
DEGREE PROJECT IN ELECTRICAL ENGINEERING,
SECOND CYCLE, 30 CREDITS
STOCKHOLM, SWEDEN 2020

Design and
Development of a
CubeSat Hardware
Architecture with
COTS MPSoC using
Radiation Mitigation
Techniques

KTH Thesis Report

SIDDARTH VASUDEVAN

KTH ROYAL INSTITUTE OF TECHNOLOGY
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Authors
Siddarth Vasudevan <sidvas@kth.se>
Information and Communication Technology
KTH Royal Institute of Technology

Place for Project
Thales Alenia Space GmBH
Ditzingen, Germany

Examiner
Johnny Öberg
Stockholm, Sweden
KTH Royal Institute of Technology

Supervisor

Kalle Ngo

Stockholm, Sweden

KTH Royal Institute of Technology

ii

Abstract

CubeSat missions needs components that are tolerant against the radiation in

space. The hardware components must be reliable, and it must not compromise

the functionality on-board during the mission. At the same time, the cost of

hardware and its development should not be high. Hence, this thesis discusses

the design and development of a CubeSat architecture using a Commercial Off-The-

Shelf (COTS) Multi-Processor System on Chip (MPSoC). The architecture employs an

affordable Rad-Hard Micro-Controller Unit as a Supervisor for the MPSoC. Also, it

uses several radiation mitigation techniques such as the Latch-up protection circuit

to protect it against Single-Event Latch-ups (SELs), Readback scrubbing for Non-

Volatile Memories (NVMs) such as NOR Flash and Configuration scrubbing for the

FPGA present in the MPSoC to protect it against Single-Event Upset (SEU)s, reliable

communication using Cyclic Redundancy Check (CRC) and Space packet protocol.

Apart from such functionalities, the Supervisor executes tasks such as Watchdog

that monitors the liveliness of the applications running in the MPSoC, data logging,

performing Over-The-Air Software/Firmware update. The thesis work implements

functionalities such as Communication, Readback memory scrubbing, Configuration

scrubbing using SEM-IP, Watchdog, and Software/Firmware update. The execution

times of the functionalities are presented for the application done in the Supervisor.

As for the Configuration scrubbing that was implemented in Programmable Logic

(PL)/FPGA, results of area and latency are reported.

Keywords

Commercial Off-The-Shelf Multi-Processor System on Chip, Single-Event Upset,

Single-Event Latch-up, Cyclic Redundancy Check, Scrubbing, Radiation hardened

Micro-Controller Unit, Soft Error Mitigation-Intellectual Property controller, Error

Injection, Space packet protocol, NOR Flash, Magnetoresistive RAM

iii

Sammanfattning

CubeSat-uppdrag behöver komponenter som är toleranta mot strålningen i rymden.

Maskinvarukomponenterna måste vara pålitliga och funktionaliteten ombord får

inte äventyras under uppdraget. Samtidigt bör kostnaden för hårdvara och dess

utveckling inte vara hög. Därför diskuterar denna avhandling design och utveckling

av en CubeSatarkitektur med hjälp av COTS (eng. Custom-off-The-Shelf) MPSoC

(eng. Multi Processor System-on-Chip). Arkitekturen använder en prisvärd

strålningshärdad (eng. Rad-Hard) Micro-Controller Unit(MCU) som Övervakare för

MPSoC:en och använder också flera tekniker för att begränsa strålningens effekter

såsom kretser för att skydda kretsen från s.k. Single Event Latch-Ups (SELs),

återläsningsskrubbning för icke-volatila minnen (eng. Non-Volatile Memories)

NVMs som NOR Flash och skrubbning av konfigurationsminnet skrubbning för

FPGA:er i MPSoC:en för att skydda dem mot Single-Event Upsets (SEUs), och

tillhandahålla pålitlig kommunikation mha CRC och Space Packet Protocol. Bortsett

från sådana funktioner utför Övervakaren uppgifter somWatchdog för att övervaka att

applikationerna som körs i MPSoC:en fortfarande är vid liv, dataloggning, och Over-

the-Air-uppdateringar av programvaran/Firmware. Examensarbetet implementerar

funktioner såsom kommunikation,

återläsningsskrubbning av minnet, konfigurationsminnesskrubbning mha SEM-

IP, Watchdog och uppdatering av programvara/firmware. Exekveringstiderna

för utförandet av funktionerna presenteras för den applikationen som körs i

Övervakaren. När det gäller konfigurationsminnesskrubbningen som implementerats

i den programmerbara logiken i FPGA:n, rapporteras area och latens.

Nyckelord

Commercial Off-The-Shelf Multi-Processor System on Chip, Single-Event Upset,

Single-Event Latch-up, Cyclic Redundancy Check, Scrubbing, Radiation hardened

iv

Micro-Controller Unit, Soft Error Mitigation-Intellectual Property controller, Error

Injection, Space packet protocol, NOR Flash, Magnetoresistive RAM

v

Acknowledgements

First and foremost, I would like to thank my family and friends for believing in me,

encouraging and supporting me in the most difficult of times.

I would like to extend my gratitude to my examiner Johnny Öberg and thesis adviser

Kalle Ngo for allowing me to pursue a wonderful thesis topic. Also, I would like to

thank Gustavo Ambrosio, Fabian Steinmetz, Satheesh Konduru, Sarthak Kelapure and

the whole SDR team from Thales Alenia Space in helping me successfully complete my

thesis project.

Finally, Iwould like to thankKTHandErasmus team for providingmewith scholarship

to pursue my master thesis project away from the university.

vi

Acronyms

COTS Commercial Off-The-Shelf

FPGA Field Programmable Gate Array

MCU Micro-Controller Unit

EIVE Exploratory In-Orbit Verification of an E/W-Band

MPSoC Multi-Processor System on Chip

SEM-IP Soft Error Mitigation-Intellectual Property

SEE Single-Event Effect

SEL Single-Event Latch-up

SEU Single-Event Upset

SET Single-Event Transient

SEFI Single-Event Functional Interrupt

CRAM Configuration Random Access Memory

PL Programmable Logic

CMOS Complimentary Metal Oxide Semiconductor

BJT Bi-polar Junction Transistor

SCR Silicon-Controlled Rectifier

SRAM Static Random Access Memory

DRAM Dynamic Random Access Memory

NVM Non-Volatile Memory

OBC On-Board Computer

I2C Inter-Integrated Circuit

EEPROM Electrically Erasable Programmable Read-Only Memory

ICAP Internal Configuration Access Port

DSP Digital Signal Processor

TMR Triple Modular Redundancy

FinFET Fin Field-Effect Transistor

vii

PS Processor System

ECC Error-Correcting Codes

CRC Cyclic Redundancy Check

PCAP Processor Configuration Access Port

APU Application Processing Unit

RPU Real-time Processing Unit

GPU Graphic Processing Unit

UART Universal Asynchronous Receiver Transmitter

SPI Serial Peripheral Interface

GPIO General Purpose Input Output

AXI Advanced eXtensible Interface

PCIe Peripheral Component Interconnect express

DDR Double Data Rate

LUT Look-Up Tables

BRAM Block RAM

FF Flip-Flop

JTAG Joint Test Action Group

MIO Multiplexed Input/Output

EMIO Extended Multiplexed Input/Output

ASCII American Standard Code for Information Interchange

SECDED Single-Error Correction and Double-Error Detection

LET Linear Energy Transfer

EDAC Error Detection And Correction

CAN Controller Area Network

ADC Analog to Digital Converter

DAC Digital to Analog Converter

DMA Direct Memory Access

FRAM Ferroelectric RAM

MRAM Magnetoresistive RAM

MBU Multi-Bit Upset

ISR Interrupt Service Routine

viii

List of Figures

2.1.1 Different types of Single-Event Effects 4

2.2.1 Cubesat . 5

2.3.1 Zynq Ultrascale+ MPSoC architecture 9

2.5.1 SEM-IP Controller states . 15

2.5.211-bit hexadecimal value for error injection 16

2.6.1 Space Packet . 17

2.8.1 Rad-Hard Vorago MCU . 20

3.1.1 Cubesat hardware architecture . 22

3.3.1 Configuration scrubbing block diagram 29

4.1.1 Communication flow chart . 31

4.2.1 Watchdog flow chart . 33

4.3.1 Memory scrubbing flow chart . 35

4.4.1 Software/Firmware update flow chart 37

4.5.1 Configuration scrubbing flow chart . 39

5.1.1 Excerpt of output of the Communication implementation 42

5.1.2 Excerpt of output of the Communication implementation 42

5.2.1 Excerpt of output of the watchdog implementation 43

5.3.1 Excerpt of output of the memory scrubbing implementation 44

5.3.2Excerpt of output of the memory scrubbing implementation 44

5.4.1 Excerpt of output of the image update (24 KB) 46

5.4.2Excerpt of output of the image update (24 KB) 47

5.4.3Excerpt of output of the image verification (24 KB) 47

5.4.4Excerpt of output of the image verification (24 KB) 48

5.5.1 Excerpt of output of the configuration scrubbing implementation . . . 50

5.5.2Excerpt of output of the configuration scrubbing implementation . . . 50

ix

LIST OF FIGURES

5.5.3Excerpt of output of the configuration scrubbing implementation . . . 50

x

List of Tables

2.3.1 Number of components present in the Ultrascale+ FPGA 9

2.5.1 11-digit hexadecimal value for error injection 16

2.6.1 Space packet primary header . 17

2.7.1 CRC-32 description . 19

2.7.2CRC-16 description . 19

2.9.1 NOR Flash memory Specifications . 21

2.9.2MRAM Specifications . 21

4.1.1 Hardware/Software requirements for communication 32

4.2.1 Hardware/Software requirements for watchdog 34

4.3.1 Hardware/Software requirements for Memory scrubbing 35

4.4.1 Hardware/Software requirements for update and verification 38

4.5.1 ASCII commands for SEM-IP state transitions 39

4.5.2Hardware/Software requirements for FPGA configuration scrubbing . 39

5.1.1 Execution time for Communication implementation 41

5.2.1 Execution time for watchdog implementation 43

5.3.1 Execution time for memory scrubbing implementation 44

5.4.1 Execution time for software/firmware update/verification

implementation . 45

5.4.2Update function execution time for various images 45

5.4.3Verification function execution time for various images 46

5.5.1 SEM-IP execution time . 48

5.5.2SEM-IP area analysis . 48

5.5.3SEM-IP report description . 49

xi

Contents

1 Introduction 1
1.1 Goals . 2
1.2 Delimitation . 2
1.3 Structure of the thesis . 2

2 Related Work 3
2.1 Single Event Effects . 3

2.1.1 Single-Event Latch-ups . 3
2.1.2 Single-Event Upsets . 4

2.2 CubeSats . 5
2.3 Zynq Ultrascale+ MPSoC Architecture 8

2.3.1 Radiation Tests for Zynq Ultrascale+ MPSoC 10
2.3.2 Built-in Fault-Tolerant features of Zynq Ultrascale+ 11

2.4 FPGA Configuration Scrubbing . 12
2.4.1 FPGA Configuration . 12
2.4.2 Scrubbing . 12

2.5 Soft-error Mitigation Intellectual property 13
2.5.1 Different States of the SEM-IP Controller 14

2.6 Space Packet Protocol . 16
2.7 Cyclic Redundancy Check . 18
2.8 Radiation Hardened MCU . 19
2.9 Memories . 21

3 Cubesat Hardware Architecture 22
3.1 Overview . 22
3.2 Supervisor . 23

3.2.1 Interfaces . 23

xii

CONTENTS

3.2.2 Functions . 25
3.3 Processing Board . 28

3.3.1 Interfaces . 28
3.3.2 Functions . 28

4 Implementations 30
4.1 Communication . 30

4.1.1 Hardware/Software Requirements 32
4.1.2 Hardware/Software Limitations 32

4.2 Watchdog . 33
4.2.1 Hardware/Software Requirements 34

4.3 Memory scrubbing . 34
4.3.1 Hardware/Software requirements 35
4.3.2 Hardware/Software Limitations 36

4.4 Software/Firmware Update . 36
4.4.1 Hardware/Software requirements 37

4.5 FPGA Configuration Scrubbing . 38
4.5.1 Hardware/Software requirements 39

5 Results 41
5.1 Communication . 41
5.2 Watchdog . 43
5.3 Memory scrubbing . 44
5.4 Software/Firmware update . 45
5.5 FPGA configuration study . 48

6 Conclusion and Future works 52
6.1 Conclusion . 52
6.2 Limitations . 53
6.3 Future Work . 53

Bibliography 54

xiii

Chapter 1

Introduction

Space Missions are generally carried out using traditional satellites made by

government agencies or other big organizations. With the advent of CubeSats[6], small

companies and educational institutionsmade their way into the space domain by using

it as a tool for educational purposes by carrying out small-scaled missions[26]. The

change is attributed to the low-cost design and development of the payload and also

the CubeSat itself. Nowadays, Commercial Off-The-Shelf (COTS) products such as

Field Programmable Gate Array (FPGA)s, Micro-Controller Unit (MCU)s are being

used to develop the payloads for the CubeSats as they are affordable, accessible, and

require a short time to develop them as a product. However, they are not reliable

when it comes to space missions because of their vulnerability towards radiation.

