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Abstract. The operational speed of the trains is intended to be significantly increased
forthcoming; which consequently questions the safety level of the current design concepts
concerning different performance limits. Thus, the reliability of the simply supported
single-span bridges is assessed in the current article adopting the first-order reliability
method (FORM) approach. In this regard, the dynamic response of the aimed bridges is
investigated under the passage of a series of moving loads using available closed-form so-
lutions in the literature. Hereof, axle load, car body/train configuration, flexural rigidity,
damping, mass and model uncertainties are considered as random variables; while train-
track-bridge interactions are neglected and the procedure is repeated for a wide range of
span lengths and train velocities. Then, the safety index corresponding to each case is
evaluated by considering running safety as the limit state function; where, the bridge deck
vertical acceleration is taken as the capacity of the system. The outcomes are presented
as average probability of exceeding the limit state versus train speed and categorized based
on span lengths.
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1 INTRODUCTION

Former studies have shown that ballast instability is the dominant design criteria of
high-speed railway bridges in comparison to the contact loss or excessive deflections. The
latter statement is particularly validated for short to medium span bridges using numerical
simulations [1, 2]. It was observed that this phenomenon may occur at high vertical
accelerations leading the interlock between grains to be lost or the lateral resistance of
sleeper to be reduced. Its possibility of occurrence significantly increases under resonance
conditions; which may occur due to high speed and repeated action of the axle loads [3].

In this regard, Zacher and Baeßler [4] conducted a shaking table test; in which they
observed that the lateral resistance of the sleeper was significantly reduced at vertical
accelerations about 7 m/s2. The obtained outcomes revealed that the proposed vertical
acceleration limit in EN-1990-A2 [5], i.e. 3.5 m/s2 for ballasted tracks comply with a
safety factor of 2. Therefore, further researches particularly reliability assessments may
be conducted to evaluate the achieved safety level by following current regulations. Those
investigations may lead to more reliable design thresholds.

Generally, probability of failure/violation (pf ) of limit state (performance) function
can be estimated by calculating reliability integral as follows [6]:

pf = P [R− S ≤ 0] = P [G(X) ≤ 0] =
∫
...
∫
G(X)≤0

fX(x)dx (1)

Where, G(X) is the limit state function (safety margin) representing capacity (resistance
- R) minus demand (load effects - S) and fX(x) is the joint probability density function
of all random (basic) variables.

The aforesaid integration cannot be calculated in real (complicated) problems; in which
contributing random variables present an n-dimensional hyperspace. Thus, practical so-
lutions have been developed to either numerically evaluate the integral (such as Monte
Carlo simulations) or approximate it (e.g. First Order Reliability Method - FORM). The
current article adopted FORM to evaluate the probability of ballast instability in simply
supported bridges under the passage of high-speed trains.

Within the FORM method, the safety level is expressed as a reliability index (β); which
is the shortest distance from the origin to the desired limit state function (see Figure 1).
Then, the probability of failure can be estimated as Eq. 2:

pf ≈ Φ(−β) (2)

Where Φ is the standard Normal (Gaussian) distribution function.
Generally, FORM considers the linear approximation of the limit state function using

Taylor series expansion around the most probable point (MPP) or checking point (shown
as u∗ in Figure 1); which its surrounding area has the highest contribution on the failure
probability. Detailed information regarding FORM can be found in [6, 7]. Therefore,
its outcome would depend on the used formulation defining failure surface; which is con-
trary to invariant problem. Thus, considered random variables and consequently, the
limit state function should be transformed to standard Normal space using Hasofer-Lind
transformation (Eq. 3).

Ui =
Xi − μXi

σXi

(3)
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Where, Xi is the basic random variable with first two moments of μXi
and σXi

and Ui is
the transformed random variable.

