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Abstract

Demand forecasting is a well-established internal process at Ericsson, where employees from

various departments within the company collaborate in order to predict future sales volumes

of specific products over horizons ranging from months to a few years. This study aims to

evaluate current predictions regarding radio unit products of Ericsson, draw insights from

historical volume data, and finally develop a novel, statistical prediction approach. Specifi-

cally, a two-part statistical model with a decision tree followed by a neural network is trained

on previous sales data of radio units, and then evaluated (also on historical data) regarding

predictive accuracy. To test the hypothesis that mid-range volume predictions of a 1-3 year

horizon made by data-driven statistical models can be more accurate, the two-part model

makes predictions per individual radio unit product based on several predictive attributes,

mainly historical volume data and information relating to geography, country and customer

trends.

The majority of wMAPEs per product from the predictive model were shown to be less than

5% for the three different prediction horizons, which can be compared to global wMAPEs

from Ericsson’s existing long range forecast process of 9% for 1 year, 13% for 2 years and 22%

for 3 years. These results suggest the strength of the data-driven predictive model. However,

care must be taken when comparing the two error measures and one must take into account

the large variances of wMAPEs from the predictive model.





Sammanfattning

Ericsson har en väletablerad intern process för prognostisering av försäljningsvolymer, där

produktnära samt kundnära roller samarbetar med inköpsorganisationen för att säkra nog-

granna uppskattningar angående framtidens efterfrågan. Syftet med denna studie är att eval-

uera tidigare prognoser, och sedan utveckla en ny prediktiv, statistisk modell som prognos-

tiserar baserad på historisk data. Studien fokuserar på produktkategorin radio, och utvecklar

en två-stegsmodell bestående av en trädmodell och ett neuralt nätverk.

För att testa hypotesen att en 1-3 års prognos för en produkt kan göras mer noggran med

en datadriven modell, tränas modellen på attribut kopplat till produkten, till exempel his-

toriska volymer för produkten, och volymtrender inom produktens marknadsområden och

kundgrupper. Detta resulterade i flera prognoser på olika tidshorisonter, nämligen 1-12 må-

nader, 13-24 månader samt 25-36 månder. Majoriteten av wMAPE-felen för dess prognoser

visades ligga under 5%, vilket kan jämföras med wMAPE på 9% för Ericssons befintliga 1-

årsprognoser, 13% för 2-årsprognerna samt 22% för 3-årsprognoserna. Detta pekar på att

datadrivna, statistiska metoder kan användas för att producera gedigna prognoser för framtida

försäljningsvolymer, men hänsyn bör tas till jämförelsen mellan de kvalitativa uppskattningarna

och de statistiska prognoserna, samt de höga varianserna i felen.





“Prediction is very difficult, especially if it’s about the future”

- Nils Bohr, Nobel Laureate in Physics
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Chapter 1

Introduction

1.1 Project Relevance and Aim

Ericsson, the Swedish multinational telecommunications and networking equipment com-

pany, has high expenses relating to the procurement of hardware components that make up

their product offerings. Leading categories of costs related to Ericsson’s global hardware port-

folio include inventory costs, scrap costs, ASP spending and logistics costs. From interviews

with drivers within “Business Operations” and “Supply”, this is not only an Ericsson specific

symptom but a wider challenge facing other players in the telecommunication infrastructure

industry.

In recent years there has been a widespread increase in the application and adoption of

statistics and machine learning to garner insights and business value out of data in many in-

dustrial sectors. It is therefore becoming more and more imperative to tackle different types

of datasets with this type of approach. This thesis aims to introduce a machine learning ap-

proach to improve Ericsson’s ability to predict/forecast future demand of products. More

accurate forecasting of future demand may enable leadership to make more data-driven de-

cisions with regards to specific products, the overall portfolio and their strategic direction.

Demand forecasting also informs the Supply organisation, allowing them to have a better in-

ventory with better timing - either reducing inventory size to reduce scrap costs or increasing

inventory to reduce stock-outs.

1.2 Research Question

Can Ericsson’s Radio Unit long range sales volume forecasts be improved by using a 2-step sta-

tistical learning predictive approach involving decision trees and neural networks?

1



Chapter 2

Background

2.1 Demand Forecasting

2.1.1 Introduction to Demand Forecasting

Demand forecasting is a company’s best estimate of what demand will be in the future, given

a set of assumptions [1]. Demand forecasts are based upon internal and external assump-

tions, that can be either explicitly stated or implicitly assumed. Some examples of internal

assumptions that underlie the forecasts are:

• what will be the future levels of demand generating activities, such as promotional ac-

tivities, hiring of additional salespeople, opening of new distribution channels?

• where will price levels be at in the future, noting that for example lower prices may

drive an increase in demand?

and some examples of key external assumptions:

• how will regulatory, geopolitical and external economic conditions play out in the fu-

ture?

• how will competitor and customer trends develop with time?

A key concept in demand forecasting is the notion of the forecast level, which describes the

level of granularity/detail in which the forecast is expressed, for example with regards to the

detail level in the product structure, customer segments or geographies/markets. In general,

the more granular the level, the more the forecast is prone to inaccuracies.

Furthermore the forecast horizon, which is the length of time into the future that the demand

is being forecasted, must be taken into account. In general, the utility of a demand forecast

is improved if the horizon is longer than the lead times associated with the activity that the

forecast will inform [1]. For example, if the demand forecast will inform supply chain and

2



3

procurement activities, then ideally the forecast should have a horizon that exceeds the pro-

duction lead times. A trend here is the internationalization of supply chains to cheap wage

countries, which expands lead times as well as the need for slightly longer demand forecasts.

Another example is if the forecast will inform R&D and product development strategies which

may have even longer lead times than production - in this case the forecast horizon will need

to be extended accordingly.

Finally, there is the forecast interval, which is the frequency at which the demand forecast is

updated, with some examples being monthly, quarterly or yearly updates.

2.1.2 Demand Forecasting at Ericsson

The organizational structure of Ericsson is a division of four business areas (Networks, Digital

Services, Managed Services and New Technology/Business) as well as six market areas (e.g.

Market Area Europe & Latin America or Market Area North America). Each Market Area is

comprised of Customer Units, relating to specific customer accounts e.g. Vodafone, with

dedicated roles in these Customer Units (Key Account Managers KAM, solution responsible

etc.)

There are two significant forecasting efforts at Ericsson that aim to forecast it’s global hard-

ware demand

1. Market Area forecast

2. Long range forecast

Here the Market Area forecast is a shorter horizon forecast (predictions are made regarding

volumes for each month in the span of 1-12 months into the future) performed by a Key Ac-

count Manager at the Customer Unit level with a monthly forecast interval (forecast updated

every month). This KAM prediction is aggregated up for different Customer Units to give both

a per Market Area prediction and also a per Business Area demand forecast for the relatively

shorter term, which can help Ericsson’s Supply organization to make an informed supply pan

that drives Ericsson’s component procurement strategy and determines inventory levels.