Exploratory In-Orbit Verification of an E/W-Band (EIVE) is one such project initiated

by the University of Stuttgart that aims to develop an E-Band communication using a

CubeSat equipped with COTS hardware[20].

This thesis work aims to propose a reliable CubeSat hardware architecture, which

employs a powerful COTS MPSoC, the Zynq Ultrascale+, which will be used in the

EIVE project in developing their application. Several radiation mitigating techniques

are incorporated into the design to increase the resilience of the COTS MPSoC. This

project considers the Zynq Ultrascale+ MPSoC as a black box and concentrates on

building a haven around it to recover it from the adverse radiation effects.

1

CHAPTER 1. INTRODUCTION

1.1 Goals

The primary goal of this thesis work is to prototype amission independent architecture

for the CubeSat using a COTS MPSoC and other components that support it to

withstand the radiation effects without compromising the functionality. This can be

subdivided into two categories:

• Monitoring and rectifying the MPSoC, where the application for the space

mission is built, through an external Supervisor. This Supervisor is also

responsible for the communication between On-Board Computer and the

MPSoC.

• Monitoring and rectifying the FPGA present in the MPSoC from within by

incorporating Configuration scrubbing.

1.2 Delimitation

The Thesis work presented in this paper proposes and prototypes proof of concept

architecture for the CubeSat. It is not tested in the radiation environment because of

the huge expense to validate the design in radiation facilities. Also, this experimental

thesis will involve certain techniques to mitigate latch-ups. However, testing this

is practically difficult. Nevertheless, the Configuration Scrubbing can be tested

by injecting errors using the Soft Error Mitigation-Intellectual Property (SEM-IP)

controller.

1.3 Structure of the thesis

Chapter 2 discusses the background study and literature survey related to the work of

this thesis project. Chapter 3 discusses the architecture of the CubeSat and explains the

design decisions. Chapter 4 talks about the experimental designs implemented in this

thesis work regarding the architecture. Chapter 5 talk about the results and analysis

of the implemented designs along with the testing of the configuration scrubbing.

Chapter 6 projects the results obtained from the implementations. Chapter 7 concludes

the thesis work by summarizing the project and reveals the limitations of the project.

Finally, possible future works are listed.

2

Chapter 2

Related Work

2.1 Single Event Effects

Single-Event Effect (SEE) is caused when high energy-charged particles strike the

device and lose energy by ionizing the substrate atoms. It expels the electrons out of

the substrate during this process[14]. This causes an electron-hole pair to be created,

giving rise to a potential difference. When the charge collection exceeds the threshold,

a SEE is generated. The SEE can be classified into two categories, Destructive andNon-

destructive. Destructive SEEs will cause a permanent failure of the device while Non-

destructive SEEs will lead to a loss of state or data but does not physically harm the

device. The SEEs focused within this thesis work are Single-Event Latch-up (SEL)s,

that fall under the destructive subdivision of SEEs and Single-Event Upset (SEU)s,

that comes under the non-destructive subdivision of SEEs. This is because Xilinx

claims their Ultrascale architecture devices to be immune to gate ruptures and burnout

conditions[29]. However, there are some caseswhere SELswere being reported, which

will be covered in this chapter. Similarly, SETs and SEFIs in Ultrascale architectures

are very low[29], making them negligible, hence SEUs become a primary concern

as they affect Configuration RAM (CRAM) of the Programmable Logic (PL), i.e., the

FPGA. Figure 2.1.1 outlines the different types of SEEs that can affect a device.

2.1.1 Single-Event Latch-ups

Most of the Integrated Circuits currently manufactured make use of Complimentary

Metal Oxide Semiconductor (CMOS) transistors in them. A parasitic Bi-polar Junction

3

CHAPTER 2. RELATEDWORK

Figure 2.1.1: Different types of Single-Event Effects

Transistor (BJT) structure is formed when the CMOS transistors are closely located,

and these behave like a Silicon-Controlled Rectifier (SCR). In a positive feedback

loop (SCR), these parasitic structures are dormant under normal operating conditions.

However, the slightest of current in them will lead to a high-current output because of

the positive feedback loop. This will remain until a power-cycling is done. This high-

current has the potential to damage the device permanently. This scenario is referred

to as a SEL[14].

2.1.2 Single-Event Upsets

Single-event Upsets[14], which falls under the category of non-destructive SEEs, is

commonly referred to as bit-flips. When a heavy-ion or proton strikes a memory cell

such as a flip-flop, it causes a change of state in thatmemory cell. This change of state is

known as a SEU. The SEUs typically occur to memory elements like SRAMs, DRAMs,

and Non-Volatile Memory (NVM)s like NOR Flash memory. SRAM based FPGAs are

sensitive to radiation for the same reason. Their configuration Memories have their

bits flipped, leading to a change in the functionality of the FPGA[25]. The SEUs are

corrected by rewriting the original content to the memory elements.

4

CHAPTER 2. RELATEDWORK

2.2 CubeSats

Cubesats, short for CubeSatellites that comeunder the nanosatellites class, are used for

research and educational purposes. Generally, they come in a standard measurement

unit of 10 cm X 10 cm X 10 cm[6]. This cubic unit size is also termed as 1U. CubeSats

are scalable and can also be made in 2U, 3U, or 6U measurements, and they cannot

weigh more than 1.33 kg/1U [27]. Figure 2.2.1 portrays the way a 1U CubeSats look

like in general.

Figure 2.2.1: Cubesat

As aforementioned in the introduction, these CubeSats paved the way for a niche

market that allowed institutions and companies to develop small-scaled spacemissions

5

CHAPTER 2. RELATEDWORK

or auxiliary missions for big satellites. Some of the CubeSat missions and their

hardware architectures described below are conducted in the previous years:

• Chandrasekhar Nagarajan et al. [15] have designed a CubeSat hardware

architecture as a part of a space mission that carries out terrestrial thermal

imaging. The architecture employs two On-Board Computer (OBC) using micro-

controllers. The primary OBC (TI MSP430) enforces operations related to sub-

modules communication, sensor data acquisitions, processing, and storing. It

also performs health monitoring and housekeeping of components. This OBC

downlinks a telemetry packet to the ground station. The secondary OBC (STM32

Cortex-M3) manages communication from the ground station to the CubeSat.

Also, it is responsible for the storage of thermal images captured by a 14-bit

thermal imaging camera and sending the image data to the ground station. The

two MCUs interact through I2C serial communication protocol.

• Similarly, Dua A.M. Osman, et al. [17] have proposed a CubeSat hardware

architecture for the application of geographical imaging of Khartoum, Sudan.

This proposed architecture, unlike the architecture mentioned in the previous

paragraph, uses a single OBC and it makes use of COTS MCU. This OBC is

interfaced with several peripherals such as a Temperature sensor, a Real-Time

clock, an EEPROM, a camera, and a control system. It manages the entire

communication of the CubeSat and regulates the camera to capture the image

and store it in the EEPROM.

• Christian Fuchs et al. [8], discusses a CubeSat architecture that aided a 4

year ESA project. This design uses COTS FPGA which houses a tiled MPSoC

architecture. ARM Cortex-A53 is used as the processor in each tile, and they

have dedicated peripheral IP-cores, caches, and local interconnects. Tiles are

separated from each other, meaning; they have their re-configurable partition

and a clock domain to enable partial reconfiguration. Tiles have shared access

to all the memories. The tiled MPSoC and whole of the FPGA are monitored

using an external Supervisor, which happens to be a MCU. This paper proposes

radiation mitigation techniques with this said architecture. This is done in 3

stages:

– Stage 1: Each tile performs thread replication, that is, running the same

application in different threads. This is done along with lockstep. This

6

CHAPTER 2. RELATEDWORK

enables thread synchronization and, at the same time, checks for issues

within the tile. A voting system between the replicated threads notifies the

occurrence of an error if any. This information is sent to the Supervisor from

every tile.

– Stage 2: The Supervisor is responsible for keeping track of error counts

and solving any aroused discrepancies from any of the tiles. If the voting

decision from any tile indicates an error, then the Supervisor issues a

partial reconfiguration of the affected tile. This is done through Internal

Configuration Access Port (ICAP) of the FPGA using the SEM-IP controller

without affecting the functionality of the whole system since they have

their re-configurable partition. The Supervisor can also issue a full-

reconfiguration to reset all the tiles. The Supervisor also keeps track of the

number of times a tile is getting affected. If this number crosses a defined

threshold, then the Supervisor deems this tile as permanently damaged and

replaces it with a new tile.

– Stage 3: This stage is only when the hardware is aged and has fewer

resources tomaintain the same functionality and performance. In this case,

the highly critical application is given the utmost priority and made to run

with the remaining available resources.

• The paper by Zhen Dong, et al. [7] discusses about a reliable CubeSat OBC

architecture using re-configurable FPGA. The proposed scheme uses 2 FPGAs

and 4 Digital Signal Processor (DSP)s out of which 1 FPGA and 3 DSPs work

at any given point of time, and others serve as backup hardware in case a fault

occurs in the working hardware. The FPGA is responsible for state information,

commands, communication between interfaces and DSPs, data gathering along

with the necessary information for the spacecraft. Whereas the DSP is where the

processing of data collected by FPGA takes place. Triple Modular Redundancy

(TMR) is implemented using the 3 DSPs, while the fourth DSP serves as a backup

for the other three. The FPGA gathers the voted results and checks for faults

in the DSP. In case a fault is reported, then it replaces the affected DSP with a

backup DSP. Similarly, in the case of the FPGA, if it stops functioning, or if the

switching time runs out, the backup FPGA comes into play replacing the existing

one.

7

CHAPTER 2. RELATEDWORK

In this thesis work, CubeSat hardware architecture is proposed using a COTS MPSoC

and an external Rad-Hard MCU that acts as a Supervisor. A few functionalities of the

proposed architecture were implemented and tested.

