for evaluation of latent representations and showed that
additional latent space structure can be beneficial, but could stifle learning in
existing approaches. We then presented AML: a unified approach to learn latent
relations and transfer them to target domains. We offered a rigorous mathematical
formalization, algorithmic variants & empirical validation for AML.

We showed applications of AML to physics & robotics domains. However, in
general AML does not assume that source or target domains are from a certain field,
such as robotics, or have particular properties, such as continuity in the adjacent
latent states or existence of an easy-to-learn transition model. As as long some
relation exists between the subsequences of latent states – AML would attempt
to learn it, and would succeed if a chosen function approximator is capable of
representing it. Moreover, AML relations can be learned on the latent space of any
unsupervised learner trained on the source domain. In this case, AML would capture
abstract relations that encode the regularities embedded in the latent representation
learned on the source domain. Imposing these relations during transfer could help
to preserve (i.e. carry over) these regularities. This alternative could be better
than starting from scratch and better than fine-tuning. Starting from scratch is

G14 PAPER G. ANALYTIC MANIFOLD LEARNING

not data-efficient. Fine-tuning is prone to getting stuck in local optima, causing
permanent degradation of performance, especially in case of a non-trivial mismatch
between the source and target domains.

AML can build a modular representation of relations encoded in the latent/low-
dimensional space. Hence, AML can enable a dynamic partial transfer and thus
help recover from negative transfer in cases of large source-target mismatch. In
our follow-up work, we intend to dynamically adjust the strength of imposing each
latent relation on the target domain. For this, we would combine the learned
relations 𝑔1, ..., 𝑔𝑘 using prioritization weights 𝑤1, ..., 𝑤𝑘. These weights would
be optimized by propagating the gradients of the RL loss w.r.t. the latent state
representation (that these weights would influence). Further extensions could include,
for example, lifelong learning: we could gradually expand the set of learned relations
and discard relations whose weights decay to zero as the lifelong learning proceeds.
Another promising option would be to learn policy representations (rather than
state representations). If AML could be used to learn policies that are in some
sense independent, then we could provide a way to learn a portfolio of policies that
are complementary. Then, we could construct algorithms for learning diversified
portfolios, such that a system capable of executing any policy in a portfolio could
provide robustness to uncertainty and changes in the environment.

Acknowledgments

This research was supported in part by the Knut and Alice Wallenberg Foundation.
This work was also supported by an “Azure for Research” computing grant. We
would like to thank Yingzhen Li, Kamil Ciosek, Cheng Zhang and Sebastian
Tschiatschek for helpful discussions regarding unsupervised & reinforcement learning
and variational inference.

Appendices

A. EVALUATION SUITE FOR UNSUPERVISED LEARNING G15

A Evaluation Suite for Unsupervised Learning

A.1 Benchmarking Alignment : Algorithm Descriptions and
Further Evaluation Details

In this section, we include more detailed descriptions of the existing approaches we
evaluated, describe parameters used for evaluation experiments, and give examples
of reconstructions. Code for the evaluation suite environments can be obtained at:
https://github.com/contactrika/bulb

– 𝑉𝐴𝐸𝑣0 [6]: a VAE with a 4-layer convolutional encoder and corresponding
de-convolutional decoder (same conv-deconv stack is also used for all the other
VAE-based methods below).
– 𝑉𝐴𝐸𝑟𝑝𝑙: a VAE with a replay buffer that retains 50% of initial frames from the

beginning of training and replays them throughout training. This is our modification
of the basic VAE to ensure consistent performance on frames coming from a wider
range of RL policies. We included this replay strategy into the rest of the algorithms
below, since it helped improve performance in all cases.
– 𝛽-𝑉𝐴𝐸 [14]: a VAE with an additional 𝛽 parameter in the variational objective

that encourages disentanglement of the latent state. To give 𝛽-𝑉𝐴𝐸 its best chance
we tried a range of values for 𝛽.

– 𝑆𝑉𝐴𝐸: a sequential VAE that is trained to reconstruct a sequence of frames
𝑥1, ..., 𝑥𝑡 and passes the output of the convolutional stack through LSTM layer
before decoding. Reconstructions for this and other sequential versions were also
conditioned on actions 𝑎1, ..., 𝑎𝑡.
– 𝑃𝑅𝐸𝐷: a VAE that, given a sequence of frames 𝑥1, ..., 𝑥𝑡, constructs a predictive

sequence 𝑥1, ..., 𝑥𝑡+𝑘. First, the convolutional stack is applied to each 𝑥𝑖 as before;
then, the 𝑡 output parts are aggregated and passed through fully connected layers.
Their output constitutes the predictive latent state. To decode: this state is chunked
into 𝑡+ 𝑘 parts, each fed into deconv stack for reconstruction.
– 𝐷𝑆𝐴 [15]: a sequential autoencoder that uses structured variational inference to

encourage separation of static vs dynamic aspects of the latent state. It uses LSTMs
in static and dynamic encoders. To give 𝐷𝑆𝐴 its best chance we tried uni- and
bidirectional LSTMs, as well as replacing LSTMs with GRUs, RNNs, convolutions
and fully connected layers.
– 𝑆𝑃𝐴𝐼𝑅 [16]: a spatially invariant and faster version of AIR [17] that imposes

a particular structure on the latent state. 𝑆𝑃𝐴𝐼𝑅 overlays a grid over the image
(e.g. 4x4=16, 6x6=36 cells) and learns ‘location’ variables that encode bounding
boxes of objects detected in each cell. ‘Presence’ variables indicate object presence
in a particular cell. A convolutional backbone first extracts features from the
overall image (e.g. 64x64 pixels). These are passed on to further processing to
learn ‘location’,‘presence’ and ‘appearance’ of the objects. The ‘appearance’ is
learned by object encoder-decoder, which only sees a smaller region of the image
(e.g. 28x28 pixels) with a single (presumed) object. The object decoder also outputs
transparency alphas, which allow rendering occlusions.

https://github.com/contactrika/bulb

G16 PAPER G. ANALYTIC MANIFOLD LEARNING

Figure 1: Unseen frames (top) and reconstructions (bottom) after 500 training epochs.

Neural network architectures and training parameters:
In our experiments, unsupervised approaches learn from 64x64 pixel images,

which are rendered by the simulator. All approaches (except 𝑆𝑃𝐴𝐼𝑅) first apply a
convolutional stack with 4 hidden layers, (with [64,64,128,256] conv filters). The
decoder has analogous de-convolutions. Fully-connected and recurrent layers have
size 512. Using batch/weight normalization and larger/smaller network depth &
layer sizes did not yield qualitatively different results. The latent space size is set
to be twice the dimensionality of the true low-dimensional state. For VAE we also
tried setting it to be the same, but this did not impact results. 𝑃𝑅𝐸𝐷,𝑆𝑉𝐴𝐸,𝐷𝑆𝐴
use sequence length 24 for pendulums & 16 for locomotion (increasing to 32 yields
similar results). 𝑆𝑃𝐴𝐼𝑅 parameters and network sizes are set to match those in [16].
We experimented with several alternatives, but only the cell size had a noticeable
effect on the final outcome. We report results for 4x4 and 6x6 cell grids, which did
best.

To decouple the number of gradient updates for unsupervised learners from the
simulator speed: frames for training are re-sampled from replay buffers. These keep
5K frames and replace a random subset with new observations collected from 64
parallel simulation environments, using the current policy of an RL learner. Training
hyperparameters are the same for all settings (e.g. using Adam optimizer [40] with
learning rate set to 1𝑒-4). Since different approaches need different time to perform
gradient updates, we equalize resources consumed by each approach by reducing
the batch size for the more advanced/expensive learners. 𝑉𝐴𝐸𝑣0 , 𝑉𝐴𝐸𝑟𝑝𝑙, 𝛽-𝑉𝐴𝐸 get
1024 frames per batch; for sequential approaches (𝑆𝑉𝐴𝐸,𝑃𝑅𝐸𝐷,𝐷𝑆𝐴) we divide
that by the sequence length; for 𝑆𝑃𝐴𝐼𝑅 we use 64 frames per batch (since 𝑆𝑃𝐴𝐼𝑅’s
decoding process is significantly more expensive).