There is also the long range forecast, which is a longer horizon forecast that looks 3-5 years

into the future. This forecast is not performed as often as the market area forecast - generally

every quarter. This forecast aims to inform higher level product management with strategic

portfolio and product development questions.

The table below summarizes key aspects about forecasts that we have encountered at Erics-

son:
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Forecast
name

Main purpose Level Horizon Interval
Internal

assumptions
External

assumptions

Market
Area

forecast

Enable short to
mid-term

planning for
Supply

Market
Area

1
through

12
months

Every
month

Some insight into
future products

local customer/-
competitor

trends, local
regulatory,

geopolitical and
economic
conditions

Long
range

forecast

Inform longer
term portfolio

strategy for
Product

Management

Market
Area

3 to 5
years

Every
quarter

Better insight into
future products,

better insight
pricing strategy

Broader (general)
customer/com-

petitor trends and
geopolitical/eco-

nomic
factors

TABLE 2.1: Overview of Ericsson’s demand forecasts

2.2 Products at Ericsson - relevant background

The Ericsson product category that this thesis will focus on is Radio Units. Radio Units are

the radio transceivers that connect to an operator radio control panel via an electrical or

wireless interface, and are one of the most important sub-systems for base stations that en-

able wireless communication. Ericsson’s radios are categorized as macro, massive MIMO,

mmWave, micro, indoor remote radios and antenna-integrated radios for radio access net-

works. These radios are based on state-of-the-art multi-standard technology and can operate

in GSM, WCDMA, LTE, and 5G mode using FDD, TDD, as well as supplementary downlinks

[2]. Other product categories that are outside the scope of this thesis are basebands, mi-

crowave and routing systems and more.

A term that will be used in this thesis frequently is KRC, which denotes the unique product

number for an individual radio, where this product number is at the lowest level of the prod-

uct taxonomy and therefore can be seen to represent "individual radios". Another important

concept is that of product substitutions, which is the substitution of one product for another

by an operator due to commercial reasons from Ericsson’s perspective (e.g. Ericsson wants to

replace radio to prevent price erosion), performance reasons from the operator (e.g. higher

output power or smaller size and weight requested by customers) or other reasons such as

prevention of cannibalization of certain products by other newer products in the portfolio.

Substitutions can be one-to-one or many-to-one (or many-to-money), in the case of new

multi-band radios coming in that allow operators to have 1 unit instead of 2, reducing total

weight, size and rental cost. Note finally that radio units are sold across all of the different

Market Areas and through the Customer Unit channels for specific operators.
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2.3 Relevant academic research

As Zhao, Ho and Lau [3] point out in their Decision Support Systems paper, uncertainties in

future demands are highly expensive for a variety of business sectors. They point out how

the uncertain, stochastic nature of customer demand makes the development of advanced

techniques for forecasting important, and they make a case for applying an intelligent sys-

tem based on the Minimal Description Length optimal neural network to "learn" underlying

patterns and predict future demands.

According to Zhao, Ho and Lau, neural networks are considered the primary and most pop-

ular advanced mathematical technique for demand forecasting, in particular the multi-layer

feed-forward neural network, which is able to approximate any non-linear or linear function

under certain conditions. The neural network also provides the potential to model any func-

tion, with the trade-off here being a high probability of overfitting. Zhao, Ho and Lau use

a three-layer feed-forward network with a single hidden layer, sigmoid activation functions,

and one linear output. They use the Lavenberg-Marquardt algorithm to train the neural net-

work, which is also known as the damped least-squares (DLS) method, which is a minimiza-

tion algorithm used to solve non-linear least squares problems, with a damping parameter

λ that should be chosen to guarantee local convergence and also allow for quick global con-

vergence. Other methods that exists that they opted away from include gradient descent and

the Newton method, which this thesis will go into more detail into later in the mathematical

background section.

Carbonneau et al. [4] also investigate the applicability of machine learning techniques in the

area of demand forecasting, and similarly to Zhao, Ho and Lau [3], they chose a neural net-

work approach. Here a three-layer feed-foward back propagation neural network was used,

with a hyperbolic tangent (tanh) transfer function, a learning rate of 0.1 and a momentum of

0.7.

A key theme generally prevalent in previous research in these selected articles as well as oth-

ers is the interpretability-accuracy trade-off. Tso and Yau [5] go into more detail with this

regarding future volume predictions. Their predictions are specific to energy consumption,

where they compare regression analysis, a decision tree and neural networks, and their con-

clusions regarding the utility of the logical, human decision-mimicking steps of a decision

tree were also inspiring for this thesis. This thesis will go into more detail regarding the

interpretability-accuracy trade-off in later sections.



Chapter 3

Mathematical background

3.1 Introduction to statistical learning

Statistical learning (machine learning) draws from statistics and probability theory and helps

us find predictive functions trained on data. On a general level, statistical learning can be

either supervised or unsupervised. Supervised statistical learning involves training a mathe-

matical model on multiple corresponding inputs and outputs, whereas in the unsupervised

case, there are no structured corresponding outputs and one must try to understand rela-

tionships purely based on input features [6].

Statistical learning approaches can either be parametric or non-parametric. With parametric

methods, one starts by making an assumption about the functional form of the predictive

function f, which is the function that maps the quantitative predictors X1, X2, ...Xp to the

quantitative output Y . One can then train this selected model, which means that one must

start to fix the parameters of the model to make the predictive function f as accurate as pos-

sible. On the other hand the non-parametric approach makes no explicit assumptions about

the functional form of the predictive model beforehand. The parametric approach has the

advantage that one does not need to fit an arbitrary unknown function to a set of data, but

the disadvantage that one is reliant on the initial assumptions made about the predictive

function f. Non-parametric methods have a higher degree of freedom, but require significant

training sets to minimize error.

With regards to error, there is an important trade-off referred to as the bias-variance trade-off.

One wants to minimize the test mean squared error (MSE), defined as

MSE = 1

n

n∑
i=1

(yi − f (xi ))2 (3.1)

6
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where f (xi ) is the prediction that f gives for the ith observation. The expected value of the

test MSE for given data x0 can be decomposed into the sum of three quantities:

E(y0 − f (x0))2 = Var( f (x0))+ [Bias( f (x0))]2 +Var(ε) (3.2)

Equation 3.2 tells us that in order to minimize the expected test MSE, the statistical learning

method must simultaneously aim for low variance and low bias. Variance can be understood

as the degree to which small changes in the training set lead to large changes in f, and bias is

the mis-match between the model and the dataset due to erroneous assumptions about the

model.

Another important trade-off is between prediction accuracy and model interpretability. Re-

strictive, less flexible approaches with a clearly defined, perhaps simple model may not have

the same predictive accuracy as more flexible models. However, the function f may be easily

interpretable and the relationship between the different inputs to the output will be clear,

and this increased transparency may increase interest and adoption of the model in practical

situtations. On the other hand, more flexible models tend to be complex, and that may con-

volute understanding of the relationship between inputs and output of the predictive func-

tion. Thus one must balance having a very accurate predictive function with transparent

understanding of the factors that drive the output.