Furthermore, the obtained direction cosines (α) can be used as a sensitivity of the
transformed limit state function to the random variables. In this study, the omission
sensitivity factor (γi) is employed in addition to the direction cosines; which presents
the relative importance of the random variable on reliability index if it was considered
as deterministic. It is defined as the ratio of the reliability index when the ith random
variable is deterministic (βfi ) to the reliability index when all variables are stochastic [8].
For independent random variables it would be as follows:

γi =
βf
i

β
=

1√
1− α2

i

(4)

Figure 1: Schematic concept of the FORM [6, 7]

2 CONSIDERED ANALYTICAL SOLUTION

Detailed investigation of the dynamic behavior of railway bridges can be achieved by
modeling bridge structure, boundary conditions (soil-structure interaction - SSI), ballast,
track, rail, train and their interactions (train-track-bridge interaction - TTBI). Schematic
view of such a general model is shown in Figure 2a. In spite of providing detailed in-
sight regarding dynamic response, the general model requires considering many random
variables; which significantly increases computational costs of reliability evaluations. Fur-
thermore, the probability characteristics of interaction- and boundary condition related
variables are not well exploited. Thus, a simplified model including passage of a series of
moving loads along a simply supported beam is taken into account here (see Figure 2b).

A close-form solution has been previously presented by [9, 10] to calculate beam deflec-
tion under such loading scenario. Therefore, the second derivative of the proposed solution
is derived here to estimate the vertical acceleration of the bridge. Those equations are
presented in Eqs. (5) to (10).

ü(t) =
∞∑
n=1

q̈n(t)φn(x) =
∞∑
n=1

q̈n(t) sin(
nπx

L
) (5)
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Figure 2: General modeling of railway bridge under passage of trains versus simplified adopted load model

q̈n(t) =
2pL3

EIπ4
[Pn(v, t) + Pn(v, t− Lf/v)] (6)

p1 = 1− Sn2, p2 = 2ξnSn, p3 = −ξnωn (7)

p4 =
Sn(2ξn

2 + Sn
2 − 1)√

1− ξn2
, tk =

(k − 1)D

v

Pn(v, t) =
1

n4

N∑
k=1

1

p12 + p22

[
A(t− tk).H(t− tk) + (−1)n+1A(t− tk −

L

v
).H(t− tk −

L

v
)

]
(8)

α1 = −p1Ωn
2, α2 = p2Ωn

2, α3 = p2p3
2 + 2p3p4ωdn − p2ωdn

2 (9)

α4 = p3
2p4 − 2p2p3ωdn − p4ωdn

2

A(t) = α1 sinΩnt+ α2 cosΩnt+ e
p3t

[
α3 cosωdnt+ α4 sinωdnt

]
(10)

3441



Reza Allahvirdizadeh, Andreas Andersson and Raid Karoumi

Where, ü(t) is the deck acceleration, q̈n(t) is the generalized coordinate, φn(x) is the mode
shape of the nth mode of vibration, L is the span length of the beam, p is the axle load, EI
is the flexural rigidity of the beam, v is the speed of the train, Lf is the distance between
the front and rear wheelsets subsystems in each car body, Sn = nπv/ωnL is the speed
parameter corresponding to the nth mode of vibration, ξn is the damping ratio of the nth

mode of vibration, D is the distance between front to front or rear to rear wheelsets in
subsequent car bodies, N is the number of car bodies, H(t) is the Heaviside function,

Ωn = Snωn is the exciting frequency implied by the moving load and ωdn = ωn

√
1− ξ2n is

the damped frequency of the nth mode of vibration.
It is worthwhile noting that only the first mode of vibration is considered here for

the sake of simplification. Such consideration imposes some errors particularly at off-
resonance speeds; however, it results in accurate enough predictions for resonance speeds.
Therefore, considering only one mode of vibration may not generally affect the safety of
the bridge.

Additionally, it has been previously observed that spreading axle loads through the
track structure (rails, sleepers and ballast) significantly reduces the bridge response par-
ticularly for the short span ones [11]. Therefore, a reduction coefficient is multiplied by
the obtained response from the aforementioned analytical solution; which is obtained by
fitting the presented relationship in Eq. 11 to the graphically proposed reduction factor
in [12].

