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Toward Tractable Global Solutions to Maximum-Likelihood Estimation

Problems via Sparse Sum-of-Squares Relaxations∗

Diogo Rodrigues, Mohamed R. Abdalmoaty, and Håkan Hjalmarsson†

Abstract— In system identification, the maximum-likelihood
method is typically used for parameter estimation owing to
a number of optimal statistical properties. However, in many
cases, the likelihood function is nonconvex. The solutions are
usually obtained by local numerical optimization algorithms
that require good initialization and cannot guarantee global
optimality. This paper proposes a computationally tractable
method that computes the maximum-likelihood parameter es-
timates with posterior certification of global optimality via the
concept of sum-of-squares polynomials and sparse semidefinite
relaxations. It is shown that the method can be applied to cer-
tain classes of discrete-time linear models. This is achieved by
taking advantage of the rational structure of these models and
the sparsity in the maximum-likelihood parameter estimation
problem. The method is illustrated on a simulation model of a
resonant mechanical system where standard methods struggle.

I. INTRODUCTION

The maximum-likelihood (ML) method is widely used for

parameter estimation in several contexts, including system

identification, mainly owing to a number of optimal prop-

erties [1]–[4]. However, for many commonly used model

structures, its computational implementation is complicated

by the fact that the resulting optimization problems are

nonconvex and the conditions to prove uniqueness of the ML

estimator are difficult to verify in practice [5]. Since local

optimization algorithms are typically used, their performance

largely depends on the choice of the initial estimate and

convergence to the global solution cannot be guaranteed.

Several methods have been recently proposed in the

system identification literature to alleviate the initialization

problem. For example, [6], [7] considered a certain class of

linear state-space models and proposed algorithms based on

difference of convex programming problems, which may be

approximately solved using sequentially convex relaxation.

On the other hand, methods based on non-parametric ap-

proximations and iterative weighted least-square algorithms

have been recently proposed [8], [9]. These methods can

be applied to rational linear models, and local optima have

been avoided in extensive simulation studies. However, while

consistency and asymptotic efficiency can be guaranteed,

finite sample properties may differ from ML estimation.

An alternative possibility is to solve the ML parameter

estimation problem via appropriate global optimization tech-

niques. Several approaches for global optimization have been
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reported in the literature. A popular method is the branch-

and-bound approach, which divides the space of decision

variables into several subsets and seeks the global optimum

by estimating upper and lower bounds of the cost and con-

straints for each subset. Then, the subsets where an optimum

cannot be located are excluded from the search and the

remaining subsets are subdivided until the global optimum is

found [10]. However, being a tree-based method that relies

on discretization, it can be computationally expensive. In

the worst case, the computational effort grows exponentially

with the problem size [11]. Alternative methods based on

numerical linear algebra have been suggested [12], [13].

However, these methods have only been applied to very short

data sets with a small number of unknowns.

In this paper, another approach is used, namely, the

reformulation as a convex problem via the concept of sum-

of-squares polynomials, which has been extensively studied

in algebraic geometry [14], [15] and applied to a wide

range of problems, including applications in control the-

ory, experimental design, parameter initialization, and set-

membership estimation [16]–[23]. In particular, it is shown

in this paper that the rational structure of certain models,

such as the models of discrete-time linear systems, leads to

ML parameter estimation problems with sparsity patterns.

This fact can then be exploited for a tractable computation

of the global solutions via the concept of sum-of-squares

polynomials and sparse semidefinite relaxations.

II. PRELIMINARIES

A. ML parameter estimation for linear models

Suppose that we would like to estimate the parameters

of a discrete-time, linear time-invariant (LTI), single-input

single-output (SISO) model with output y(t) and input u(t).
The case of a strictly causal model of order nx is described

by the transfer function

Pd(z) =
∑

nx

k=1 bkz−k

∑
nx

k=0 akz−k
, a0 = 1. (1)

Assume that the output y(t) is corrupted by additive noise

e(t), such that it is given by the output-error (OE) model

y(t) = Pd(z)u(t)+ e(t). (2)

Then, the inputs and outputs satisfy the relation

nx

∑
k=0

ak (y(t − k)− e(t− k)) =
nx

∑
k=1

bku(t − k), t = 1, . . . ,N, (3)

with e(1−nx) = . . .= e(0) = u(1−nx) = . . .= u(0) = 0 and

a0 = 1, where N is the sample size.