3.2 Interpretable predictive models - decision trees

Tree-based methods are popular [6] for their high interpretability - humans can to a high de-

gree understand the cause behind the prediction/decisions of tree-based models. Here we

present some background to classification trees, which allow us to go from observations/fea-

tures about an item (represented in the branches) down to the leaves of the tree which gives

us conclusions about a target value. With classification trees, the target variables are discreet

classes, not continuous quantitative values.

In the classification tree method, we start by stratifying (splitting) the feature/predictor space

of the item into distinct regions. For an item e.g. radio product that has P features: the

algorithm divides the p-dimensional space of possible values of x1, x2, ..., xP into J distinct

and non-overlapping regions: R1,R2, ...,R J . Then, for every new item or observation with

features that fall into the region R j , the prediction for that item will be the most commonly

occurring class of training observations in that region R j

This feature space splitting action is achieved through recursive binary splitting. The recur-

sive algorithm selects a predictor x j and cutpoint s such that splitting the predictor space
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into regions {x | x j < s} and {x | x j ≥ s} leads to the highest quality classification. To quantify

the quality of classification, one defines the proportion pmk of class k prediction in node m:

pmk = 1

Nm

∑
xi∈Rm

I (yi = k) (3.3)

were node m is represented by a region Rm with Nm observations. The algorithm classifies

observations in node m to class k according to: k(m) = argmax(pmk ). Thus regions {x | x j < s}

and {x | x j ≥ s} are chosen such that the pair ( j , s) minimize the error rate, which could be

defined simply as:

1−pmk (3.4)

but a better measure of node impurity (deviance) is:

D =−
K∑

k=1
pmk log(pmk ) (3.5)

This is referred to as the cross-entropy, and is preferred over the simpler misclassification

error rate due to useful properties such as being differentiable as well as manageable for nu-

merical optimization. It is also more sensitive to changes in the node probabilities than the

simpler misclassification rate. This splitting process with choosing of regions to minimize

cross-entropy is then repeated (recursively), splitting the newly formed regions to form more

regions. The process continues until a stopping criterion is reached.

Next, tree-pruning is used to reduce the size of these decision trees and remove sections of the

tree that are non-critical - the recursive splitting algorithm above on its own has a tendency

to overfit the data and thus create too complex trees with high variance. To choose a subtree

that still has low bias but also a smaller amount of terminal nodes, we find subtrees that

minimize the cost complexity criterion:

Cα(T ) =
|T |∑

m=1
NmQm(T )+α|T | (3.6)

where |T | is the number of terminal nodes, Nm is the number of observations in in region Rm ,

Qm(T ) = −∑K
k=1 pmk log(pmk ), and the tuning parameter α controls the trade-off between

the subtree’s complexity and its fit to the training data. The value of α can be selected using
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cross-validation. The full algorithm is summarized below:

Algorithm 1: Building and pruning a classification tree

1. Recursive binary splitting until each terminal node has fewer than a chosen

minimum number of observations ;

2. Apply pruning to the large tree by minimizing the cost-complexity function in

order to obtain a sequence of best subtrees, as a function of α ;

3. Use K-fold cross-validation to choose α. That is, divide the training observations

into K folds. For each k = 1,...,K: (a) Repeat Steps 1 and 2 on all but the kth fold of the

training data, (b) Evaluate the mean squared prediction error on the data in the

left-out kth fold, as a function of α. Average the results for each value of α, and pick

α to minimize the average error;

4. Return the subtree from Step 2 that corresponds to the chosen value of α;

Result: Best classification subtree

The decision tree that results as an output is easily interpretable, since the tree structure

allows one to easily understand how the model breaks down the input space and "reasons"

towards a prediction.

3.3 Accurate predictive models - artificial neural networks

Artificial neural network methods are popular due to their powerful, accurate predictions,

with the drawback of being opaque in terms of how the model relates inputs to outputs. Neu-

ral networks extract linear combinations of inputs (e.g. historical data) as derived features,

and then model the target (e.g. future volumes) as a nonlinear function of these input fea-

tures. The result is a robust and accurate learning method [7]. This linear combination and

non-linear transformation process can be visually represented as a network as in Figure 3.1,

vaguely representing biological neural networks in animal brains, with different nodes feed-

ing and linking to each other:
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FIGURE 3.1: Structural overview of feed-forward neural network (single hidden layer de-
picted here)

There are many different types of neural networks. Feed-forward networks propagate data

forwards from the input layer through any hidden layers out to the output layer, without any

cycles or loops. Recurrent networks propagate data forwards as well as backwards through

the different processing stages, forming cycles of connections between nodes.

Focusing on feed-forward networks, Figure 3.1 is a visualization of a simple multiple layer

perceptron, with x1...xp as the input data, Zm = σ
(
α0m +αT

m x
)
, m = 1...M are derived fea-

tures created from linear combinations of the input data (these combinations are weighted

with weights α) as well as a non-linear activation function denoted here by σ. The derived

features in this "hidden" layer are then converted into the outputs via a final layer of weights,

β, through the linear combination:

yk =β0k +βT
k Z , k = 1...K (3.7)

The derived features Zm being computed in the middle of the network make up the hidden

layer and therefore are not directly observed. Figure 3.1 only visualizes one layer but we note

that that there can be more than one hidden layer.
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3.3.1 Training feed-forward neural networks

Training a neural network involves fitting the weights, in our exampleα andβ. These weights

make up the linear combinations in the different network layers and therefore decide how in-

puts are successively combined/transformed to form outputs. These weights are the param-

eters of the model that should be chosen such that the model fits the training data. For the

case of a neural network with a regression output, we decide on a loss function R(θ), where

θ represents all the weights (unknown parameters we wish to train) in the neural network,

and this loss function is formulated so that it sums errors of outputted yk compared to true

values in training data. The weights should then be fitted in such a way as to minimize this

loss function i.e. make the model give outputs that are similar to training data outputs.

