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Energy Management Strategy for Smart Meter
Privacy and Cost Saving

Yang You, Student Member, IEEE, Zuxing Li, Member, IEEE, and Tobias J. Oechtering, Senior Member, IEEE

Abstract—We design optimal privacy-enhancing and cost-
efficient energy management strategies for consumers that are
equipped with a rechargeable energy storage. The Kullback-
Leibler divergence rate is used as privacy measure and the
expected cost-saving rate is used as utility measure. The corre-
sponding energy management strategy is designed by optimizing
a weighted sum of both privacy and cost measures over a finite
time horizon, which is achieved by formulating our problem into
a belief-state Markov decision process problem. A computation-
ally efficient approximated Q-learning method is proposed as
a generalization to high-dimensional problems over an infinite
time horizon. At last, we explicitly characterize a stationary
policy that achieves the steady belief state over an infinite time
horizon, which greatly simplifies the design of the privacy-
preserving energy management strategy. The performance of the
practical design approaches are finally illustrated in numerical
experiments.

Index Terms—Smart meter privacy, privacy-utility trade-off,
Kullback-Leibler divergence, MDP, Q-learning.

I. INTRODUCTION

In future smart grids, smart meters are essential components
to deliver information about consumers’ energy demand to
the energy provider (EP). This information can help the EP
to improve the prediction on the future energy demands and
therefore to increase the efficiency of the whole smart grid [1].
However, this benefit is at a cost of privacy of consumers, since
an adversary (this could be a legitimate receiver of the data,
e.g., the energy grid operator) can use standard energy load
disaggregation algorithms, e.g., non-intrusive load monitoring
algorithms [2]–[6] to learn the consumers’ private activities.

Regarding this issue, different approaches have been pro-
posed previously. One approach is to modify the smart me-
tering data before it is sent to the EP by using of-the-shelf
methods, such as obfuscation [7], anonymization [8], and data
aggregation [9]. The major limitation of these methods is
that they hide the real energy flow in the grid so that these
methods fail if the legitimate receiver of the data requires exact
measurements. Moreover, the adversary (even a compromised
EP) may decide to install a sensor for directly monitoring the
energy request of a household or a business. In the United
States, in the case of Naperville Smart Meter Awareness
v. City of Naperville [10], the court has decided that the
Fourth Amendment [11] protects the energy consumption data
collected by smart meters. The EU General Data Protection
Regulation (GDPR) [12] calls for an authorized data recipient
to hold and process only the data absolutely necessary for
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Fig. 1. Smart metering system with rechargeable energy storage (ES) and
privacy-cost-aware energy management unit (EMU) that modifies energy con-
sumption profile to protect against unauthorized hypothesis testing (h0/h1)
of adversary (AD) taking dynamic energy prices into account.

the completion of its duties as well as limiting the access to
personal data to those needed to act out the processing [12].
To achieve this, GDPR advocates for innovative privacy-by-
design approaches as considered here. Using an energy storage
such as rechargeable battery [13]–[17], or an alternative energy
supply such as renewable energy source [18]–[20], the actual
consumer profile can be modified by a privacy-enhancing
energy management strategy.

A. Related Works

Privacy measures. Different privacy measures have been
considered for such privacy-by-design approaches. In [21]
and [22], differential privacy and in [16], the variance of
random energy supplies from the EP have been used as privacy
measure. In [13], [14], [18], [19], [23], the privacy leakage is
measured by different information theoretic metrics such as
mutual information or conditional entropy rates. Another im-
portant approach is to consider a privacy-preserving objective
derived from a specific adversarial hypothesis test scenario,
e.g., [24], [25]. Compared to the aforementioned approaches,
the hypothesis testing privacy measure has a clear operational
meaning, but it is also limited by the specific assumptions of
the considered scenario. In more detail, in [24], the privacy-
preserving problem is evaluated under Bayesian detection
setting. The work has been extended in [25] considering the
trade-off between privacy and energy storage loss. Recently,
the Kullback-Leibler (KL) divergence is used to measure
privacy leakage in [26] and [27]. The KL divergence char-
acterizes the asymptotic Neyman-Pearson hypothesis testing
performance of the adversary with independent and identically
distributed (i.i.d.) observations. In this work, we also adopt
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the KL-divergence as the privacy measure. Correspondingly,
the objective is to minimizing the KL-divergence between the
distributions of energy request considering a binary hypothesis
test on the consumers’ behavior.

Design approaches. Different approaches have been pro-
posed for the design of privacy-preserving mechanisms. This
includes heuristic approaches, such as the best-effort water-
filling algorithm in [28] that aims to keep the output load at
its most recent value. A battery-based noise adding mechanism
is designed in [21] and [22] to achieve differential privacy. In
[29] and [30], control optimization methods such as model-
distribution predictive control and cloud-based control have
been applied to enhance the privacy. Likewise, a stochastic
control model is considered in [13], [14], [18], [19], where
the privacy-preserving energy management design problem is
transferred into an optimal control strategy design problem in
the Markov decision process (MDP) framework. In particular,
[16], [17], [31] proposed different online control algorithms
based on the dynamic programming framework considering
the realistic case where the consumers’ energy consumption
profile can only be known casually.

Privacy-cost tradeoffs. In fact, in most cases, the privacy
enhancement will lead to an increased energy cost, which may
often violate the original cost-saving motivation of the energy
storage investment for consumers. In such cases, the design
of a privacy-enhancing and cost-efficient energy management
strategy becomes even more important. While most of the
aforementioned papers focus on how to preserve the privacy,
only [14], [16], [17], and [19] have taken the consumers’ cost
for purchasing the energy into consideration. [14] and [19]
assume in their design that the statistics of the energy profile
is known. [16] provides an online strategy and [17] studies
the case where the realization of the energy profile is non-
causally known as well as an online strategy. In more details,
in [16] the online dynamic programming problem is relaxed to
a Lyapunov optimization problem which jointly optimize the
privacy and the energy cost. In [17], first an offline convex
optimization problem for the privacy-cost trade-off is solved,
then a low-complexity heuristic online control algorithm is
proposed as an alternative solution to the original online
dynamic programming problem. Along a different line, the
authors in [14] and [19] formulate the privacy-cost trade-off
problem into the offline stochastic control problem under the
MDP framework. However, characterizing the optimal strategy
is computationally challenging due to the continuous state-
action space. Thus approximate solutions under specific cases,
or upper and lower bounds have been derived and proposed.

B. Contributions

In this paper, we consider a smart metering system with
a rechargeable energy storage at the consumer using KL-
divergence rate as the privacy leakage measure assuming that
the statistics of the energy profile is known. For the cost
measure, we use the expected cost-saving rate as defined
in [14]. In order to design policies that optimally trade-
off between privacy and cost, a weighted sum of them is
considered as overall objective function. We formulate the

energy management design problem as an equivalent average
reward MDP problem so that the optimal solution is given by a
Bellman dynamic program. The main purpose and contribution
of this paper is then to develop computationally complexity
efficient design approaches to circumvent the computational
complexity that come with solving infinite horizon belief state
MDP problems. In more detail, we utilize the techniques of
reinforcement learning to propose a sub-optimal but compu-
tationally efficient approximated Q-learning method. As an
alternative approach, we explicitly characterize a stationary
policy that achieves the steady belief state over an infinite
time horizon by assuming a simplified setting with i.i.d. energy
demands. As a consequence, the original privacy measurement,
i.e., n-letter KL-divergence can be simplified to a single-
letter expression, which allows the derivation of a sufficient
condition for perfect privacy.

Accordingly, the contribution of this paper can be ac-
cordingly summarized as follows: (i) We provide a problem
formulation for the design of an energy management strategy
that aims for privacy enhancement and energy cost-saving,
and we specifically use KL-divergence as a novel privacy
measurement; (ii) We provide the MDP reformulation of our
original optimization problem such that the MDP framework
can be utilized for the explicit design of optimal strategies; (iii)
A more computational efficient approximated Q-learning ap-
proach is proposed as a generalization to the high-dimensional
problem under infinite time horizon; (iv) A stationary energy
management strategy is provided under the special case of i.i.d.
energy demand without a cost-saving concern. The results are
developed and motivated by the smart meter privacy problem,
but can be transferred to other settings where a demand profile
should be protected and one has the opportunity to modify the
instantaneous demand within same range.

Notation: In the following, we denote a random variable by
the capital letter, its realization by the corresponding lowercase
letter, and its alphabet by the corresponding calligraphic letter.
We further denote a random sequence (Xt, ...., Xt+k) and its
realization (xt, ...., xt+k) by Xt+k

t and xt+kt respectively. In
particular, Xt stands for Xt

1. For probability mass function
PX(x) of random variable X , we write it as P (x) if it
is clear from the context. We use PA|hi

and PA|B,hi
as

the short notations for the (conditional) distributions when
the hypothesis hi holds. Also, let D(·||·) denote the KL-
divergence.