Reconstructions for benchmarks and the new multi-object domains:
Reconstruction for benchmark domains (e.g. CartPole, InvertedPendulum,

HalfCheetah, Ant) was tractable for 𝑉𝐴𝐸, 𝑆𝑉𝐴𝐸,𝑃𝑅𝐸𝐷,𝐷𝑆𝐴. Decoded images
were sharp when these algorithms were trained on a static dataset of frames. How-
ever, then trained on streaming data with a changing RL policy, decoding was
more challenging. It took longer for colors to emerge, especially for 𝑆𝑉𝐴𝐸 and
𝐷𝑆𝐴. Sometimes robot links were missing, especially for poses that were seen less
frequently.

We attempted to run 𝑆𝑃𝐴𝐼𝑅 on these benchmark domains as well. However,
it had difficulties with reconstruction. The thin pole in CartPole domain was
completely lost, and 𝑆𝑃𝐴𝐼𝑅 mistook the cart base as a part of background. For

A. EVALUATION SUITE FOR UNSUPERVISED LEARNING G17

HalfCheetah and Ant: a bounding box was detected around the robot, signifying
that 𝑆𝑃𝐴𝐼𝑅 did separate it from the background. However, cheetah robot was
reconstructed only as a faint thin line, and legs of the Ant were frequently missing.
Right set of plots in Figure 1 shows examples of reconstructions, red bounding boxes
show detected foreground regions; blue boxes indicate inactive boxes. 𝑆𝑃𝐴𝐼𝑅 is
not specifically designed for domains like this, since its strengths are best seen in
identifying/tracking separate objects. Thin object parts and dynamic backgrounds
in the benchmark domains are not the best match for 𝑆𝑃𝐴𝐼𝑅’s strongest sides.

As we noted in the main paper, all existing approaches we tried had difficulties
decoding RearrangeYCB domain. 𝑆𝑃𝐴𝐼𝑅 did manage to produce reasonable re-
constructions, albeit missing/splitting of objects was still common. Figure 2 shows
example reconstructions after training for 10K epochs (≈32 hours) and after 100K
epochs. Bounding boxes reported by 𝑆𝑃𝐴𝐼𝑅 were not tight even after 100K epochs
(up to 11 days of training overall on one NVIDIA GeForce GTX1080 GPU). We used
PyTorch implementation from [41], which was tested in [42] to reproduce the original
𝑆𝑃𝐴𝐼𝑅 results (and we added the capability to learn non-trivial backgrounds). An
optimized Tensorflow implementation could potentially offer a speedup, but PyTorch
has an advantage of being more accessible and convenient for research code.

𝑉𝐴𝐸, 𝑆𝑉𝐴𝐸,𝑃𝑅𝐸𝐷,𝐷𝑆𝐴 did not achieve good reconstructions even on Rear-
rangeGeom domain. Figure 3 shows example reconstructions. Hence, in the main
paper, for analyzing alignment on RearrangeGeom domain we chose 𝑉𝐴𝐸𝑟𝑝𝑙 and
𝑆𝑃𝐴𝐼𝑅. We focused on these, since 𝑉𝐴𝐸𝑟𝑝𝑙 offered speed and simplicity, while
𝑆𝑃𝐴𝐼𝑅 gave better reconstructions.

Figure 2: Left side: SPAIR RearrangeYCB results after 10K epochs. Right side: SPAIR
after 100K epochs. True images are in the top row, reconstructions in the bottom. Thin
red bounding boxes overlaid over true images (in the top row) show that bounding boxes
did not shrink with further training. SPAIR 6x6 tended to split large objects into pieces
(visible in the case with blue background). SPAIR 4x4 did not split objects and had better
results for low-dimensional alignment.

Figure 3: True images (top) and reconstructed images (bottom) after 10K training epochs.

G18 PAPER G. ANALYTIC MANIFOLD LEARNING

B Analytic Manifold Learning

B.1 Proofs and Technical Background for Mathematical
Formulation

Here we present an extended version of Section 3.1 from the main paper. This
version contains proofs for all lemmas and theorems, provides relevant technical
background from abstract algebra and geometry. We draw analogies with simpler
settings from linear algebra to highlight connections with settings that are common
in ML literature.

Let R𝑁 be the ambient space of all possible latent state sequences 𝜏 (of some
fixed length). Letℳ be the submanifold of actual state sequences that a dynamical
system from one of our domains could generate (under any control policy)3. A
common view of discovering ℳ is to learn a mapping that would produce only
plausible sequences as output (the ‘mapping’ view). Alternatively, a submanifold
can be specified by describing all the equations (i.e. relations) that have to hold
for the points in the submanifold. Recall an example from linear algebra, where a
submanifold is linear, a.k.a. a vector subspace. This submanifold can be represented
as an image of some linear map (the ‘mapping’ view), or as null space of some
collection of linear functions, a.k.a. a system of linear equations. The latter is the
‘relations’ view: specifying which relations have to hold for a point to belong to the
submanifold.

B.1.1 Definitions of Independence for Learning Independent Relations

We are interested in finding relations that are in some sense independent. One
notion of independence is the functional independence. Relations 𝑔1, ..., 𝑔𝑘 are said
to be functionally independent if there is no (non-trivial) function 𝑓 : R𝑘→R s.t.
𝑓(𝑔1(·), ..., 𝑔𝑘(·)) = 0. However, with such definition, 𝑔(𝜏) and ℎ(𝜏)𝑔(𝜏) could be
deemed independent4, even when ℎ(·)𝑔(·) does not provide an additional interesting
relation, e.g. 𝑔(𝜏) vs sin(𝜏)𝑔(𝜏). Hence, we need a stricter version of independence.
To describe such a version we use the formalism of modules.

A module is the generalization of the concept of vector space, where the coeffi-
cients lie in a ring instead of a field. In our case, both elements of the module and
elements of the ring are functions on R𝑁 . We observe that the set of functions that
vanish on ℳ is closed under the module operations ‘+,−’ and multiplication by
ring elements, hence it is a (sub-)module. Recalling the definition of independence
for vectors of a vector space, we note that the default notion of independence for
elements of a module is analogous. In this setting, a syzygy f‡ is a linear combination

3In this work, we use the term ‘manifold’ in the sense most commonly used in the machine
learning literature, i.e. without assuming strict smoothness conditions.

4𝑓 can transform 𝑔s in any way, but does not have direct access to 𝜏 , so ℎ(𝜏) can not be a
‘coefficient’.

B. ANALYTIC MANIFOLD LEARNING G19

of relations 𝑔1, ..., 𝑔𝑘 with coefficients 𝑓1, ..., 𝑓𝑘 in the ring of functions. If there is
no syzygy f‡ ={𝑓1, .., 𝑓𝑘} s.t.

∑︀𝑘
𝑗=0 𝑓𝑗𝑔𝑗 vanishes, then 𝑔1, ..., 𝑔𝑘 are independent.

However, for our case the above notion of independence is now too strict, because
it would deem any relations 𝑔1, 𝑔2 dependent: 𝑔1 · 𝑔2 − 𝑔2 · 𝑔1 = 0 holds for any
𝑔1, 𝑔2. We propose several strategies to avoid this problem. One option is to define
restricted syzygies, presented below.

Definition 3.1 (Restricted Syzygy). Restricted syzygy for relations 𝑔1, ..., 𝑔𝑘 is
a syzygy with the last entry 𝑓𝑘 equal to −1, i.e. f = {𝑓1, ..., 𝑓𝑘−1, 𝑓𝑘 =−1} with∑︀𝑘

𝑗=1 𝑓𝑗𝑔𝑗=0.

Definition 3.2 (Restricted Independence). 𝑔𝑘 is independent from 𝑔1, ..., 𝑔𝑘−1 in
a restricted sense if the equality

∑︀𝑘
𝑗=1 𝑓𝑗𝑔𝑗=0 implies 𝑓𝑘 ̸= −1, i.e. if there exists

no restricted syzygy for 𝑔1, ..., 𝑔𝑘.

For f = {𝑓1, ..., 𝑓𝑘−1, 𝑓𝑘 = −1} we denote
∑︀𝑘
𝑗=1 𝑓𝑗(𝜏)𝑔𝑗(𝜏) by f(𝜏, 𝑔1, ..., 𝑔𝑘).

Using definitions above, we construct a practical algorithm for learning an
(approximately) independent set of relations. The overall idea is: while learning 𝑔𝑘s,
we are also looking for restricted syzygies f(𝜏, 𝑔1, ..., 𝑔𝑘)= 0. Finding them would
mean 𝑔𝑘s are dependent (in the sense of Definition 3.2), so we augment the loss for
learning 𝑔𝑘s to push them away from being dependent. We proceed sequentially:
first learning 𝑔1, then learning 𝑔2 while ensuring no restricted syzygies appear for
{𝑔1, 𝑔2}, then learning 𝑔3 and so on.