To fit these weights, back-propagation is used. The three main categories of methods for

back-propagation are: 1) steepest decent (with variable learning rate and momentum), 2)

Quasi-Newton and 3) Levenberg-Marquardt and conjugate gradient [8]. Focusing on steepest

decent, we have the complete set of weights denoted by θ which consists of:

{α0m ,αm ; m = 1,2, ..., M } M(p +1) weights, (3.8)

{β0k ,βk ; k = 1,2, ...,K } K (M +1) weights. (3.9)

and error function between actual target outputs yi k and predicted outputs fk (xi ):

R(θ) =
K∑

k=1

N∑
i=1

(yi k − fk (xi ))2 (3.10)

The steepest decent method trains the neural network by minimizing this error function with

respect to the weights. First it entails calculating the derivatives with respect to the weights

[7]:
∂Ri

∂βkm
=−2(yi k − fk (xi ))g ′

k (βT
k zi )zmi (3.11)

∂Ri

∂αml
=−

K∑
k=1

2(yi k − fk (xi ))g ′
k (βT

k zi )βkmσ
′(αT

m xi )xi l (3.12)

One can then update weights at the (r +1) iteration using the equations:

β(r+1)
km =β(r )

km −γr

N∑
i=1

∂Ri

∂β(r )
km

, (3.13)

α(r+1)
ml =α(r )

ml −γr

N∑
i=1

∂Ri

∂α(r )
ml

, (3.14)
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where γr is the learning rate. Expressing the derivatives as:

∂Ri

∂βkm
= δki zmi (3.15)

∂Ri

∂αml
= smi xi l (3.16)

where we have that δki is the error from the current model in the current iteration at the

output layer, and smi is the error from the units in the hidden layer of the neural network.

smi depends on the errors at the output layer according to:

smi =σ′(αT
m xi )

K∑
k=1

βkmδki , (3.17)

and this relationship described in Eq. 3.17 gives us the back-propagation algorithms. In con-

clusion, The training of the feed-forward neural network can therefore be summarized as:

• compute output using Eq. 3.7 in the (r ) iteration (forward pass)

• compute errors δki using Eq. 3.15

• compute errors smi using Eq. 3.17

• use these two errors to update weights for the (r + 1) iteration using formulas from

Eq. 3.13 and Eq. 3.14

This two-pass procedure for updating weights is the back-propagation. It is advantageous

that each each hidden unit passes and receives information only to and from units that share

a connection [7]. One training epoch represents one full sweep through the entire training

set - multiple epochs can be run consecutively to continue to train the network and fit the

weights. The learning rate γr is the amount that the weights are updated during training, and

is often chosen in the range between 0.0 and 1.0. Note also that one can use stochastic gradi-

ent descent, where (in contrast to Eq. 3.13 and Eq. 3.14) one performs a new parameter up-

date for each new training example xi and label yi one by one. The "batch" gradient descent

on the other hand goes through the entire data set for a single parameter update, causing it

to have to recompute the same gradient many times - this leads to redundant computations

and slow learning.
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3.4 Evaluating prediction errors

A common measure of the prediction accuracy of a forecasting method in statistics is the

mean absolute percentage error (MAPE), defined by

M APE = 1

n

∑ |At −Ft |
|At |

(3.18)

where At is the actual value and Ft is the forecast value. Multiplying Eq. 3.19 by 100 gives the

error in a percentage. A drawback with this measure however is the possibility of At = 0 and

therefore a divide by zero. Secondly, this measure simply averages errors over each forecast

point, and therefore does not weigh in the magnitude of the volumes - a more reasonable ap-

proach would be to for example let an accurate forecast for a large volume point compensate

for an inaccurate forecast for a small volume point.

These drawbacks to a simple MAPE motivate why we put emphasis in this project on the

weighted mean average percentage error, which is in general popular as a forecast KPI [1],

since it overcomes the zero denominator problem and also takes into account forecast mag-

nitudes:

w M APE =
∑ |At −Ft |∑ |At |

(3.19)



Chapter 4

Methodology

4.1 Methodological approach

From a high level, this thesis will use two different predictive statistical learning models in

order to take various forms of historical data as input in order to predict radio unit volumes

of the future, which we summarize in Table 4.1. The more interpretable decision tree and a

powerful feed-forward neural network will be used.

Input categories Learning model Output

1) KRC historical sales volumes Feed-forward neural network KRC future sales volumes
2) Product substitute sales volumes & decision tree

3) Market Area sales volumes
4) Country sales volumes

5) Customer Unit sales volumes

TABLE 4.1: High level overview of predictive modelling approach

Feature selection here was driven by availability of data and hypotheses about important pre-

dictors of future sales volumes. The key predictors chosen are 1) recent volumes of that KRC,

2) recent volumes of a KRC that is a known "substitute", 3) trends and behaviours of sales vol-

umes over Market Areas relevant for that KRC, 4) trends and behaviours of sales volumes in

countries relevant for that KRC and 5) trends and behaviours of sales volumes over Customer

Units relevant for that KRC.

Some examples of input variables not included in our predictive model are variables that

capture customer/competitor trends, regulatory trends, broader geopolitical and economic

conditions and product portfolio strategy. These more qualitative variables were not readily

available for training and testing. An input that would be relevant for inclusion in further

14
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research is the actual predictions made in the human-driven forecasts regarding the KRCs -

these predictions should be a useful input into the learning model.

For the predictive learning model, inspired by Chia-Cheng et al.’s[9] novel approach to pre-

dictions where they combine decision trees with an artificial neural network, the predictive

methodology of this thesis starts with a decision tree classification into one of two categories,

and then a feed-forward neural network is applied to one of those two categories. This com-

bined decision tree-ANN model involves a two step predicting process.

Firstly, the decision tree separates the approximately 10 000 data points with their corre-

sponding input features into two categories: 1) data points associated with KRC radio units

that that have a predicted future sum of volumes less than 50 units and 2) data points asso-

ciated with radio units KRC radio units that have a predicted future sum over 50 radio units.

This initial binary classification will allow for a transparent prediction of whether or not the

volumes for this particular KRC will collapse significantly. For those that are predicted to col-

lapse, further prediction with an ANN is not necessary. For those that that have a predicted

future sum of over 50 radio units, they can be fed into the second step of our predictive model

which is the feed-forward ANN.

Table 4.2 and 4.3 break down in more detail the inputs that will be associated with each

KRC product and used for the training of the decision tree and ANN. For more details about

the data-processing and weighting formulas used here to with regards to the input data and

more, please see section 4.2:

4 inputs (independent
variables)

Input description Input type

Input 1
Historical (12 month) volumes

for specific radio unit KRC,
weighted across time

quantitative, reflects radio unit
volume trends

Input 2

Customer Unit exposure
index, defined as ratio of
Customer Unit sales from

most popular Customer Unit
divided by total other sales

quantitative ratio, categorized
into three classes: < 1, ≥ 1 and

single Costumer Unit (total
exposure)

Input 3

Customer Unit sales volumes
for KRC’s most popular

Customer Unit, weighted for
the specific KRC

quantitative, reflects Customer
Unit sales volumes

Input 4

Customer Unit sales volume
gradient for KRC’s most
popular Customer Unit,

weighted for the specific KRC

quantitative, reflects popular
Customer Unit sales volume

trend

TABLE 4.2: Breakdown of inputs into decision tree
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19 inputs (independent
variables)