2.3 Zynq Ultrascale+ MPSoC Architecture

Zynq Ultrascale+ EG MPSoC[3] is one of the most powerful and versatile chips

currently present in the market. Because of its unique heterogeneous architecture,

this MPSoC opens up various opportunities and finds its application in various fields

such as IoT, 5G, and industries, such as automotive and aerospace. This 16 nm FinFET

technology houses the following features:

• Quad-core ARM Cortex-A53 Application Processing Unit

• Dual-core ARM Cortex-R5 Real-time Processing Unit

• Programmable Logic (FPGA)

• Platform Management unit

• Graphics Processor Unit

• Gigabit transceivers

• High-speed serial interface

Figure 2.3.1 shows the architecture of Zynq Ultrascale+ MPSoC. The architecture is

divided into Processor System (PS) and Programmable Logic(PL), connected together

by Advanced eXtensible Interface (AXI) bus. The PS side can be used to perform high-

end as well as low-end applications and these applications can be run on APU, GPU

and RPU. The PS also provides interfaces such as UARTs, SPIs, GPIOs to interact with

external devices such as memories, MCUs, etc. The PL of the Zynq Ultrascale+MPSoC

can be programmed to produce digital circuits or Intellectual Properties that matches

the application requirements.

8

CHAPTER 2. RELATEDWORK

Figure 2.3.1: Zynq Ultrascale+ MPSoC architecture

Component Quantity
LUTs 274 K
BRAMs 32.1Mbit
FFs 548 K

Distributed RAMs 8.8Mbit
DSPs 2520 slices

Table 2.3.1: Number of components present in the Ultrascale+ FPGA

The table 2.3.1 shows the resources available for utilization in the FPGA[31]. These

can be used by PS using AXI. Additionally, the FPGA can be programmed to use High-

speed interfaces such as PCIe that can be interfaced with external DDRmemories, etc.

All these features make this an extremely versatile yet powerful board. This thesis

9

CHAPTER 2. RELATEDWORK

work utilizes the Zynq Ultrascale+ MPSoC in which any CubeSat mission related to

communications and data processing can be deployed. This work treats the MPSoC

as a black box around which a reliable architecture is designed that ensures proper

functioning of the MPSoC and resilience against SEUs and SELs.

2.3.1 Radiation Tests for Zynq Ultrascale+ MPSoC

The ZynqUltrascale+MPSoC gainedmore popularity in the aerospace domain because

of its versatility and better radiation tolerance than its predecessors[29]. To validate

the radiation tolerance of this device, different radiation testswere conducted as part of

research by several research institutes. The following points discuss the performance

of Zynq Ultrascale+ MPSoC in different radiation environment:

• Heimstra et al. [10] conducted a proton irradiation test with a 105MeV proton

beam at the TRIUMF proton irradiation facility, Vancouver, British Columbia,

Canada. The results of this test showed no occurrence of destructive latch-ups in

the Ultrascale+ MPSoC. However, the test recorded various SEUs for different

implementations varying from 1 to 35 upsets of SRAM configuration per fluence.

• Similarly, NORSAT3, et al.[23] conducted a proton irradiation test also at the

TRIUMF. This test aimed at observing the destructive latch-up events and the

upset rates. Two beams of different energy were used. The first test was

conducted with a 480MeV proton beam, which was targeted at individual

components of the MPSoC. The second test used a 105MeV beam to irradiate

the whole device to represent the in-orbit scenario. 5 SELs and 4 SELs were

observed for 480MeV beam and 105MeV beam respectively. All the latch-ups

were cleared by power cycling the MPSoC board.

• Heavy ion irradiation tests were performed on the Zynq Ultrascale+ MPSoC

by Maximilien Glorieux, et al.[9]. Two different tests, namely standard ion

test and ultra high energy test, were carried out at UCL Heavy ion irradiation

facility, Belgium and at CERN, respectively. The standard ion test used various

heavy-ion beams like Xenon, Neon, Argon, Nickel, etc, with 995MeV, 238MeV,

379MeV, 582MeV energy, respectively. The Ultra high energy test at CERN

employed a 30GeV/n Xenon beam to test the device. SELs occurred at Vccaux,

Vccpsaux and Vauxio power rails of the MPSoC when a beam of energy greater

than 5.7MeV cm2mg−1 was shot at the device during the standard heavy-ion

10

CHAPTER 2. RELATEDWORK

test. However, no SELs were noted during the Ultra high energy test at normal

incidence. The test also showed a very low SEU effect in SRAM.

• Jordan et al. [2] performed a Neutron beam irradiation test at the LANSCE

neutron beam facility. The test aimed at observing the number of SEUs occurring

at PS and the Programmable Logic (PL) of the MPSoC. The PS remained

unaffected during the test; however, 168 and 1302 SEUs were recorded on the

OCM and the cache. The PL was affected by SEUs, and they were rectified

using scrubbing mechanisms. It was also noted that SEM-IP, which was used

to implement the configuration scrubbing in the FPGA, was affected by SEUs as

well.

2.3.2 Built-in Fault-Tolerant features of Zynq Ultrascale+

This part of the section discusses the modules that are already available in the

Zynq Ultrascale+ as a part of reliable fabrics to tackle SEEs [18]. They are the

following:

• Real-time Processing Unit: This unit has a dual-core ARM cortex R5 processor

with a single memory that is protected by the Error-Correcting Codes (ECC)

mechanism. This ARM-v7R architecture enables us to use redundant application

processing in lockstep. This means that the same application can be run in both

the processors with a short time offset. This avoids the same error occurring on

both processor’s application. The outputs coming from both the processors are

compared at every clock cycle, and if a mismatch is observed in the outputs, an

interrupt is triggered to rectify the error.

• PlatformManagementUnit: This unit consists of TMRMicroblaze processors for

the Fault-Tolerant power management system. It is responsible for the initial

boot process or pre-configuration stage in the booting process. This unit also

allows user custom code to be loaded in the TMRMicroblaze processors in order

to take advantage of the Fault-Tolerant design given byXilinx. TheRAMmemory

connected to this design is also protected by the ECC.

• Redundant Coding techniques: The PL’s configuration frames, have ECC at every

frame to identify and correct up to 4-bit errors. Additionally, CRC codes are

generated for the whole configuration bitstream, which accounts for the errors

11

CHAPTER 2. RELATEDWORK

that are not detected by frame level ECC. The only downside is that CRC codes

do not reveal the location of the errors in the configuration bitstream. Hence, the

programming logic needs to be completely re-configured again.

• Apart

from the Fault-Tolerant designs mentioned above, Xilinx also provides access

to configuration memory, CRAM, of PL to allow partial/full reconfiguration by

the user through Processor Configuration Access Port (PCAP) using RPU/PMU

or through ICAP by making use of the SEM-IP core.

2.4 FPGA Configuration Scrubbing

2.4.1 FPGA Configuration

FPGAs are made of umpteen number of configurable logic blocks, interconnect

switches, block RAMs, and clock trees. Programming a digital circuit would mean

to interconnection these blocks together to bring about a functionality. These

programmed configurations are stored in the CRAM of the FPGA in the form of

configuration bit-streams. Conceptually, a change in the said configuration bits

present in the CRAM would bring about a change in the functionality of the FPGA.

However, this is not always the case as only a part of the FPGA resources are used

most of the time, and an upset in those regions will not affect the functionality of the

FPGA. Xilinx coins the term “Essential bits” for such a category of bits. The critical bits

form a subset of the Essential bits, and any change to the critical bit will disrupt the

FPGA functionality[13]. The configuration bit-streams are separated and packed into

entities called Frames. The configuration memory is arranged in frames as well. Each

frame contains the configurationdata andECC syndrome. Theultrascale+ architecture

contains 71,260 frames, and each frame consists of 93 words[30].

2.4.2 Scrubbing

To rectify the bit flips in the configuration bits, a mitigation method known as

scrubbing is implemented. Configuration scrubbing is a periodic process of replacing

the affected configuration bits with the unaffected ones. The general scrubbing circuit

contains an interface to the configuration memory, processing logic, and a reference

configuration bit-stream. Scrubbing can be sub-divided into two types: Blind and

12

CHAPTER 2. RELATEDWORK

Readback scrubbing[24].

• Blind Scrubbing: This scrubbing technique periodically replaces the whole

Configuration bit-stream without checking if the configuration bits are affected.

This method is fast and easy to implement. However, the downside to this

method is that there is no upset detection scheme employed in the design, and

the bandwidth is wasted due to unwanted data transfers.

• Readback Scrubbing: In this scrubbing technique, the configuration bit-stream

is read from the CRAM and compared against a golden copy of the configuration

bit-stream. If the comparison results in presence of an error in the frame, only

the affected part is overwrittenwith the contents of the golden copy. Thismethod

overcomes the disadvantages of blind scrubbing.

Scrubbing of a configuration memory is not possible without a configuration access

port. Xilinx provides two configuration ports, namely, ICAP and PCAP (Available only

in the SoC devices). Only one Configuration Access Port can obtain access to the CRAM

at any time. The ICAP can be used with the SEM-IP controller or with the user-design

in the PL area, whereas the PCAP can be used by the PS in the SoC devices. The user-

design can gain access to ICAP using an ICAP primitive provided in the Xilinx design

suite. However, this feature is supported only till 7-series FPGAs and not for Ultrascale

architectures[18]. Hence scrubbing in Zynq Ultrascale+ MPSoC can be performed

using three different methods, they are: JTAG, PCAP and SEM-IP. In this thesis, the

focus is mainly on using theSEM-IP.

2.5 Soft-error Mitigation Intellectual property

The SEM-IP controller is an IP core that is offered by Xilinx to handle soft-errors

occurring in the system in an efficient manner[28]. The six different modes offered

by the SEM-IP are:

• Mitigation and Testing

• Mitigation

• Detect and Testing

• Detect only

13

CHAPTER 2. RELATEDWORK

• Emulation

• Monitoring only

The Mitigation and testing modes enable SEM-IP error detection, error correction,

error classification(if enabled), and error injection. As this thesis work focuses only

on mitigation and injecting errors into the design to test, the other modes are not

explained. The SEM-IP controller provides two interfaces to interact with it. They

are:

• Command Interface: This is a simple interface containing three signals:

command_strobe, command_code and command_busy. The command_code

signal can be used to send commands to the SEM-IP controller to perform

tasks like error detection, correction, etc. The command_strobe signal is used

to deliver the command to the controller by pulsing the signal for one clock

cycle. The command_busy signal indicates if the controller is ready to accept

commands. The command interface can be usedwith a user-design in the PL part

of the FPGA or with the PS through EMIO signals to the FPGA. Conventionally,

the status interface is used along with the the command interface to know the

controller’s active state.

• Monitor Interface: This interface is user-friendly as it uses ASCII characters to

send commands to the controller. The controller acknowledges the command

with a status report of the controller’s action and state, thereby avoiding the use

of status interface. The monitor interface can be used directly with the FPGA or

the processor system similar to the command interface or using a UART helper

block provided alongwith the SEM-IP example design. In this thesis, the SEM-IP

is implemented using the monitor interface.

2.5.1 Different States of the SEM-IP Controller

The SEM-IP controller has seven valid states in mitigation and testing mode as shown

in figure 2.5.1

• Initialization: When the FPGA boots up, the controller enters the initialization

state where it tries to gain access to the ICAP. After obtaining the grant of

the ICAP access, the SEM-IP controller performs two readbacks and completes

initialization by shifting to the observation state.

14

CHAPTER 2. RELATEDWORK

Figure 2.5.1: SEM-IP Controller states

• Observation: This state acts as a watchdog by continuously scanning for errors

in the CRAM. If an error is detected, then the controller gathers the necessary

data for rectification before transitioning into the correction state. Additionally,

the observation state accepts two commands, either to move the controller to the

idle state in order to perform other actions of the controller or to provide a status

report of the controller.