For training 𝑔𝑘s we use on-manifold data: 𝜏 sequences come from our dynamical
system (i.e. satisfying physical equations of motion, etc). Restricted syzygies f are
trained using off-manifold data: sequences that do not lie on our data submanifold.
We denote such subsequences as 𝜏𝑜𝑓𝑓 ={𝑠𝑜𝑓𝑓𝑡 , 𝑠𝑜𝑓𝑓𝑡+1 , ..., 𝑠𝑜𝑓𝑓𝑇

}. Off-manifold data is
needed for f since we aim for independence of 𝑔𝑘s on R𝑁 , not restricted to their
output on data that lies on ℳ (when restricted to ℳ the 𝑔𝑘s are zero, and so are
trivially dependent). 𝜏𝑜𝑓𝑓 do not lie on our data submanifold and can come from
thickening of on-manifold data or can be random (when R𝑁 is large, the probability
a random sequence satisfies equations of motion is insignificant).

Observe that independence in the sense of Definition 3.2 is the same as saying
that 𝑔𝑘 does not lie in the ideal generated by (𝑔1, ..., 𝑔𝑘−1), with ideal defined as in
abstract algebra5. Hence the ideal generated by (𝑔1, . . . , 𝑔𝑘−1, 𝑔𝑘) is strictly larger
than that generated by (𝑔1, . . . , 𝑔𝑘−1) alone, because we have added at least one
new element (the 𝑔𝑘). Below we prove that in our setting the process of adding new
independent 𝑔𝑘s will terminate.

5In the language of abstract algebra: we consider functions on R𝑁 as module over itself. When
a ring is viewed as a module over itself, a submodule of a ring is called an ideal. Thus the set of
relations that hold on ℳ is an ideal, called ‘the ideal of ℳ’, written 𝐼(ℳ). When considering
only subsets of relations that hold on ℳ, we will also talk about the ‘ideal generated by (𝑔1, ...𝑔𝑘)’,
which is, by definition, the smallest ideal containing 𝑔1, ..., 𝑔𝑘. One can show that this ideal consists
of all linear combinations of 𝑔1, ..., 𝑔𝑘 with functions as coefficients.

G20 PAPER G. ANALYTIC MANIFOLD LEARNING

Theorem 3.1. When using Definition 3.2 for independence and real-analytic func-
tions to approximate 𝑔s, the process of starting with a relation 𝑔1 and iteratively
adding new independent 𝑔𝑘s will terminate.

Proof. First, we assume that the values of each dimension 𝑑 of 𝜏 lie between some
minimum constants 𝑐𝑑 and maximum 𝐶𝑑. This is to model actual data observations
that are limited by real-world boundaries. This implies that instead of working
with unrestricted ambient space, we will work with a compact box 𝐵, and the
corresponding subset of the data manifold ℳ𝐵 =ℳ∩𝐵. The precise values of 𝑐𝑑s,
𝐶𝑑s and even the rectangular shape of the box 𝐵 are immaterial; what is needed is
that 𝐵 is compact and is cut out by a collection of analytic inequalities. In technical
terms: we require that 𝐵 is compact and real semi-analytic. To avoid boxes with
pathological shapes we require in addition that 𝐵 is the closure of its interior 𝐵.
Possible 𝐵s include a closed ball, or an arbitrary convex polytope.

We consider the case of using neural networks for approximating relations
𝑔1, . . . , 𝑔𝑘. For networks with real-analytic activation functions (e.g. sigmoid,
tanh), the 𝑔s and relations between them would be real-analytic (recall that a
function is analytic if it is locally given by a convergent power series). The 𝑔𝑘
being independent in the sense of Definition 3.2 implies 𝑔𝑘 is not in the ideal
generated by (𝑔1, ..., 𝑔𝑘−1) inside the ring of real-analytic functions. This means
that (𝑔1), (𝑔1, 𝑔2), . . . , (𝑔1, . . . , 𝑔𝑘) is a strictly increasing sequence of ideals inside
the ring of real-analytic functions on the ambient space 𝐵. A theorem of J. Frisch
[43, Théorème (I, 9)] says that the ring of analytic functions on a compact real
semi-analytic space 𝐵 is Noetherian, meaning that any growing chain of ideals in
it will stabilize. This means that after a finite number of iterations we would be
unable to learn a new independent 𝑔𝑘, meaning we would have found all analytic
relations that hold on ℳ𝐵 , thus terminating the process.

If ℳ itself is cut out by a finite set of equations of type ℎ(𝜏)=0 for some finite
set of real-analytic ℎs), then after the process terminates, the subset of 𝐵 where
all relations 𝑔1, .., 𝑔𝑘 hold will be precisely ℳ𝐵 . This is the same as saying that all
the ℎs defining ℳ will be in the ideal (𝑔1, . . . , 𝑔𝑘). If ℳ is not cut out by global
real-analytic relations, the process will still terminate, having learned all possible
global analytic relations that hold on ℳ𝐵 .

We remark that by a theorem of Akbulut and King [20] any smooth submanifold
of R𝑁 can be approximated arbitrarily well by ℳ defined by a finite set of analytic
equations 𝑔(𝜏)=0. The same is true even when 𝑔(𝜏) are restricted to be polynomial.
This means that if one ignores the issues of complexity of the defining equations
𝑔, the differences between various categories of manifolds (smooth, analytic, or
algebraic) could be ignored. The above may seem to suggest that methods based on
polynomials may suffice. In practice, the polynomial relations needed may be of
very high degree. Hence, using neural networks to learn (approximate) relations
would be more suitable.

We further note that in practice we of course don’t have access to ℳ or even
ℳ𝐵, but only to a finite sample of data points in ℳ𝐵. The fact that finding

B. ANALYTIC MANIFOLD LEARNING G21

independent 𝑔𝑖’s vanishing at these points will terminate is a (simpler) special case
of the Theorem 3.1, which guarantees that even the more complicated idealized set
of relations defining ℳ𝐵 can be learned in finite time.

Observe that if 𝑔𝑘 is dependent on 𝑔1, . . . , 𝑔𝑘−1 then the set of points where 𝑔𝑘 is
zero contains the set of points where all the other 𝑔1, ..., 𝑔𝑘−1 are zero. The converse
is not true: while 𝑔𝑘 is different from the previous relations in a non-trivial way, it
might happen that adding 𝑔𝑘 as a relation does not restrict the learned manifold to
a smaller set. This arises because of the non-linearity in our setting6.

To ensure that each new relation decreases the data manifold dimension, we
could additionally prohibit 𝑔1, ..., 𝑔𝑘 from having any syzygy {𝑓1, ..., 𝑓𝑘} in which
𝑓𝑘 itself is not expressible in terms of 𝑔1, ..., 𝑔𝑘−1. This is encoded in the definition
below.

Definition 3.3 (Strong Independence). 𝑔𝑘 is strongly independent from 𝑔1, ..., 𝑔𝑘−1
if the equality −𝑓𝑘𝑔𝑘 = 𝑓1 · 𝑔1 + ... + 𝑓𝑘−1 · 𝑔𝑘−1 implies that 𝑓𝑘 is expressible as
𝑓𝑘 = ℎ1 · 𝑔1 + ...+ ℎ𝑘−1 · 𝑔𝑘−1.

In Theorem 3.2 we will show that imposing relations (𝑔1, . . . , 𝑔𝑘), such that
each new relation is strongly independent from the previous ones, restricts data
to a submanifold of codimension at least 𝑘. Since we don’t assume that ℳ has
to be smooth, the notion of dimension needs to be defined precisely. Thus, before
embarking on a formal statement and a proof of Theorem 3.2, we give such a
definition and discuss related notions needed in the proof.

B.1.2 Definitions of Dimension in Geometry and Algebra

For smooth manifolds, which are locally homeomorphic to some R𝑛, the dimension
is simply defined to be 𝑛, and the invariance of dimension theorem of Brouwer (see
[44, Theorem 2.26]) ensures that this is unambiguous (which, in light of Cantor’s
proof that all R𝑛s have the same number of points and Peano’s construction of
space-filling curves is not as obvious as it may seem a priori).

For arbitrary subsets 𝑋 of R𝑛 one can then analogously define dim𝑋 = 𝑑 if and
only if 𝑋 contains an open set homeomorphic to an open ball in 𝑅𝑛, but not an
open set homeomorphic to an open ball in R𝑒, for 𝑒 > 𝑑. We will call this geometric
dimension. This is the definition we will use when referring to dimension of ℳ.