Input description Input type

Input 1-12
monthly volumes for specific

KRC for the previous 12
months

quantitative, radio unit
volumes

Input 13
1 product substitute sales

volume gradient

quantitative, reflects
(aggregated) product

substitute trends

Input 14
Market Area sales volumes,

weighted for the specific KRC

quantitative, the magnitude
reflects Market Area sales

volumes

Input 15
Customer Unit sales volumes,
weighted for the specific KRC

quantitative, the magnitude
reflects Customer Unit sales

volumes

Input 16
Country sales volumes,

weighted for the specific KRC
quantitative, the magnitude

reflects Country sales volumes

Input 17
Market Area sales volumes
gradient, weighted for the

specific KRC

quantitative, reflects Market
Area sales volumes trend

Input 18
Customer Unit sales volumes

gradient, weighted for the
specific KRC

quantitative, reflects Customer
Unit sales volumes trend

Input 19
Country sales volumes

gradient, weighted for the
specific KRC

quantitative, reflects Country
sales volumes trend

TABLE 4.3: Breakdown of inputs into feed-forward neural network

The decision tree outputs the binary classification, and those that don’t have a predicted col-

lapsed volume after the current date are fed into the neural network, which takes in the same

inputs and makes a 12 output prediction. These 12 outputs are chosen depending on the

horizon wanting to be forecasted, as shown below in Table 4.4

12 outputs (dependent
variables)

Output description Output type

Neural network 1: Output 1-12
monthly volumes for specific

KRC for the coming 1-12
months

quantitative, radio unit
volumes per month

Neural network 2: Output 1-12
monthly volumes for specific

KRC for the coming 13-24
months

quantitative, radio unit
volumes per month

Neural network 3: Output 1-12
monthly volumes for specific

KRC for the coming 25-36
months

quantitative, radio unit
volumes per month

TABLE 4.4: Breakdown of output labels for feed-forward neural network. 3 different neural
networks account for 3 different forecasting horizons

The feed-forward artificial neural network will have 2 hidden layers (1 input layer, 2 hidden

and 1 output layer) inspired by [3], of which the first layer comprises of 18 nodes, the hidden
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layers 120 and 84 respectively, and the output with 12. Relu transform functions will be used

across the layers, and a mean squared error loss function. Stochastic gradient descent will

be used, reducing the number of redundant computations compared to a "batch" gradient

descent approach. Learning rate was picked at 0.001.

The training-test split of the data set will be done using a randomizing function in python.

This means that the predictive model will be trained and tested across all time periods, and

also allow for model performance comparison throughout the 10 year period being looked

at. Due to the monthly breakdown of historical volumes, the training set contains 9 447 data

points (each with 19 features and 12 labels), and the test set size was chosen as 1 050 (19

features and 12 labels).

4.2 Ericsson data processing - more method details

The three main categories of data that are of interest in this project are:

1. Historical volume data

2. Previous long range forecast predictions

3. Product substitution data

Where 1. is data on realized sales volumes in the past, and 2. is data on previously predicted

sales volumes and 3. is data describing product substitution rules - which radio units can be

substituted/replaced by other radio units.

Firstly, for the historical volume data, 3 excel spreadsheets have been identified that will give

us data on realized sales volumes in the past: Excel 1, Excel 2 and a third historical volume

spreadsheet that we will refer to as Excel 3. These spreadsheets are all logs of Ericsson’s Radio

Units historical sales volumes, yet they cover slightly different time spans and include slightly

different attributes for their volume (can be order or delivery) entries/elements. We aim to

summarize these spreadsheets and give a sense of their differences in Table 4.5 below:

Spreadsheet
name

Reported
year

Yearly
Volumes
Covered

Radio TX/RX Band
Customer

Unit
Country

Market
Area

Excel 1 - - YES YES YES NO NO NO
Excel 2 - - YES YES NO YES YES YES
Excel 3 - - YES YES YES YES YES YES

TABLE 4.5: Table that describes and summarizes key characteristics of the identified spread-
sheets that contain historical volume data
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Secondly, in terms of data on previous long range forecasts, there is some discrepancy be-

tween the different spreadsheets that log these previous forecasts in terms of the data and

attributes provided.

Spreadsheet
name

Horizon Granularity
KRC

defined
TX/RX Band

Customer
Unit

Country
Market

Area

LRFp Jan 2 - yearly YES/NO NO YES NO NO YES
LRFp Aug 2 - yearly YES/NO NO YES NO NO YES
LRFp May

3
- yearly NO NO YES NO NO YES

LRFp Nov 3 - yearly NO YES YES NO NO YES
LRFp May

5 (1)
- monthly YES YES YES NO NO YES

LRFp May
5 (2)

- yearly YES YES YES NO NO NO

LRFp Jan 6
(1)

- monthly YES YES YES NO NO YES

LRFp May
6 (2)

- yearly YES YES YES NO NO NO

LRFp Apr 7
(1)

monthly YES YES YES NO NO YES

LRFp Apr 7
(2)

- yearly YES YES YES NO NO NO

LRFp Nov 7
(1)

- monthly YES YES YES NO NO YES

LRFp Nov 7
(2)

- yearly YES YES YES NO NO NO

TABLE 4.6: Table that describes and summarizes key characteristics of the identified data
sources that contain long range forecasts made in the past

Regarding the Market Area attribute, the LRFps from Table 4.6 have data in terms of "Regions"

and not "Market Areas", which must be converted according to rules that we summarize in

Table 4.7.

Regions Market Areas Market Area description

North America MANA Market Area North America
Latin America

+ Mediterranean
+ Western&Central Europe

+ Northern Europe&Central
Asia

MELA
Market Area Europe & Latin

America

Middle East
+ Sub-Saharan Africa

MMEA Market Area Middle East & Africa

India
+ South-East Asia&Oceania

MOAI
Market Area South East Asia,

Oceania & India
China&North East Asia MNEA Market Area North East Asia

TABLE 4.7: LRFp conversion, based on Market Clusters - Market Areas, Regions, Countries
translation table
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Thirdly, in terms of product substitution data, we were given information on which radio unit

products have a so-called substitute. Here there were approximately 100 radio units that have

an identified substitute products.

A purpose built postgreSQL database will be built to to take in and compile the historical

volume data and the prediction data. These will be compiled into two SQL tables - one for

historical volume data and the other for the previous predictions. This is important as one

can then query this data and import to allow for seamless training of the statistical learning

models.

4.2.1 Processing inputs for the learning models

As mentioned previously, the predictive models for the sales volumes take in and are trained

on data related to 1) that KRCs historical sales volumes, 2) product substitute sales volumes

related to that KRC, 3) Market Area information related to that KRC, 4) Country information

related to that KRC and 5) Customer Unit information related to that KRC. In total, these 5

categories of input data give us 19 inputs in total (see Table 4.3. In order to "help" the predic-

tive model and ensure that the predictions become robust and aligned with basic underlying

logic, this thesis has constructed a method regarding how to process and input data relating

to these 5) categories.

The hypothesis behind 1) is intuitive - future sales volumes will be related to recent sales

volumes. These historical volumes were not processed before being fed into the model and

give us 12 inputs.

The hypothesis behind including 2) is that if a certain KRC has labelled product substitutes

that have an increasing volume at a certain point in time, then it is likely that the volume of

that KRC may decrease following on from that point in time. Our method here is to build a

program that identifies product substitutes belonging to a certain KRC using the information

in the Excel: Excel 4. Then, 12 previous months of sales volumes for a substitute is stored. If

a product has multiple possible substitutes, they are summed for each month, so that each

month in the time series of 12 is given the aggregated total substitute volume for that month.