II. PRIVACY-COST TRADE-OFF UNDER MARKOVIAN
ENERGY DEMAND AND PRICE

A. System Model

Consider a smart metering system as shown in Fig. 1.
The consumer’s privacy-sensitive behavior over a certain
time period T is modeled by a binary hypothesis h0 or
h1, e.g., cooking during Ramadan, working on Shabbat or
using a health equipment that reveals a disease. Under each
hypothesis, the consumer will have a certain energy con-
sumption profile. Time and energy levels are assumed to be
discretized. At time step t, denote consumers’ energy demand
by xt ∈ X = {0, 1, ..., xmax}, energy supply from the EP by
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yt ∈ Y = {0, 1, ..., ymax}, instantaneous price by pt ∈ P =
{1, ..., pmax}. The energy storage (ES), e.g., a rechargeable
battery, has a finite capacity with its instantaneous storage
level denoted by st ∈ S = {0, 1, ..., smax}. The instantaneous
energy consumption xt should always be satisfied by supplies
from either EP or ES without wasting energy. Then, the ES
level evolves as

st+1 = st + yt − xt. (1)

In addition, to guarantee 0 ≤ st ≤ smax, the energy supply
yt should be chosen within the following feasible set:

Y( xt, st)

= {yt ∈ Y : max{0, xt − st} ≤ yt ≤ smax + xt − st},
(2)

where the lower bound xt− st ensures that the energy supply
yt provides at least the rest energy when ES level st cannot
solely satisfy the consumer demand; and the lower bound 0
is because no energy can be sold back to the grid; the upper
bound is due to the constraints of finite maximum ES capacity
and that no energy should be wasted.

For the design of the policies, we employ a probablistic ap-
proach. We assume that the consumer energy demand Xt and
the dynamic price Pt follow first order Markov processes with
time-invariant transition probabilities PXt+1|Xt,hi

, i ∈ {0, 1},
and PPt+1|Pt

. Over a T -time horizon, the energy management
unit (EMU) requests energy supply Yt from the EP based
on an energy management strategy f = {ft}Tt=1 ∈ F =
F1×F2× ....×FT , with ft ∈ Ft. The set Ft of the possible
strategies is given by the set of conditional probability mass
functions (pmfs):

Ft = {PYt|Xt,St,P t,Y t−1 :
∑

yt∈Yt(xt,st)
∀xt∈X ,st∈S

P (yt|xt, st, pt, yt−1) = 1}.

(3)
Thus, strategy ft decides on the random amount of energy to
request from the EP at time t, given the demands xt, ES levels
st, prices pt and supplies yt−1.

For i ∈ {0, 1}, after initializing the joint pmf of X1, S1 and
P1 as PX1,S1,P1|hi

, over a finite horizon with length T , the
joint conditional pmf of (XT , ST , Y T , PT ) induced by f can
be written as:

P f
XT ,ST ,Y T ,PT |hi

(xT , sT , yT , pT )

= PX1,S1,P1|hi
(x1, s1, p1)︸ ︷︷ ︸

Initialization

× P (y1|x1, s1, p1)︸ ︷︷ ︸
f1(y1|x1,s1,p1)

T−1∏
t=1

[ P (pt+1|pt)︸ ︷︷ ︸
Price evolution

× P (xt+1|xt, hi)︸ ︷︷ ︸
Demand evolution

× Ist+1
(yt + st − xt)︸ ︷︷ ︸

Energy storage level evolution

× P (yt+1|xt+1, st+1, pt+1, yt)︸ ︷︷ ︸
ft+1(yt+1|xt+1,st+1,pt+1,yt)

],

(4)

where I is the indicator function, i.e., Ist+1(yt+ st−xt) = 1
if st+1 = yt + st − xt, Ist+1

(yt + st − xt) = 0, otherwise.

B. Privacy-by-Design Approach

We assume that an adversary (AD) has access to the smart
metering data sequence yT , price sequence pT , and is fully
informed about the statistics of the system, i.e., PY T ,PT |h0

and PY T ,PT |h1
, and infers on the consumers’ privacy-sensitive

consumption behavior using statistical inference methods. In
our problem, due to the uncertainty about the inference be-
havior of the AD, we use the KL-divergence rate as privacy
leakage measure, since the KL-divergence measures the sim-
ilarity between two distributions. Over a finite time horizon
T , given a strategy f ∈ F , the privacy leakage is measured
by the following KL-divergence rate between joint pmfs of
(Y T , PT ) conditioned on hypotheses h0 and h1:

LT (f) =
1

T
D(P f

Y T ,PT |h0
‖P f

Y T ,PT |h1
), (5)

where P f
Y T ,PT |hi

, for i = 0, 1, denotes the joint distribution
of (Y T , PT ) conditioned on hi induced by f :

P f
Y T ,PT |hi

(yT , pT ) =
∑
xT ,sT

P f
XT ,ST ,Y T ,PT |hi

(xT , sT , yT , pT ).

(6)
Besides the privacy enhancement objective, we are looking

for a policy f that is also cost-efficient. We define the cost-
saving at time t as ∆Vt = (Xt − Yt)Pt. The expected cost-
saving rate induced by f over a finite horizon T can then be
written as:

VT (f) =
1

T

T∑
t=1

(E[∆Vt|h0]P (h0) + E[∆Vt|h1]P (h1)), (7)

where the expectation is taken with respect to the joint
conditional distribution P fXt,Yt,Pt|hi

, for i = {0, 1}, induced
by f .

To study the trade-off between privacy enhancement and
cost-saving, the overall objective is to choose a strategy f ∈ F
that minimizes the following weighted sum objective:

CT (f, λ) = λLT (f)− (1− λ)VT (f), (8)

where λ ∈ [0, 1]. In more detail, the trade-off between privacy
and cost is realized by choosing different values of λ, e.g.,
λ = 1 leads to finding the optimal privacy-enhancing strategy,
while λ = 0 leads to the objective function of finding the
optimal cost-saving strategy. Then, the optimal strategy is

f∗ = arg min
f∈F

CT (f, λ). (9)

C. MDP Formulation

By iteratively applying the chain rule for KL-divergence,
LT (f) can be written in the following form:

LT (f) =
1

T

T∑
t=1

D(P fYt,Pt|h0,Y t−1,P t−1‖P fYt,Pt|h1,Y t−1,P t−1)

=
1

T

T∑
t=1

∑
yt

∑
pt

P f (yt, pt|h0) log
P f (yt, pt|h0, y

t−1, pt−1)

P f (yt, pt|h1, yt−1, pt−1)
.

(10)
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Meanwhile, the VT (f) can be expressed by:

VT (f) =
1

T

T∑
t=1

∑
xt,pt,yt

(P (h0)P f (xt, pt, yt|h0)

+P (h1)P f (xt, pt, yt|h1))(xtpt − ytpt).

(11)

As observed from (10) and (11), at each time step t, the
current choice of the energy management strategy will affect
the future statistics of the smart metering system as well as
the choices of the future energy management strategies. In
this case, successive independent optimization of the energy
management strategy at each time step will not necessarily
lead to an optimal solution over the whole time horizon.
Instead, our optimization problem needs to be formulated into
a sequential decision making problem, e.g., Markov decision
process.

We first identify a structural simplification for the energy
management strategy f . Define a new strategy f

′
= {f ′t}Tt=1 ∈

F ′ = F ′1 × F
′

2 × .... × F
′

T , with f
′

t ∈ F
′

t . And F ′t is the set
of pmfs that:

F
′

t = {PYt|Xt,St,P t,Y t−1 :
∑

yt∈Yt(xt,st)
∀xt∈X ,st∈S

P (yt|xt, st, pt, yt−1) = 1}.

(12)
Thus, f

′

t is the energy management strategy that decides on
the energy supply based on the current consumer demand xt,
current ES level st, prices pt, and supplies yt−1.

Proposition 1. For the optimization problem proposed in (9),
there is no loss of optimality by focusing only on strategies in
F ′ . And the equivalent optimization problem is:

f ′∗ = arg min
f ′∈F ′

CT (f
′
, λ). (13)

Proof: For any realization (xt, st, yt, pt), construct f
′

t by
the following equation:

P f
′
t (yt|xt, st, pt, yt−1) = P ft(yt|xt, st, pt, yt−1). (14)

Our aim is to show, under this transformation, the probabilities
terms in our objective function are identical when they are
induced by either f

′
or f . On observing the following relation-

ships between PXt,St,Y t,P t|hi
, PYt,Pt|hi,Y t−1,P t−1 , PY t,P t|hi

and PXt,Pt,Yt|hi
:

PY t,P t|hi
=
∑
Xt,St

PXt,St,Y t,P t|hi
,

PYt,Pt|hi,Y t−1,P t−1 =
PY t,P t|hi

PY t−1,P t−1|hi

,

PXt,Pt,Yt|hi
=

∑
St,Y t−1,P t−1

PXt,St,Y t,P t|hi
,

(15)

in order to prove the above proposition, it is then sufficient to
show that:

P fXt,St,Y t,P t|hi
= P f

′

Xt,St,Y t,P t|hi
. (16)

Next we use the induction method for the proof.
For t = 1, according to the construction in (14),

there is f
′

1(y1|x1, s1, p1) = f1(yt|x1, s1, p1). Addition-
ally, the initial state is generated regardless of the strat-
egy, i.e., P fX1,S1,P1|hi

= P f
′

X1,S1,P1|hi
. Therefore, we have

P fX1,S1,P1,Y1|hi
= P f

′

X1,S1,P1,Y1|hi
.

