
Poster: Stateless CPU-aware Datacenter Load-Balancing
Tom Barbette, Marco Chiesa, Gerald Q. Maguire Jr. and Dejan Kostić

KTH Royal Institute of Technology

ABSTRACT
Today, datacenter operators deploy Load-balancers (LBs) to
efficiently utilize server resources, but must over-provision server
resources (by up to 30%) because of load imbalances and the desire
to bound tail service latency. We posit one of the reasons for these
imbalances is the lack of per-core load statistics in existing LBs. As
a first step, we designed CrossRSS, a CPU core-aware LB that dy-
namically assigns incoming connections to the least loaded cores in
the server pool. CrossRSS leverages knowledge of the dispatching
by each server’s Network Interface Card (NIC) to specific cores
to reduce imbalances by more than an order of magnitude com-
pared to existing LBs in a proof-of-concept datacenter environment,
processing 12% more packets with the same number of cores.

CCS CONCEPTS
• Networks → Packet scheduling; Middle boxes / network
appliances;Network servers;Data center networks;Network
resources allocation.

1 INTRODUCTION AND BACKGROUND
Datacenter networks use LBs to spread incoming connections across
a pool of servers. When a LB uniformly spreads the load, none of
the servers is overly utilized and all requests are served efficiently
without high tail latency. Unfortunately, today’s LBs may cause im-
balances in the load on servers, forcing operators to over-provision
their server resources by up to 30% [5].
Limitations of today’s LBs. Today’s LBs cannot achieve uniform
load balancing because of a lack of fine-grained information about
each server’s utilization of its multiple cores. Both stateless[10] and
stateful[5] state-of-the-art datacenter LBs rely on aggregated per-
server statistics, such as number of connections per server or aver-
age CPU utilization per server. However, the actual servers spread
the incoming connections over their cores using stateless hash-
based mechanisms (i.e. RSS) that map the connection’s identifier
to a specific core without storing any per-connection information.
Such hash-based mechanisms are known to cause imbalances when
elephant flows must be load balanced (see Hedera [1]). Imagine two
large connections that map to the same core in an under-loaded
server. These connections will experience high tail latencies even
when the aggregated per-server load used by the datacenter LB is
low. Therefore, others have tried to solve the intra-server per-core
load balancing problem by migrating connections among cores [2].
As migration of packets among cores means the state in L1/L2
caches is lost and context switches take up to 10 microseconds,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT ’20, December 1–4, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7948-9/20/12.
https://doi.org/10.1145/3386367.3431672

recent network stacks [6] and specific network intensive applica-
tions) [8] all advocate against migration of packets between CPU
cores, and therefore revert to RSS to locally load balance packets.
Moreover, intra-server LBs require modifications to the servers
while a transparent solution would be easier to deploy.
The challenge. Current solutions require modification of server
applications, eventually using server resources (such as CPU [2,
11] or SmartNICs [12]) for the purpose of load-balancing itself
resulting in a difficult & costly adoption. At the same time, tra-
ditional LBs have no means to target specific CPU cores without
relying on tagging and server modifications for dispatching [7].
The quest for a CPU-aware datacenter LB. We pose the
question: “Can we devise a load balancing mechanism that takes
into account the per CPU core load – to achieve more uniform load
balancing without requiring modifications to the servers?". Later, we
discuss the main challenges in realizing such an LB, propose a
scalable design, and perform a simple evaluation.