From this time series of substitute volumes, monthly percentage changes are calculated (11

changes in total), and these 11 percentage changes are then compressed into one "weighed"

number, with compression being achieved through a linear combination of these percentage

changes with higher weights in the linear combination for recent months. This linear com-

bination approach allows us to capture the underlying trend. This compression of 11 inputs

into 1 is important as it reduces the dimension of the data-points that go into the learning

model [6].
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For 3), 4) and 5), the hypothesis here is that future sales volumes of a specific KRC depend

on what is happening in Market Areas, CUs and countries that are related to that KRC. Two

aspects were taken into account here: gross sales in those aggregated areas for all KRCs (are

Radio Units sales in general high in this Market, Country etc?), and trends in these aggre-

gated areas (are Radio Unit sales in general increasing or decreasing in this Market, Country

etc?). Like with 2), the challenge here from a statistical learning perspective is to compress

this information into inputs for the model. It is also important to define "related to a KRC"

- intuitively if 90% of the volume from a specific KRC comes from Market Area 1, then the

aggregated volumes and trends in Market Area 1 are more interesting for that KRC than ag-

gregated trends in Market Area 2 or 3. To solve this, for the first case relating to aggregated

volumes, total Market Area/CU/Country volume time series’ are identified (e.g. 6 different

MA time series, one volume per month for 12 months back). The code then weighs these 12

volumes based on Market Area distributions for that specific KRC (9/10 for Market Area 1 in

this example), and sums them together, going from 6 volume time series to one volume time

series in the Market Area case. This time series is then compressed to one data point using

a similar time-weighing function as was used for 2) in the previous paragraph, with more re-

cent volumes prioritized over volumes further back. For the second case relating to trends

and changes, again the same "popularity" and time weighing method is used but this time

with percentage changes instead of actual volumes, in order to compress the information

into an individual input.



Chapter 5

Results

5.1 Ericsson data processing - results

A PostgreSQL relational database that reads in and compiles data from a three sources has

been created. Firstly, Excel 1 with monthly sales volume data from year 1-10 (screenshot

below in Figure 5.1). Secondly, Excel 2 with yearly sales volume data from year 1-7. Thirdly,

the Excel 3 Excel with yearly sales volumes from year 5-10.

FIGURE 5.1: Historical volume data (year 1-10, monthly) from Excel: Excel 3

Whereas Excel is effective for smaller datasets, has a flexible cell structure and is helpful for

outputting graphs and visualizations, organizing the data into a database allow for quicker

data-management, and opens up for data analysis in other softwares.

21
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5.2 Ericsson data translation - results

5.2.1 Introduction - exploring sales volumes

We start with Figure 5.2, which gives an overview of radio unit sales per radio in year 9, show-

ing only the 60 most popular radios. The top 15 most popular radio products account for

slightly more than 50% of total volume, and the 60 popular radio products account for over

90% of the total volumes.
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FIGURE 5.2: Year 9 radio unit sales volumes per radio (only 60 most popular radios shown)

Figure 5.3 breaks down these volumes in a geographical context, showing both the distribu-

tion of volumes across the different Market Areas as well as for different countries. For the

countries, the 30 most popular countries have been selected, and these 30 countries account-

ing for approximately 90% of total volume.

We see in Figure 5.3 that Market Area 2 has the highest radio unit volumes, but that countries

outside of MA2 dominate in terms of individual country volume. Below in Figure 5.4, we

break down volumes for different types of radio units based on their transmit port (TX) and

receive port (RX), both at the global level and for individual market areas.

In Figure 5.4, we note that on the global level, the most popular combination from year 1

- Txrx001 - drops consistently whereas Txrx004 has risen in volume dramatically over the

last decade to become the most port combination with highest sales volumes. Although not

visualized here, the global trends of Txrx001 decreasing and Txrx004 described in
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FIGURE 5.3: Year 9 radio unit sales volumes per market area and per country. Only the 30
countries with highest volumes are shown.
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FIGURE 5.4: Global Radio volume trends for varying port combinations

Figure 5.4 are clearly reflected in the individual Market Areas MA2, MA3 and MA4. MA5 also

shows a strong growth in Txrx004. MA1 however is the odd one out with regards to this trend.

Here, Txrx001 decreases like with the others, but unlike the others Txrx004 is also on the

decline, and instead the decade has seen consistent increases in the Txrx015 combination

over the last decade. Indeed, for all the Market Areas and on the global level, we see a clear

trend towards replacing older radios with more newer, more powerful units that have more

receive and transmit ports.

5.2.2 Hypothesis: radio life cycles are getting shorter over time

By having a purpose-built program that loops through volume data for each individual Radio

Unit KRC, "complete" life cycles were identified. Here a complete life cycle for a certain prod-

uct was defined as the period of time from the first point in time when the total global sales

volume (over all geographies) of that individual product is at 10% of its eventual maximum
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volume to the time-point when the volume comes back down from the max volume and is

back at 10% of max for the last time (some examples that our algorithm identified are shown

in Figure 5.5).

2 4 6 8 10
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Product305
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2 4 6 8 10

Product434

FIGURE 5.5: Examples of product life cycles identified by rolling average algorithm

Some KRCs only have a start-point or end-point however, and not both - some examples of

this are shown in Figure 5.6:
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Product368
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Product161

FIGURE 5.6: Examples of product life cycles identified by rolling average algorithm that lack
both start and end-point
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2 4 6 8 10

Life cycles lengths global

FIGURE 5.7: Global Radio life cycle (in years) progression over time. n = 85 Radio Unit KRC’s
and their individual life cycles included in this analysis. Black lines denote max and min for

corresponding year

Aggregating together all of these identified life cycles, Figure 5.7 shows a clear trend towards

shorter life cycles as the decade progresses. Radios that initiated their volume life cycles

around year 1 and 2 would "last" (according to our definition of life cycle) for an average

of 0.58x years, with some as long as x years, whereas radios that started selling later had

an average closer to 0.33x years. A discussion regarding the validity of this conclusion is

included in Chapter 6.2

5.2.3 Hypothesis: radio life cycles changing over time is a trend that depends on

the type of radio product

The radios included in the Figure 5.7 subset (n = 85) however vary greatly between each other,

so in order to investigate if the trend of life cycles getting shorter shown in Figure 5.7 is rep-

resentative for all different types of radio products (for example between high volume and

lower volume radios), we used a K-means clustering algorithm (K = 3) to partition these 85

radios with tractable life cylces into 3 separate clusters based on sales volume, shown above

in Figure 5.8. Note that the metric or weight in Figure 5.8 to represent the sales volumes of

the radios is the sum of sales volumes inside an identified life cycle divided by the length of

the life cycle, giving an estimate for average yearly sales volume within a life cycle.
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FIGURE 5.8: K-means partitioning of radios into three categories, minimizing within-cluster
variance