Assume P fXt,St,Y t,P t|hi
= P f

′

Xt,St,Y t,P t|hi
, we will show

that P fXt+1,St+1,Y t+1,P t+1|hi
= P f

′

Xt+1,St+1,Y t+1,P t+1|hi
also

holds. According to the following expression we have:

P f (xt+1, st+1, y
t+1, pt+1|hi)

=
∑
xt,st

P f (xt+1, xt, st+1, st, y
t+1, pt+1|hi)

=
∑
xt,st

(
P (pt+1|pt)P (xt+1|xt, hi)Ist+1(yt + st − xt)

P f (yt+1|xt+1, st+1, p
t+1, yt)

)
× P f (xt, st, y

t, pt|hi)
(a)
=
∑
xt,st

(
P (pt+1|pt)P (xt+1|xt, hi)Ist+1(yt + st − xt)

f
′

t+1(yt+1|xt+1, st+1, p
t+1, yt)

)
× P f

′
t (xt, st, y

t, pt|hi)
= P f

′
(xt+1, st+1, y

t+1, pt+1|hi),
(17)

where (a) holds due to the construction in (14) and the
induction hypothesis. Thus (16) holds for all t according to
the principle of induction.

To transform the optimization problem (13) into an MDP,
we need to identify the states, the transition between different
states, the control actions, and the per-step cost which can be
expressed in terms of the current state and the corresponding
control action. Thus, to end up with such a per-step cost for-
mulation, we will follow the standard approach of introducing
control actions, which jointly with the corresponding policies
describe the energy management strategy.

At time step t, let the control action be at ∈ A which is
the condition pmf PYt|Xt,St,Pt

taken from the following set:

A = {PY |X,S,P :
∑

y∈Y(x,s)

P (y|x, s, p) = 1,∀x ∈ X , s ∈ S} (18)

Thus, the control action at randomly decides on the energy
supply Yt according to the conditional pmf PYt|Xt,St,Pt

. Note
that in this section we assume that the EMU is unaware of the
hypothesis h0 or h1, i.e., the consumers behavior. Thus, the
EMU will choose an action according to a hypothesis indepen-
dent policy πt ∈ Πt, where Πt denotes the set of deterministic
mappings from the historical observations (yt−1, pt−1) to a
corresponding action at, i.e., at = πt(y

t−1, pt−1). Thus, the
policy over a T -time horizon is π = {πt}Tt=1 ∈ Π =
Π1×Π2×....×ΠT . At each time step, any energy management
strategy f

′

t can be equivalently represented by a combination
of a policy πt and a control action at. For each f

′

t , we apply the
policy πt to establish a mapping from the historical sequence

(yt−1, pt−1) to at = P
f
′
t

Yt|Xt,St,Pt,Y t−1=yt−1,P t−1=pt−1 . This
control action at is then used to obtain Yt according to
PYt|Xt,St,Pt

. Thereby, we end up with control action that itself
does not depend on the historical sequence (yt−1, pt−1), while
the history decides which control action is applied at time t.

Let Qt = (Y t, P t, At), for the purpose of formulating the
dynamic programming as well as expanding the per-step cost
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in terms of state-action pairs. It is more convenient to write the
policy πt as at = πt(qt−1). This can be seen from the follow-
ing: Since (yt−1, pt−1) determines at = πt(y

t−1, pt−1) and
contains the information that determines at−1, the expression
at = πt(qt−1) is equivalent to at = πt(y

t−1, pt−1).
With the above definition and conclusion, we obtain an

equivalent reformulation of the previous problem (13) as stated
in the following proposition.

Proposition 2. The optimization problem in Proposition 1
is equivalent to finding a policy π ∈ Π that minimizes the
following weighted sum objective:

CT (π, λ) =
1

T

T∑
t=1

E[Ct(πt, λ,Qt−1)], (19)

where the per-step expected cost conditioned on each possible
historical sequence qt−1 can be specified as

Ct (πt, λ, qt−1)

= λ
∑
pt,yt

Pπt(yt, pt|qt−1, h0) log
Pπt(yt, pt|qt−1, h0)

Pπt(yt, pt|qt−1, h1)

− (1− λ)
∑

xt,pt,yt

(P (h0)Pπt(xt, pt, yt|qt−1, h0)

+ P (h1)Pπt(xt, pt, yt|qt−1, h1))(xtpt − ytpt).
(20)

And the optimal policy is given by π∗ = arg min
π∈Π

CT (π, λ).

Proof: To prove this proposition, we need to show CT (π, λ)
is equal to CT (f

′
, λ) under transition from strategy f

′
to

policy π. Thus, we need to further show that the probability
terms in these two objective functions are equal. Since the
proofs for the other probability terms are similar, we only
prove P f

′

Y T ,PT |hi
= PπY T ,PT |hi

here.
After expanding PπY T ,PT |hi

according to the policy π, we
obtain
PπY T ,PT |hi

(yT , pT )

=
∑
xT ,sT

PX1,S1,P1|hi
(x1, s1, p1)× a1(y1|x1, s1, p1, hi)

T−1∏
t=1

[P (pt+1|pt)P (xt+1|xt, hi)Ist+1(yt + st − xt)

× at+1(yt+1|xt+1, st+1, pt+1)].
(21)

By applying the equivalence between f
′

t and (πt, at), which
is derived above, we get P f

′
t (yt+1|xt+1, st+1, p

t+1, yt) =

at(yt+1|xt+1, st+1, pt+1). Also, we have P f
′
t (y1|x1, s1, p1) =

a1(y1|x1, s1, p1). Thus, P f
′

Y T ,PT |hi
= PπY T ,PT |hi

holds.
The model described above can be regarded as a partially

observed MDP: At each time step, the EMU observes the
historical sequence qt−1 and makes a guessing on the current
system state (Xt, St, Pt), i.e., the posterior distribution of
(Xt, St, Pt) given realization qt−1. Based on this guessing,
the EMU will further choose a control action according to
a specific policy. In contrast to a standard MDP problem,
as shown in (20), the per-step conditional expected cost
will depend on not only the current state and control action
but also the historical sequence qt−1. In order to formulate

it into a standard MDP, we introduce belief states which
will be used to replace the growing historical sequences by
identifying an update rule. To this end, we define a belief
state θqt−1

= (θ0
qt−1

, θ1
qt−1

) as the posterior distributions of
(Xt, St, Pt) conditioned on the realization qt−1 under the
corresponding hypotheses as:

θiqt−1
= PXt,St,Pt|qt−1,hi

, i ∈ {0, 1}. (22)

At time step t, for i ∈ {0, 1}, given any θiqt−1
, observation yt,

and action at, the updating of belief state is given by θiqt =
ϕ(θiqt−1

, at, yt) in (23). And this evolution function φ can be
derived by first applying Bayes rule and then substituting the
corresponding terms by at and θiqt−1

.
Ct in (20) is indeed the per-step expected cost of the belief

state θqt−1
when taking action at, since each realization qt−1

decides on a unique belief state. Thus, Ct(πt, λ, qt−1) can
be expressed in terms of the corresponding belief state-action
pairs, i.e., we have

Pπt(xt, pt, yt|qt−1, hi)

=
∑
st

θiqt−1
(xt, st, pt)at(yt|xt, st, pt). (24)

With the above formulation, according to the definition of
belief-state MDP in [32, pp.150-151], we have the following
Theorem.

Theorem 1. The original optimization problem in (13) can
be modeled as a belief-state MDP problem such that: (i) the
state at time t is given by (22) and evolves according to (23);
(ii) the control action at time t is specified by at(yt|xt, st, pt);
(iii) the per-step expected cost corresponding to a state-action
pair is given by (20); (iv) the optimal policy π can be derived
by using Bellman dynamic programming.

Remark 1. In the reformulated belief-state MDP problem,
at each time step, the decision maker observes the historical
sequence qt−1 and identifies a unique belief state θqt−1

. Based
on this belief state, the decision maker will further decide on
an action according to the optimal strategy πt derived from
the Bellman dynamic programming.

D. Backward Dynamic Programming over Finite Time Hori-
zon

Lemma 1. For any action at, according to [32, pp. 152-153],
the modified Bellman operator Bat for our belief-state MDP
problem can be written as:

(BatV )(θqt−1) = Ct(πt, λ, qt−1)+∑
yt

[(
∑
i=0,1

∑
xt,st,pt

P (hi)θ
i
qt−1

(xt, st, pt)

at(yt|xt, st, pt))V (ϕ(θqt−1
, at, yt))],

(25)

where V denotes the value function. The first term is the per-
step expected cost for any given belief state θqt−1

and the
second part denotes the corresponding expected cost-to-go.
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ϕ(θiqt−1
, at, yt) =

∑
xt,st,pt

θiqt−1
(xt, st, pt)at(yt|xt, st, pt)P (pt+1|pt)P (xt+1|xt, hi)Ist+1(yt + st − xt)∑

xt,st,pt

θiqt−1
(xt, st, pt)at(yt|xt, st, pt)

(23)

Proof: For the traditional belief state MDP with one belief
state variable, which is described in [32], with an abuse of
notation, the Bellman operator can be written as:

(BaV )(b) = r(b, a) +
∑
y∈Y

P (y|b, a)V (ϕ(b, a, y)), (26)

where b is the current belief state, a is the corresponding ac-
tion, r(b, a) denotes the per-step reward, and ϕ(b, a, y) denotes
the evolution of the belief state given a specific action a and
a specific observation y. Most importantly, the term P (y|b, a)
denotes the probability of observing y at belief state b given a
specific action a, i.e., the transition probability between belief
state b and belief state ϕ(b, a, y) given any action a. For our
problem, the belief state θqt−1

= (θ0
qt−1

, θ1
qt−1

) is a vector that
contains two beliefs conditioned either on hypothesis h0 or h1.
In this case, with the given prior of the hypotheses P (h0) and
P (h1), the probability for observing yt at belief state θqt−1

given action at can be then calculated by:

P (yt|at,θqt−1
)

= P (h0)
∑

xt,st,pt

(θ0
qt−1

(xt, st, pt)at(yt|xt, st, pt))

+ P (h1)
∑

xt,st,pt

(θ1
qt−1

(xt, st, pt)at(yt|xt, st, pt)),

(27)
Plugging the above equation into (27) will lead to our modified
Bellman operator as defined in (25).