The goal is to estimate the OE model (3) specified by

the parameters θθθ := (a1, . . . ,anx ,b1, . . . ,bnx) and initial con-

ditions y0 := (y(1− nx), . . . ,y(0)) based on the observations

yN := (y(1), . . . ,y(N)) and the knowledge of the inputs. In

this paper, e(t) denote the output errors that satisfy the

system of equations (3) for the true values of the parameters

θθθ and initial conditions y0, while ê(t|θθθ ,y0) denote the

prediction errors that satisfy the same system of equations

for arbitrary values of the parameters and initial conditions.

A common method for estimating the parameters θθθ and

initial conditions y0 from the observations yN is the ML

method [3], [24], [25]. The ML estimate is defined as the

global maximizer of the likelihood function or, equivalently,

the log-likelihood function

logL(θθθ ,y0,y
N) := log pYN (yN |θθθ ,y0), (4)

where pYN denotes the probability density function of the

random variable YN from which the sample yN is drawn.

The log-likelihood function depends on the probability

distribution of YN , which is in turn determined by the prob-

ability distributions of the random variables E1, . . . ,EN with

the realizations e(1), . . . ,e(N). If we assume that (i) these

random variables are independent and identically distributed

(i.i.d.), which implies that e(1), . . . ,e(N) can be seen as

realizations of the same random variable E , and (ii) E is

a normally distributed random variable with zero mean and

variance σ2, the log-likelihood function becomes

logL(θθθ ,y0,y
N) =−

N log(2πσ2)

2
−

N

∑
t=1

ê(t|θθθ ,y0)
2

2σ2
. (5)

The maximization of the log-likelihood function with

respect to θθθ and y0 is equivalent to the minimization of the

mean squared error (MSE) Ĵ(θθθ ,y0) := ∑N
t=1 ê(t|θθθ ,y0)

2/N.

Note that Ĵ(θθθ ,y0) coincides with the cost function of the

prediction error method (PEM) with a quadratic loss function

[3]. For the sake of simplicity, the prediction error ê(t|θθθ ,y0)
is denoted as ê(t) and the definition ê := (ê(1), . . . , ê(N)) is

used in the remainder of this paper.

Hence, the ML estimation of the parameters θθθ and initial

conditions y0 in the case of i.i.d. Gaussian noise is formu-

lated as the following constrained optimization problem:

min
θθθ ,y0,ê

N

∑
t=1

ê(t)2/N, (6a)

s.t. ê(t)− y(t)+
nx

∑
k=1

ak (ê(t − k)− y(t− k))+ bku(t − k) = 0,

t = 1, . . . ,N, (6b)

with ê(1−nx) = . . .= ê(0) = u(1−nx) = . . .= u(0)= 0. Note

that (i) the cost function of this problem can be expressed as

êTê/N, (ii) the first nx equality constraints can be expressed

linearly in the nx variables y0 as Ay0
(θθθ , ê)y0 = by0

(θθθ , ê), and

(iii) the N equality constraints can be expressed linearly in

the N variables ê as Aê(θθθ ,y0)ê = bê(θθθ ,y0).
This means that one can first solve the first nx equality

constraints in the constrained problem (6) for the nx decision

variables y0 = Ay0
(θθθ , ê)−1by0

(θθθ , ê) and then formulate an

equivalent constrained optimization problem as follows:

min
θθθ ,ê

N

∑
t=1

ê(t)2/N, (7a)

s.t. ê(t)− y(t)+
nx

∑
k=1

ak (ê(t − k)− y(t− k))+ bku(t − k) = 0,

t = nx + 1, . . . ,N, (7b)

Alternatively, one can first solve the N equality constraints

in the constrained problem (6) for the N decision variables

ê = Aê(θθθ ,y0)
−1bê(θθθ ,y0) and then formulate an equivalent

unconstrained optimization problem as follows:

min
θθθ ,y0

bê(θθθ ,y0)
TAê(θθθ ,y0)

−TAê(θθθ ,y0)
−1bê(θθθ ,y0)/N. (8)

Although Aê(θθθ ,y0) is a lower triangular matrix with

det(Aê(θθθ ,y0)) = 1, which simplifies its inversion, the cost

function of this unconstrained optimization problem is typi-

cally a polynomial of high degree (up to 2N) in θθθ .

Unfortunately, both (7) and (8) are nonconvex problems,

which means that local optimization algorithms are prone to

attain local optima and cannot guarantee global optimality

of the computed solutions. Hence, it would be useful to find

a method that is able to converge to the global optimum

and certify this convergence. The concept of sum-of-squares

polynomials that is used in this paper for global optimization

is introduced in the next subsection.