We see in Figure 5.8 that the K-means clustering algorithm divides the radio products into

three categories depending on their sales volume characteristic. These three categories (Fig-

ure 5.9) in general reflect the trend observed the aggregated trend observed in Figure 5.7, with

high volume radios showing a somewhat clearer life cycle shortening trend compared to the

other two categories.
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1 2 3 4 5 6 7

Life cycles lengths high volume

(a) High volume

1 2 3 4 5 6 7 8

Life cycles lengths mid volume

(b) Mid volume

2 4 6 8 10
Life cycles lengths low volume

(c) Low volume

FIGURE 5.9: Life cycle trends broken down for radios in different sales volume categories

5.2.4 Introduction - exploring previous forecasts

Figure 5.10 compares actual sales volumes (thick black line) from the year 1 to year 9 with

several different Long Range Forecasts (dotted blue lines) that were made at certain points

during this time-span.
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FIGURE 5.10: A comparison of actual sales volumes with predictions made in several long
range forecasts

We draw several general insights from Figure 5.10:

1. Sales volumes of Radio Units have been relatively consistent over the past decade, at

roughly around - million units per year

2. Long Range Forecasts tend to overestimate sales

3. Long range forecast made in year 8 and 9 do not have as many historical points to test

against, and seem to overestimate volume quite significantly

5.2.5 Hypothesis: long range forecasts vary in accuracy depending on the market

area

Next, Figure 5.11 breaks down historical volumes and predicted volumes by each Market Area
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(a) Market Area 1 (b) Market Area 2

(c) Market Area 3 (d) Market Area 4

(e) Market Area 5

FIGURE 5.11: Historical radio unit sales, broken down by Market Area, compared to their
corresponding long range forecasts
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Indeed, as becomes clear from the error analysis presented in Figure 5.12, forecast accuracy

varies depending on the market area:

(a) Mean absolute errors for different Market Areas (b) Mean absolute percentage errors for different Market
Areas

FIGURE 5.12: Comparing long range forecast errors (absolute and percentage) from differ-
ent Market Areas

From Figure 5.11 and Figure 5.12, we conclude that:

1. Individual Market Areas in general show similar forecast error profiles to global errors.

Forecasts made in year 8 and year 9 are inaccurate and overestimated.

2. Market Areas do not differ greatly between each other in terms of forecast errors. Mar-

ket Area 4 seems to stand out in Figure 5.12 as having the highest absolute and percent-

age error, but this can be accounted for by the highly erroneous Market Area 4 forecast

made in January year 2, as seen in 5.11 d). If one disregards this as a one-off, Market

Area 4 forecasts are comparable in error with the other Market Areas

FIGURE 5.13: Comparing absolute mean errors for forecasts made over a 4 year period
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From Figure 5.13, we conclude that on the global level, and also for Market Area 2, 4 and 5

individually, there is a trend that forecasts are improving over time. Forecast made in year 3

and year 4 generally have less error than forecasts made in year 2.

5.2.6 Hypothesis: long range forecasts predicting longer into the future are less

accurate

Furthermore, as expected, Figure 5.14 shows that on the global level, and a majority of the

Market Areas taken individually, longer horizon forecasts have more error (mean absolute

percentage error) than shorter horizon forecasts.

(a) Global (b) Market Area 1

(c) Market Area 2 (d) Market Area 3

(e) Market Area 4 (f) Market Area 5

FIGURE 5.14: wMAPE for Radio Unit sales long range forecasts, across different prediction
horizons
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In conclusion, the key results from this forecast analysis section can be summarized as:

1. Long range forecasts tend to overestimate volumes globally, which have been quite

consistent over time, and this overestimation trend is also observed in a majority of

individual Market Areas

2. In general, Market Areas do not differ strongly with each other in terms of forecast ac-

curacy.

3. The long range forecasts made in early years (year 2) were worse, averaged across dif-

ferent forecast horizons, compared to forecasts made in later years (Figure 5.13). Thus,

interestingly, forecasts seemed to improve over time.

4. Longer term forecasts (3-4 years into the future) are in general (globally, and for a ma-

jority of Market Areas) more inaccurate than shorter term forecasts (1-2 years into the

future), as expected, but this is not true for all Market Areas. Globally, 1 year horizon

forecasts have a wMAPE of approximately 9% compared to 4 year horizon forecasts that

have a wMAPE of approximately 28%

5.3 2-part predictive model - results

5.3.1 Tree-model

A pruned decision tree outputting the binary collapse or not collapse prediction was devel-

oped, with splitting logic visualized below in Figure 5.15.

Monthly volume <=
entropy = 0.95

samples =
value =
class = Not collapsed

Monthly volume <=
entropy = 0.966
samples =

value =
class = Collapsed

True

Exposure to one CU <=
entropy = 0.288
samples =

value =
class = Not collapsed

False

Exposure to one CU <=
entropy = 0.926
samples =

value =
class = Collapsed

entropy = 0.952
samples =

value =
class = Not collapsed

entropy = 0.673
samples =

value =
class = Not collapsed

entropy = 0.915
samples =

value =
class = Collapsed

entropy = 0.046
samples =

value =
class = Not collapsed

largest CU volume <=
entropy = 0.577
samples =

value =
class = Not collapsed

entropy = 0.85
samples =

value =
class = Not collapsed

entropy = 0.289
samples =

value =
class = Not collapsed

FIGURE 5.15: Pruned decision tree, cost complexity tuning parameter α= 0.007.
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The cost complexity pruning parameter α was chosen as 0.007, giving a depth of 3 and a

total impurity of just over 0.60 (Figure 5.16). This offers a reasonable balance between inter-

pretability/complexity and accuracy.
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FIGURE 5.16: Figures showing effect of the pruning parameter α on tree size, and the trade-
off between node impurity and α

The collapse prediction of the tree in Figure 5.15 follows a reasonably expected logic: radio

products with low monthly volumes and a certain high exposure to a single Customer Unit

(measured by our CU Exposure index) are categorized into the "collapse" prediction node.

Overall, approximately 4% of all products are categorized into this node with a predicted im-

minent volume collapse. The general trend with these products was the existence of very

low monthly volumes before the point of prediction (first node split in the tree). Some col-

lapse predictions however stood out as particularly impressive, for example the two products

included below in Figure 5.17 below:

2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50
Time
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Vo
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Product148
Regressor
Target

6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00
Time

0

Vo
lu
m
e

Product108
Regressor
Target

FIGURE 5.17: Examples of two products (correctly) classified by decision tree into the "col-
lapse" category at the point of prediction

Most of the products did not have a predicted collapse at the point of prediction, for example

the two products shown below in Figure 5.18:
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Product176
Regressor
Target

FIGURE 5.18: Examples of two products (correctly) classified by decision tree into the "not
collapse" category at the point of prediction

5.3.2 Neural network model

The feed-forward artificial neural network was shown to have strong predictive performance

over the year 1 to year 9 training and testing set. Figure 5.19 below shows some examples of

impressive volume predictions for different time horizons:

1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
Time
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e

Product232
Regressor
Target
Output

7.5 8.0 8.5 9.0 9.5 10.0
Time
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Product491
Regressor
Target
Output

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Time

0

Vo
lu
m
e

Product129
Regressor
Target
Output

FIGURE 5.19: Examples of strong ANN volume predictions, over 3 different forecast hori-
zons: 1) 1-12 months, 2) 13-24 months, 3) 25-36 months. Regressor refers to one of the inputs
(historical volume data) used to drive the prediction, Target refers to the actual volume and

Output is the prediction made by the learning model.