2 SYSTEM DESIGN
Incorporating per-core statistics into a LB to dispatch incoming
connections to thousands of servers is non-trivial. First, fetching
fine-grained information from the servers imposes additional band-
width and other overheads on the servers. Secondly, an appropriate
core-selection mechanism must be used to assign a new connec-
tion to the servers while minimizing load imbalance. Compared to
selecting a single core, finding an optimal core choice is inherently
more complex as the number of cores is larger than the number of
servers. Third, we cannot modify the RSS hash-basedmechanism on
the NICs of the servers. Thus, given a new connection, we can only
pick a single core at each server, as determined by the output of the
RSS hash-based core selection. We leave SmartNICs to future work
and note they are an expensive option and potentially introduce
additional latency. Figure 1 shows our system design. An agent on
each server periodically reports to an LB controller the load of each
CPU core and the mapping used by RSS to map connections to

Server A

Core
1

Core
2

1
1
2
2

Server B

Core
1

Core
2

1
2
1
2

Hash

Controller

A B
Hash

CPU core load
Load-balancer

Hash

LB buckets (RSS buckets aware)

RSS buckets

A

A

A

B

Figure 1: System design: an agent periodically rewrites a
server selection table according to the RSS mapping in the
servers and corresponding CPU loads

https://doi.org/10.1145/3386367.3431672


CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Tom Barbette, Marco Chiesa, Gerald Q. Maguire Jr. and Dejan Kostić

the cores. More specifically, RSS stores an array of buckets where
each bucket maps to a specific core. The least significant bits of
the hash of a connection identifier are used to select the bucket
used by a connection to retrieve its core assignment. While bucket
assignments may be changed on-the-fly [2] this leads to inter-core
packet processing, thus changes in assignment should be avoided.

The LB controller (shown as a green box) periodically takes as
input the bucket-to-core-load statistics from each server and com-
putes a bucket-to-server mapping. For each bucket, the controller
has information about the load of one specific core for each server.
The controller computes the least loaded core among these cores. It
then constructs a bucket-to-server mapping based on the selected
cores and their corresponding servers and installs this mapping
in the data-plane of the LB (see the LB buckets’ mapping in the
figure). The LB data-plane uses this mapping to assign connections
to the servers. When the load on these cores changes, the controller
updates the mapping. A bucket is selected based on the hash’s
least significant bits, as computed by the servers’ NICs, i.e. RSS.
Therefore, a given connection will always map to the same bucket
and will be directed to the least loaded core of all servers for that
specific bucket. We use a pseudo-random number generator (with
server IDs as a seed) to randomize each server’s indirection table,
thus a pseudo-random core of each server is considered for each
bucket of the LB, rather than a fixed set of cores for each server,
similarly to the advanced Power-of-𝐾-choices load balancing tech-
nique [9]. Since connections are spread across 𝑘 minimally loaded
CPUs, a small information delay will not cause a server to be over-
loaded. Changing this mapping might break existing connections,
i.e. routing them to an incorrect server. We propose to use stateless
techniques as in Cheetah [4] to avoid breaking such connections
without the need to make the LB stateful. CrossRSS also enables
scaling through hierarchical aggregation, as the minimal load of a
group of servers is the same as the minimal load of any server.

3 EVALUATION
We simulate our proposal using FastClick[3]. A module reads a
real campus network trace and pipes it to a load-balancing module
that dispatches packets to 4 simulated servers. Each server has a
simulated NIC, utilizing a hashing mechanism similar to RSS to
dispatch packets to 4 cores, represented by packet counters, run-
ning on 16 different CPU cores of an 18-cores Xeon Gold 6140. In
Figure 2, we compare multiple combinations of algorithms for load-
balancing: RR uses a per-flow round-robin dispatcher (to avoid
breaking connections) to the servers, HASH uses hashing to dis-
patch packets to servers and Pow2 uses the Power-of-2-choices.
In all cases, the NIC uses RSS. CrossRSS is implemented using a
10Hz CPU load reporting frequency to a controller module that
rewrites the entries in the LB buckets table as explained in Section 2.
Pow2 uses the load reported at the same frequency. In Figure 2a we
measure (i) server load variance (i.e., number of packets received
by each CPU divided by the average number of packets) and (ii) the
per-core variance across all machines for consecutive 1 s windows.
While existing methods show a variance between servers below
0.5%, they do not decrease the variance in load between cores in-
side each server. CrossRSS has, on average, more than an order
of magnitude smaller variance as it simultaneously achieves good
spreading both between servers and inside servers. Figure 2b shows

the consequence of such imbalance, when each core runs a heavy
network function chain. As the load increases, some cores will
drop packets as they become overloaded, while others are starving.
CrossRSS’s even distribution more fully utilizes all cores.
Future work. A variety of overheads may hinder the deployment
of a CPU-aware LB. We investigated the potential of such an LB
compared to existing solutions and plan to evaluate the scalability
of such an LB through extensive micro-benchmarks.