R(λ) =

⎧⎪⎨⎪⎩
0.14 , λ ≤ 1.5

−0.00011λ4 + 0.0053λ3 − 0.083λ2 + 0.57λ− 0.54 , 1.5 < λ < 8.0
1.0 , λ ≥ 8.0

(11)

Where, λ = v/f1 is the wavelength.

2.1 Verification of analytical solution

A previously presented example by Yang et al. [9] is taken into account to verify
the adopted analytical solution. For this objective, mid-span acceleration of a simply
supported beam with L = 20 m, I = 2.81 m4, E = 29.43 GPa and m = 34088 kg/m
under passage of a train with N = 5, Lf = 18 m, Lr = 6 m, p = 215.6 kN and v =
122.4 km/h is calculated. The considered speed corresponds to the resonance speed of
the bridge. Additionally, two cases, i.e. without damping and ξ = 2.5% is taken into
account. The obtained analytical accelerations are compared with those resulted from
numerical evaluations in Figure 5; which, a promising agreement can be distinguished. It is
worthwhile noting that the numerical calculations are conducted using Newmark’s average
acceleration method; however, reduction factor due to load distributions is neglected for
the comparison objectives.

3 BASIC VARIABLES AND LIMIT STATE FUNCTION

As mentioned, the current article aims at evaluating the probability of ballast instability
under passage of high-speed trains. Thus, the performance function regarding this limit
state would be as follows:

G(X) = alimit − |amax(X)|(1 + χm) (12)

X = (N,D, p, v, L, E, I, Ad, Ab, ρd, ρb, ξ, χm)
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Figure 3: Verification of analytical solution with numerical method by comparing mid-span acceleration

Where, alimit is the vertical acceleration initiating ballast instability, E is the modulus of
elasticity of deck, I is the moment of inertia of deck, Ac is the deck area, Ab is the ballast
area, ρd is the mass density of deck, ρb is the mass density of ballast, ξ is the damping
ratio and χm is the model uncertainty. It is worthwhile noting that ballast has much
lower modulus of elasticity than the deck [1]; which led its contribution in stiffness to be
neglected.

As previously mentioned, only few shaking table tests have been conducted to deter-
mine the vertical acceleration leading ballast instability [4]. Thus, a triangular probabil-
ity distribution is considered for alimit; which its mode equals to experimentally captured
value, i.e. 0.7g. Furthermore, a possible variation of 0.1g is taken into account based on
authors’ judgment to define its boundaries.

Regarding the applied loads, it is hardly possible to collect information corresponding to
the variability of parameters in commercial trains. Thus, proposed load models in Annex
E of Eurocode [13] are applied here. Hence, the uncertainty on moving loads would be a
function of constant axle load (paxle) and occupancy rate (α in %). By assuming the full
passenger capacity of each car body as 65 and average weight of each passenger as 70 kg,
the moving load can be calculated as Eq. 13; which is developed in kN units.

p = paxle + 0.225α (13)

In order to select practically reasonable geometrical values (i.e. span length, moment
of inertia and deck/ballast area) 62 single span and single track bridges in Sweden are
surveyed. Detailed information about them can be found in [14]. The span length of the
desired bridges varies between [5-30]m. Therefore, evaluations are conducted within this
range for deterministic span lengths with a resolution of 5m.

The distribution of span length, moment of inertia, deck and ballast areas in addition
to their linear correlations are depicted in Figure 4. A strong correlation between span
length, moment of inertia and deck area is evident; while as expected, the ballast area
seems to be independent on span length. Hence, a conditional probability for the moment
of inertia and deck area is assigned (see Figures 5a and 5b); which, the parameters are
extracted by regression analysis and fitting lower and upper boundaries. On the other
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hand, the shown scatter plot of the ballast area (see Figure 5c) reveals that they mostly
vary around mean value regardless of the span length. Due to extracting distributions from
a limited database, a triangular probability distribution is adopted for the all geometrical
random variables.