In this case, the value function is updated according to:

V (θqt−1) = min
at∈At

(BatV )(θqt−1). (28)

Thus, the optimal policy π∗t (θqt−1
) and the corresponding

optimal control action a∗t = π∗t (θqt−1
) is given by the

optimizer of (28). Let θ1 denote the initial joint distributions
of (X1, S1, P1) conditioned on h0 and h1, then the minimum
value of average expected cost CT is given by V (θ1)/T.

E. Optimization over Infinite Time Horizon

In this section, we consider the case of infinite time horizon,
i.e., T → ∞. For the reason of simplicity, we use (s, a) ∈
S × A to denote the belief state and action pair, c(s, a) and
P (s′|s, a) as the cost and transition probability to state s′ from
the corresponding state-action pair (s, a). Under the infinite
time horizon, the optimal Bellman equation of our average
expected cost MDP is given by:

h∗(s) = min
a∈A

[c(s, a)− ρ∗ +
∑
s′

P (s′|s, a)h∗(s′)], (29)

where ρ∗ denotes the optimal average expected cost of the
optimal policy, i.e., the optimal gain of total expect cost
in steady state. In the following, we assume the optimal

stationary policy exists for our infinite horizon average reward
MDP problem.1

Let h(s) be the relative value function, i.e., the asymptotic
difference between the total expected cost that starting from
state s and the total expected cost that would be incurred if
the per-step cost is equal to ρ∗ for all states. The optimal
relative value function h∗(s) is given by the h(s) that satisfies
the above optimal Bellman equation, which represents the
minimum asymptotic difference. The optimal policy for the
above problem π∗ = (π, π, ...) is stationary and is defined by:

π(s) = arg min
a∈A

[c(s, a) +
∑
s′

P (s′|s, a)h∗(s′)], ∀s. (30)

Given state and action sets are with small cardinalities, the
relative value iteration (RVI) method [34] can guarantee a fast
convergence of the above operator if an optimal stationary
solution exists. For our problem, both of the action space
and the belief state space are continuous, i.e., with an infinite
number of states and actions. Thus, the continuous space needs
to be quantized to a finite set with a relatively low cardinality
so that the RVI algorithm can work efficiently. However,
the solution derived under the quantized spaces can only be
regarded as a sub-optimal solution to the original problem.
A better solution can be found by increasing the resolution
of the quantization, or even considering the whole space
without quantization. However, when the cardinality of the set
increases, the system dynamics become impractical to charac-
terize, i.e., cost function and transition behavior corresponding
to each state-action cannot be fully characterized. Thus, the
exact solution methods such as RVI will be inapplicable.

To address this issue, we propose two alternative methods.
We first propose to use the Q-learning algorithm, since the
reinforcement learning algorithms could help to solve the
MDP problem without the knowledge of the cost function and
the transition probabilities. Since it is infeasible to explicitly
represent the Q-function over the continuous belief state
space2, a general function approximator is used to approximate
the Q-function given each possible state. In more detail,
we provide the framework of relative Q-learning with linear
function approximation as a sub-optimal but computationally
more efficient solution to our original optimization problem.
On the other hand, in Section III, under the special case of

1To guarantee the existence of stationary optimal policy, we need to have
some restrictions on the underlying Markov chains. For instance, the Markov
chain induced by any policy should be unichain. However, the problem of
checking such a unichain condition is NP-hard [33]. We thus assume that
there exists an optimal stationary policy for our infinite horizon average MDP
problem. For our numerical experiments, we can see that our relative iteration
algorithm convergences under our discretized state-action space settings,
which indicates that the optimal stationary policy exists under this specific
setting.

2For the reason of simplicity, we restrict our problem to the case with
infinite state space but a finite action space, i.e., the action takes values from
a finite subset of the continuous action set A.
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i.i.d. energy demand, we study a time-invariant strategy that
preserves the stationarity of each belief state, which can avoid
the curse of the dimensions and the growth of the complex
system dynamics.

F. Q-learning Based Stationary Energy Management Strategy
Design

In this section, we first provide a brief outline of the relative
Q-learning method. More details on this method can be found
in [35]. The main contribution here is the linear functional
approximation and the corresponding feature selection that
results in a good performance of our approach.

Given the optimal relative value function h∗(s) in (26),
we define the optimal Q-function Q∗(s, a) as the minimum
asymptotic difference between total expected cost starting
from state s with action a and the optimal total expected cost:

Q∗(s, a) = c(s, a)− ρ∗ +
∑
s′

P (s′|s, a)h∗(s′). (31)

Since h∗(s) = min
a∈A

Q∗(s, a), we have:

Q∗(s, a) = c(s, a)− ρ∗ +
∑
s′

P (s′|s, a) min
b∈A

Q∗(s′, b). (32)

Further we define an operator H as:

(HQ)(s, a) = c(s, a)−ρ∗+
∑
s′

P (s′|s, a) min
b∈A

Q(s′, b), (33)

the optimal Q-function then becomes a fixed point of operator
H . According to the Robbins-Monro algorithm [36], the
optimal Q-function can be learned by utilizing the temporal
difference between the new estimate and the old estimate,
which is given by the following:

Qn+1(s, a)

=Qn(s, a) + α[c(s, a)− ρ∗ + min
b∈A

Qn(s′, b)−Qn(s, a)]

=(1− α)Qn(s, a) + α[c(s, a)− ρ∗ + min
b∈A

Qn(s′, b)],

(34)
where α ∈ (0, 1] denotes the learning rate, which can be kept
as constant during the learning process. The new estimate
term c(s, a) − ρ∗ + min

b∈A
Qn(s′, b) is sampled in the system

by executing an action a selected by ε-greedy policy3 which
results in state s′. Note that the optimal gain ρ∗ is unknown in
advance. Thus, we introduce the following relative Q-function
iteration to overcome this problem.

First, we select an arbitrary state-action pair (ŝ, â) before the
algorithm starts, this state-action pair is fixed and acts as the
reference state-action pair in each iteration until the algorithm
ends. The Q-function corresponding to each possible state
action pair (s, a) can be updated by:

Qn+1(s, a)

= (1− α)Qn(s, a) + α[c(s, a)−Qn(ŝ, â) + min
b∈B

Qn(s′, b)].

(35)

3In reinforcement learning scenario, under an ε-greedy policy, the agent
choose the best action with probability 1− ε and randomly choose an action
with probability ε.

It has been shown in [34] that as n → ∞, the sequence(
Qn(ŝ, â)

)
n

will converge to ρ∗. As a result, this algorithm
will converge to the fixed point of (32).

Remark 2. The computational complexity of the previous RVI
algorithm isO(|S|2|A|) per iteration andO(T |S|2|A|) overall
[35], where T denotes the number of iterations to converge,
|S| and |A| denote the cardinalities of state and action spaces.
Meanwhile, in the above relative Q-learning algorithm, the
computational complexity is only O(|A|) per iteration and
O(N |A|) overall, where N is the number of iterations to
converge. The Q-learning algorithms usually need a higher
number of iterations to converge than RVI, i.e., N > T .
However, when we have large state or action spaces, i.e., large
|S| or |A| , the Q-learning algorithms will lead a significant
reduction of the computational complexity .

1) Linear function approximation: Since our belief state
space is continuous, the number of states to learn is infinite so
that an explicit characterization of each Q(s, a) is infeasible.
For this reason, we propose to use the function approximation
method to avoid the explicit characterization of the Q-function.
In more detail, we use the following linear function Q̂(s, a)
to approximate the Q-function Q(s, a), since it is simple for
mathematical analysis and it can inherit the useful convergence
results from different kinds of learning systems [35]. Assume
we have a finite action set A′ ⊂ A with a small cardinality, it
is then practical to represent Q̂(s, a) by the following weighted
sum of different features of state s :

Q̂(s, a) =

N∑
i=1

wi(a)fi(s), (36)

where fi(s) for i = 1, 2, ..., N are N feature functions
corresponding to each possible belief state s; and wi(a) for
i = 1, 2, ..., N are weights for different features given each
possible action a. More details on how to select the features
will be discussed later. Let M denote the cardinality of the
finite action set A. We thus transfer our original task of
learning Q(s, a) for an infinite number of state action pairs into
the task of learning M different weight vectors, where each
vector is of length N , i.e., w(a) = [w1(a), w2(a), ..., wN (a)]
denotes the weight vector corresponding to action a.