• Correction: The controller tries to correct the error detected in the CRAM

configuration bits in this state. The controller attempts to fix the error with the

collected information. Once this attempt is executed, the controller reports either

the error that was identified and corrected or the uncorrectable errors.

• Classification: The controller goes through the classification state even if this

state is not enabled. If the error classification is disabled, then all errors are

classified as essential errors unconditionally. Else, the uncorrectable errors are

classified as essential, and the rest are classified as non-essential. The FPGAmust

be reconfigured in case of an uncorrectable error. The SEM-IP then generates

the request of essential bits through the fetch interface connected to an external

memory. The controller either changes to the idle state if it is uncorrectable or to

15

CHAPTER 2. RELATEDWORK

the observation to continue error detection.

• Idle: This state retains the controller in the idlemode andwaits for the command

to perform error correction, error detection, error injection, query a status report

from the controller, or perform a software reset.

• Injection: As the name indicates, the controller injects error into the frame

specified by the linear frame address given along with the command. In order

to inject error, the following command is used:

N {11-digit hex value} <carriage return>

ForUltrascale+ devices, the 11-digit hex value is split into the following, as shown

in figure 2.5.2:

Figure 2.5.2: 11-bit hexadecimal value for error injection

The table 2.5.1 describes the hexadecimal value entered in order to inject errors.

Notation Name No. of bits
s Hardware SLR number 2
L Linear frame address 16
w Word in the frame 7
b Bit location in the word 5

Table 2.5.1: 11-digit hexadecimal value for error injection

• Fatal: The controller runs into fatal state when the functionality of the SEM-IP

controller is compromised in which case the FPGA needs to reconfigured. Until

then, the controller retains this state.

2.6 Space Packet Protocol

Space packet protocol [5] is used for transmission of data in ground-space

communication or space-space communication. This protocol is based on the OSI

reference model. The sender is responsible for generating the space packet with the

task required to be performedby the receiver alongwith the essential data. The receiver

decodes the packet and performs the task accordingly. The receiver should also send

an appropriate acknowledgment. The Space packet is a variable frame that can be

16

CHAPTER 2. RELATEDWORK

extended up to 64 kB. The protocol can be tailored according to the user application.

The standard space packet frame is shown in figure 2.6.1:

Figure 2.6.1: Space Packet

The space packet frame can be viewed as a collection of a header field and a data

field.

Primary Header Field The primary header field can be further split into four

categories, as shown in Table 2.6.1:

Category Sub-division No. of bits
Packet version number NA 3
Packet identification Packet type 1

Secondary header flag 1
Application ID 11

Packet sequence control Sequence flags 2
Sequence count 14

Packet data length NA 16

Table 2.6.1: Space packet primary header

• Packet version number: It comprises 3-bits, and its value is 000 by default,

signifying that the current packet is a space packet protocol. The version number

is reserved for future references to integrate other packet structures.

• Packet identification: Bits 3-15 of the primary frame header makes up the packet

identification field. As the name suggests, it is used to identify the type of space

packet and other necessary information such as application ID and secondary

header presence. Bit 3 identifies the packet as either a telecommand(request)

or a telemetry(report/acknowledgement). The next bit indicates the presence

of a secondary header. Followed by the secondary header flag, lies the 11-bit

application ID field that specifies the different tasks carried out in the space

mission. The user can design the application ID field according to their respective

applications. However, the protocols demand that the user refrains from using

certain reserved application IDs.

17

CHAPTER 2. RELATEDWORK

• Packet sequence control: This field is again divided into packet sequence flags

and packet sequence count, which is useful in segmenting large data. The packet

sequence flag indicates that the current packet is either the first part of the

segment, the last part of the segment, a continuous segment or the whole packet

is unsegmented.

• Packet data length: This 16-bits field starting from 32nd bit of primary header

field specifies the length of the data field. The maximum length of the data can

be 64 kB.

Data Field The data field is divided into the secondary header field and the user

data field. If the secondary header flags indicate the secondary header field’s presence,

only then can this field be used/defined by the user, else they will belong to the user

data field. Depending on the data length assigned in the data length field of the

primary header, the user can calculate the number of data to be read from the user

data field.

2.7 Cyclic Redundancy Check

Cyclic Redundancy Checks[21] are error-detecting codes that are useful for detecting

and correcting single andmulti-bit errors. They overcome the disadvantages of Single-

Error Correction and Double-Error Detection (SECDED) codes. In order to calculate

CRC checksum, a generator polynomial is required. For an n-bit CRC, the length of a

generator polynomial is n+1 bits. The CRC checksum is obtained by dividing the data

with a generator polynomial in a long division. The quotient of the long division is

discarded, and the remainder is used as the checksum[22].

The CRC checksum is calculated for data of different sizes depending on the number

of CRC bits used in the application. For example, a 16-bit CRC can hold checksum

for 64 kB of data and a 32-bit CRC can easily hold checksum for 4GB of data. In this

project 2 standard CRCs are used as depicted in tables 2.7.1 and 2.7.2.

18

CHAPTER 2. RELATEDWORK

Category Value
CRC name CRC-32
Width 32 bits

Polynomial 0x04C11DB7
Initial remainder 0xFFFFFFFF
Final XOR value 0xFFFFFFFF

Parity Odd

Table 2.7.1: CRC-32 description

Category Value
CRC name CRC-16
Width 16 bits

Polynomial 0x1021
Initial remainder 0xFFFF
Final XOR value 0x0000

Parity Even

Table 2.7.2: CRC-16 description

2.8 Radiation Hardened MCU

TheVoragoPEB1-VA41630 is a radiation-hardenedMCU[19] that houses a 32-bit ARM

Cortex-M4 single precision floating point unit core. The Total Ionization Dose of this

MCU is over 200krad. It provides latch-up immunity with Linear Energy Transfer

(LET) greater than 110MeV cm2mg−1 and a SEE of less than 1× 10−15 errors/bit-day

with EDAC enabled. This radiation performance makes this device worthy to be used

in aerospace applications. The device can functions over the temperature range of−55
to 125 ◦C.

The following are the peripherals available with the MCU:

• 3 UART Serial Interface

• 3 SPI

• 3 I2C

• 104 GPIOs

• Ethernet

• 2 CAN bus

• Spacewire

19

CHAPTER 2. RELATEDWORK

Figure 2.8.1: Rad-Hard Vorago MCU

• 8 12-bit ADC

• 2 12-bit DAC

• 4-channel DMA

• Temperature sensor.

• 24 32-bit timers/counters

Figure 2.8.1 depicts the architecture of the radiation-hardened MCU. The MCU

works at a 100MHz frequency and has a set of memory devices, for instance, 256 kB

FRAM, 256 kB SRAM for code and 64 kB for data memory. Both the code and data

memory have EDAC and memory scrubbing support. The wide range of features and

peripherals offered by this MCU make it a very good candidate to be a Supervisor for

the Zynq Ultrascale+ system.

20

CHAPTER 2. RELATEDWORK

2.9 Memories

Memories are a rudimentary and an essential component in a CubeSat hardware

architecture. They are responsible for data logging of important mission data, storage

of executable binaries of MCUs, FPGAs, or theMPSoCs that carries out the application

necessary to run the CubeSat mission. However, despite being fundamental entities

of such crucial tasks, they are susceptible to radiations[16]. Since memories are

cell blocks that store binary values, 1 and 0, bit-flips are a regular occurrence. The

probability of occurrence of SEE is evenmore in the case of high-densitymemory units.

This work uses NVMs such as NORFlash andMRAM. Formore information regarding

NOR Flash, MRAM, and how they work, refer to [4] and [11]. Research paper [12],

suggests thatNORFlash is vulnerable to SEUs. However, the radiation tests conducted

by [1], shows thatMRAM is immune to SEUs, Multi-Bit Upset (MBU)s and SELs.

Category Value
Memory Type NOR Flash
Memory Size 32MB
Interface PMOD
Connection SPI
Voltage 3.3V
Current 20mA

Max. Frequency 100MHz

Table 2.9.1: NOR Flash memory Specifications

Category Value
Memory Type MRAM Flash
Memory Size 0.5MB
Connection SPI
Voltage 3.3V

Max. Current (at Max. Frequency) 10mA (read), 27mA (write)
Max. Frequency 40MHz

Table 2.9.2: MRAM Specifications

The Tables 2.9.1, 2.9.2 describes the specifications of the memories used in this

project.

21

Chapter 3

Cubesat Hardware Architecture

This section discusses the architectural design of CubeSat in detail. First, the overview

of the architecture is presented. Then, the individual components are discussed along

with their respective interfaces and functionalities.

3.1 Overview

Figure 3.1.1: Cubesat hardware architecture

22

CHAPTER 3. CUBESAT HARDWARE ARCHITECTURE

As shown in figure 3.1.1, theCOTSMPSoC is the data processing center, where the user-

developed application is executed in the processor system and/or the programmable

logic section. This architecture is not dependent on any application making it

adaptable. Since, the ZynqUltrascale+ is a very versatile device, its peripherals such as

UART, SPI, PCIe, etc can be accessed using MIO or EMIO pins by the user according

to the demands of their respective application. The Supervisor is responsible for the

safe operation of the COTS MPSoC. It also acts as a medium between the rest of the

hardware present in the satellite and the MPSoC. The architecture is such that the

processing board and the Supervisor system can be incorporated with any OBC with a

UART serial communication. The working of OBC is out of the scope of this paper and

is considered a black box.

3.2 Supervisor

The Supervisor is a radiation-hardened MCU, Vorago VA41630, based on an ARM

Cortex-M4 core. Being radiation-hardened, the Supervisor is not affected by radiation,

making it a safe island for the COTS MPSoC, which is susceptible to radiation.

Therefore, the Supervisor treats the COTSMPSoC as a black box and tries to recover it

in case of disruption during its operation. The Supervisor also assumes responsibility

for its communications in, out, and within the CubeSat. The interfaces and the

functionalities of the Supervisor are discussed in detail in the following sections.

3.2.1 Interfaces

The Supervisor is connected to the COTSMPSoC, NORFlashmemory,MRAMmemory

and the OBC of the CubeSat. The following describes in detail about each interface that

is connected to the Supervisor:

• OBC:

The OBC is connected to the Supervisor via UART serial communication. The

OBC is responsible for sending telecommands with the help of space packets to

the Supervisor in order to perform several tasks that will be discussed later in

detail. The Supervisor sends a Telemetry space packet back to the OBC as an

acknowledgment, a status report, or a data transfer.

23

CHAPTER 3. CUBESAT HARDWARE ARCHITECTURE

• Zynq Ultrascale+ MPSoC:

The interface between the ultrascale+ and the Supervisor is divided into four

links, such as:

– Communication link:

Similar to the OBC-Supervisor communication link, the communication

between the Supervisor and the Zynq ultrascale+ is through a UART serial

communication. The Supervisor forwards the space packets to the MPSoC

if the packet is a telecommand meant to be sent to the processing board or

from the MPSoC to OBC if the packet is telemetry.

– Latch-up Protection link:

The Supervisor monitors the Zynq Ultrascale+ MPSoC for SEL by reading

the current values of the power rails using current amplifying sensor

INA240 that is connected to the ADCs of the Supervisor. The latch-up

detection circuit operation is explained in detail in the functions section

3.2.2.

– Power Management link:

The GPIOs of the Supervisor are connected to the essential power rails that

are necessary for the power-on/off sequencing of the MPSoC. This is an

essential link when the processing board is said to be power-cycled or reset.

– Watchdog link:

Two of the GPIOs of the Supervisor are connected to the PS and the PL of

the MPSoC, respectively. This is done in order to receive a heartbeat signal

from either of them as part of the health monitoring system. The working

will be explained in detail in the functions section 3.2.2.