B. Sum-of-squares polynomials for global optimization

This subsection recalls the concept of sum-of-squares

polynomials and shows its application to global optimization.

A polynomial p(x) of degree 2d in the n variables x :=
(x1, . . . ,xn) is a sum-of-squares (SOS) polynomial if it can

be written as a sum of squares of polynomials of degree

up to d in x. The concept of SOS polynomials is useful

for optimization because of the following result: p(x) is

an SOS polynomial if and only if there exists a positive

semidefinite matrix Q such that p(x) = vd(x)
TQvd(x) =

tr
(

vd(x)vd(x)
TQ

)

, where vd(x) is the s(n,d)-dimensional

vector of monomials of degree up to d in the n variables

x, with s(n,d) :=
(

n+d
n

)

[15]. Hence, constraining p(x) to

the set of SOS polynomials amounts to satisfying the linear

matrix inequality (LMI) Q� 0s(n,d)×s(n,d), which can be done

via a convex semidefinite program (SDP) [26].

An SOS polynomial p(x) is obviously a nonnegative

polynomial, that is, p(x)≥ 0 ∀x. However, it is not generally

true that a nonnegative polynomial is an SOS polynomial

[27]. On the other hand, if f (x) is a strictly positive poly-

nomial on a compact basic semi-algebraic set K specified

by some polynomials g j(x), that is, if f (x) > 0 ∀x ∈ K =
{

x : g j(x)≥ 0,∀ j = 1, . . . ,m
}

, then f (x) can be represented

as a combination of SOS polynomials provided that K

satisfies some technical assumptions. This important result

is known as Putinar’s Positivstellensatz and is summarized

in the following theorem [28].



Theorem 1: Consider the basic semi-algebraic set K :=
{

x : g j(x)≥ 0,∀ j = 1, . . . ,m
}

and assume there exists some

q ∈ {1, . . . ,m} such that the set
{

x : gq(x)≥ 0
}

is compact.

If f (x) is strictly positive ∀x ∈K, then

f (x) = p0(x)+
m

∑
j=1

g j(x)p j(x) (9)

for some SOS polynomials p0(x) and p1(x), . . . , pm(x). �
This representation is of interest because it can be used to

relax the difficult problem of verification of positivity of f (x)
∀x∈K as a hierarchy of LMI feasibility problems of increas-

ing relaxation order d [29]. To introduce the relaxations, note

that the monomials xααα := x
α1
1 . . .xαn

n of degree up to 2d in the

variables x involve powers ααα := (α1, . . . ,αn) in the set de-

fined as Xd :=
{

(α1, . . . ,αn) ∈N
n
0 : 0 ≤ α1 + . . .+αn ≤ 2d

}

.

Then, we denote the coefficients of the polynomials f (x) of

degree 2v0 or 2v0 − 1 and g j(x) of degree 2v j or 2v j − 1

as fααα and g j,ααα , respectively, such that f (x) = ∑ααα∈Xd
fααα xααα

and g j(x) = ∑ααα∈Xv j
g j,ααα xααα , for j = 1, . . . ,m, where the

relaxation order d ≥ v := max j=0,1,...,m v j. Furthermore, the

matrices Rv,ααα are defined such that ∑ααα∈Xd−v
Rv,ααα xααα =

vd−v(x)vd−v(x)
T, for v = 0, . . . ,d.

If f (x) is strictly positive ∀x ∈ K, then there exists a

positive integer d such that ∀ααα ∈ Xd

fααα = tr(R0,ααα Q0)+
m

∑
j=1

∑
βββ∈Xd−v j

ααα−βββ∈Xv j

g j,ααα−βββ tr
(

Rv j ,βββ Q j

)

(10a)

and

Q0 � 0s(n,d)×s(n,d), (10b)

Q j � 0s(n,d−v j)×s(n,d−v j), j = 1, . . . ,m. (10c)

This result is very useful for global optimization. To see

this, consider the problem of computing J∗, an accurate

approximation of the global minimum of J(x) subject to

the constraints g j(x) ≥ 0, for j = 1, . . . ,m. Equivalently,

this problem can be formulated as that of computing the

maximum value τ such that f (x) = J(x)− τ is strictly

positive ∀x∈K=
{

x : g j(x)≥ 0,∀ j = 1, . . . ,m
}

. Using (10),

such a problem can be formulated as the SDP

min
τ,Q0,Q1,...,Qm

−τ, s.t. (10). (11)