Using the update rule of the Q-function Qn(s, a) in (35),
we define the temporal difference between new estimate and
old estimate as follows:

∆Qn(s, a) = c(s, a)−Qn(ŝ, â) + min
b∈A

Qn(s′, b)−Qn(s, a).

(37)
Equation (35) will converge to the optimal Q-function, when
we reduce the magnitude of ∆Qn(s, a), i.e.,

(
Qn(ŝ, â)

)
n
→

ρ∗ as ∆Qn(s, a)→ 0, when n→∞ . By applying the same
underlying idea and substituting the Q-function with its linear
function approximation (36), it has been shown in [37] that
the optimal linear approximator, which satisfies (32), can be
obtained by solving:

min
w(a),∀i

E(∆Q̂n(s, a))2, (38)
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where ∆Q̂n(s, a) denotes the the temporal difference between
new estimate and old estimate when the Q-function is approx-
imated by Q̂:

∆Q̂n(s, a) = c(s, a)− Q̂n(ŝ, â) + min
b∈A

Q̂n(s′, b)− Q̂n(s, a).

(39)
To find the optimal solutions to (38),4 the stochastic gradient

descent method [35] is used to update the weights w(a) for
all actions a ∈ A. The updating rule is then given by:

wi(a) = wi(a) + α∆Q̂n(s, a)fi(s),∀i ∈ {1, 2, ...N}, (40)

where α ∈ (0, 1] is the diminishing learning rate.

Remark 3. Given the convergence of the above algorithm, the
optimal strategy can be obtained by:

π∗(s) = arg min
a∈A

Q̂∗(s, a), (41)

where Q̂∗ is the optimal approximated Q-function.

2) Feature selection: In order to have a linear function
Q̂(s, a) that can well approximate Q(s, a), it is important to
choose appropriate features fi(s) for the linear approximator.
Given the Q-function defined by (31), we propose the follow-
ing heuristic approach where we select features that describe
well the per-step cost function c(s, a) in the linear form (36).
We first expand the per-step cost function (20) as follows:

Ct(πt, λ, qt−1)

= λ
∑
pt,yt

Pπt(yt, pt|qt−1, h0) logPπt(yt, pt|qt−1, h0)

− λ
∑
pt,yt

Pπt(yt, pt|qt−1, h0) logPπt(yt, pt|qt−1, h1)

− (1− λ)
∑

xt,pt,yt

P (h0)Pπt(xt, pt, yt|qt−1, h0)(xtpt − ytpt)

− (1− λ)
∑

xt,pt,yt

P (h1)Pπt(xt, pt, yt|qt−1, h1)(xtpt − ytpt).

(42)
Let the cardinality of the energy supply set Y be K, and
the cardinality of price set P be L. Also let the operator
| · | denotes the L2 norm. For any belief state (θ0, θ1)5 and
price pi, define θ0

i as the vector which contains elements
[θ0(x, s, pi)](x,s)∈X×Y and θ1

i as the vector with elements
[θ1(x, s, pi)](x,s)∈X×S . Further, let aji be the vector with ele-
ments [at(yj |x, s, pi)](x,s)∈X×S . Let φji be the angle between
vector aji and θ0

i , and ψji be the angle between vector aji and
θ1
i . By finding a feature-action representation for each term

of (42), the features given any action are characterized in the
following proposition.

4For the discounted expected reward MDP, there exist some conditions
to guarantee the convergence of Q-learning combined with linear function
approximation, e.g., see [37]. However, to the best of our knowledge, there
exist no such theoretical convergence guarantees for the average reward MDP.

5For reason of simplicity, we use (θ0, θ1) as short notation for
(θ0qt−1

, θ1qt−1
).

Proposition 3. For any belief state (θ0, θ1) and action a, by
doing a decomposition of (42), the corresponding heuristic
feature selection is characterized as follows:

f1((θ0, θ1)) = 1,

f2((θ0, θ1)) = |θ0|,
f3((θ0, θ1)) = |θ1|,

f4((θ0, θ1)) =

√√√√ L∑
i

(|θ0
i | log |θ0

i |)2,

f5((θ0, θ1)) =

√√√√ L∑
i

(|θ0
i | log |θ1

i |)2.

(43)

Proof: For reason of simplicity, we provide the derivation
for the features-action representation of the first term in (42),
and the others can be derived in a similar way.

Ignoring λ, the first term in (42) can be further decomposed
into the following:

∑
pt,yt

Pπt(yt, pt|qt−1, h0) logPπt(yt, pt|qt−1, h0)

=
∑
pt,yt

( ∑
xt,st

θ0(xt, st, pt)at(yt|xt, st, pt)

× log
∑
xt,st

θ0(xt, st, pt)at(yt|xt, st, pt)
)

(a)
=

L∑
i

K∑
j

|aji ||θ
0
i | cosφji (log |aji |+ log |θ0

i |+ log cosφji )

=

L∑
i

|θ0
i |

K∑
j

|aji | cosφji (log |aji |+ log cosφji )

+

L∑
i

|θ0
i | log |θ0

i |
K∑
j

|aji | cosφji

(b)
= ~A1 · ~B1 + ~A2 · ~B2

= | ~A1|| ~B1| cos
〈
~A1, ~B1

〉
+ | ~A2|| ~B2| cos

〈
~A2, ~B2

〉
,

(44)
where · denotes the inner product between two vectors in
the Euclidean space. The equality (a) in (44) follows from
considering sum over all possible (yt, pt) and the inner product
between vector θ0

i and aji . Likewise, the equality (b) is an inner
product where the i-th element of ~A1, ~A2, ~B1, ~B2 are defined
by the following:

A1i =

K∑
j

|aji | cosφji (log |aji |+ log cosφji ), B1i = |θ0
i |,

A2i =

K∑
j

|aji | cosφji , B2i = |θ0
i | log |θ0

i |.

(45)
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Similarly, the second term in (42) can be decomposed by:

∑
pt,yt

Pπt(yt, pt|qt−1, h0) logPπt(yt, pt|qt−1, h1)

= ~A3 · ~B1 + ~A2 · ~B3

= | ~A3|| ~B1| cos
〈
~A3, ~B1

〉
+ | ~A2|| ~B3| cos

〈
~A2, ~B3

〉
,

(46)
where the i-th element of ~A3, ~B3 are defined by the following:

A3i =

K∑
j

|aji | cosφji (log |aji |+log cosψji ), B3i = |θ0
i | log |θ1

i |.

(47)
Thus, the decomposition of the first two terms identifies
the features f2((θ0, θ1)) = | ~B1| = |θ0|, f4((θ0, θ1)) =

| ~B2| =

√
L∑
i

(|θ0
i | log |θ0

i |)2, and f5((θ0, θ1)) = | ~B3| =√
L∑
i

(|θ0
i | log |θ1

i |)2, and we can conclude these features will

be highly relevant to the value of KL-divergence term.

Meanwhile, by applying the same method to decompose last
two terms in (42), i.e., the cost-saving term, f2((θ0, θ1)) =
|θ0| and f3((θ0, θ1)) = |θ1| are identified as the features
that will be highly relevant to the value of the cost-saving
term. Besides, feature “1” is selected to add an offset to the
approximated function and compensate the errors. In this case,
summarizing the above analysis leads to the feature selection
scheme in Proposition 3.

Remark 4. The intuition behind the above derivation is to
decompose the cost function Ct(πt, λ, qt−1) to identify the
features that is only related to the belief state, and the
result above shows the cost function can be written as a
linear combination of these features. With this result, one can
conclude that these features will be highly relevant to the value
of the cost function.

Remark 5. As we can see from (44) amd (46), the correlation
between different actions and states cannot be eliminated
during the derivation due to the existence of the angles
between state and action vectors, which means the linear
combination of our selected feature cannot exactly represent
the cost function and the Q-function. In this case, there will
be a performance gap between our proposed algorithm and
the optimal RVI algorithm. And this is reason why the linear
approximated Q-learning algorithm requires to solve the opti-
mization problem (38), where the proper weights that minimize
the mean square approximation error over all possible states
can be identified. Also, an extra feature “1” is added here to
compensate the approximation error, which will further lead
to a smaller performance gap.

3) Approximated relative Q-learning: Based on the above
discussion, we summarize our proposed linear function ap-
proximated relative Q-learning in Algorithm 1.

Algorithm 1: Approximated relative Q-learning
Input: Belief states and actions
Output: The optimal strategy

1 Initialization: Initialize α, ε, w(a),∀a ∈ A′, the reference
state-action pair (ŝ, â), the initial belief state s1.

2 Calculate the corresponding features of s1.
3 for n=1:T do
4 Select action an using ε-greedy policy;
5 Execute action an;
6 Observe a new state sn+1 and the per-step cost

c(sn, an);
7 Calculate the corresponding features of sn+1;
8 Update w(an) by using (40);
9 end

10 Find the optimal strategy by using (41).

0 1/h h
EMU Meter

AD 

0 1/h h

tX

tY

tY tY

ES

tS

EP

0 1/h h

Consumer

Fig. 2. Smart metering system with rechargeable energy storage, authorized
adversary, and privacy-aware energy management unit that knows the con-
sumer’s energy consumption behavior.