• NOR Flash memory:

The Quad-SPI NOR Flash boot memory of the Zynq Ultrascale+ MPSoC is

also accessed by Supervisor through SPI in order to perform functions such as

memory scrubbing, software, and firmware update for the MPSoC. A detailed

insight on this topic is given in the functions section 3.2.2 of the Supervisor.

• MRAMmemory:

TheMRAMmemory is connected to one of the 3 available SPI ports of the Vorago

VA41630 and is used to store state information of the Supervisor. For instance,

24

CHAPTER 3. CUBESAT HARDWARE ARCHITECTURE

information of the most recent successful image update, previous successful

transfer of data, health status of the processing board, image information in the

memory.

3.2.2 Functions

The following section discusses about the functionalities of the Supervisor system. As

aforementioned, the Supervisor is responsible for a guaranteed operation of the COTS

MPSoC for which it must shoulder the following essential tasks:

• Communication

• Latch-up protection circuit

• Watchdog

• Memory scrubbing

• Power management

• Software/Firmware update

• Data Logging

Communication

The radiation-hardened MCU establishes a safe link between the OBC and the

processing board, that is, Zynq Ultrascale+ MPSoC. The communication link is made

of UART serial communication with a speed of 115200 Bauds and a default 8N1

configuration setting. Themessages are sent or received in form of packets conforming

to the space protocol, and they can be distinguished as telecommands and telemetries.

The messages originating from the OBC are telecommands, while the ones starting

from the processing board or the Supervisor are telemetries. Only the OBC can send

telecommands to both Supervisor and the processing board, and it has to wait for

an acknowledgment to be received before sending another telecommand. In other

words, only one command can be processed at a given time. The Supervisor acts as

a router of the space packets since it decodes the space packets received. Depending

on the application ID, it either forwards the packets or retains them and executes the

requested task. In order to make the communication reliable, a 16-bit CRC is attached

at the end of every data field in the space packet. This is useful to identify errors during

25

CHAPTER 3. CUBESAT HARDWARE ARCHITECTURE

transmission and reception of data. The loss of packets is identified by the sequence

count number in the space packet frame. Before every transaction, the Supervisor

should get the information regarding the number of packets it might be receiving. If

the sequence number does notmatchwith the initial number sent after the transaction,

a loss of a packet is identified, and a proper acknowledgment is sent. If any anomaly is

detected by CRC or sequence count check, the Supervisor initiates a request to resend

the data.

Latch-up protection

One of the Supervisor’s critical and rudimentary tasks is to constantly monitor the

processing board for the occurrence of SEL. According to the radiations tests, the

power rails Vccaux, Vccpsaux and Vccio are recorded with latch-up occurrences. Hence

the aforementioned in 3.2.1 power rails are connected indirectly to the ADCs of the

Supervisor through a current sensing amplifier, INA240. The output of this current

sensing amplifier is an analog current value which is fed to the ADC in the Supervisor.

The converted digital values of the current from the power rails are compared against

a threshold value. If the current value exceeds the threshold, then it signifies that a

latch-up has occurred, and a power cycle for MPSoC is initiated in order to clear the

latch-up.

Watchdog

The Supervisor acts as a watchdog for the processing board by constantly waiting for

a heartbeat signal from the PS and the PL of the Zynq Ultrascale+ Multi-Processor

System on Chip (MPSoC). A heartbeat is a pulse signal generated by a system in order

to notify that it is still executing its application without crashing. In this architecture,

the application designer holds the responsibility of generating a heartbeat signal out of

the PS and PL along with their application development. This will make the heartbeat

generation dependent on the application execution, and in which case an application

stops executing, then a heartbeat will not be generated. On the other hand, the

Supervisor waits for the 2 heartbeat signals from the MPSoC for a fixed amount of

time. In case the heartbeat signals are not sensed by the Supervisor before this time,

then the Supervisor triggers a system reset for the MPSoC.

26

CHAPTER 3. CUBESAT HARDWARE ARCHITECTURE

Memory Scrubbing

The Supervisor is also connected to a Non-Volatile NOR Flash memory using SPI, as

shown in the overview of the architecture3.1.1. This NVM is a primary boot memory

for the MPSoC, which houses the first stage boot-loader, second stage boot-loader,

bitstream for the FPGA, and some other necessary binary files. Single event upset

inside this memory will lead to an incorrect application being loaded and executed

during the boot sequence. To avoid this, the Supervisor performs readback memory

scrubbing on this memory. A CRC check is done to ensure no errors are present in the

memory. A request for data restoration is made if an error is detected.

Power management

The power management task is responsible for conducting power cycles and reset for

the MPSoC. The reset and power-on/off line of the processing board are controlled by

the GPIO lines of the Supervisor. Additionally, certain power rails that are necessary

for power-on and power-off sequence of the zynq ultrascale+ MPSoC are connected

to the GPIOs of the Supervisor as well. The processing board follows a power-on and

power-off sequence to safely operate different power domains.

Software/Firmware update

This is an advantageous task provided by the Supervisor wherein a software or a

firmware update can be made during the mission. In this task, the Supervisor obtains

the binary files provided by the OBC in sequence and stores them in the primary NVM.

One other sub-task that the Supervisor carries out is the verification of the updated

image in response to a telecommand by the OBC. This is done by making use of

the CRC code. A CRC check is done after a readback of the updated image, and an

acknowledgment is provided to OBC regarding the status of the update.

Data Logging

With many functionalities being processed in the Supervisor, it is necessary to save

the state of the progress of different functions from time to time. This would help the

Supervisor to keep track of all the functions or track-back to the safe state when there

is a discrepancy in the execution of any functionality. This is done by storing the state

data in the MRAM. The MRAM does not face the issue of SEUs and hence can be used

27

CHAPTER 3. CUBESAT HARDWARE ARCHITECTURE

to store such important data. Additionally, the Supervisor also delivers a status report

Telemetry to the OBC of the state of the system.

3.3 Processing Board

The Zynq Ultrascale+ MPSoC board is the heart of the data processing center since

the application developed for the CubeSat mission resides in this COTS MPSoC. The

following discusses the interfaces and the functionalities of the processing board in

detail.

3.3.1 Interfaces

The processing board is connected to the Supervisor. Other than being connected to

Supervisor, the processing board is connected to 2 NVMs:

• NOR Flash:

As aforementioned in the Supervisor section 3.2, the NOR Flash memory is a

shared memory interface between the Supervisor and the processing board. The

Supervisor performs memory readback scrubbing to mitigate SEUs. In contrast,

the Zynq Ultrascale+ utilizes this NOR Flash as its boot memory. This memory

houses the boot image and linux kernel image, which are in charge of starting up

the processing board.

• MRAM:

Similar to the MRAM present in the Supervisor, the MRAM interfaced with the

processing board hold valuable mission data values.

3.3.2 Functions

The processing board is meant for payload application in which different types of

applications can be deployed with the resources available from the Zynq Ultrascale+

MPSoC. Apart from carrying out mission-related applications and generating

heartbeat signals along with the application, the processing board is responsible for

two main operations. They are communication and configuration scrubbing. The

following paragraph describes in detail about the tasks:

28

CHAPTER 3. CUBESAT HARDWARE ARCHITECTURE

Communication

The processing board receives commands from OBC either to perform tasks or to

request a data or a status update from the MPSoC. Similarly, the MPSoC should reply

to the OBC with an acknowledgment for the completed task. This acknowledgment

can be in the form of data or status. As mentioned before in 3.2, the Supervisor

acts as a middle ground for the OBC and the processing board, where the packets

are routed to each other reliably. Hence, out of four APU cores, one of the ARM

Cortex-A53 cores of the processing board is connected to the Supervisor using to UART

communication. The UART is configured at 115 200Bauds and 8N1 setting similar to

UART communication setting between Supervisor and OBC. The APU is responsible

for receiving space packets and parsing the data to extract the necessary information

such as Application ID, Sequence flags/counts, and a 16-bit CRC. The Application ID

is used to identify the operation to be performed. The sequence flag/count and CRC

are used to maintain robust communication by detecting packet loss and errors.

Programmable Logic Configuration Scrubbing

Figure 3.3.1: Configuration scrubbing block diagram

The processing board internally performs the configuration scrubbing on the

Programmable Logic with the help of the Processor System and the SEM-IP controller.

The SEM-IP is instantiated inside the FPGA and connected to the PS through a UART

helper block, as shown in the figure 3.3.1. The PS can send commands to the SEM-IP

periodically to get the status of the configuration bits. The SEM-IP stays vigilant and

looks for the SEUs andMBUs inside the configuration bit-stream. In case it encounters

SEUs or an MBU, it corrects them immediately and sends a report to the user. If it is

uncorrectable, the FPGA need to be reprogrammed.

29

Chapter 4

Implementations

In this chapter, the implementation of the CubeSat is discussed. The detailed

description of the software architecture of the proposed design is outside the scope

of this project. Firstly, a methodology of a specific implementation is shown with the

help of a flow chart, and then it is described. Secondly, the hardware and software

requirements are mentioned for each implemented design. Hardware and software

limitations are discussed wherever applicable for the implementations.

4.1 Communication

The Supervisor handles two separate communication links, the communication with

OBC and the communication with the processing board. As mentioned before in 3.2.2,

communication of commands and data takes place in the form of the space packet

protocol via UART serial communication. In this implementation, the communication

link is set between OBC, Supervisor, and the processing board. The flow chart will give

details on the approach followed to establish reliable communication.

The flow chart shown in 4.1.1 depicts the process of management of communication

between OBC and the Supervisor. The management of communications from the

Processing board is very similar to that of the OBC. It which can be obtained by

swapping the roles of OBC and processing board in the flow chart 4.1.1. The UART

peripheral receives data in bytes, and a total of 1024B are sent or received during

communication at any instant. The reason for this is because of the choice of size

of the space packet adopted for the design. Once the data is received, the Supervisor

30

CHAPTER 4. IMPLEMENTATIONS

Figure 4.1.1: Communication flow chart

arranges the data in the formof the space packet protocol to extract information such as

packet identification, packet sequence control, data length, and CRC. With the packet

identification information, the Supervisor will identify the sender and the operation

to be performed by the Supervisor. The Supervisor generates a CRC of the received

data and compares it with the extracted CRC. In case the CRC is mismatched, an

acknowledgment is sent to the source to resend the packet again. Then the sequence

count and sequence flags are checked for every transmission to identify the packet loss.

In case a mismatch occurs, an acknowledgment is sent to the source to resend the lost

packet. Finally, the application ID is checked for valid tasks that can be performed by

the Supervisor or processing board. If the task wasmeant for the processing board, the

Supervisor forwards the packet promptly to the processing board through a separate

UART channel. The Supervisor waits for the acknowledgment from the processing

board and forwards the acknowledgment back to OBC after receiving it.

31

CHAPTER 4. IMPLEMENTATIONS

4.1.1 Hardware/Software Requirements

The table 4.1.1 describes the necessary hardware/software requirements for the

communication implementation. In order to make the communication possible, 2

UARTs serial communications are required for the Supervisor to interact with the OBC

and the processing board. The UART settings used in this scenario are standard 115k

Baudwith 8 data bits, 1 stop bit, and no parity bits. The UARTs are used in an interrupt

mode. A library for space packet was created and used apart from the standard c

libraries and board support package of the Micro-Controller Unit.