Although there exist theoretical bounds for the relaxation

order d that ensures the representation of a strictly positive

polynomial as a combination of SOS polynomials, these

bounds are unfortunately not practically useful [30]. Hence,

the SDP (11) contains one LMI of size
(

n+d
n

)

with
(

n+2d
n

)

decision variables, where d may be very large in theory. On

the other hand, in many practical situations, the relaxation

order d that provides a representation in terms of SOS

polynomials is not much larger than v. Furthermore, if this

representation exists for some order d, a certificate can be

obtained upon convergence of the SDP. The result about the

representation for the order d can be stated as follows [31]:

Theorem 2: Denote the optimal values of the dual vari-

ables for the constraints (10a) as µ∗
ααα ∀ααα ∈ Xd . If ∃G :

G = rank
(

∑ααα∈Xd
R0,ααα µ∗

ααα

)

= rank
(

∑ααα∈Xd−1
R1,ααα µ∗

ααα

)

, then

f (x) = J(x)− J∗ can be represented as in (9) with p0(x) of

degree 2d and p j(x) of degree 2(d − v j), for j = 1, . . . ,m.

In addition, the global minimum J∗ = τ∗ and G global

minimizers x∗ can be computed using the fact that vd(x
∗)

lie both in the null space of Q∗
0 and in the row space of L∗

0,

where L0 is the dual variable of the LMI (10b). �

Unfortunately, for many optimization problems, the num-

ber of variables n or the maximum degree v of the polyno-

mials in the problem may be rather large. As a result, even

in the best case d = v, the largest LMI of size
(

n+d
n

)

with
(

n+2d
n

)

decision variables may be too large for computational

implementation. For a problem with n = 261 and d = 2

(see an example in Section V), the LMI would be of size

34453 with 200860990 decision variables. Fortunately, a

sparse version of the representation in (10) can be obtained

if the original problem satisfies certain conditions. More

specifically, this sparse representation takes advantage of the

fact that each polynomial g j(x) may involve only a few

variables, and f (x) may be written as a sum of polyno-

mials that also involve only a few variables [32]. For this,

we define the p index subsets Ik with the corresponding

nk := |Ik| variables x(Ik) = {xi : i ∈ Ik}, for k = 1, . . . , p, such

that ∪p
k=1Ik = {1, . . . ,n}. This important result about sparse

representation is summarized in the following theorem [33].

Theorem 3: Consider the basic semi-algebraic set K :=
{

x : g j(x)≥ 0,∀ j = 1, . . . ,m
}

and assume that the index

subsets I1, . . . , Ip satisfy the following conditions:

1) The polynomial f (x) can be written as a sum of p poly-

nomials that involve only the variables x(I1), . . . ,x(Ip),
that is, f (x) = ∑

p
k=1 fk(x(Ik)).

2) The running intersection property holds, that is, for all

k = 1, . . . , p− 1, Ik+1 ∩
(

∪k
j=1I j

)

⊆ Is for some s ≤ k.

3) For all j = 1, . . . ,m, there exists some K j ∈ {1, . . . , p}
that indicates that g j(x) involves only the variables

x(IK j
), that is, g j(x) = gK j , j(x(IK j

)).
4) For all k = 1, . . . , p, there exists some qk ∈ {1, . . . ,m}

such that the set
{

x(Ik) : gk,qk
(x(Ik))≥ 0

}

is compact.

If f (x) is strictly positive ∀x ∈K, then

f (x) =
p

∑
k=1

p0,k(x(Ik))+
m

∑
j=1

g j(x)p j(x(IK j
)) (12)

for some SOS polynomials p0,1(x(I1)), . . . , p0,p(x(Ip)) and

p1(x(IK1
)), . . . , pm(x(IKm)). �

This representation may be used, in the same spirit as (9),

to relax the verification of positivity of f (x) ∀x∈K as a hier-

archy of sparse LMI feasibility problems [33]. To introduce

the sparse relaxations, note that the monomials xααα of degree

up to 2d in the variables x(Ik) involve powers ααα in the set de-

fined as X̄d,k := Xd ∩
{

(α1, . . . ,αn) ∈N
n
0 : αi 6= 0 ⇒ i ∈ Ik

}

,

for k = 1, . . . , p. Then, we define the set X̄d := ∪p
k=1X̄d,k

and use again fααα and g j,ααα to denote the coefficients of

the polynomials f (x) and g j(x), with Xd in their pre-

vious definition being replaced by X̄d . Furthermore, the



matrices Rv,k,ααα are defined such that ∑ααα∈X̄d−v
Rv,k,ααα xααα =

vd−v(x(Ik))vd−v(x(Ik))
T, for v = 0, . . . ,d and k = 1, . . . , p.