The feed-forward ANN performed poorly however with predictions where the target (actual)

collapsed to zero around the time of the prediction. This also motivated our use of a decision

tree in a two-step predictive process, in order to separate this group of data-points from the

others. Below in Figure 5.20 we see some examples of the ANN failing to predict the zero

volume collapse, here again for three different forecast horizons.
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FIGURE 5.20: Examples of poor ANN volume predictions, related to actual volume collapses,
over 3 different forecast horizons: 1) 1-12 months, 2) 13-24 months, 3) 25-36 months

Looking at these two cases separately, we can assess wMAPE across the entire data set to get

an aggregated understanding of the performance of the predictive model:

1. 1 year horizon (NN1): Training points: 9447, Testing points: 1050

2. 2 year horizon (NN2): Training points: 6237, Testing points: 694

3. 3 year horizon (NN3): Training points: 3837, Testing points: 427
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FIGURE 5.21: Histogram of products with wMAPE less than 25, for different prediction hori-
zons.
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FIGURE 5.22: Histogram of outlying wMAPE over 25, for different prediction horizons.

A majority of the predictions congregate around the 0-5% wMAPE range. There were however

outliers with significantly poor wMAPEs, shown in Figure 5.22.
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In Figure 5.23 we compare the performance of the predictive model for predictions made in

different years. The first insight from this Figure is that the model gets worse as the fore-

cast horizons become longer, which is expected. The 3 year prediction has a wMAPE that

moves towards 35% for the predictions made in the later part of the decade, making it clearly

the worst of the three horizons. Secondly, regarding whether there is a general trend of the

model having varying prediction accuracies over the decade (i.e. it is easier to predict future

volumes based on the inputs chosen in year 7 compared to year 4), it is hard to draw any clear

conclusions.
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FIGURE 5.23: Figure comparing wMAPE for the three different time horizons for predictions
made in different years.

5.3.3 2-part model: tree with neural network

Finally, Figure 5.24 shows the wMAPE from predictions made on radio unit products that

have first passed though the decision tree and that were classified to not collapse into the

future. The first row here shows histograms for predictions made that had a wMAPE less

than 25, and the second row shows some of the outlying, rarer predictions with wMAPEs over

25.
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FIGURE 5.24: 2-part model predictions: ANN predictions made on radio unit products that
were categorized as "not collapsed" by the decision tree



Chapter 6

Discussion

6.1 Conclusion: radio life cycles are getting shorter over time

This conclusion was made by identifying radios with "complete" radio life cycles through an

automated program in the year 1-10 historical data, and comparing progression over time

(Figure 5.7). For each year, for example year 1, there were a certain number of radios whose

life cycle initiated that year and who also had a "complete" life cycle. Table 6.1 shows that

there are far more radios that start in year 1 and who have a complete life cycle than the

number of radios who start their life cycle in year 8 and who also have a complete life cycle.

TABLE 6.1: Table showing that less radios had complete life cycles over time. Specific num-
bers removed for publication

Year Volume/year (captured by Figure 5.7)

1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 - (less than year 1)

Table 6.1 here shows what one would have expected - there are not many radios that initiate

sales later in the decade (e.g. year 7 or year 8) that also have complete life cycles. Impor-

tantly, this fact weakens the conclusion made about radios getting shorter life cycles over

time. Table 6.1 would imply that there is a bias in the data - are radio life cycles actually get-

ting shorter, or can this be explained by the fact that in the later years only the short life cycles

can be identified?

37
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We explored this question by breaking down the number of radio products that have a "start

date" in terms of life cycle but not "end date" in Figure 6.1. Here, we clearly see that there is a

significant proportion of radios that initiate their life cycle in year 7, 8 and 9 that do not "have

time" to complete their life cycles.

<1 1 2 3 4 5 6 7 8 9 10

Products with start year with and without end date
With end date
No end date

FIGURE 6.1: Table comparing propensity for radios over time to have an identifiable com-
plete life cycle

We can therefore now explain the trend of less radios being able to be included in the lifecycle

analysis over time from Table 6.1, and also confirm the fact that the conclusion of life cycles

getting shorter time is partly due to the cut-off nature of the data at year 10.

6.2 Predictive model vs human guesses

In Figure 5.14, global 1 year horizon predictions using Ericsson’s existing long range forecast

methodology are shown to have a wMAPE of 9%, 13% for 2 year horizons and 22% for 3 year

horizons.

The artificial neural network on its own, with the parameters selected as inputs to drive its

prediction, struggled with radio products whose sales volumes collapsed shortly following

the prediction date (see Figure 5.20 for some examples). The decision tree was designed to

take in hand-picked features specifically aimed towards this collapse/non-collapse output,

and came up with a logical selection criteria to separate between these two cases (Figure

5.15). Combining these two models (tree first, then ANN) gave promising wMAPEs on the
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per product prediction level, with the majority of predictions below 5% wMAPE for 1, 2 and 3

year predictions (see the histogram in Figure 5.24)

A direct comparison between the two is imperfect however, for two reasons:

1. The Ericsson/human wMAPE for long range forecast is on the aggregated global level,

across all products, whereas the 2-part model wMAPE is an unaggregated, per-product/per-

prediction evaluation. Whereas they can still be compared to get a sense of their com-

parative predictive accuracy, this difference confers a disparity in their internal dynam-

ics. For example, with the global wMAPE, under-predictions for certain products can

compensate for over-predictions for other products, and these errors will not be taken

into account in the aggregated wMAPE.

2. The 2-part model wMAPE histogram shows the span of accuracies for all 1-year pre-

dictions, giving a sense of of its predictive strength, and also showing the existence of

outlying predictions with very high wMAPE (poor predictions). The Ericsson wMAPE

numbers do not have this level of granularity, which means that the very poor, outlying

Ericsson predictions will be integrated into the averaged percentage error.

Nonetheless, the 2-part model is accurate, and also offers an interesting and reasonable in-

sight into the drivers of volume collapse.



Appendix A

Appendix

A.1 Regional Conversions

Regions acronyms
Market Areas Notation in Sam

Historical
Market Area description

RNAM MANA Market Area North America
RLAM

+ RMED
+ RWCE
+ RECA

MELA
Market Area Europe & Latin

America

RMEA
+ RSSA

MMEA Market Area Middle East & Africa

RINA
+ RASO

MOAI
Market Area South East Asia,

Oceania & India
RNEA MNEA Market Area North East Asia

TABLE A.1: Region to Market Area conversion, based on Market Clusters - Market Areas,
Regions, Countries translation table
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