REFERENCES
[1] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In 7th USENIX Conference on Networked Systems Design and Implemen-
tation, NSDI. USENIX, 2010.

[2] Tom Barbette, Georgios P. Katsikas, G. Q. Maguire Jr., and Dejan Kostić. RSS++:
Load and state-aware receive side scaling. In 15th International Conference on
Emerging Networking Experiments And Technologies, CoNEXT ’19, 2019.

[3] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast userspace packet pro-
cessing. In Eleventh ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ANCS, pages 5–16. IEEE, 2015.

[4] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostić, G. Q. Maguire Jr., Panagiotis
Papadimitratos, and Marco Chiesa. A high-speed load-balancer design with
guaranteed per-connection-consistency. NSDI, pages 667–683. USENIX, 2020.

[5] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable software network load balancer.
NSDI, pages 523–535. USENIX, 2016.

[6] EunYoung Jeong, ShinaeWoo, Muhammad Asim Jamshed, Haewon Jeong, Sungh-
wan Ihm, Dongsu Han, and KyoungSoo Park. mTCP: a highly scalable user-level
TCP stack for multicore systems. NSDI, pages 489–502. USENIX, 2014.

[7] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert, and Gerald Q.
Maguire Jr. Metron: NFV Service Chains at the True Speed of the Underlying
Hardware. NSDI’18, pages 171–186. USENIX, 2018.

[8] Hyeontaek Lim, Donsu Han, David G Andersen, and Michael Kaminsky. MICA:
A holistic approach to fast in-memory key-value storage. NSDI. USENIX, 2014.

[9] Michael David Mitzenmacher. The Power of Two Choices in Randomized Load
Balancing. PhD thesis, University of California, Berkeley, 1996.

[10] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu. State-
less datacenter load-balancing with Beamer. NSDI. USENIX, 2018.

[11] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. Shenango: Achieving high CPU efficiency for latency-sensitive datacenter
workloads. NSDI, pages 361–378. USENIX, 2019.

[12] Alexander Rucker, Muhammad Shahbaz, Tushar Swamy, and Kunle Olukotun.
Elastic rss: Co-scheduling packets and cores using programmable nics. In Pro-
ceedings of the 3rd Asia-Pacific Workshop on Networking 2019, pages 71–77, 2019.

0
2
4
6
8

10
12

Se
rv

er
 v

ar
ia

nc
e 

(%
)

0.1 0.3 0.2 0.5

CrossRSS RR Pow2 HASH

0
2
4
6
8

10
12

Pe
r-c

or
e 

va
ria

nc
e 

(%
)

0.3

7.2
9.1

7.8

CrossRSS RR Pow2 HASH

(a) Variance of the number of packets (i) between servers (ii) be-
tween all cores of all machines

15
20
25
30
35

Th
ro

ug
hp

ut
 (G

bp
s)

17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5
Offered load (Gbps)

0

(b) Throughput

Figure 2: Comparison of four load-balancing techniques.
CrossRSS exhibits a near-perfect variance (a), allowing it to
handle more packets without overloading any core (b).



Poster: Stateless CPU-aware Datacenter Load-Balancing CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

REVISION 1
The scripts to reproduce the experiments are available at
https://github.com/tbarbette/crossrss.

https://github.com/tbarbette/crossrss

	Abstract
	1 Introduction and Background
	2 System Design
	3 Evaluation
	References