III. PRIVACY-PRESERVING UNDER I.I.D ENERGY
DEMAND

In the previous section, we studied the problem of designing
the privacy-enhancing and cost-efficient energy management
strategy under the MDP framework. However, with the in-
creasing dimension and time horizon length, it becomes more
difficult or even infeasible to find an analytical solution.
Thus, we propose the following study of privacy-preserving
stationary strategy design under the special case of i.i.d. energy
demand. Although the real energy demand will not be i.i.d. the
designed energy management strategy under this simplifying
assumption can be still practically implemented. If perfect
privacy is not achieved, then the adversary will be always
able to learn the hyphothesis in the infinite time horizon [27].
Thus, in this section we study under the special case of i.i.d.
energy demand without cost concern, where we can derive the
sufficient condition to achieve the perfect privacy.

A. System Model

In this section, we consider privacy-preserving problem in
the system shown in Fig. 2. Assume the energy demand xt ∈
X = {0, 1, ..., xmax} is i.i.d. with distribution P 0

X(x) under
hypothesis h0, and P 1

X(x) under h1 respectively. The energy
supply yt ∈ Y = {0, 1, ..., ymax} and battery level st ∈ S =
{0, 1, ..., smax} also satisfy the physical constraint described
in (1) and (2). We further assume that the EMU knows the
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consumer’s behavior, and design the corresponding energy
management strategies under different energy consumption
behaviors: f (i) = {f (i)

t }Tt=1 ∈ F (i) = F (i)
1 ×F

(i)
2 × ....×F

(i)
T ,

with f (i)
t ∈ F

(i)
t . F (i)

t denotes the set of pmfs that:

F (i)
t =

{PYt|Xt,St,Y t−1,hi
:
∑

yt∈Yt(xt,st)
∀xt∈X ,st∈S

P (yt|xt, st, yt−1, hi) = 1, i ∈ {0, 1}},

(48)
where f (i) denote the specific energy management strategy
under consumer’s behavior hypothesis hi. Also, let the control
action be at ∈ At, which is the conditional pmf PYt|Xt,St

taken from the following set:

A = {PY |X,S :
∑

y∈Y(x,s)

P (y|x, s) = 1,∀x ∈ X , s ∈ S}. (49)

To make it more clear, we denote the action chosen under
hypothesis hi as a(i). Different from the previous definition
of policy π in Section II-C, at each time step t, the EMU will
choose the action according to the policy π

(i)
t ∈ Π

(i)
t under

consumer’s behavior hypothesis hi. Define the set of binary
consumer’s behavior hypotheses as H. Then Π(i)

t denotes the
set of deterministic mappings from the historical observations
(yt−1, hi) to a corresponding action a(i)

t , i.e., Π(i)
t : Yt−1 ×

H → At with a
(i)
t = π

(i)
t (yt−1, hi). Thus, the policy under

consumer’s behavior hypothesis hi over a T -time horizon is
π(i) = {π(i)

t }Tt=1 ∈ Π = Π
(i)
1 ×Π

(i)
2 × ....×Π

(i)
T .

B. Design of Memory-Less Stationary Energy Management
Strategy

With the above definition, we consider the problem of de-
signing the memory-less stationary privacy-preserving strate-
gies6 π

(i)
t depending on different hi, with the following

objective function:

LT ( π(0), π(1))

=
1

T
D(Pπ

(0)

Y T |h0
‖Pπ

(1)

Y T |h1
)

=
1

T

T∑
t=1

D(P
π
(0)
t

Yt|h0,Y t−1‖P
π
(1)
t

Yt|h1,Y t−1)

=
1

T

T∑
t=1

∑
yt

Pπ
(0)

(yt|h0)× log
Pπ

(0)
t (yt|yt−1, h0)

Pπ
(1)
t (yt|yt−1, h1)

.

(50)

Before designing the stationary energy management strat-
egy for our proposed model, we first propose a structural
simplification on the states and actions by introducing two
new auxiliary random variables: Wt ∈ W = {st − xt :
st ∈ S, xt ∈ X}. Under policy π(i), define the posterior
distributions of (Xt, St), Wt and St conditioned on the
realization yt−1 as: θ(i)

t = PXt,St|yt−1,hi
, ξ(i)

t = PWt|yt−1,hi

and γ(i)
t = PSt|yt−1,hi

. In particular, there is:

θ
(i)
t (xt, st) = P iX(xt)γ

i
t(st), (51)

6Memoryless control strategies have been previously shown to be optimal
for hypothesis privacy in some other contexts, e.g., Linear Quadratic Gaussian
(LQG) system [38], [39].

γ
(i)
t (st) = Pπ

(i)

(St = st|Y t−1 = yt−1, hi),

ξ
(i)
t (wt) = Pπ

(i)

(Wt = wt|Y t−1 = yt−1, hi).
(52)

Since the following derivation works for both hypotheses
h0 and h1, we only discuss the case for h0 and denote
θ

(0)
t , γ

(0)
t , ξ

(0)
t , a(0)

t and π(0)
t by θt, γt, ξt, at and πt.

Define D(wt) = |(xt, st) ∈ Xt × St : st − xt = wt|, there
is ξt(wt) =

∑
(xt,st)∈D(wt)

θt(xt, st). At time t, define a new

action bt ∈ Bt which is the condition pmf PYt|Wt
taken from

the set Bt = {PY |W :
∑

y∈Y(w)

P (y|w) = 1, ∀w ∈ W}, where

Y(w) is defined by replacing st − xt with w in (2). Thus,
action bt can be expressed in terms of original belief state θt
and action at,

bt(yt|wt) =
Pπ(Yt = yt,Wt = wt|Y t−1 = yt−1, h0)

Pπ(Wt = wt|Y t−1 = yt−1, h0)

=

∑
(xt,st)∈D(wt)

at(yt|xt, st)θt(xt, st)

ξt(wt)
.

(53)

Similarly, we can define policy π̂t as the deterministic map-
pings from the historical observations (yt−1, h0) to a corre-
sponding action bt, i.e., bt = π̂t(y

t−1, h0). We further define
the following distributions:

γ′t(st) = P π̂(St = st|Y t−1 = yt−1, h0)

ξ′t(wt) = P π̂(Wt = wt|Y t−1 = yt−1, h0).
(54)

Thus at time step t, for any realization of yt and bt, the
evolution of ξt can be expressed in terms of bt as follows:

ξ′t+1(wt+1) = ϕ′(ξ′t, yt, bt) =∑
(xt+1,st+1)∈D(wt+1)

∑
wt

ξ′t(wt)bt(yt|wt)P 0
X(xt+1)Ist+1{yt + wt}∑

wt

bt(yt|wt)ξ′t(wt)

(55)

Lemma 2. Given historical observations (yt−1, h0), the pos-
terior distributions of Wt and St induced by policy π and π̂
are the same, i.e.,

ξt(wt) = ξ′t(wt), γt(st) = γ′t(st), ∀st ∈ S, wt ∈ W. (56)

Proof: The proof is provided in Appendix A.
With the above derivation, we have the following proposi-

tion.

Proposition 4. Under the above assumption and transition,
there is no loss of optimality in focusing on action bt ∈ Bt
and new belief state ξt instead of (at, θt). The per-step cost
defined in (50) can be equivalently described by a function of
state-action pair (bt, ξ

′
t).

Proof: To prove this proposition, we need to show that the
conditional probability P (yt|yt−1, at−1, h0) remains identical
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under transition from (at, θt) → (bt, ξt). Note that the same
arguments can be applied to h1.

Pπ(yt|yt−1, h0) =
∑
wt

Pπ(Yt = yt,Wt = wt|yt−1, h0)

=
∑
wt

∑
(xt,st)∈D(w)

at(yt|xt, st)θt(xt, st)

=
∑
wt

bt(yt|wt)ξt(wt)

=
∑
wt

bt(yt|wt)ξ′t(wt)

=
∑
wt

P π̂(Yt = yt,Wt = wt|yt−1, h0)

= P π̂(yt|yt−1, h0)
(57)

Theorem 2. Given y ∈ Y , w ∈ W , and any possible
distributions γ′t, ξ

′
t, a time-invariant policy f̂ , with f̂(ξt) = b̂t,

leads to steady states, i.e., ξ′t = ξ′1 and γ′t = γ′1, if and only
if b̂t satisfies the following structure:

b̂t(y|w) =

QY (y)
γ′t(y+w)
ξ′t(w) , y ∈ Yt(w),

0, otherwise,
(58)

where QY (y) is an arbitrary probability distribution over all
feasible y ∈ [0,min{ymax, smax + xmax}] 7, and the same
QY (y) is applied for the design of b̂t at different time steps.

Proof: The proof is provided in Appendix B.
Moreover, an important conclusion drawn from the proof of

Theorem 2 is summarized into the following corollary.