Category Description
Hardware Vorago VA41630

Zynq Ultrascale+ MPSoC
Linux PC emaulating OBC

Connection 2 UARTS
USB to UART convertor

Software Keil uVision MDK v5
Vivado 2018.3
Cent OS 7

Terminal Putty
Minicom

Custom Libraries Space packet protocol
CRC 16-bit

Table 4.1.1: Hardware/Software requirements for communication

4.1.2 Hardware/Software Limitations

The primary bottleneck of this communication is memory usage. The data memory

available in the Vorago VA41630 is 64 kB. The maximum size of the space packet

that can be used is 64 kB. Considering the various tasks stated in this report that

are deployed in the Supervisor, only a low percentage of memory is available for

space packet protocol. Hence, a ballpark of roughly 1 kB is allocated for space

packet protocol. Another limitation is the speed of communication. The UARTs are

implemented at 115K Bauds for prototyping purposes. However, this limitation can be

overcome by increasing the baud rate of the UARTs until its supported hardware limit,

which is 1 Mega Baud for VA41630 MCU.

32

CHAPTER 4. IMPLEMENTATIONS

4.2 Watchdog

The watchdog utilizes GPIOs from the VA41630 board to monitor the heartbeat

signals from the processing board. The flow chart in figure 4.2.1 provides a better

understanding of the implementation.

Figure 4.2.1: Watchdog flow chart

The depicted flow chart is used to explain the watchdog monitoring for both Processor

System and Programmable Logic. Two 32-bit timers are invoked in interrupt mode

to count down from 60 seconds. Two of the GPIOs from the Supervisor waits for

pulsed signal (heartbeat) from both PS and PL, respectively. If the GPIO(s) receives

any heartbeat pulse from their respective system, then an interrupt is initiated. This

Interrupt Service Routine (ISR) resets the counter, and the counter again starts the

down counting from60 seconds. This process repeats itself until there are no heartbeat

signals available to the GPIOs. In this case, the counter/timer expires after down

counting from 60 seconds. The whole task is repeated time and again to ensure that

the applications in the processing board are always under execution.

33

CHAPTER 4. IMPLEMENTATIONS

4.2.1 Hardware/Software Requirements

The table 4.2.1 provides details on the necessary

things to perform this implementation. Three GPIO pins are required, two to sense

heartbeat signals from PS and PL parts of the Zynq Ultrascale+ MPSoC and one to

reset it. Also, two timers/counters are required to countdown a period of 60 seconds

to measure the period of inactivity.

Category Description
Hardware Vorago VA41630

Zynq Ultrascale+ MPSoC
Peripherals 2 Counters/timers

3 GPIOs
Software Keil uVision MDK v5

Vivado 2018.3
Terminal Minicom

Table 4.2.1: Hardware/Software requirements for watchdog

4.3 Memory scrubbing

Memory readback scrubbing is performed when the NOR-Flash memory is not

accessed by anydevice. Thememory scrubbing flow chart is shown in figure 4.3.1.

The Supervisor performs readback scrubbing on the NOR flash memory by reading

1024B off the memory. A 32-bit CRC is generated with the 1024B of data read from

the memory with an initial remainder of 0xFFFFFFFF. The generated CRC is stored to

be passed as an initial remainder for generating the CRC of the next set of 1024B of

data. Once the CRC is obtained, the address is incremented to read the next batch

of data. This process is repeated until the whole memory is scrubbed. The final CRC

value generated by reading the last 1024B of data is compared against a golden CRC

value of the memory. If they are found to be different, a request is sent to the OBC to

re-write the wholememory. Otherwise, the Supervisor repeats the readback scrubbing

process.

34

CHAPTER 4. IMPLEMENTATIONS

Figure 4.3.1: Memory scrubbing flow chart

4.3.1 Hardware/Software requirements

The design requires a NOR Flash memory and a SPI peripheral from Vorago VA41630

to access the NOR-Flash. A driver has to be designed specifically for NOR Flash in

order to access it. A CRC generation function is required to check for errors in the

NVMmemory. Refer to 4.3.1 for more details.

Category Description
Hardware Vorago VA41630

N25Q256A NOR flash
Peripherals SPI
Software Keil uVision MDK v5
Terminal Segger RTT Viewer
CRC 32-bits

Custom library NOR flash driver
CRC generator

Table 4.3.1: Hardware/Software requirements for Memory scrubbing

35

CHAPTER 4. IMPLEMENTATIONS

4.3.2 Hardware/Software Limitations

The speed of the memory scrubbing is limited by the read speed of NOR Flash and also

the speed at which SPI operates. Additionally, the read of the wholememory cannot be

done at once because of the lack of memory available to store a large amount of data.

Hence, only 1024B are being read at once.

4.4 Software/Firmware Update

The software/firmware update and verification implementation make use of binary

images of different sizes to be updated and verified in the NOR flash memory. The

Supervisor waits for the appropriate application ID to perform software/firmware

update or verification. The flow chart in figure 4.4.1 describes the update routine

performed by the Supervisor. The flow chart for the verification task was skipped

because the process is very similar tomemory scrubbing wherein the scrubbing is done

only for the location where the image was updated, instead of scrubbing the whole

memory.

The Supervisor enters the update taskwith data, data length, and end of the update flag

as parameters. The data is split into pages using the data length parameter to be stored

in the memory since the writing operation is done page by page. The Supervisor is also

responsible for address and page handling. The address handling is done in order to

keep track of the address location each time an image data is written to the memory.

And the page handling is done to erase a new sub-sector before writing any data into

it. A page write is performed on the data that was split into pages followed by which

the remaining data (that could not form a page) was stored, after address handling and

page handling. This process is repeated until the Supervisor receives the final packet

of data, which is indicated by ‘end of the update flag’.

36

CHAPTER 4. IMPLEMENTATIONS

Figure 4.4.1: Software/Firmware update flow chart

4.4.1 Hardware/Software requirements

UART and SPI peripherals are used to communicate with the OBC and NOR flash,

respectively. TheUART is using 115 200Bauds and the SPI runs at 25MHz clock speed.

Two custom made drivers, a NOR flash driver and a CRC generator, are used in this

implementation. Additionally, Different binary file sizes mentioned in the table 4.4.1

are used to test the update and verification functionality of the Supervisor.

37

CHAPTER 4. IMPLEMENTATIONS

Category Description
Hardware Vorago VA41630

Linux PC emulating OBC
N25Q256A NOR flash

Peripherals SPI
UART

Software Keil uVision MDK v5
Cent OS 7

Terminal Segger RTT Viewer
Minicom

CRC 32-bits
Custom library NOR flash driver

CRC generator
Binary file sizes 1KB, 4KB, 13KB, 24KB, 1MB

Table 4.4.1: Hardware/Software requirements for update and verification

4.5 FPGA Configuration Scrubbing

This implementation demonstrates the error detection and correction capabilities of

the SEM-IP by performing error injections into the configuration memory. In order to

visualize the detection and correction of errors performed by the SEM-IP controller, it

is instantiated in mitigation and testing mode. This enables us to inject errors into the

CRAM of the FPGA. The following flow chart will brief about the interactions between

PS, specifically cortex R5 and SEM-IP controller:

The figure 4.5.1 portrays the working of the SEM-IP.When the processing board is

switched on, the SEM-IP is initialized by transferring the control of configuration

access port from PCAP to ICAP. This is done by enabling bit zero of PCAP control

register. The SEM-IP will be completely initialized when the ICAP access is granted to

the SEM-IP, and the clock is supplied. The SEM-IP enters the observation state after

initialization. As mentioned earlier in 2.5.1, in this state the SEM-IP is performing

error detection and correction of the CRAM. The SEM-IP is used in monitor interface

mode. In order to navigate the SEM-IP to different states, ASCII commands are sent

through the UART. Table 4.5.1 gives a list of commands tomake the SEM-IP transition

to different states. For instance, to shift the SEM-IP from observation to Idle state,

the ASCII value of uppercase I is sent via the UART connecting Cortex-R5 core and

SEM-IP controller. Similarly, to peek into the values of a frame, the controller must be

in the Idle state, followed by the transfer of the command sequence Q <11-digit hex

value>.

38

CHAPTER 4. IMPLEMENTATIONS

Figure 4.5.1: Configuration scrubbing flow chart

Command Description
Idle state I(ASCII)

Observation state O(ASCII)
Query state Q <11-digit hex value>

Error Injection N <11-digit hex value>

Table 4.5.1: ASCII commands for SEM-IP state transitions

4.5.1 Hardware/Software requirements

Category Description
Hardware Zynq Ultrascale+ MPSoC
Peripherals UART

IP Soft-Error Mitigation v3.1
UART helper block

Software Vivado 2018.3
Terminal Minicom

Table 4.5.2: Hardware/Software requirements for FPGA configuration scrubbing

Table 4.4.1 provides an overview of the hardware/software requirement. The SEM-

IP controller and UART helper block run at 100 MHz clock frequency. The UART

module of the processor system uses a default speed of 115200 Bauds, and the SEM-IP

controller is used in mitigation and testing mode in order to test the design using an

39

CHAPTER 4. IMPLEMENTATIONS

error injection mechanism. The ARM Cortex-R5 RPU is used to control the SEM-IP

controller in dual lockstep mode.

40

Chapter 5

Results

This section discusses the results and analysis of the implementation stated in

the previous section of the report. Execution times are calculated for the

implementations carried out in the Single-core ARM Cortex-M4 VA41630 MCU.

For the implementations carried out in the Programmable Logic part of the

Processing board, latency and area of the design are calculated. The outputs of the

implementations are shown and described in this section as well.

5.1 Communication

Operation Execution Time (ms)
Space packet reception 97
Space packet parsing 98

Crc verification 857 µs

Table 5.1.1: Execution time for Communication implementation

The Supervisor receives a space packet of 1024B takes on an average of 97ms. Once

the reception is complete, 98ms is spent on converting the bytes into a space packet.

The CRC verification in order to check the packet integrity takes 857 µs as shown in the

table 5.1.1.

The figure 5.1.1 depicts the reception of a space packet from the OBC. On parsing the

received bytes into space packet, it is found that the packet is meant for the MPSoC

and hence the Supervisor forwards the packet.

The Supervisor receives a packet and decodes it. An error is found in the packet data

41

CHAPTER 5. RESULTS

Figure 5.1.1: Excerpt of output of the Communication implementation

whilst performing 16-bit CRC verification. The error was induced into the data by the

OBC in order to check that the Supervisor performs the integrity check on the incoming

packets, as shown in 5.1.2. The CRC that was received from the OBC was 0x197F while

the CRC generated by the Supervisor was found to be 0xE9E3. This indicates that an

error has occurred in the packet data, and the Supervisor requests the OBC to re-send

the packet.

Figure 5.1.2: Excerpt of output of the Communication implementation

42

CHAPTER 5. RESULTS

5.2 Watchdog

Operation Execution Time (µs)
Initiating reset 13792
Reset Counter < 1

Counter expiration 60000000

Table 5.2.1: Execution time for watchdog implementation

The table 5.2.1 shows the execution times for the watchdog functionality implemented

in the Supervisor. The time taken in order to initiate a reset for the processing board in

the absence of a heartbeat signal from the PS/PL is seen to be 13 792µs. The execution

time to reset a counter is always less than 1 µs. Whereas, the counter expiration is

always 60 s implying that the counter waits for 60 s before triggering a reset for the

processing board.

Figure 5.2.1: Excerpt of output of the watchdog implementation

Figure 5.2.1 depicts the execution of watchdog functionality where the Supervisor

receives a heartbeat every second from the PS of the processing board and resets the

counter related to PS heartbeat. However, the PL counter expires after 60 seconds

without the reception of the heartbeat signal for the PL system of the processing board.

The counter/timer interrupt service routine sends a reset pulse to the processing

board.

43

CHAPTER 5. RESULTS

5.3 Memory scrubbing

The table 5.3.1 provides the execution times for memory scrubbing implementation

in the Supervisor. It takes 0.675ms to read 1024B of data from the NOR flash and

0.868ms to generate a CRC checksum. Scrubbing process for the whole 32 MB of the

memory takes 5056ms on an average.