Now suppose 𝑋 is a semi-analytic subset of R𝑛, meaning a subset locally defined
by a system of analytic equations and inequalities7. While 𝑋 is in general not smooth,
it admits a decomposition into smooth parts. Then, the definition of geometric
dimension dim𝑋 given above coincides with just taking the largest dimension of
any part (see, for example, [47, Proposition 2.10 and Remark 2.12]). This definition

6This is in contrast to linear algebra, where adding an independent linear equation necessarily
decreases the dimension of the subspace of solutions.

7The manifolds we are learning are actually much nicer: they are globally defined by analytic
equations. This means, by definition, that they are 𝐶-analytic sets (an abbreviation of Cartan real
analytic sets; see [45, Definition 1.5] and [46], particularly the Paragraphe 11).

G22 PAPER G. ANALYTIC MANIFOLD LEARNING

is local, meaning that if we define dimension of 𝑋 at a point 𝜏 ∈ 𝑋, denoted by
dim𝜏 𝑋, to be dimension of 𝑋 ∩ 𝑈 for all sufficiently small open neighborhoods
𝑈 of 𝜏 , then dim𝑋 = sup𝜏 (dim𝜏 𝑋). Of course one also has that 𝑌 ⊂ 𝑋 implies
dim𝑌 ≤ dim𝑋. See [48, II.1.1] for all this and more.

In order to relate this dimension to properties of the relations 𝑔𝑖 that define
ℳ, we need to connect dimℳ to dimensions of algebraic objects arising from 𝑔𝑖s.
These will be rings of various kinds. Thus, we need theory of dimensions of rings.

In commutative algebra the standard way to define a dimension of a ring is due
to Krull. It says that dimension of a ring 𝑅, denoted krdim𝑅, is the length 𝑑 of
the longest chain of prime ideals 𝐼𝑑 (𝐼𝑑−1 (... (𝐼0 in 𝑅. Note that this has some
resemblance to the fact that dimension of a vector space is equal to the length 𝑑
of the longest chain of subspaces 𝑉 = 𝑉𝑑) 𝑉𝑑−1) ...) 𝑉0. For an ideal 𝐼 ⊂ 𝑅
the Krull dimension is defined as krdim 𝐼 := krdim(𝑅/𝐼), where 𝑅/𝐼 is the quotient
ring. See [49, Chapter 8 and onwards].

B.1.3 Statement and Proof of Theorem 3.2

Theorem 3.2. Suppose 𝑔1, . . . , 𝑔𝑘 is a sequence of analytic functions on 𝐵, each
strongly independent of the previous ones. Denote by ℳ𝐵 = {𝜏 ∈ 𝐵|𝑔𝑗(𝜏) =
0 for all 𝑗} the part of the learned data manifold lying in the interior of 𝐵. Then
dimension of ℳ𝐵 is at most 𝑁 − 𝑘.

Proof outline: Strong independence (Definition 3.3) is directly related to the
definition of regular sequences. The proof ultimately aims to use Proposition 18.2
in [49], which ensures that ideals defined by regular sequences have low dimension.
To deduce that ℳ has low dimension, we need to relate the Krull dimension of the
ideal (𝑔1, ..., 𝑔𝑘) to the geometric dimension of ℳ. To do this we pass through a
number of intermediate stages. First we localize, and complexify. This allows us
to equate the dimension of the local complexified ideal (𝑔1, ..., 𝑔𝑘) to that of the
local complexified ideal of ℳ, which we do by using local analytic Nullstellensatz.
We also equate the common dimension of these two ideals to the (local complex)
geometric dimension of ℳ. Then, we relate this to local real dimension of ℳ.
Finally, we get a bound on the (global) dimension of ℳ itself.

Proof. The Definition 3.3 is equivalent to saying that 𝑔𝑘 is not a zero divisor in
the ring of functions modulo the ideal generated by (𝑔1, . . . , 𝑔𝑘−1). To see this, we
argue as follows. By definition, in any ring, an element 𝑔 is not a zero divisor if
𝑓𝑔 = 0 implies that 𝑓 = 0. Equality 𝑓𝑔 = 0 in the quotient ring means that, in the
ring of functions, we have: 𝑓𝑔 =

∑︀𝑘−1
𝑖=1 𝑓𝑖𝑔𝑖. Thus if 𝑔 is not a zero divisor in the

quotient ring, then 𝑓𝑔 =
∑︀𝑘−1
𝑖=1 𝑓𝑖𝑔𝑖 implies 𝑓 is zero in the quotient ring, that is to

say 𝑓 = ℎ1𝑔1 + ...+ ℎ𝑘−1𝑔𝑘−1, for some functions ℎ1, ..., ℎ𝑘−1.
Thus, a sequence (𝑔1, 𝑔2, . . . , 𝑔𝑘−1, 𝑔𝑘) where each 𝑔𝑖 is strongly independent

from the previous ones is a regular sequence, see [49, Sections 10.3, beginning of
Section 17].

B. ANALYTIC MANIFOLD LEARNING G23

Let 𝜏 be a point inℳ𝐵 . We will denote by 𝒪𝜏 the ring of germs8 of real-analytic
functions defined near 𝜏 , which is isomorphic to the ring of convergent power series
centered at 𝜏 . We will denote the complex version of this ring by 𝒪C

𝜏 .
The localization ring 𝐿𝜏 of the ring of analytic functions on 𝐵 at a point 𝜏

is defined as the set of equivalence classes of pairs of analytic functions (𝑓, ℎ) s.t.
ℎ(𝜏) ̸= 0, with the equivalence relation (𝑓1, ℎ1) ∼ (𝑓2, ℎ2) ⇐⇒ 𝑓1 · ℎ2 = 𝑓2 · ℎ1.
This is a formal way of introducing fractions 𝑓/ℎ. One also has the localization map
from the original ring to the localization ring. It sends 𝑓 to the equivalence class
represented by the pair (𝑓, 1), where 1 is the constant function. In our setting, if
one identifies the set of equivalence classes with germs, this map performs a ‘type
conversion’ from an analytic function 𝑓 to its germ at 𝜏 . In fact, the localized ring
𝐿𝜏 is a subring of the ring of germs 𝒪𝜏 . Indeed, a fraction 𝑓

ℎ defines an analytic
function on some open neighborhood of 𝜏 and the corresponding germ depends only
on the equivalence class, thus giving a map 𝐿𝜏 → 𝒪𝜏 . Clearly the germ is zero only
when 𝑓 is zero, so this map is an injection, and 𝐿𝜏 is a subring of 𝒪𝜏 .

However, 𝐿𝜏 is not all of 𝒪𝜏 , since not every function analytic at 𝜏 is a ratio
of two functions analytic on all of 𝐵. To remedy this, we consider completions of
both 𝐿𝜏 and 𝒪𝜏 , denoted 𝐿̂𝜏 and 𝒪̂𝜏 with respect to the maximal ideal of germs
vanishing at 𝜏 . A completion is perhaps most familiar as a procedure that gives real
numbers from rational ones, by means of equivalence classes of Cauchy sequences.
In the present situation, a sequence of germs is deemed Cauchy if the difference of
any two elements with sufficiently high indexes vanishes to arbitrarily high order
(this is known as Krull topology). The completion (of either 𝐿𝜏 or 𝒪𝜏) is then
isomorphic to the ring of formal power series centered at 𝜏 . Indeed, just taking
Cauchy sequences of germs of polynomial functions we get that the completion
contains all formal power series centered at 𝜏 ; and any Cauchy sequence (in either
𝐿𝜏 or 𝒪𝜏) is equivalent to one made up of polynomials, and converges to a formal
power series.

We now argue as follows. Since the localization procedure commutes with taking
quotients, and the localization map takes non-zero divisors to non-zero divisors ([50,
Section 15.4]), we conclude that for each 𝜏 the sequence of germs of 𝑔1, . . . , 𝑔𝑘 is
a regular sequence in 𝐿𝜏 . On the other hand, by [51, Lemma 10.67.5 and Lemma
10.96.2] (as cited in proof of [51, Lemma 23.8.1.]) a sequence is regular in a local
ring if and only if it is regular in the completion, so 𝑔1, ..., 𝑔𝑘 is regular in 𝐿̂𝜏 = 𝒪̂𝜏 ,
and so also in 𝒪𝜏 .