Corollary 1. The distribution QY (y) that is used for designing
the structured action b̂t in Theorem 2 should satisfy the
following equation:

QY
(∆)
= PYt|Y t−1=yt−1 , ∀yt−1. (59)

Thus, the marginal distributions of Yt at each time step are
identical, i.e.,

QY
(∆)
= PYt , ∀t. (60)

C. Privacy-Preserving under Steady-State Strategy

For i ∈ {0, 1}, let f̂ (i) be the time-invariant policy under hy-
pothesis hi which leads to the steady state. Also define b̂(i)t as
the action decided by f̂ (i) at time t under hypothesis hi, which
satisfies the structure in Theorem 2. Further denote Q0

Y (y)
and Q1

Y (y) as the distributions of Y used for constructing
action b̂(0)

t and b̂(1)
t , respectively. By combining the results in

Theorem 2 and Corollary 1, we have the following corollary.

7The energy supply y should lie in this feasible set due to the constraint
of ES capacity.

Corollary 2. The objective function in (50) can be simplified
to the single-letter expression by the following:

LT ( f̂ (0), f̂ (1))

=
1

T
D(P f̂

(0)

Y T |h0
‖P f̂

(1)

Y T |h1
)

=
1

T

(
D(P f̂

(0)

Y T−1|h0
‖P f̂

(1)

Y T−1|h1
) +

∑
yT−1

P f̂
(0)

(yT−1|h0)

∑
yT

P f̂
(0)

(yT |yT−1, h0) log
P f̂

(0)

(yT |yT−1, h0)

P f̂(1)(yT |yT−1, h1)

)
(a)
=

1

T

(
D(P f̂

(0)

Y T−1|h0
‖P f̂

(1)

Y T−1|h1
) +

∑
y

Q0
Y (y) log

Q0
Y (y)

Q1
Y (y)

)
(b)
=

1

T

(
T ×

∑
y

Q0
Y (y) log

Q0
Y (y)

Q1
Y (y)

)
= D(Q0

Y (y)‖Q1
Y (y)),

(61)
where (a) holds due to the fact QiY (y)

(∆)
=

P f̂
(i)

Yt|Y t−1=yt−1,hi
, ∀yt−1, and (b) follows from iteratively

applying the chain rule of KL-divergence.

On observing the single-letter expression (61) given in
Corollary 3, the following corollary is proposed as a conse-
quence.

Corollary 3. The time-invariant policies f̂ (i) will achieve the
zero-lower bound of Kullback-Leibler divergence, i.e., perfect
privacy, if and only if the distributions of Y used for construct-
ing b̂(i)t (decided by f̂ (i)

t ) are equal, i.e., Q0
Y (y) = Q1

Y (y), ∀y.

Remark 6. Due to the physical constraints of the system we
may not find the feasible Q0

Y and Q1
Y that satisfy the condition

in the above corollary.

Next, we present a case in which the perfect privacy cannot
be achieved. It follows from (1) that the per-step expected
energy amount constraint should hold as:

EPX
[Xt] + Eγt(s)[St]− Eγt−1(s)[St−1] = EQY

[Yt], (62)

which means, at each time step, the average expected amount
of energy requested from the grid should be equal to sum of the
average expected amount of energy consumed by the consumer
and the average expected amount of energy stored into the
ES. Since γt = γt−1 under a stationary strategy, equation
(62) then further reduces to EPX

[Xt] = EQY
[Yt]. In this case,

we cannot have arbitrary QiY for constructing b̂
(i)
t . Instead,

QiY needs to satisfy the constraint EPX
[Xt] = EQY

[Yt] for
both hypotheses. For the perfect privacy case, in order to
satisfy the condition Q0

Y (y) = Q1
Y (y), we should at least have

EQ0
Y

[Y ] = EQ1
Y

[Y ], which will conflict with the practical case
of EP 0

X
[X] 6= EP 1

X
[x]. However, only considering the con-

straint on expected energy amount is not enough, since several
different distributions of Y might lead to the same expectation
and there might be some other constraints which requires
Q0
Y (y) 6= Q1

Y (y). Thus, the condition Q0
Y (y) = Q1

Y (y) may
still not be satisfied even if we have EQ0

Y
[Y ] = EQ1

Y
[Y ].

The above analysis can be summarized in the following
proposition.
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Fig. 3. Trade-off between privacy leakage and cost-saving for different ES
sizes. From left to right the data points represent: λ = 1, 0.8, 0.2, 0.

Proposition 5. If the consumer’s expected demand of energy
under h0 and h1 are different, i.e., EP 0

X
[X] 6= EP 1

X
[X], the

perfect privacy cannot be achieved, since we cannot find Q0
Y

and Q1
Y satisfying the conditions in Corollary 3.

IV. NUMERICAL RESULTS

A. Finite Horizon Dynamic Programming

For simplicity we do not include units in the following.
We consider a finite horizon with length T = 10. The
energy demand, supply and price alphabets are set as X =
{0, 1, 2, 3, 4, 5}, Y = {0, 1, 3, 4, 5}, P = {5, 10}, and the ES
capacity can be smax = 2 or smax = 5. The transition proba-
bilities of xt under both hypotheses, the transition probability
of pt and the initial belief state are set as following:

P (h0) = P (h1) = 0.5,

PXt+1|h0,Xt
(xt+1|h0, xt) =

1

6
,∀xt, xt+1 ∈ {0, 1, 2, 3, 4, 5},

PXt+1|h1,Xt
(xt+1|h1, xt) = 0.4,∀xt+1 = xt

PXt+1|h1,Xt
(xt+1|h1, xt) = 0.12,∀xt+1 6= xt

PPt+1|Pt
(pt+1|pt) = 0.5,∀pt+1 ∈ {5, 10}, pt ∈ {5, 10},

θ(x1, s1, p1|h0) = θ(x1, s1, p1|h1) =
1

12× (smax + 1)

∀x1 ∈ {0, 1, 2, 3, 4, 5}, s1 ∈ {0, 1, ...smax}, p1 ∈ {5, 10}.
(63)

For the reason of simplification, the continuous belief state
space is discretized into 36 different distributions (for ES
capacity smax = 2) and 100 belief sates (for ES capacity
smax = 5), i.e., 362 or 1002 belief state vectors in total. Also,
we have a finite action set A′ including 20 different actions. At
first, for different battery capacities, we investigate the trade-
off between privacy enhancement and cost-saving by setting
λ = 1, 0.8, 0.2, 0. The variation of privacy leakage rate against
expected cost-saving rate with respect to λ is shown in Fig.
3. As λ increases, both the corresponding privacy leakage rate
and expected cost-saving rate increase, which confirms the
intuition that more cost-saving can be achieved at a cost of
larger privacy leakage. We can also see from the figure that the
performance will improve when the ES capacity gets larger.

TABLE I
VALUE COMPARE BETWEEN DIFFEREN λ FOR BATTERY SIZE 5 IN FIG. 3

λ Privacy leakage rate Expected cost-saving rate

0 0.1928 1.8276
0.2 0.1109 1.4034
0.8 0.0245 0.7277
1 0.0073 -0.0675

TABLE II
VALUE COMPARE BETWEEN DIFFEREN λ FOR BATTERY SIZE 2 IN FIG. 3

λ Privacy leakage rate Expected cost-saving rate

0 0.2148 1.4987
0.2 0.1321 1.1211
0.8 0.0425 0.3875
1 0.0268 -0.389

B. Experiments for Solutions over Infinite Time Horizon

In this section, we compare the optimal and sub-optimal
solutions to our belief-state MDP problem over the infinite
time horizon, where the optimal solution is derived by the
relative value iteration (RVI) and the sub-optimal one is
derived by the approximated linear function approximated
relative Q-learning (LARQL).

For this part, we have the ES capacity as smax = 5
and the finite action set A′ includes 20 different actions.
The continuous belief state space is first discritized into 362

belief states. We compare the optimal and sub-optimal overall
objective function (weighted sum between privacy leakage and
cost savings) derived by RVI and LARQL approach. As we
can see from Fig. 4, the performance of our proposed LARQL
algorithm is close to be optimal. We can also see in the figure
that the gap between LARQL and the optimal solution when
λ = 1 is larger than the gap for λ = 0, which means that
our linear function can approximate the Q-function when only
induced by expected cost-saving (λ = 0) better than when only
induced by the KL-divergence term (λ = 1).

Next, as shown in Fig. 5, with the increased number of belief
states to be 4368, i.e., 43682 possible belief state vectors in
total, the sub-optimal results using LARQL are shown in the
figure, while the RVI method is too time-consuming and it is
impractical to get an exact solution.

Based on the result, we notice that the performance of L-
ARQL improves a lot with larger amount of belief states.
The gap when λ = 0 is larger is again because our linear
approximator can approximate Q-function induced only by
expected cost-savings better than the Q-function only induced
by KL-divergence. Besides, the performance of L-ARQL with
43682 is better than the optimal solutions with 362 belief
states, this is due to the larger amount of belief states offers
the system more freedom.

C. Experiments on real data

In this section, to better demonstrate the working mecha-
nism of our proposed algorithm, we present our simulation
results using real data from the reference data set REDD
[40]. We consider a kitchen with a dishwasher which has
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two different operation modes: types A (hypothesis h0) and B
(hypothesis h1). Over a time horizon with 1000 sampling in-
stances, the load signatures of the two different operation types
are illustrated in the upper two figures of Fig. 6. Both operation
modes involve three different states x ∈ [10, 200, 1100]. The
duration of staying in a state and the transition probabilities
between different states depend on the operation mode. Under
each operation mode, we learn the different initial state dis-
tributions and the state transition probabilities by calculating
the empirical distributions utilizing the corresponding training
dataset. In this case, given a specific operation mode (either
A or B), i.e., under hypothesis hi, the probability that the
dishwasher is initially at operating state k is approximated
by:

P (x1 = k|hi) =

# : Appearance of initial state k under hypothesis hi
# : Running times under hypothesis hi

.