If f (x) is strictly positive ∀x ∈ K, then there exists a

positive integer d such that ∀ααα ∈ X̄d

fααα =
p

∑
k=1

tr
(

R0,k,ααα Q0,k

)

+
m

∑
j=1

∑
βββ∈X̄d−v j

ααα−βββ∈X̄v j

g j,ααα−βββ tr
(

Rv j ,K j ,βββ Q j

)

(13a)

and

Q0,k � 0s(nk,d)×s(nk,d), k = 1, . . . , p, (13b)

Q j � 0s(nKj
,d−v j)×s(nKj

,d−v j), j = 1, . . . ,m. (13c)

Hence, when the conditions of Theorem 3 are satisfied,

(11) is equivalent to

min
τ,Q0,1,...,Q0,p,Q1,...,Qm

−τ, s.t. (13). (14)

To appreciate the advantage of the sparse representation

(13) over (10), suppose that nk is the same for all k = 1, . . . , p,

with nk = ⌊ n
p
⌋+ n mod p. Then, the SDP (14) contains p

LMIs of size
(

nk+d
nk

)

with
(

nk+2d
nk

)

decision variables instead

of one LMI of size
(

n+d
n

)

with
(

n+2d
n

)

decision variables

in (11). For the aforementioned problem with n = 261 and

d = 2, if p = 252 (which is also the case in Section V), then

the SDP contains 252 LMIs of size 66 with 1001 decision

variables instead of one LMI of size 34453 with 200860990

decision variables. Hence, if nk and the maximum degree v

of the polynomials in the problem are relatively small, the

SDP can be solved efficiently since the relaxation order d that

provides a sparse representation in terms of SOS polynomials

is usually not much larger than v. If this representation

exists for some order d, a certificate can again be obtained

upon convergence of the SDP. The result about the sparse

representation for the order d can be stated as follows [31]:

Theorem 4: Denote the optimal values of the dual vari-

ables for the constraints (13a) as µ∗
ααα ∀ααα ∈ X̄d . If ∃G : G =

rank
(

∑ααα∈X̄d
R0,k,ααα µ∗

ααα

)

= rank
(

∑ααα∈X̄d−1
R1,k,ααα µ∗

ααα

)

∀k =

1, . . . , p, then f (x) = J(x)− J∗ can be represented as in

(12) with p0,k(x(Ik)) of degree 2d, for k = 1, . . . , p, and

p j(x(IK j
)) of degree 2(d− v j), for j = 1, . . . ,m. In addition,

the global minimum J∗ = τ∗ and G global minimizers x∗

can be computed using the fact that vd(x(Ik)
∗) lie both in

the null space of Q∗
0,k and in the row space of L∗

0,k, where

L0,k is the dual variable of the LMI (13b), ∀k = 1, . . . , p. �

III. GLOBAL SOLUTIONS TO ML ESTIMATION

PROBLEMS FOR OE LINEAR MODELS

This section shows how to apply the concept of SOS poly-

nomials presented in Section II-B to obtain global solutions

to the ML estimation problems described in Section II-A.

In Section II-A, it has been shown that the ML parameter

estimation problem for the model in (3) can be formulated

as the constrained problem (7) or the unconstrained problem

(8). In terms of the notation in Section II-B, the constrained

problem involves n = N + 2nx decision variables, and each

polynomial in the problem, both in the cost function and

the constraints, is at most of degree 2, which means that

v = 1, whereas the unconstrained problem involves n = 3nx

decision variables, and the only polynomial in the problem,

the cost function, is of degree 2N, which means that v = N.

Since each relaxation order d in the hierarchy of nonsparse

semidefinite relaxations requires solving one LMI of size
(

n+d
n

)

, with d ≥ v, both problem formulations become in-

tractable for a large sample size N.

However, one can note that, in the constrained problem

(7), each equality constraint corresponds to a quadratic

polynomial that involves only the 2nx variables θθθ and nx+1

variables from ê, and the cost function can be written as

a sum of quadratic polynomials that involve only a few

variables from ê. This allows the use of a hierarchy of

sparse semidefinite relaxations if each equality constraint is

transformed into a pair of inequality constraints to obtain a

basic semi-algebraic set.