We claim that the corresponding complexified germs form a regular sequence in
𝒪C
𝜏 as well. Indeed, if 𝑓𝑗+1𝑔𝑗+1 =

∑︀𝑗
𝑙=1 𝑓𝑙𝑔𝑙 on neighborhood 𝑈 of 𝜏 in C𝑛, then

restricting to 𝑈R = 𝑈 ∩R𝑛 and taking real and imaginary parts we see (denoting by
𝑟𝑒(𝑓) and 𝑖𝑚(𝑓) the real and imaginary parts of any complex-valued function 𝑓) that
on 𝑈R we have 𝑟𝑒(𝑓𝑗+1)𝑔𝑗+1 =

∑︀𝑗
𝑙=1 𝑟𝑒(𝑓𝑙)𝑔𝑙 and 𝑖𝑚(𝑓𝑗+1)𝑔𝑗+1 =

∑︀𝑗
𝑙=1 𝑖𝑚(𝑓𝑙)𝑔𝑙.

8A germ of a function at a point 𝜏 is an equivalence class of functions defined near 𝜏 , where
𝑓1, 𝑓2 are considered equivalent if there exists an open neighbourhood of 𝜏 s.t. restrictions of 𝑓1
and 𝑓2 to that neighborhood coincide.

G24 PAPER G. ANALYTIC MANIFOLD LEARNING

Since 𝑔𝑙’s form a regular sequence we must have 𝑟𝑒(𝑓𝑗+1) =
∑︀𝑗
𝑙=1 𝑎𝑙𝑔𝑙, 𝑖𝑚(𝑓𝑗+1) =∑︀𝑗

𝑙=1 𝑏𝑙𝑔𝑙, so that denoting 𝑐𝑙 = 𝑎𝑙 + 𝑖𝑏𝑙 we have 𝑓𝑗+1 =
∑︀𝑗
𝑙=1 𝑐𝑙𝑔𝑙 on an open

neighborhood of 𝜏 in R𝑁 . Then the same is true on an open neighborhood of 𝜏 in
C𝑁 , and so 𝑔𝑗+1s form a regular sequence in 𝒪C

𝜏 , as wanted.
Thus the depth of the ideal 𝐼 = (𝑔1, . . . , 𝑔𝑘) in 𝒪C

𝜏 (defined as the maximal length
of a regular sequence of elements in 𝐼 [49, Section 17.2]) is at least 𝑘. Moreover,
depth of the radical of 𝐽 =

√
𝐼 is the same ([49, Corollary 17.8]), and by the local

complex-analytic Nullstellensatz (for example, [52, Theorem 7, Section III.A]) 𝐽
is the ideal of germs of complex-analytic functions vanishing on the zero-locus of
the 𝑔𝑗s near 𝜏 . By Proposition 18.2 in [49], codimension of 𝐽 is is at least 𝑘 (by
definition codimension it is the supremum of lengths of chains of primes descending
from 𝐽 , see [Chapter 9][49]), so dim 𝐽 + codim 𝐽 ≤ 𝑛, and so the (Krull) dimension
of 𝐽 is at most 𝑁 − 𝑘.

Local structure theorem for analytic sets implies that this is also the local
(complex) geometric dimension ofℳC (see [48, Proposition 1, IV.4.3] or [52, Section
IIIA]). Near 𝜏 the real vanishing locus ℳ is then of real dimension at most 𝑁 − 𝑘 (
[46, Proposition 5]). Thus ℳ is of local dimension of at most 𝑁 − 𝑘 at all points of
𝐵, and hence dimℳ𝐵 ≤ 𝑁 − 𝑘 as wanted.

B.1.4 Learning Transverse Relations

It is also possible to define an alternative approach that would provide similar
dimensionality reduction guarantees, while also ensuring that the learned relations
differ to first order. To this end we utilize a notion of independence based on
transversality as follows.

Lemma 3.1. Dependence as in Definition 3.2 implies ∇𝜏𝑔𝑘 and ∇𝜏𝑔1, ...,∇𝜏𝑔𝑘−1
are dependent.

Proof. Suppose 𝑔1, ..., 𝑔𝑘 are dependent in the sense of Definition 3.2, i.e. 𝑔𝑘 =
𝑓1 · 𝑔1+...+𝑓𝑘-1 · 𝑔𝑘-1. We take gradients w.r.t coordinates of R𝑁 (the ambient space)
and obtain:

∇𝜏𝑔𝑘 = ∇𝜏 [𝑓1 · 𝑔1] + ...+∇𝜏 [𝑓𝑘-1 · 𝑔𝑘-1] =
∑︀𝑘-1
𝑗=1

(︁
𝑓𝑗∇𝜏𝑔𝑗 + 𝑔𝑗∇𝜏𝑓𝑗

)︁
Restricting to points in ℳ and observing that 𝑔𝑗 = 0 on ℳ, we get ∇𝜏𝑔𝑘 =∑︀𝑘−1
𝑗=1 𝑓𝑗∇𝜏𝑔𝑗 .

Definition 3.4 (Transversality). If for all points 𝜏 (𝑖)∈ℳ the gradients of 𝑔1, .., 𝑔𝑘
at 𝜏 , i.e. ∇𝜏𝑔|𝜏(𝑖) , are linearly independent, we say that 𝑔𝑘 is transverse to the
previous relations: 𝑔𝑘 t 𝑔1, ..., 𝑔𝑘-1.

Using transversality, we deem 𝑔𝑘 to be independent from 𝑔1, ..., 𝑔𝑘−1 if the
gradients of 𝑔𝑘 do not lie in the span of gradients of 𝑔1, ..., 𝑔𝑘−1 anywhere on ℳ.
With this, 𝑔𝑘 that only differs from previous relations in higher-order terms would
still be deemed as ‘not new’. This stronger notion of independence would be useful
for settings where many relations could be discovered, because it is then better to

B. ANALYTIC MANIFOLD LEARNING G25

find relations whose first order behavior differs. This formulation is natural from the
perspective of differential geometry. Let 𝐻𝑔𝑗 be the hypersurface defined by 𝑔𝑗 : the
set of points where 𝑔𝑗 =0. Each hypersurface 𝐻𝑔1 , ...,𝐻𝑔𝑘

contains ℳ. If gradients
of 𝑔𝑘 are linearly independent from gradients of 𝑔1, ..., 𝑔𝑘−1, then the corresponding
hypersurfaces are said to intersect transversely along ℳ.

Lemma 3.2. For once differentiable (𝑔1, .., 𝑔𝑘) s.t. 𝐻𝑔𝑗
s are transverse along their

common intersection 𝐻, this intersection 𝐻 is a submanifold of R𝑁 of dimension
𝑁−𝑘.
Proof. Consider the map 𝐺 : R𝑁 →R𝑘 given by 𝐺= (𝑔1, . . . , 𝑔𝑘). The fact that
𝐻𝑔𝑗

s are transverse along 𝐻 means that the derivative 𝐷𝐺(𝑝) has rank 𝑘 for any
𝑝 ∈ 𝐻. This means that we can pick 𝑘 linearly independent columns of 𝐷𝐺(𝑝). We
renumber the coordinates of R𝑁 so that the ones corresponding to these columns
become the first 𝑘 and apply the Implicit Function Theorem, e.g. [53, Theorem
9.28. p.224]. We can conclude that a neighborhood of 𝑝 ∈ 𝐻 is diffeomorphic to
an open set in R𝑁−𝑘. Since this holds near each 𝑝 ∈ 𝐻, we conclude that 𝐻 is a
manifold of dimension 𝑁−𝑘, as wanted9.

The notion of independence defined via transversality is infinitesimal and sym-
metric w.r.t. permuting 𝑔𝑘s. This is useful in settings where many relations could
be discovered, because it is then better to find relations whose first order behav-
ior differs. In cases where guaranteed decrease in dimension is not needed, using
restricted syzygies could allow a flexible search for more expressive relations.

B.2 Related Work in Algebraic Ideal Learning
There exists prior work on learning relations carried out in the algebraic setting.
Some of this work aims to find simple polynomial relations that hold on the data
manifold. The criterion for simplicity is the polynomial degree. Most of these works
find either all relations or all relations of a given degree at the same time. This is
in contrast to our approach, which finds relations one by one, making it amenable
to finding as many relations as desired. Moreover, since we aim to use neural
networks for learning relations, the class of polynomial relations is not suitable
for our purposes. Hence, we consider a substantially different setting of learning
analytic relations. The notion of degree is not defined for analytic functions, making
work based on this notion not directly applicable to our setting. In contrast to the
algebraic case, our notion of simplicity is implicit in the expressivity of the networks.
However, some of the issues that arise in our setting have parallels in the algebraic
setting. Below we give a brief overview, pointing out these connections.