It is well-known that the response of the bridges is highly dependent on the damping
ratio particularly around resonant speed. Additionally, the contribution of several factors
makes damping measurement a tedious task; which may result in scattered outcomes.
Therefore, the proposed lower bound in [12] is taken here as the mean value of the damping
ratio.

Discussed simplifications and existing lack of knowledge on different aspects of the
problem deviate the predicted responses by the adopted solution from corresponding real
values. Thus, a model uncertainty (χm) is applied to the limit state function; which should
be obtained from comparison of the experimentally captured values with those resulted
from the numerical model. However, the lack of such information led to propose a model
based on the authors’ judgment. In this regard, a Gaussian probability density function
with zero mean and a standard deviation of 20% is taken into account.

Considering all, the assigned parameters for the variables are reported in Table 1.
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Figure 4: Correlation between span length, deck moment of inertia, deck area and ballast area

4 RESULTS AND DISCUSSION

Initially, the considered bridges are assessed following deterministic approaches. For
this objective, the speed of passing trains swept between 100 km/h up to 400 km/h; while
the average values are assigned for each variable. The analyses are repeated by changing
each variable to mean plus/minus one standard deviation; while other variables remained
constant. Hence, the train speed leading the vertical acceleration to surpass 3.5 m/s2 is
extracted (see for instance Figure 6). The obtained deterministic operating train speeds
are reported in Table 2.
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Figure 5: Distribution function for deck moment of inertia, deck cross section area and ballast area as a
function of span length

Then, the reliability of the developed limit state function is assessed using FORM.
In this regard, UQLab toolbox [16] is employed to conduct the analyses and extract the
corresponding probability of violence. For this objective, the span length of the bridge
is assumed as a deterministic parameter varying in the desired range and properties of
the other parameters are adopted as those tabulated in Table 1. Then, the reliability
of each bridge is assessed for all considered trains with different configurations; while a
speed resolution of 2 km/h is taken into account. Since the probability of violation is
calculated at discrete points; then, the average exceeding (failure) probability (pf,ave) can
be calculated using Eq. 14 [18].

pf,ave =
∫ vu

vl

P (adeck(v) > alimit)fv(v)dv ≈
1

n

n∑
i=1

P (adeck(vi) > alimit) (14)

Where, n is the number of discrete evaluations.
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Variable Unit Dist.
Mean/Mode STD/Bound.

Ref.
Min. Max.

alimit m/s2 Triangular 7.0 [6.0-8.0] -

N - Uniform (Integer) 11 18 [13]
D m Uniform 18 27 [13]
Lr m Uniform 2.5 3.5 [13]
paxle kN Deterministic 170 - [13]
α % Uniform 0 100 -
v km/h Deterministic 100 400 -

L m Deterministic 5 30 -
E GPa Truncated Gaussian a 29.7 3.5 [15]
I m4 Triangular b MI [LBI-UBI ] -
Ac m2 Triangular c MAc [LBAc-UBAc ] -
Ab m2 Triangular 2.7 [1.85-3.6] -
ρc kg/m3 Lognormal d 7.82 0.04 [1]
ρb kg/m3 Uniform 1500 2100 [1]
ξ % Lognormal e μξ σξ [1, 12]

χm % Gaussian 0 20 -

a The mean value is obtained from 5015
√

f ′
c [MPa] and considering C35 as typical concrete class in

bridges. A COV of equaling 12% is also considered. Due to controlled construction conditions of the
railway bridges, the assigned probability distribution is truncated for values deviated more than two
standard deviation from the mean value.
b The mode is obtained from regression analysis between span length and moment of inertia in the
surveyed bridges; which equals as MI = 0.011(L1.55). Furthermore, the lower and upper bounds would
obtain from LBI = 0.002L2 − 0.004L+ 0.06 and UBI = 0.00185L2 + 0.034L+ 0.23, respectively.
c The mode is obtained from regression analysis between span length and cross section area; which
equals as MAc = 1.6 exp(0.052L). Since cross section area is highly correlated to the moment of inertia;
therefore, boundaries are obtained from LBAc