Hence, we introduce the following definitions:

f (x) := J(x)− τ, (15a)

g j(x) :=

{

−h j+nx(x), j = 1, . . . ,N − nx,

h j−N+2nx(x), j = N − nx + 1, . . . ,2N − 2nx,
(15b)

with x := (θθθ , ê) = (a1, . . . ,anx ,b1, . . . ,bnx , ê(1), . . . , ê(N)) and

J(x) =
N

∑
t=1

ê(t)2/N, (15c)

ht(x) = ê(t)− y(t)+
nx

∑
k=1

ak (ê(t − k)− y(t− k))+ bku(t − k),

t = nx + 1, . . . ,N. (15d)

Then, the problem (7) is equivalent to computing the

maximum τ such that f (x) is strictly positive ∀x ∈ K =
{

x : g j(x)≥ 0,∀ j = 1, . . . ,2N − 2nx

}

. The previous defini-

tions seem to suggest the choice of nk = 3nx + 1 variables

x(Ik) = (a1, . . . ,anx ,b1, . . . ,bnx , ê(k), . . . , ê(k+nx)) and corre-

sponding index subsets Ik = {1, . . . ,2nx,k+ 2nx, . . . ,k+ 3nx},

for k = 1, . . . , p, with p := N − nx. We now show that the

conditions in Theorem 3 are satisfied for these index subsets.

Condition 1 is satisfied by using f1(x(I1)) = ê(1)2/N +
. . .+ ê(nx + 1)2/N − τ and fk(x(Ik)) = ê(nx + k)2/N for k =
2, . . . , p. The running intersection property in Condition 2 is

also satisfied since, for all k = 1, . . . , p−1, Ik+1∩
(

∪k
j=1I j

)

=

{1, . . . ,2nx,k+ 1+ 2nx, . . . ,k+ 3nx} ⊆ Ik. Condition 3 is sat-

isfied by construction since, for all j = 1, . . . ,N − nx, g j(x)
involves only the variables x(IK j

), with K j = j, and, for all

j =N−nx+1, . . . ,2N−2nx, g j(x) involves only the variables

x(IK j
), with K j = j−N + nx.

Unfortunately, Condition 4 is not satisfied initially, but it is

possible to add additional constraints to ensure that it is satis-

fied. Hence, we redefine K=
{

x : g j(x)≥ 0,∀ j = 1, . . . ,m
}

,

with m := 3N − 3nx, by adding the quadratic polynomials

g j(x) :=−h̄ j−2N+3nx(x), j = 2N − 2nx + 1, . . . ,m, (15e)



with

h̄t(x) =−r2 + ê(t)2 +
nx

∑
k=1

(

a2
k + b2

k + ê(t − k)2
)

,

t = nx + 1, . . . ,N, (15f)

where r is some finite constant. It is important to observe

that, if r is chosen large enough to ensure that the minimizers

x∗ of problem (7) are such that ||x(Ik)
∗|| ≤ r, for k = 1, . . . , p,

then the new constraints are redundant because adding them

does not change the minimizers. Moreover, the polynomials

(15f) are chosen to be quadratic since the polynomials with

compact superlevel sets are at least of degree 2 and the

polynomials that specify the other constraints are also of

degree 2v j = 2. Then, Condition 3 is still satisfied with the

new constraints since, for all j = 2N−2nx+1, . . . ,3N−3nx,

g j(x) involves only the variables x(IK j
), with K j = j−2N+

2nx. In addition, now Condition 4 is also satisfied since, for

all k= 1, . . . , p, the superlevel set
{

x(Ik) : gk,qk
(x(Ik))≥ 0

}

=
{x(Ik) : ||x(Ik)|| ≤ r} is compact for qk = k+ 2N− 2nx.