The problem of learning relations that hold approximately on a given dataset
was brought to the machine learning community by [28]. This paper introduced

9Our proof is a variation on Preimage Theorem [54, p. 21], and can also be deduced from it: 𝐻
is the preimage of 0 under the map 𝐺, and 0 is a regular value because 𝐻𝑔𝑗s are transverse along
𝐻, implying the lemma. Though note that the Preimage Theorem is itself a direct consequence of
the Implicit Function Theorem.

G26 PAPER G. ANALYTIC MANIFOLD LEARNING

the algorithm called Vanishing Component Analysis (VCA). The VCA algorithm
depends on a parameter 𝜀, and in the limit 𝜀 = 0 finds a set of generators for the
ideal of polynomials that vanish on a data set. The algorithm builds up this set of
generators degree by degree, starting with linear ones (if such exist). For general 𝜀 it
finds polynomials 𝑃𝑖 such that the (Euclidean) norm of the vector of values of 𝑃𝑖 is
at most 𝜀. The specifics of which of these polynomials it finds depend on the inner
workings of the algorithm, which is based on SVD. Being a linear algebra based
algorithm, it finds all of those polynomials of the specific degree at the same time.

The same problem of learning relations that hold approximately on a given
dataset has been considered before in mathematics literature. [29] introduced 𝑝-
approximate ideals of accuracy 𝜀, and [30] introduced 𝜀-approximate vanishing ideals;
these are two related but different objects aiming at capturing such approximate
relations. One of the differences between them is how they normalize the polynomials.
The issue at hand is that if one considers only values of a function 𝑃 on the data
set, then a sufficiently small rescaling of any 𝑃 will have values that are small, and
so will be deemed an approximate relation. Such a rescaled function will have small
values in a lot of places, not just near the data set itself, and so would be a ‘trivial’
or ‘spurious’ relation. To avoid this problem of ‘spurious approximate relations’ one
needs to normalize 𝑔 itself. [29] considers 𝐿𝑝 norms of the coefficient vector (hence
the 𝑝 in the name), while [30] considers only the 𝐿2 norm. In [34], it is observed
that the VCA algorithm from [28] does produce such ‘spurious’ small-coefficient
polynomials. The authors introduce a modification to VCA in which the values of 𝑓
on the data set are traded off against its norm, like in [29] and [30]. By default [34]
also uses the Euclidean norm of the vector of coefficients of 𝑃 , or some modification
(such as truncation) of it. In a follow up paper [35], the ‘norm’ is now given by (the
norms of) the gradient vectors of 𝑃 on the data points.

In an alternative formulation of approximate vanishing, which is geometric and
avoids the spurious relation problem: one looks for relations whose vanishing loci
pass near the data points (rather than the ones which take small values exactly at
the data). This approach is more challenging for the algebraic methods but has been
attempted in [31, 32]. We note that it is in fact related to gradient normalization,
and this relation underlies a part of our approach.

Observe that, while the setting of our work is very different, the need to decide
which relations ‘hold approximately’ on a data set in the presence of rescalings is
common to both settings. The norm of the coefficient vector is obviously unavailable
in our setting. On the other hand, we employ a transversality framework for
multiple relations, which places an emphasis on the on-manifold gradients as its core
principle. As a special case, this produces the ‘singleton-transversality’ approach:
comparing on-manifold values of 𝑔 to the on-manifold gradients of 𝑔 (similar to
one used in [35] except that in our case it is formulated as a component of NN
loss). More precisely, we use the ratio of the absolute value of 𝑔

(︀
i.e.|𝑔(𝜏)|

)︀
to the

norm of the gradient of 𝑔 at a data point 𝜏
(︀
i.e.‖∇𝜏(𝑔)|𝜏‖

)︀
: 𝑑𝑔(𝜏) = |𝑔(𝜏)|

‖∇𝜏(𝑔)|𝜏 ‖ . This
has the following interpretation: the norm of the gradient measures the maximal

B. ANALYTIC MANIFOLD LEARNING G27

rate of change of the linearization of 𝑔 at 𝜏 , meaning the maximal ‘slope’. So
𝑑𝑔(𝜏) is the distance from 𝜏 to the nearest point where this linearization vanishes
(𝑑𝑔(𝜏)= height/slope = distance). This serves as a proxy for the distance from 𝜏
to the vanishing locus of 𝑔 itself. In this way, our approach unifies the gradient
based and distance-to-vanishing-set based measures of approximate vanishing that
have appeared in the prior work cited above. In addition to gradient measures, we
also assess the vanishing of 𝑔 by comparing values on-manifold and off-manifold,
which is related to gradients in spirit (gradients tell you how much the value nearby
differs from the values at the point you start with), but requires only evaluations
of the relation itself. In our case we use this comparison to formulate a stopping
criterion for learning relations: stopping when on-manifold values are sufficiently
smaller than off-manifold ones.

Learning of algebraic manifolds has been considered in learning theory works,
e.g. [38, 39]. It would be interesting to investigate whether analytic manifolds that
we consider, which are less rigid than algebraic ones (but more rigid than smooth,
as illustrated by Theorem 3.1, for example), give another reasonable alternative.

On the applications side, [36] search for a low-dimensional manifold (variety) cut
out by polynomials of bounded degree, and show a proof of concept for data modeling
in a robotics setting. VCA algorithm has been applied to pattern recognition by
several works, e.g. [37, 55].

B.3 Further Details, Results, Illustrations for Evaluating AML

B.3.1 Further Algorithmic and Implementation Details

Here, we start by giving a further mathematical interpretation for our implementation
of AML with transversality, i.e. the more detailed motivation for Equation 2 in the
main paper. Then, we give a summary of implementation details for AML.

Motivation for our approach to computing transversality:
Recall that, to obtain 𝑔𝑘 that is transverse to 𝑔1, .., 𝑔𝑘−1 (Definition 3.4), we

compute gradients of each 𝑔1, ...𝑔𝑘−1 w.r.t the input. For example, for 𝑔1 we denote
this as 𝑣1 = ∇𝜏 (𝑔1)|𝜏 . Making 𝑔𝑘 transverse to 𝑔1, ...𝑔𝑘−1 means ensuring that 𝑣𝑘 is
linearly independent of 𝑣1, ..., 𝑣𝑘−1. Hence, we need to choose a (computationally
tractable) numerical measure of this linear independence. To that end, we design our
measure to maximize the angles between 𝑣𝑘 and all the previous 𝑣1, .., 𝑣𝑘−1. When
the number of relations is lower than the dimensionality of the ambient space (𝑘≤𝑁),
this is maximized by any vector that is perpendicular to all the previous ones. Such
a measure also encourages transversality of subsets of relations. Furthermore, we
want to discourage small angles, which can be achieved by a measure that involves
a product of pairwise measures.

Hence, we use the product of sines of pairwise angles as our measure of transver-
sality (with log for computational stability):

𝐿𝑡𝑟(𝑔𝑘) = 𝑑𝑔𝑘
(𝜏)− log ‖𝑣𝑘‖ − log

∏︀𝑘−1
𝑗=1 sin2(𝜃𝑣𝑗 ,𝑣𝑘

) (2)

G28 PAPER G. ANALYTIC MANIFOLD LEARNING

The last two terms give (up to weighting constants) the log of products of areas of
parallelograms formed by 𝑣𝑘 and each of the previous 𝑣1, ..., 𝑣𝑘−1. In principle, the
𝑘-dimensional volume of the parallelepiped spanned jointly by 𝑣1, ..., 𝑣𝑘 could serve
as a measure of transversality. It could be computed as a product of singular values
of the matrix with columns 𝑣1, ..., 𝑣𝑘, e.g. requiring SVD. However, it would not be
suitable for low-dimensional cases (𝑁<𝑘), since this volume would be 0.

AML implementation details:
We implemented AML in PyTorch [56]. To represent 𝑔𝑘 relations and restricted

syzygies f we used fully connected networks with 3 hidden layers. For our experiments
we used a setup that starts with small networks (e.g. 3 layers, 4 hidden units per
layer for 𝑔1) and doubles the number of hidden units for subsequent 𝑔𝑘s (e.g. 8
hidden units per layer for 𝑔2, 16 for 𝑔3, and so on, with a maximum of 256). For
syzygies we started with 32 nodes per layer. We also experimented with simply
having 32 units in all 𝑔𝑘s, but did not see a significant difference.