(64)
And the transition probability from operating state k at time
step t to operating state j at time step t+ 1 is approximated
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Fig. 6. Upper figures show dishwasher signatures of two different operation
modes (hypothesis). Lower figures show realizations of the requested energy
profiles for both hypotheses when privacy-preserving policy is used. Operation
modes are hard to differentiate due to randomness in profiles.

by:

P (xt+1 = j|xt = k, hi) =

# : Transition from state k to j under hypothesis hi
# : All transitions from state k under hypothesis hi

.

(65)
We restrict the energy supply to take values within the

set Y = [0, 10, 200, 310, 400, 500, 1100]. The battery level
is quantized into [0, 200, 800] and we further assume the
initial battery level is uniformly distributed within this set,
i.e., P (s1 = 0|hi) = P (s1 = 200|hi) = P (s1 = 800|hi) = 1

3 .
In this case, the initial belief state can be calculated by
θ(x1, s1|hi) = P (x1|hi)P (s1|hi)8, and the belief state will
evolve according to different actions (MDP solution), corre-
sponding observations as well as the transition probabilities
we learned above. For a time-horizon of 1000 samples, we
implement and simulate our privacy-preserving energy man-
agement strategy derived from our finite horizon belief-state
MDP design. Two realizations of the requested energy profiles
for both operation modes, i.e., the random output of our energy
management strategy, are presented in the lower two figures
of Fig. 6. From the visual comparison of the profiles, we can
see that it becomes very difficult for the AD to identify the
hypothesis from the energy supply data.

V. CONCLUSION

In this work, we have shown that an energy storage can be
used for both privacy enhancing and cost saving. Using the
belief-state MDP framework, an energy management strategy
that optimally trade-offs KL-divergence and expected cost-
saving rates can be derived using the Bellman dynamic pro-
gramming. The complexity of the optimal design problems

8In this experiment, under each hypothesis, the belief state space is again
discretized into 36 different distributions. In this case, the approximated initial
belief state derived above should be further quantized to its nearest neighbor
among those 36 distributions.
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ξt+1(wt+1) =

∑
(xt+1,st+1)∈D(wt+1)

∑
xt,st

θt(xt, st)at(yt|xt, st)P 0
X(xt+1)Ist+1

{yt + st − xt}∑
xt,st

at(yt|xt, st)θt(xt, st)
, (66)

ξ′t+1(wt+1) =

∑
(xt+1,st+1)∈D(wt+1)

∑
wt

∑
(xt,st)∈D(wt)

θt(xt, st)at(yt|xt, st)P 0
X(xt+1)Ist+1{yt + st − xt}∑

wt

∑
(xt,st)∈D(wt)

at(yt|xt, st)θt(xt, st)
. (67)

grows quickly, which calls for computationally efficient solu-
tions. Our proposed sub-optimal linear function approximated
relative Q-learning approach is computationally efficient and
also works for an infinite time horizon. With the identified
feature vector, the linear function approximated Q-function
can be efficiently learned and therefore leads to a practical
online energy management design approach. Another approach
to reduce the strategy design complexity is to assume an i.i.d.
energy demand, which allows further analysis, in particular
the derivation of a steady state strategy. Moreover, we provide
sufficient conditions to achieve perfect privacy. Our numerical
experiments show that the framework leads to energy man-
agement strategies that optimally trade-offs privacy enhancing
and cost saving. They also show that our proposed LARQL
method is close to optimal performance but is significantly
computationally more efficient.

As future extensions of the current work, a potential direc-
tion would be studying the privacy-preserving problem under
the multiple hypothesis testing scenario and designing the cor-
responding privacy-preserving energy management strategy.
Also. in this work, we adopted the natural choice of Q-learning
as algorithm that following the value function based approach
under the proposed MDP framework. Since there also exists
other efficient reinforcement learning techniques to deal with
the continuous state-action space MDP problem, e.g., policy
gradient algorithms, another interesting extension would be
to implement such algorithms and assess which approach can
provide a better solution to our proposed privacy-cost trade-off
problem.

APPENDIX A
PROOF OF LEMMA 2

Since ξt(wt) and γt(st) are linearly related to each other
by ξt(wt) =

∑
(xt,st)∈D(wt)

PX(xt)γt(st), it is then sufficient to

show ξt(wt) = ξ′t(wt), ∀wt ∈ W at each time step.
In the following, we use the induction method to prove that

ξt(wt) = ξ′t(wt), ∀wt ∈ W at each time step. For t = 1,
the initial distributions ξ1(w) and ξ′1(w) are identical since
they do not depend on the actions at or bt. Then, for any
t > 1, given ξt(wt) = ξ′t(wt), ∀wt ∈ W , we need to show
ξt+1(wt+1) = ξ′t+1(wt+1), ∀wt+1 ∈ W holds.

Knowing that ξt+1(wt+1) =
∑

(xt+1,st+1)∈D(wt+1)

θt(xt, st),

we can derive the expression for ξt+1(wt+1) as shown
in (64). Meanwhile, ξ′t+1(w + 1) can be expressed by
Equation (55). According to Equation (53), we have
bt(yt|wt)ξt(wt) =

∑
(xt,st)∈D(wt)

at(yt|xt, st)θt(xt, st). Since

ξt(wt) = ξ′t(wt), ∀wt ∈ W holds according to
our assumption, we can substitute bt(yt|wt)ξ′t(wt) by∑
(xt,st)∈D(wt)

at(yt|xt, st)θt(xt, st) in Equation (55), which

then leads to the expression as shown in (65). On noticing
that the operator

∑
wt

∑
(xt,st)∈D(wt)

is equivalent to
∑

(xt,st)

, we

can conclude ξt+1(wt+1) = ξ′t+1(wt+1). Thus, according to
the principle of induction, there is ξt(wt) = ξ′t(wt), ∀wt ∈ W
at each time step.

APPENDIX B
PROOF OF THEOREM 2

At first, b̂t can be easily verified to be a feasible action
which belongs to the set Bt by the following:

PY (y)×γ′t(y + w)

= PY (y)× γt(y + w)

= Pπ(St = y + w, Yt = y|Y t−1 = yt−1, h0)

= Pπ(Wt = w, Yt = y|Y t−1 = yt−1, h0).

(68)

We next show the sufficiency. Since γ′t and ξ′t are easily shown
to be equivalent, it is sufficient to check if γ′t = γ′1 for all t. For
a time invariant policy, it is then sufficient to show γ′2 = γ′1.
Consider a realization s of S2, y of Y1, and w = s − y. If
y ∈ Y(w) holds, we have:

P f̂ (S2 = s, Y1 = y) = P f̂ (W1 = s− y, Y1 = y)

= ξ′1(s− y)b̂1(y|s− y)

= PY (y)γ′1(s).

(69)

Marginalize over all possible s, we can get PY1(y) = QY (y).
Divide both sides by QY (y), it follows that γ′2(s) = P f̂ (S2 =
s|Y1 = y) = γ′1(s). Regarding the proof of necessity, we
divide it into two parts, where we first show that under
the time-invariant policy which leads to the steady state,
PYt|Y t−1=yt−1 , ∀yt−1 remains identical.The joint distribution

P f̂Wt,Yt|Y t−1,h0
can be decomposed by the following:

P f̂Wt,Yt|Y t−1,h0
= P f̂Wt|Y t−1,h0

× P f̂Yt|Wt,Y t−1,h0

= ξ′t(w)bt(y|w)

(a)
= ξ′1(w)b1(y|w)

= P f̂W1,Y1|h0
,

(70)

where (a) holds due to the stationarity of states ξ′t. Marginaliz-
ing over W , we can get P f̂Yt|Y t−1,h0

= P f̂Y1|h0
, ∀yt−1, which

proves the above lemma.
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Given the conclusion P f̂Yt|Y t−1,h0
= P f̂Y1|h0

, ∀yt−1 re-
mains indentical, we further show that the structure of the
strategy in (58) should always be satisfied with QY

(∆)
=

PYt|Y t−1=yt−1 , ∀yt−1. Considering a realization s of S2, y
of Y1, and w = s− y. If y ∈ Y(w) holds, we have,

Pf̂ (S2 = s, Y1 = y) = Pf̂ (W1 = s− y, Y1 = y)

= ξ′1(s− y)b1(y|s− y)
(71)

Since γ′2(s) = γ′1(s) holds due to the stationarity of the states,
divide both sides by P f̂Y1

(y), we can get,

Pf̂ (S2 = s|Y1 = y) = γ′1(s) =
ξ′1(s− y)b1(y|s− y)

P f̂Y1
(y)

=⇒ b1(y|w) = P f̂Y1
(y)

γ′1(y + w)

ξ′1(w)

(72)

Since γ′t and ξ′t remain identical over whole time horizon,
and there is P f̂Yt|Y t−1 = P f̂Y1

, the above equation implies

that the action bt satisfies the structure in (58) with QY
(∆)
=

PYt|Y t−1=yt−1 , ∀yt−1 over whole time horizon.
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