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I. INTRODUCTION

Convolutional neural networks (CNNs) that are invariant to certain
groups of image transformations have fewer parameters, can learn
from smaller datasets and enable generalization outside the training
distribution. A number of current methods use spatial transformations
of CNN feature maps or filters to enhance the ability of CNNs to
handle different types of image transformations [1], [2], [3], [4],
[5], [6], [7], [8]. For example, spatial transformer networks (STNs)
[8] were designed to enable CNNs to learn invariance to image
transformations by transforming CNN feature maps as well as input
images. Clearly, if a network learns to align transformed input images
to a common pose, this can enable invariant recognition. The original
work [8], however, simultaneously claims the ability of STNs to learn
invariance from data and that the spatial transformer layers (STs) can
be inserted into the network “anywhere” (i.e. at any depth). There
is no mention of whether the key motivation for the framework –
the ability to learn invariance – is still supported when transforming
feature maps deeper in the network.

This seems to have left some confusion about whether spatially
transforming CNN feature maps can support invariant recognition,
with a number of subsequent works advocating image alignment
by transforming feature maps [1], [2], [3], [4]. Other commonly
used methods that are based on transforming CNN feature maps or
filters are spatial pyramid pooling [5], dilated convolutions [6] and
deformable convolutions [7]. Such methods are often motivated by
the need for CNNs to better deal with variability in object pose.
There is, however, no discussion about the difference between pose
normalizing the input image and spatially transforming feature maps,
or the implications this choice has for the ability to achieve e.g. affine
or scale invariance [5], [6], [7], [8].

We, here, aim to clear this confusion and elucidate under what
conditions it is possible to achieve invariance to affine image transfor-
mations by means of purely spatial transformations of CNN feature
maps. We show that these conditions are very restrictive, implying
network filters or features that are already invariant to the relevant
image transformations. This since, spatial transformations of CNN
feature maps cannot, for general affine transformations, align the
feature maps of a transformed image with those of an original.

These facts have, in the single-layer case, some parallels with the
work in [9] and [10]. Our contribution is to provide a simple proof
for the single layer case and to build on it to give an analysis of the
general multi-layer case, using only elementary analysis and without
relying on any covariance assumptions about the individual layers. A
preprint with details and the full proofs is available [11].
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II. FORMALISM AND RESULTS

We work with a continuous model of the image space. We consider
both an image f and a convolutional filter λ to be a map from RN
to R (with f ∈ L1

loc and λ ∈ L1
comp). We use notation V for the

function space to which the images f belong, and V k for the space
of maps that have each of their k components in V .

Then a continuous CNN with k layers and Mk feature channels
in the final layer is a map Λ : V → VMk given inductively in
components by

(Λ(i)f)c(x) = σ

Mi−1∑
m=1

∫
y

(Λ(i−1)f)m(x− y)λ(i)
m,c(y) dy + bi,c


with Λ0 being the identity map, σi the chosen non-linearity and bi,c
the bias constant for c-th component of the i-th layer. In the single-
layer (k = 1) case the corresponding single component operator Λ1

c

is denoted Λλ, where λ is the convolution kernel λ1
1,c.

We consider the group of affine image transformations, i.e. of
linear maps Th : RN → RN . The corresponding operator T jh :
V j → V j is defined by the “contragradient” representation, that
is by precomposing with T−1

h i.e. (T jh F )c(x) := (F )c(T
−1
h x) for

F ∈ V j . We ask whether the transformation T 1
h applied to the image

f can be “undone” by transforming features Λf by T Mk
g for some

(possibly different) affine map Tg , i.e. under what conditions one
can have T Mk

g ΛThf
?
= Λf . If possible, this would enable invariant

recognition.
In the single layer case (k = 1), we show that the above is only

possible if Tg = (Th)−1 and only if the convolutional filters are
themselves invariant to the relevant transformation:

Theorem. Equality TgΛλTh = Λλ implies Tg = T−1
h and also

λ = (detTh)T −1
h λ.

By analysing the dynamics of Th we show that the condition on
λ is very restrictive, even ignoring rescaling (the proposition below
is for N = 2 but similar statements can be made for arbitrary N ).
Theorem. The equality λ = CT −1

h (λ) can hold for λ with support
on a set of finite but non-zero measure only if Th is conjugate to
some rotation or, if Th is orientation reversing, a reflection matrix;
and in those cases only if (i) Tnh = Id for some n and λ is symmetric
with respect to this finite set of transforms, or (ii) if λ is constant on
a collection of concentric ellipses along which Th rotates things.

Thus, invariance will only possible for transformations that corre-
spond to rotations or reflections in some basis and if using invariant
filters. Moreover, we have a similar result for the multi-layer case:
Theorem. If not all eigenvalues (real or complex) of Th have
absolute value equal to 1, equation TgΛTh = Λ implies that Λ is the
trivial operator that outputs the same constant signal for all inputs.

To prove the single layer statement, we use commutation relations
between Th and translations, equivariance of convolution, together



with an analysis of the dynamics of Th. To handle the multilayer
case, we then extract properties of Λλ that underlie most of this proof
– which are continuity, translation-covariance and what we call semi-
locality – and show that they hold for the multilayer operator Λ as
well (in fact the last proposition is true for any continuous, semi-local
and translation-covariant operator Λ). Details are available in [11].

Our results have straightforward implications for STNs and other
methods that perform spatial transformations of CNN feature maps.
An experimental evaluation of the practical consequences of these
limitations on STNs is presented in [12].
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