The first term in Equations 1,2,3 in the main paper dictates whether 𝑔𝑘 is close to
0 for on-manifold data. Since there are no further weighting terms in these equations,
we note that one needs to take care that the other terms do not overwhelm the
contribution from the 1st term. For this, we clip the loss from other components
if it is more than twice the magnitude of the 1st term. This simply means: the
overall loss encourages 𝑔𝑘 outputs to be small for on-manifold data, regardless of
what other parts dictate.

When learning with transversality: we usually used a fixed weight 𝛽=1𝑒3 for the
transversality terms instead of loss clipping (𝛽 ∈ [1𝑒2, 1𝑒4] worked as well). When
using the variant with restricted syzygies: we always included the second term from
Equation 3, i.e∇𝑔𝑘

[︀
|f(𝜏𝑜𝑓𝑓 , 𝑔1, ..., 𝑔𝑘)|

]︀
, even if f did not reach output close to zero

during its training. This implies that we implemented a soft (incremental) version,
rather than mandating syzygies to be always learned exactly.

In theory, 𝑔𝑘 being 0 for on-manifold data means getting an output of exactly
0. But in practice we need to choose a way to tell whether the output of 𝑔𝑘 or f is
essentially 0 for all practical purposes. So, as our stopping criterion, we look at the
difference between on-manifold and off-manifold outputs. When the mean absolute
value of off-manifold values is more than 5 times that of on-manifold values: we say
we are done learning 𝑔𝑘 (or f). We record the mean outputs for on- and off-manifold
data when we save the learned relations. With that, when AML relations are loaded
for subsequent use, we can check if the output of 𝑔𝑘 is ‘close to 0’: simply check
whether it is close to the expected on-manifold output magnitude. To make this
more concrete, below is an example of such expected values, printed when a learned
set of relations is loaded:

20:52:07 AML loaded 2 relations, 0 syzygies, on/off means:
20:52:07 [0.0047 0.0029]
20:52:07 [0.0518 0.025]

Top row shows mean expected on-manifold output for 𝑔1, 𝑔2. Bottom row shows
expected off-manifold output means. Note that off-manifold values are ≈10 times

B. ANALYTIC MANIFOLD LEARNING G29

higher than on-manifold ones. The relative magnitude is what matters, not whether
the values are ‘small’ in some absolute sense.

B.3.2 Distortion Measure
We use the following measure of distortion of a map 𝑓 : take pairs of inputs 𝜏1,
𝜏2 and the corresponding outputs 𝑓(𝜏1), 𝑓(𝜏2), then compute distortion coefficient
𝜌𝑑𝑖𝑠𝑡𝑜𝑟𝑡:

𝜌𝑑𝑖𝑠𝑡𝑜𝑟𝑡(𝑓)|𝜏1,𝜏2 =log
𝑑𝐿2

(︀
𝑓(𝜏1), 𝑓(𝜏2)

)︀
𝑑𝐿2(𝜏1, 𝜏2) .

Here, 𝑑𝐿2 is the Euclidean distance. A map that yields low variance of these
coefficients would better preserve the geometry of the domain (up to overall scale).
This measure is related to approaches in [21, 22] and has the same desirable
properties as 𝜎-distortion described in [21], but in log space. Note that, if ℎ is a
composition ℎ = 𝑓 ∘𝑔, then: 𝜌𝑑𝑖𝑠𝑡𝑜𝑟𝑡(ℎ)|𝜏1,𝜏2 = 𝜌𝑑𝑖𝑠𝑡𝑜𝑟𝑡(𝑔)|𝜏1,𝜏2 +𝜌𝑑𝑖𝑠𝑡𝑜𝑟𝑡(𝑓)|𝑔(𝜏1),𝑔(𝜏2).

This additivity of individual 𝜌s is appealing. It makes the variance measure defined
from them extendable to a distortion covariance measure for composable maps (with
inverse maps maximally anti-correlated). This measure is also related to Hilbert
distance on rays, which appears in the work of Birkhoff on Perron-Frobenius theory
[57]. We plan to further investigate this in future work.

B.3.3 Additional Illustrations of AML Results

Figure 1: Block-on-incline

Here, we provide additional illustrations of learning rela-
tions with AML in the block-on-incline domain (Figure 1).
On-manifold data is comprised of noisy position and ve-
locity observations from simulation of a block with mass
1kg sliding down an incline. Figure 2 illustrates learning
with transversality. Figure 3 shows the corresponding
results when using syzygies. True dynamics and learned
relations are visualized using phase space plots: arrows
indicate change in position & velocity after 1𝑠𝑒𝑐 of sliding (scaled to fit).

For each row in Figures 2 & 3 (on the next page) we show: on-manifold data
visualizing the actual dynamics; part of the space where the intersection 𝑔1 ∩ 𝑔2 ∩ 𝑔3
of the learned relations holds (i.e. all 𝑔1, ..., 𝑔𝑘 output values close to 0); individual
preimages of 0 for each relation separately. Top row in Figures 2 & 3 shows training
on a limited range when a block slides on a 45∘ incline. The intersection 𝑔1 ∩ 𝑔2 ∩ 𝑔3
generalizes far beyond the training data ranges. It misses only the part capturing
stopping at the end of the incline (blue arrows in top right of ‘on-manifold test
data’ plot), which is not possible to extrapolate, since training does not contain
examples of running into the end of the incline. Middle row shows results for a 35∘

incline with high friction coefficient 𝜇𝑘=0.8. Bottom row shows results when using
a high drag coefficient 𝜇𝑑= 2.0; in this case we train on a range of incline angles
𝜃 ∈ [𝜋20 ,

𝜋
2.5] and visualize results for a 10∘ incline.

G30 PAPER G. ANALYTIC MANIFOLD LEARNING

Figure 2: Illustrations of learning relations on the block-on-incline domain with transver-
sality. This is a more detailed version of Figure 6 from the main paper.

Figure 3: Illustrations of learning relations on the block-on-incline domain with syzygies.

B. ANALYTIC MANIFOLD LEARNING G31

Overall, both training with transversality and with syzygies gives us the ability
to generalize and capture non-trivial dynamics. We can see that intersections
𝑔1 ∩ 𝑔2 ∩ 𝑔3 look very similar to on-manifold phase space plots, which means AML
correctly captures information about the data manifold. As expected, zero-level sets
of individual images do not resemble on-manifold plots, since individual relations 𝑔𝑘
capture different parts/aspects of on-manifold data properties.

References

[1] L. Wiskott and T. J. Sejnowski, “Slow feature analysis: Unsupervised learning of
invariances,” Neural computation, vol. 14, no. 4, pp. 715–770, 2002.

[2] A. Anand, E. Racah, S. Ozair, Y. Bengio, M.-A. Côté, and R. D. Hjelm, “Unsupervised
state representation learning in ATARI,” in Advances in Neural Information Processing
Systems 32, 2019, pp. 8766–8779.

[3] T. Lesort, N. Díaz-Rodríguez, J.-F. Goudou, and D. Filliat, “State representation
learning for control: An overview,” Neural Networks, vol. 108, pp. 379–392, 2018.

[4] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, J. Pineau et al., “An
introduction to deep reinforcement learning,” Foundations and Trends® in Machine
Learning, vol. 11, no. 3-4, pp. 219–354, 2018.

[5] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”
The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[6] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[7] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft,
P. Abbeel, W. Burgard, M. Milford, and P. Corke, “The limits and potentials of deep
learning for robotics,” The International Journal of Robotics Research, vol. 37, no.
4-5, pp. 405–420, 2018.

[8] K. Greff, R. L. Kaufman, R. Kabra, N. Watters, C. Burgess, D. Zoran, L. Matthey,
M. Botvinick, and A. Lerchner, “Multi-object representation learning with iterative
variational inference,” in International Conference on Machine Learning, 2019.

[9] A. Heljakka, A. Solin, and J. Kannala, “Pioneer networks: Progressively growing
generative autoencoder,” in Asian Conference on Computer Vision. Springer, 2018,
pp. 22–38.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[11] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games,
robotics and machine learning,” http://pybullet.org, 2016–2019.

http://pybullet.org

G32 PAPER G. ANALYTIC MANIFOLD LEARNING

[12] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar, “The YCB
object and model set: Towards common benchmarks for manipulation research,” in
International Conference on Advanced Robotics (ICAR). IEEE, 2015, pp. 510–517.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[14] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and
A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained variational
framework.” in International Conference on Learning Representations, 2017.