Some comments about the boundedness of ||x(Ik)
∗||, for

k = 1, . . . , p, are necessary at this point. Since x(Ik) =
(a1, . . . ,anx ,b1, . . . ,bnx , ê(k), . . . , ê(k+ nx)), this boundedness

implies that the parameters θθθ and nx + 1 prediction errors

from ê are bounded. At least in the case of bounded-input

bounded-output (BIBO) stable systems, it seems reasonable

to assume that the parameters θθθ are bounded. Regarding

the prediction errors, they are expected to have the same

magnitude as the output errors, which are assumed to be

realizations of a normally distributed random variable with

zero mean and variance σ2 in this paper. Although in theory

the support of this random variable is unbounded, in practice

it can be bounded with a very high confidence level. To be

more precise, one can observe that (15f) includes the sum

of squares of nx + 1 predicted errors ŵ(t)2 := ∑
nx

k=0 ê(t − k)2

that corresponds to the sum of squares of nx+1 output errors

w(t)2 := ∑
nx

k=0 e(t − k)2, for t = nx + 1, . . . ,N. Then,
w(t)2

σ 2 is

the realization of a random variable W that follows a chi-

squared distribution with nx+1 degrees of freedom, and the

probability that w(t)2 ≤ r2
w is FW ( r2

w

σ 2 ), where FW denotes

the cumulative density function of the random variable W .

Hence, we propose the bound r2 = r2
||θθθ ||+r2

ŵ for (15f), where

r2
||θθθ || is an upper bound on ||θθθ ||2 and r2

ŵ is an upper bound

on ŵ(t)2 that is chosen according to the desired robustness.

Since all the conditions in Theorem 3 are satisfied, the

problem that consists in computing the global minimum of

J(x) subject to g j(x)≥ 0, for j = 1, . . . ,m, can be formulated

as the SDP (14) as described in Section II-B. A certificate

of the representation in terms of SOS polynomials for some

order d can be obtained upon convergence of the SDP

as shown in Theorem 4, which is a certificate of global

optimality of the solution x∗ := (θθθ∗, ê∗) and the MSE τ∗.

Suppose that a global optimum is computed and cer-

tified for the relaxation order d = 2 (in fact, this is al-

ways the case in the example of Section V). This implies

that the SDP (14) has been solved for d = 2, which is

an SDP with p
(

nk+2d
nk

)

− (p− 1)
(|Ik∩Ik+1|+2d

|Ik∩Ik+1|

)

= (4N − nx +

1) (3nx+2)(3nx+3)(3nx+4)
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equality constraints, p = N −nx LMIs

of size
(

nk+d
nk

)

= (3nx+2)(3nx+3)
2 , and m = 3N − 3nx LMIs of

size
(

nk+d−v j
nk

)

= 3nx+2. Note that, thanks to the sparse rep-

resentation, the input size of this SDP is linear in the sample

size N, which would not be possible with the nonsparse

representation. Since the complexity of SDPs is polynomial

in their input size, it means that it has been possible to

compute and certify a global solution x∗ in polynomial time.

IV. EXTENSION TO OTHER MODELS

Besides the discrete-time OE LTI SISO models that were

considered previously, the idea of using the concept of

SOS polynomials and sparse semidefinite relaxations may

be beneficial for ML parameter estimation of other model

structures. For example, the extension of this idea to discrete-

time OE LTI multiple-input single-output (MISO) models

seems to be straightforward, although its analysis is not

detailed here. This idea could also be extended to models

that are nonlinear but share the same rational structure of

linear models described by (1). For example, this class of

models is used to represent the Monod-type kinetics that is

frequently used in models of biological systems to account

for activating or inhibitory effects of certain chemical species

[34]. However, this extension is not detailed here.

V. SIMULATION EXAMPLE

In this section, we consider a 2-mass-spring-damper sys-

tem with a single unconstrained rigid-body degree of free-

dom adapted from [35]. The implementation was performed

on MATLAB R2018a running on an Intel Core i7 1.9 GHz

processor. MOSEK 8.1 was used as SDP solver.

In this example, the input is the actuation force on the

first mass and the output is the velocity of the first mass.

The continuous-time transfer function of the system is

Pc(s) = c
m2s2 + ds+ k

m1m2s3 +(m1 +m2)ds2 +(m1 +m2)ks
, (16)

with [c,k,d,m1,m2] =
[

56,1.8× 104,2.0,0.1,1.9
]

. By using

zero-order hold for discretization and a sampling period h =
0.004 s, this continuous-time transfer function is converted

into the following discrete-time transfer function:

Pd(z) =
1.2673z−1− 2.2742z−2+ 1.2582z−3

1− 0.6759z−1+ 0.5951z−2− 0.9192z−3
. (17)

For system identification, a pseudo-random binary signal

(PRBS) of size N in a range between -1 and 1 is applied

as the input of this system of order nx = 3. The output is

corrupted by additive i.i.d. Gaussian noise with the standard

deviation σ = 0.1. Then, the input and output data are used

to formulate the SDP (14), where f (x) and g j(x), for j =
1, . . . ,m, are given in (15). For each N ∈ {31,63,127,255},

100 repetitions of this procedure are performed, with differ-

ent realizations of the noise for each repetition.