= 1.781MI + 1.4 and UBAc
= 2.3MI + 2.9, respectively.

d Reported mean and standard deviation correspond to 2500 kg/m3 and 100 kg/m3 mean and standard
deviation in physical space, respectively.
e The mean value of the damping in normal space is obtained from 1.5 + 0.07(20 − L) [12] for bridges
with less than 20 m span length and equals to 1.5% [12] for others. It is needed to be transformed to
logarithmic space. Furthermore, the standard deviation of the lognormal distribution should be obtained
by considering aforesaid mean and standard deviation of 0.3% in physical space.

Table 1: Considered variables and their stochastic/deterministic properties

The aforesaid probabilities are required to be compared by an appropriate target relia-
bility index. Regarding the nature of the problem, it can be inferred both as serviceability
(SLS) or ultimate (ULS) limit states. The former corresponds to the maintenance and
tamping of the ballast; however, the later can be considered as severe cases in which
ballast instability may lead to derailment. Hence, β = 3.1 (pf ≈ 10−3) is considered as
the target reliability [17, 18].

Then, the average probability of exceeding vertical limit acceleration versus train speed
is illustrated in Figure 7. Only outcomes corresponding to 5m and 30m span lengths are
presented here for the sake of brevity; while, the extracted operating speeds for all bridges
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Figure 6: Deterministic running safety assessment of the considered bridges

are reported in Table 2. As can be seen, the conventional deterministic approach does
not lead at a constant safety level; which may result in designs with ambiguous capacity.
Furthermore, it can be inferred from those safety indices that the conventional design
method does not satisfy the desired safety level (pf = 10−3). The latter statement is
particularly true for bridges with larger span lengths. Such lower safety may arise from
several factors. Most importantly, shorter span bridges have generally higher frequencies.
Thus, higher train speeds are required to observe the resonance phenomenon. In addition,
the distribution of loads on track structure significantly reduces the response of bridges
with shorter span lengths; while its influence would be negligible for larger span lengths.
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Figure 7: Reliability-based assessment of the considered bridges

Finally, the sensitivity of the reliability evaluations to the considered random variables
is assessed using both direction cosines and omission sensitivity factor (see Figure 8). As
can be seen, the response is most sensitive to variations on car-body length, modulus
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L vprob vdet βdet(m) (km/h) (km/h)
5 348 322.0 3.42
10 230 315.5 1.97
15 250 284.0 2.37
20 170 215.0 2.01
25 148 186.0 2.27
30 216 231.0 2.66

Table 2: Comparison between reliability-based assessment versus deterministic evaluation

of elasticity and deck moment of inertia. It is worthwhile to note that deck/ballast
cross section area and their mass densities are also relatively important; which leads the
reliability level to be sensitive on their combination, i.e. mass of the bridge.
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Figure 8: Sensitivity of the reliability evaluations to the considered random variables

5 CONCLUSIONS

• An existing closed-form solution is adopted to evaluate the reliability of simply
supported single span high-speed railway bridges using FORM. It was noted that
the conventional deterministic dynamic assessments result in bridges which do not
satisfy desired target reliability level (β = 3.1).

• Despite applying a safety factor of 2.0 for the vertical acceleration limit, the con-
ventional design method does not lead to a constant safety level on bridges with
different span lengths.

• Reliability of the bridges are mostly sensitive to the car-body length, modulus of
elasticity and deck moment of inertia. Moreover, the mass of the bridge would be a
function of deck cross section area, ballast area, concrete mass density and ballast
mass density. Thus, by considering their importance the assessed reliability would
be considerably sensitive to their combination, i.e. mass of the bridge.
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