[15] L. Yingzhen and S. Mandt, “Disentangled sequential autoencoder,” in International
Conference on Machine Learning, 2018, pp. 5670–5679.

[16] E. Crawford and J. Pineau, “Spatially invariant unsupervised object detection with
convolutional neural networks,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 3412–3420.

[17] S. M. A. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepesvari, k. kavukcuoglu, and
G. E. Hinton, “Attend, infer, repeat: Fast scene understanding with generative models,”
in Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds., 2016.

[18] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “DeepSDF:
Learning continuous signed distance functions for shape representation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 165–
174.

[19] V. R. Kompella, M. Luciw, and J. Schmidhuber, “Incremental slow feature analysis:
Adaptive and episodic learning from high-dimensional input streams,” arXiv preprint
arXiv:1112.2113, 2011.

[20] S. Akbulut and H. King, “On approximating submanifolds by algebraic sets and a
solution to the nash conjecture,” Inventiones mathematicae, vol. 107, no. 1, pp. 87–98,
1992.

[21] L. Chennuru Vankadara and U. von Luxburg, “Measures of distortion for machine
learning,” in Advances in Neural Information Processing Systems 31, 2018, pp. 4886–
4895.

[22] Y. Bartal, N. Fandina, and O. Neiman, “Dimensionality reduction: theoretical perspec-
tive on practical measures,” in Advances in Neural Information Processing Systems,
2019, pp. 10 576–10 588.

[23] OpenAI, Roboschool, 2017. [Online]. Available: https://github.com/openai/roboschool

[24] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Ab-
dolmaleki, J. Merel, A. Lefrancq et al., “Deepmind control suite,” arXiv preprint
arXiv:1801.00690, 2018.

[25] B. Ellenberger, Pybullet gymperium, 2018. [Online]. Available: https://github.com/
benelot/pybullet-gym

https://github.com/ openai/roboschool
https://github.com/benelot/pybullet-gym
https://github.com/benelot/pybullet-gym

B. ANALYTIC MANIFOLD LEARNING G33

[26] A. Raffin, A. Hill, R. Traoré, T. Lesort, N. Díaz-Rodríguez, and D. Filliat, “S-rl
toolbox: Environments, datasets and evaluation metrics for state representation
learning,” arXiv preprint arXiv:1809.09369, 2018.

[27] M. Jaggi, “Revisiting frank-wolfe: Projection-free sparse convex optimization.” in
Proceedings of the 30th international conference on machine learning, no. CONF, 2013,
pp. 427–435.

[28] R. Livni, D. Lehavi, S. Schein, H. Nachliely, S. Shalev-Shwartz, and A. Globerson,
“Vanishing component analysis,” in International Conference on Machine Learning,
2013, pp. 597–605.

[29] T. Sauer, “Approximate varieties, approximate ideals and dimension reduction,”
Numerical Algorithms, vol. 45, no. 1-4, pp. 295–313, 2007.

[30] D. Heldt, M. Kreuzer, S. Pokutta, and H. Poulisse, “Approximate computation of
zero-dimensional polynomial ideals,” Journal of Symbolic Computation, vol. 44, no. 11,
pp. 1566–1591, 2009.

[31] C. Fassino, “Almost vanishing polynomials for sets of limited precision points,” Journal
of symbolic computation, vol. 45, no. 1, pp. 19–37, 2010.

[32] C. Fassino and M.-L. Torrente, “Simple varieties for limited precision points,” Theo-
retical Computer Science, vol. 479, pp. 174–186, 2013.

[33] H. Kera and Y. Hasegawa, “Noise-tolerant algebraic method for reconstruction of
nonlinear dynamical systems,” Nonlinear Dynamics, vol. 85, no. 1, pp. 675–692, 2016.

[34] H. Kera and Y. Hasegawa, “Spurious vanishing problem in approximate vanishing
ideal,” IEEE Access, vol. 7, pp. 178 961–178 976, 2019.

[35] H. Kera and Y. Hasegawa, “Gradient boosts the approximate vanishing ideal,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

[36] R. Iraji and H. Chitsaz, “Principal variety analysis,” in Conference on Robot Learning,
2017, pp. 97–108.

[37] H. Yan, Z. Yan, G. Xiao, W. Wang, and W. Zuo, “Deep vanishing component analysis
network for pattern classification,” Neurocomputing, vol. 316, pp. 240–250, 2018.

[38] E. Hazan and T. Ma, “A non-generative framework and convex relaxations for
unsupervised learning,” in Advances in Neural Information Processing Systems, 2016,
pp. 3306–3314.

[39] A. Globerson, R. Livni, and S. Shalev-Shwartz, “Effective semisupervised learning on
manifolds,” in Conference on Learning Theory, 2017, pp. 978–1003.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[41] P. Shi, SPAIR in Pytorch, 2020. [Online]. Available: https://github.com/yonkshi/
SPAIR_pytorch

https://github.com/yonkshi/SPAIR_pytorch
https://github.com/yonkshi/SPAIR_pytorch

G34 PAPER G. ANALYTIC MANIFOLD LEARNING

[42] P. Shi, “Faster unsupervised object detection for symbolic representation,” Master’s
Thesis, KTH Royal Institute of Technology, 2020.

[43] J. Frisch, “Points de platitude d’un morphisme d’espaces analytiques complexes,”
Inventiones mathematicae, vol. 4, no. 2, pp. 118–138, 1967.

[44] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.

[45] F. Acquistapace, F. Broglia, and J. F. Fernando, “Some results on global real ana-
lytic geometry,” in Ordered Algebraic Structures and Related Topics: International
Conference on Ordered Algebraic Structures and Related Topics, October 12-16, 2015,
Centre International de Rencontres Mathématiques (CIRM), Luminy, France, vol. 697.
American Mathematical Soc., 2017, p. 1.

[46] H. Cartan, “Variétés analytiques réelles et variétés analytiques complexes,” Bulletin
de la Société Mathématique de France, vol. 85, pp. 77–99, 1957.

[47] E. Bierstone and P. D. Milman, “Semianalytic and subanalytic sets,” Publications
Mathématiques de l’IHÉS, vol. 67, pp. 5–42, 1988.

[48] S. Łojasiewicz, Introduction to complex analytic geometry. Springer, 1991.

[49] D. Eisenbud, Commutative Algebra: with a view toward algebraic geometry. Springer-
Verlag, 1995, vol. 150.

[50] D. S. Dummit and R. M. Foote, Abstract algebra. Wiley Hoboken, 2004, vol. 3.

[51] T. Stacks project authors, “The stacks project,” https://stacks.math.columbia.edu,
2020.

[52] R. C. Gunning and H. Rossi, Analytic functions of several complex variables. Prentice-
Hall, 1965.

[53] W. Rudin, Principles of mathematical analysis. McGraw-hill New York, 1976.

[54] V. Guillemin and A. Pollack, Differential topology. Prentiee-Hall, 1974.

[55] Y.-G. Zhao and Z. Song, “Hand posture recognition using approximate vanishing
ideal generators,” in 2014 IEEE International Conference on Image Processing (ICIP).
IEEE, 2014, pp. 1525–1529.

[56] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32, 2019, pp. 8024–8035.

[57] G. Birkhoff, “Extensions of Jentzsch’s theorem,” Transactions of the American Math-
ematical Society, vol. 85, no. 1, pp. 219–227, 1957.

https://stacks.math.columbia.edu

	Contents
	Main
	Introduction: Transfer-aware Methods
	Background
	Bayesian Optimization with Informed Kernels
	Variational Alignment for Sim-to-Real
	Analytic Manifold Learning
	Conclusions and Future Directions
	Bibliography

	Included Publications
	Bayesian Optimization in Variational Latent Spaces with Dynamic Compression
	Using Simulation to Improve Sample-Efficiency of Bayesian Optimization for Bipedal Robots
	Deep Kernels for Optimizing Locomotion Controllers
	Bayesian Optimization Using Domain Knowledge on the ATRIAS Biped
	Global Search with Bernoulli Alternation Kernel for Task-oriented Grasping Informed by Simulation
	Variational Auto-Regularized Alignment for Sim-to-Real Control
	Analytic Manifold Learning: Unifying and Evaluating Representations for Continuous Control