Operation Execution Time (ms)
Single Read from the memory (1024 B) 0.675

Single CRC generation (1024 B) 0.868
Scrubbing (32 MB) 5056

Table 5.3.1: Execution time for memory scrubbing implementation

Figure 5.3.1: Excerpt of output of the memory scrubbing implementation

Figure 5.3.1 depicts the working of the memory scrubbing. The Supervisor reads

the data from memory 1024 bytes at a time until it reaches 32 MB. The Supervisor

generates aCRCchecksumevery time it reads 1024bytes of data frommemory. Finally,

it compares the generated CRC checksum with the stored CRC to detect the presence

of any errors.

Figure 5.3.2: Excerpt of output of the memory scrubbing implementation

44

CHAPTER 5. RESULTS

When the Supervisor finds an error in the memory, it generates a Telemetry packet to

the OBC reporting the error and requesting to re-write the memory content, as shown

in figure 5.3.2.

5.4 Software/Firmware update

Operation Execution Time (µs)
Page write 456

Sub-sector erase 250
Single CRC generation (32 B) 28

Single CRC read (32 B) 21

Table 5.4.1: Execution time for software/firmware update/verification
implementation

The update and verification operation of a software/firmware makes use of important

operations such as page-write, sub-sector erase, and CRC checksum generation. Table

5.4.1 provides the execution times for these operations for any image that is to be

updated or verified. Writing 256B into NOR flash memory takes 456µs. Whereas,

performing an erase operation on 4096B of the memory takes 250µs. Reading 32B

and generating a single CRC checksum for the same 32B of data takes 21 µs and

28µs, respectively. However, the execution of the whole software/firmware update

or verification process varies according to different image sizes.

Operation Execution Time (s)
1 KB 0.128
4 KB 0.482
13 KB 1.523
24KB 2.792
1 MB 126.910

Table 5.4.2: Update function execution time for various images

The time taken to update and verify various binary images are given in tables 5.4.2

and 5.4.3. As the size of the images increase, time taken by the Supervisor to execute

it increases as well. It takes 0.128 s to update a binary image of 1 kB and it takes

126.910 s (roughly 2 minutes) for a 1MB image. Similarly, in the scenario of verifying

the updated images the time taken by 1 kB, 1 kB, 4 kB, 13 kB, 1MB are 2.600, 9.958,

29.517, 53.117 and 1580.093ms, respectively.

45

CHAPTER 5. RESULTS

Operation Execution Time (ms)
1 KB 2.600
4 KB 9.958
13 KB 29.517
24KB 53.117
1 MB 1580.093

Table 5.4.3: Verification function execution time for various images

The figures 5.4.1 and 5.4.2 show the update process of 24 kB image, where it can be

seen that the binary images are split into pages and written to the memory. Also,

the Supervisor waits for the binary image data from OBC until the update is finished.

The Supervisor receives the image in parts of 25, as shown in the sequence count (in

hexadecimal) in figure 5.4.2.

Figure 5.4.1: Excerpt of output of the image update (24 KB)

The figure 5.4.3 shows that the Supervisor reads the memory location where the

updated image of size 24 kB, generates the CRC checksum and performs a CRC

verification using the CRC checksum that arrived with the Telecommand packet as

reference. The operation is successful as the CRC checksum passes the verification

test.

46

CHAPTER 5. RESULTS

Figure 5.4.2: Excerpt of output of the image update (24 KB)

Figure 5.4.3: Excerpt of output of the image verification (24 KB)

The verification process was tested by injecting an error while the image update (24 KB

binary image) function was being performed. The CRC verification failed as the CRC

generated was 0xD7F9 instead of 0x5008. The Supervisor requested the OBC to initiate

the update of the 24 kB binary image again, as shown in the figure 5.4.4.

47

CHAPTER 5. RESULTS

Figure 5.4.4: Excerpt of output of the image verification (24 KB)

5.5 FPGA configuration study

The SEM-IP takes 56ms to browse through its configuration frames in order to detect

errors. In case it stumbles upon any errors in the frames, it takes around 88µs

to correct a single bit error. The boot and initializing times of the design are also

mentioned in table 5.5.1.

Operation Execution Time
Boot 254 ms

Initialize 142 ms
Error detection 56 ms
Error correction 88µs

Table 5.5.1: SEM-IP execution time

The area consumption of the SEM-IP controller is shown in table 5.5.2. This indicates

that the SEM-IP uses less than 0.5% of the available resources in the Zynq Ultrascale+

MPSoC which can be calculated with the help of table 2.3.1.

Resource Number
Look-up tables 430

Flip-flops 530
Input/Output 64

BRAM 4
DSP 1

Table 5.5.2: SEM-IP area analysis

Table 5.5.3 provides the necessary information to understand the reports of the SEM-

IP controller. SC (State Change) gives the current state of the SEM-IP out of the nine

48

CHAPTER 5. RESULTS

possible states. The four states which are relevant to the results are alone represented

in the table 5.5.3. For further information regarding the entire list of states, refer

to Ultrascale architecture SEM-IP documentation [28]. FC (Flag Change) reports

the importance of the affected bit(s) and also mentions whether the affected bit(s) is

correctable or not. There are two types of errors that can be identified by the SEM-

IP controller: CRC-based error and ECC-based error. The ECC acronym signifies

the presence of an ECC-based error. The presence of a CRC-based error was not

encountered in the results hence they are outside the scope of this thesis project. TS

provides a timestamp of the event of error correction. PA andLA represent the physical

address and the linear address of the frame, respectively. COR followed by END

signifies the end of the error correction process. The acronyms WD and BT denotes

the word and bit position of the detected error in the frame.

Report acronyms Description
SC 00 Idle state
SC 02 Observation state
SC 04 Correction state
SC 08 Classification state
SC 10 Injection state
FC 00 Flag change: correctable, non-essential bit
FC 40 Flag change: correctable, essential bit
RI 00 Reserved Information
ECC ECC-based error

TS {8-digit hex value} Timestamp
PA {8-digit hex value} Physical address
LA {8-digit hex value} Linear address

COR END Correction ended
WD {2-digit hex value} Word in the frame
BT {2-digit hex value} Bit position in the word

Table 5.5.3: SEM-IP report description

The results of latency and area of SEM-IP show the swiftness in terms of error detection

and correction and efficiency in terms of resource utilization. Figure 5.5.1 shows the

error being injected into the design. The error was injected in the bit 0 of the 46th

word of the frame number 7000. Hence, the linear frame address equals to the value

0xC00070005C0. It can also be viewed from the same figure 5.5.1 that the error in the

stated frame can be viewed by sending Query command with the appropriate frame

address.

Figure 5.5.2 shows the error injected in the middle of the frame number 7000. The

49

CHAPTER 5. RESULTS

Figure 5.5.1: Excerpt of output of the configuration scrubbing implementation

Figure 5.5.2: Excerpt of output of the configuration scrubbing implementation

Figure 5.5.3: Excerpt of output of the configuration scrubbing implementation

50

CHAPTER 5. RESULTS

table 5.5.3 helps in understanding the report shown in the figure 5.5.3. When the SEM-

IP controller was put in the observation state, the errorwas detected, and the controller

moved into the correction state (SC 04). The detected error was an ECC-based error

which is denoted by the acronymECC. The physical and linear frame address where the

error was present is shown to be 0x102612 and 0x7000, respectively. The error detected

was present in the bit 0 of the word 2E of the frame 0x7000. The SEM-IP identifies the

error as a correctable error and the bit as a non-essential bit (FC 00). Since the error

classification was not used in the implementation, the SEM-IP controller jumps from

the classification state (SC 08) to the observation state (SC 02) without performing

error classification.

51

Chapter 6

Conclusion and Future works

This chapter provides a conclusion for this thesis work and also discusses the

limitations faced during the course of action. Finally, the chapter ends with the future

works that can be carried out as an extension of this master thesis work.

6.1 Conclusion

Using space-grade components in CubeSats increases the cost of the mission

tremendously. This makes it hard for institutions and organizations involved in small-

scaled CubeSat missions to make use of expensive space-grade components. This

thesis work aids in designing a CubeSat hardware architecture using COTS MPSoC

as a processing center and an affordable radiation-hardened MCU that acts as a

Supervisor for the processing center. This architecture will potentially be applied in

the EIVE CubeSat mission. However, this Cubesat architecture is not restricted to one

particular application because it was implemented, keeping in mind the adaptability

to incorporate it with any application. This is attributed to the versatility of the Zynq

Ultrascale+ MPSoC and the resilient supervision by Vorago VA41630 MCU.

This thesis provides insight into how the Supervisor safeguards the COTS MPSoC

by maintaining reliable communication and watchdog monitoring to ensure the

continuous operation of the processing board. It also performs memory scrubbing for

the primary NOR flash memory to ward away single-event upsets in the memory. The

Rad-hard MCU maintains all these operations external to the MPSoC.

Internally, theCOTSMPSoCperforms configuration scrubbing tomonitor single-event

upsets in CRAM of the PL with the help of the PS present in the MPSoC itself.

52

CHAPTER 6. CONCLUSION AND FUTUREWORKS

6.2 Limitations

The CubeSat hardware architecture was designed and developed using individual

evaluation kits and components such as ZynqUltrascale+MPSoCandVoragoVA41630

Cortex-M4 based MCU, 32 MB SPI NOR flash. This leads to connections being made

using jumper cables. Also, all the peripherals of the devices were not accessible

at the same time because of the availability restricted number of I/Os. This made

the development of the application difficult, and the testing of all the applications

simultaneously was not possible. Developing a custom kit with both processing board

and Supervisor on the same board will prove useful in such situations.

6.3 Future Work

The project work presented can be extended by incorporating several things. Firstly,

implementing and testing latch-up monitoring functionality to avoid latch-up in the

Zynq Ultrascale+ MPSoC can be added to the design. The reason is that this work

discusses latch-up monitoring as one of the many functionalities of the Supervisor in

the architecture section. The same reason can be applied to the implementation of

data logging inMRAM. Secondly, the workmakes use of bare-metal implementation of

functionalities implemented in the Supervisor. Instead, an RTOS, such as FreeRTOS,

can be used to make the design efficient and robust by scheduling the functionalities

as different tasks and assigning appropriate priorities to them.

53

Bibliography

[1] Adell, Philippe C., Moro, Slaven, Gouyet, Lionel, Chatry, Christian, and

Vermeire, Bert. “Single event effect assessment of a 1-Mbit commercial

magneto-resistive random access memory (MRAM)”. In: IEEE Radiation

Effects Data Workshop 2017-July (2017). DOI: 10.1109/NSREC.2017.8115456.

[2] Anderson, Jordan D., Leavitt, Jennings C., and Wirthlin, Michael J. “Neutron

Radiation Beam Results for the Xilinx UltraScale+ MPSoC”. In: 2018 IEEE

Nuclear and Space Radiation Effects Conference, NSREC 2018 (2018), pp. 1–7.

DOI: 10.1109/NSREC.2018.8584297.

[3] Apu, Processing Unit. “Zynq UltraScale + MPSoC Data Sheet : Overview

Processing System (PS) Arm Cortex-A53 Based Application Dual-core Arm

Cortex-R5 Based On-Chip Memory”. In: 891 (2018), pp. 1–42.

[4] Bez, R., Camerlenghi, E., Modelli, A., and Visconti, A. “Introduction to flash

memory”. In: Proceedings of the IEEE 91.4 (2003), pp. 489–502.

[5] CCSDS. “Space Packet Protocol”. In: Ccsds 133.0-B-1 September 2003 (2003),

p. 49.