In all the repetitions, it is possible to extract the unique

solution θθθ ∗ = (a∗1,a
∗
2,a

∗
3,b

∗
1,b

∗
2,b

∗
3) from the solution to the

SDP for the relaxation order d = 2 and certify the global

optimality of the solution θθθ ∗ that corresponds to the MSE τ∗.



TABLE I

EXECUTION TIME IN SECONDS, MSE τ∗ , AND ESTIMATES a∗1 , a∗2 , a∗3 , b∗1 , b∗2 , b∗3 (MEAN ± STANDARD DEVIATION FOR 100 REPETITIONS) OF GLOBAL

ML PARAMETER ESTIMATION FOR DIFFERENT SAMPLE SIZES N .

N Time (s) τ∗ a∗1 a∗2 a∗3 b∗1 b∗2 b∗3

31 19.2±2.5 0.72±0.22×10−2 −0.6753±0.0073 0.5950±0.0030 −0.9186±0.0067 1.2667±0.0193 −2.2722±0.0184 1.2586±0.0221

63 40.3±4.3 0.87±0.18×10−2 −0.6759±0.0010 0.5953±0.0008 −0.9194±0.0009 1.2657±0.0106 −2.2719±0.0135 1.2594±0.0109

127 82.7±8.5 0.94±0.13×10−2 −0.6759±0.0005 0.5951±0.0005 −0.9192±0.0004 1.2669±0.0059 −2.2734±0.0064 1.2582±0.0062

255 194.4±24.0 0.97±0.09×10−2 −0.6759±0.0003 0.5951±0.0003 −0.9192±0.0002 1.2682±0.0034 −2.2744±0.0045 1.2580±0.0042
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Fig. 1. Bode diagram for one of the repetitions with the sample size
N = 255. The blue line corresponds to the true model, the yellow line
corresponds to the model estimated via the proposed approach, and the
red line corresponds to the model estimated via oe.

Note that a different solution with a larger MSE is provided

in some cases by the oe function from the MATLAB

System Identification Toolbox when it is initialized with the

parameters that result from the use of subspace identification

via the n4sid function from the same toolbox [36]. More

precisely, this occurs in the case of 19 repetitions for N = 31,

5 repetitions for N = 63, 3 repetitions for N = 127, and 2

repetitions for N = 255. This indicates that oe is reporting

local minima in these cases. Fig. 1 compares the Bode

diagram for the true model and the models estimated via

the proposed approach and via oe for one of these cases.

For example, the model estimated via the proposed approach

recovers the antiresonance peak, while the model estimated

via oe is not able to do so. Hence, the advantage of the

proposed approach is that it avoids local minima and certifies

the global optimality of the computed solution.

Table I reports the execution time of the whole procedure

for global optimization, the MSE, and the parameter esti-

mates for the different sample sizes N. The duration of the

pre-processing steps (formulation of the SDP) and the post-

processing steps (extraction and certification of the global

solution) is much smaller than the execution time of the

SDP solver. It is possible to observe that the execution time

seems to be approximately a linear function of N, the MSE

converges to its expected value of σ2 = 10−2 for large N,

and the parameter estimates converge to the true parameters.

VI. CONCLUSIONS

This paper has shown that the concept of SOS polynomials

and the resulting hierarchy of sparse semidefinite relaxations

can be used for tractable computation of ML parameter

estimates with posterior certification of global optimality.

This computation and certification has been shown in detail

for the case of discrete-time OE LTI SISO models, but it

has also been noted that the methodology can be extended

to a much broader family of models described by rational

structures, in particular some nonlinear models. The use of

sparse semidefinite relaxations for ML parameter estimation

takes advantage of the sparse structure of the optimization

problem that results from the ML method for certain rational

model structures. These features have been illustrated by a

simulation example of a third-order LTI SISO system.

Future work may focus on improving the efficiency of

the method, for example by finding ways to further increase

the sparsity of the estimation problem, and extending this

method to the ML parameter estimation of other linear and

nonlinear models. For example, it would be interesting to

investigate the potential of the method for stochastic Wiener-

Hammerstein models [37] and nonlinear model structures of

biological systems described by Monod terms [34].
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