[6] CubeSat Overview. https : / / www . nasa . gov / mission _ pages / cubesats /

overview. Accessed: 03-08-2020.

[7] Dong, Z., Guo, Y., Gong, Y., and Li, C. “A High Reliability Radiation

Hardened On-Board Computer System for Space Application”. In: 2016

Sixth International Conference on Instrumentation Measurement, Computer,

Communication and Control (IMCCC). 2016, pp. 671–674.

[8] Fuchs, ChristianM.,Murillo, Nadia, Plaat, Aske, Van der Kouwe, Erik, Harsono,

Daniel, and Stefanov, Todor. “Fault-Tolerant Nanosatellite Computing on a

Budget”. In: March 2019 (2019). arXiv: 1903.08781. URL: http://arxiv.org/

abs/1903.08781.

54

https://doi.org/10.1109/NSREC.2017.8115456
https://doi.org/10.1109/NSREC.2018.8584297
https://www.nasa.gov/mission_pages/cubesats/overview
https://www.nasa.gov/mission_pages/cubesats/overview
https://arxiv.org/abs/1903.08781
http://arxiv.org/abs/1903.08781
http://arxiv.org/abs/1903.08781

BIBLIOGRAPHY

[9] Glorieux,

Maximilien, Evans, Adrian, Lange, Thomas, In, A. Duong, Alexandrescu, Dan,

Boatella-Polo, Cesar, Alia, Ruben Garcia, Tali, Maris, Ortega, Carlos Urbina,

Kastriotou, Maria, Fernandez-Martinez, Pablo, and Ferlet-Cavrois, Veronique.

“Single-Event Characterization of XilinxUltraScale+®MPSOCunder Standard

and Ultra-High Energy Heavy-Ion Irradiation”. In: 2018 IEEE Nuclear and

Space Radiation Effects Conference, NSREC 2018 (2018). DOI: 10 . 1109 /

NSREC.2018.8584296.

[10] Hiemstra, David M., Kirischian, Valeri, and Brelski, Jakub. “Single event upset

characterization of the Zynq UltraScale+ MPSoC using proton irradiation”. In:

IEEE Radiation Effects Data Workshop 2017-July (2017), pp. 4–7. DOI: 10.

1109/NSREC.2017.8115448.

[11] Ikegawa, Sumio, Mancoff, Frederick B., Janesky, Jason, and Aggarwal, Sanjeev.

“Magnetoresistive Random Access Memory: Present and Future”. In: IEEE

Transactions on ElectronDevices 67.4 (2020), pp. 1407–1419. ISSN: 15579646.

DOI: 10.1109/TED.2020.2965403.

[12] Irom, Farokh and Nguyen, Duc N. “SEE and TID response of Spansion 512Mb

NOR flash memory”. In: IEEE Radiation Effects Data Workshop (2011),

pp. 143–146. DOI: 10.1109/REDW.2010.6062520.

[13] Le, Robert. “Soft Error Mitigation Using Prioritized”. In: 538 (2012), pp. 1–11.

URL: http://www.xilinx.com/support/documentation/application%7B%5C_

%7Dnotes/xapp538-soft-error-mitigation-essential-bits.pdf.

[14] Maurer, Richard H., Fraeman, Martin E., Martin, Mark N., and Roth, David R.

“Harsh environments: Space radiation environment, effects, and mitigation”.

In: Johns Hopkins APL Technical Digest (Applied Physics Laboratory) 28.1

(2008), pp. 17–29. ISSN: 02705214.

[15] Nagarajan, Chandrasekhar, D’Souza, Rodney Gracian, Karumuri, Sukumar,

and Kinger, Krishna. “Design of a cubesat computer architecture using COTS

hardware for terrestrial thermal imaging”. In: Proceeding - ICARES 2014: 2014

IEEE International Conference on Aerospace Electronics and Remote Sensing

Technology (2014), pp. 67–76. DOI: 10.1109/ICARES.2014.7024379.

[16] Nguyen, N. “Radiation Effects on Advanced Flash Memoriest D.” In: 46.6

(1999), pp. 1744–1750.

55

https://doi.org/10.1109/NSREC.2018.8584296
https://doi.org/10.1109/NSREC.2018.8584296
https://doi.org/10.1109/NSREC.2017.8115448
https://doi.org/10.1109/NSREC.2017.8115448
https://doi.org/10.1109/TED.2020.2965403
https://doi.org/10.1109/REDW.2010.6062520
http://www.xilinx.com/support/documentation/application%7B%5C_%7Dnotes/xapp538-soft-error-mitigation-essential-bits.pdf
http://www.xilinx.com/support/documentation/application%7B%5C_%7Dnotes/xapp538-soft-error-mitigation-essential-bits.pdf
https://doi.org/10.1109/ICARES.2014.7024379

BIBLIOGRAPHY

[17] Osman, Duaa A.M. and Mohamed, Sondos W.A. “Hardware and software

design of Onboard Computer of ISRASAT1 CubeSat”. In: Proceedings -

2017 International Conference on Communication, Control, Computing and

Electronics Engineering, ICCCCEE 2017 (2017), pp. 1–4. DOI: 10 . 1109 /

ICCCCEE.2017.7867654.

[18] Perez, Arturo, Otero, Andres, and Torre, Eduardo de la. “Performance Analysis

of SEE Mitigation Techniques on Zynq Ultrascale + Hardened Processing

Fabrics”. In: Aug. 2018, pp. 51–58. DOI: 10.1109/AHS.2018.8541490.

[19] Radiation Hardened ARM® Cortex-M4. https : / / www . voragotech . com /

products/va41630. Accessed: 03-08-2020.

[20] Schoch, B., Chartier, S., Mohr, U., Koller, M., Klinkner, S., and Kallfass, I.

“Towards a CubeSatMission for aWidebandData Transmission in E-Band”. In:

2020 IEEE SpaceHardware and Radio Conference (SHaRC). 2020, pp. 16–19.

[21] Sheng-Ju, S. “Implementation of Cyclic Redundancy Check in

Data Communication”. In: 2015 International Conference on Computational

Intelligence and Communication Networks (CICN). 2015, pp. 529–531.

[22] Singh, A. K. “Comprehensive study of error detection by cyclic redundancy

check”. In: 2017 2nd International Conference for Convergence in Technology

(I2CT). 2017, pp. 556–558.

[23] Skauen, Andreas Nordmo, Jahnsen, Berit, Smestad, Tore, Grimstvedt, Eirik

Skjelbreid, Gulbrandsen, Fredrik, Cotten, Brad, and Zee, Robert E. “NorSat-3

– next generation Norwegian maritime surveillance”. In: ().

[24] Stoddard, Aaron Gerald. “Configuration Scrubbing Architectures for

HighReliability FPGA Systems”. In: (2015), p. 159.

[25] Stoddard, Aaron, Gruwell, Ammon, Zabriskie, Peter, and Wirthlin, Michael J.

“AHybrid Approach to FPGA Configuration Scrubbing”. In: IEEE Transactions

on Nuclear Science 64.1 (2017), pp. 497–503. ISSN: 00189499. DOI: 10.1109/

TNS.2016.2636666.

[26] Toorian, A., Diaz, K., and Lee, S. “The CubeSat Approach to Space Access”. In:

2008 IEEE Aerospace Conference. 2008, pp. 1–14.

56

https://doi.org/10.1109/ICCCCEE.2017.7867654
https://doi.org/10.1109/ICCCCEE.2017.7867654
https://doi.org/10.1109/AHS.2018.8541490
https://www.voragotech.com/products/va41630
https://www.voragotech.com/products/va41630
https://doi.org/10.1109/TNS.2016.2636666
https://doi.org/10.1109/TNS.2016.2636666

BIBLIOGRAPHY

[27] Wikipedia contributors.CubeSat—Wikipedia, The FreeEncyclopedia. [Online;

accessed 29-October-2020]. 2020. URL: https : / / en . wikipedia . org / w /

index.php?title=CubeSat&oldid=978683366.

[28] Xilinx. “UltraScale Architecture Soft Error Mitigation Table of Contents”. In:

(2017), pp. 1–178. URL: https://www.xilinx.com/support/documentation/

ip%7B%5C_%7Ddocumentation/sem%7B%5C_%7Dultra/v3%7B%5C_%7D1/pg187-

ultrascale-sem.pdf.

[29] Xilinx. “UltraScale Devices Maximize Design Integrity with Industry-Leading

SEU Resilience and Mitigation”. In: 462 (2015), pp. 1–11. URL: http://www.

xilinx . com / support / documentation / white % 7B % 5C _ %7Dpapers / wp462 -

ultrascale-SEU.pdf.

[30] Xilinx Inc. “Zynq UltraScale+ Device TRM”. In: 1085 (2019), pp. 1–1177. URL:

https://www.xilinx.com/support/documentation/user%7B%5C_%7Dguides/

ug1085-zynq-ultrascale-trm.pdf.

[31] “Zynq ® UltraScale +™MPSoCs CG”. In: (2018).

57

https://en.wikipedia.org/w/index.php?title=CubeSat&oldid=978683366
https://en.wikipedia.org/w/index.php?title=CubeSat&oldid=978683366
https://www.xilinx.com/support/documentation/ip%7B%5C_%7Ddocumentation/sem%7B%5C_%7Dultra/v3%7B%5C_%7D1/pg187-ultrascale-sem.pdf
https://www.xilinx.com/support/documentation/ip%7B%5C_%7Ddocumentation/sem%7B%5C_%7Dultra/v3%7B%5C_%7D1/pg187-ultrascale-sem.pdf
https://www.xilinx.com/support/documentation/ip%7B%5C_%7Ddocumentation/sem%7B%5C_%7Dultra/v3%7B%5C_%7D1/pg187-ultrascale-sem.pdf
http://www.xilinx.com/support/documentation/white%7B%5C_%7Dpapers/wp462-ultrascale-SEU.pdf
http://www.xilinx.com/support/documentation/white%7B%5C_%7Dpapers/wp462-ultrascale-SEU.pdf
http://www.xilinx.com/support/documentation/white%7B%5C_%7Dpapers/wp462-ultrascale-SEU.pdf
https://www.xilinx.com/support/documentation/user%7B%5C_%7Dguides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user%7B%5C_%7Dguides/ug1085-zynq-ultrascale-trm.pdf

TRITA-EECS-EX-2020:815

www.kth.se

	Introduction
	Goals
	Delimitation
	Structure of the thesis

	Related Work
	Single Event Effects
	Single-Event Latch-ups
	Single-Event Upsets

	CubeSats
	Zynq Ultrascale+ MPSoC Architecture
	Radiation Tests for Zynq Ultrascale+ MPSoC
	Built-in Fault-Tolerant features of Zynq Ultrascale+

	FPGA Configuration Scrubbing
	FPGA Configuration
	Scrubbing

	Soft-error Mitigation Intellectual property
	Different States of the SEM-IP Controller

	Space Packet Protocol
	Cyclic Redundancy Check
	Radiation Hardened MCU
	Memories

	Cubesat Hardware Architecture
	Overview
	Supervisor
	Interfaces
	Functions

	Processing Board
	Interfaces
	Functions

	Implementations
	Communication
	Hardware/Software Requirements
	Hardware/Software Limitations

	Watchdog
	Hardware/Software Requirements

	Memory scrubbing
	Hardware/Software requirements
	Hardware/Software Limitations

	Software/Firmware Update
	Hardware/Software requirements

	FPGA Configuration Scrubbing
	Hardware/Software requirements

	Results
	Communication
	Watchdog
	Memory scrubbing
	Software/Firmware update
	FPGA configuration study

	Conclusion and Future works
	Conclusion
	Limitations
	Future Work

	Bibliography

