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1 Introduction

Thermoacoustic instabilities usually arises when the unsteady heat release and

acoustic perturbations are in phase. In the presence of an unsteady heat release,

the temperature is non-uniform, and the entropy waves are thus generated. In

the early studies [1] [2], it has been observed that the acoustic waves and entropy

waves are might be generated when a fluid flows through regions with a mean

temperature variation. Meanwhile, the entropy waves propagating into a region

with mean temperature variation can also lead to the generation or alteration

of acoustic waves [4]. In a combustion chamber, the mean temperature drops

axially due to heat losses. In this situation, entropy waves are generated and in-

teract with acoustic waves. Therefore, investigations of the interactions between

acoustic waves and entropy waves are of great interest. It is important to study

the interaction between acoustic and entropy waves in order to understand the

mechanisms of thermoacoustic instabilities.

Recently, the effect of entropy waves on the acoustic waves propagating in

a one-dimensional, constant cross-section duct has been investigated in [3] [4],

where an axially varying mean temperature was presented. Different methods

are used to model the acoustic-entropy coupling axially varying. In particular,

a comparison was performed for the results from the two linearized Euler equa-

tions (2LEE) and three linearized Euler equations (3LEE), respectively. Such

a comparison is to explicitly present the impacts of entropy waves on acoustic

waves. Specifically, in the 2LEE approach, the terms related to the entropy
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were neglected in the momentum equation. In the 3LEE approach, the full

linearized Euler equations were solved. As a result, the contributions of the

entropy wave to the acoustic waves were obtained. Studies indicate that the

interaction between the acoustic and entropy waves is small at low-speed mean

flow. Nonetheless, When the mean flow Mach number increases to exceed 0.1,

the impact of entropy waves can not be neglected [4].

In this report, the 2LEE and 3LEE are derived and implemented for a con-

verging nozzle with two different mean flow conditions; isentropic and isother-

mal flows, respectively. In our previous work [5], a linearized Navier-Stokes

equations (LNSE) in frequency domain has been implemented using the par-

tial differential equations (PDE) module in COMSOL Multiphysics software. It

was used to simulate the coupling between the acoustic and entropy waves in

a one-dimensional Rijke tube with a constant cross-section. In this converging

nozzle numerical work, a new perspective would be that the background mean

flow is a gradually changing inviscid flow solved by the Euler equation and the

cross-section area is non-uniform. In addition, two test cases are conducted to

investigate the impact of entropy waves on acoustic waves.

The numerical results produced in this work are compared to the results

obtained from another numerical approach - solving 2LEE and 3LEE as the

ordinary differential equations (ODE) (work conducted in Imperial College’s

group [3] [4] [6]). In their numerical approach, the linearized Euler equations

can be formulated into a system of ordinary differential equations (ODE). By

directly calling the embedded ODE solver in MATLAB environment, the acous-

tic and entropy perturbations are obtained. Comparatively, the PDE solver is

more general and can describe the changes of system in more than one indepen-

dent variable. It has the future potential to handle configurations in two and

three dimensions.

2 Configuration of Test Case

In this section, the configuration of the test case investigated in this report is

introduced. A sketch of the converging nozzle is presented in Fig. 1. The fluid

flows from the inlet (left) to the outlet of the nozzle (right) with a gradually de-

creasing cross section area. The radius of the nozzle inlet and outlet is 0.0825 m

and 0.025 m, respectively. The length of the nozzle is l = 0.188 m. At the in-

let, for the steady-state flow, the static mean pressure and mean temperature

are given as T̄in = 1600 K and P̄in = 300 000 Pa, respectively. The inlet Mach

number is set to Min = 0.04.
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Figure 1: Configuration of the 1D subcritical converging nozzle.

3 Nozzle with Isentropic Flow

In this section, an isentropic mean flow is first considered. It implies that

there are neither additional heat sources nor energy transfer due to friction

or dissipative effects in the mean flow. By assuming a perfect gas, the Euler

equations describe both the fluid flow and the perturbed field in the nozzle.

The mass, momentum and energy equations are presented, respectively, as:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+
ρu

A

∂A

∂x
= 0 (1)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0 (2)

∂s

∂t
+ u

∂s

∂x
= 0 (3)

where the variables p, u, ρ and s represent the pressure, velocity, density and

entropy, respectively. The symbol A stands for the cross sectional area of nozzle.

Furthermore, in order to close the equation set, the state equation is addi-

tionally introduced

p = ρRT (4)

where R represents the specific gas constant.
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Figure 2: Isentropic mean flow properties along the axial direction in the nozzle.

Through solving Eq. (1) and Eq. (2), the mean flow variation along the

axial direction are obtained, and presented in Fig. 2. It can be seen that the

mean flow accelerates as the cross-section area decreases until the nozzle outlet.

Meanwhile, the mean flow temperature and pressure decrease with the increas-

ing cross-section area to maintain the mass and momentum conservation. It

should be pointed out that the mean flow density and the speed of sound are

also varying spatially.

3.1 Linearized Euler Equations for Isentropic Flow

In order to describe the behaviour of the acoustic wave, we assume that each

variable can be written as a sum of a mean part (denoted by an over-bar (̄))

and small perturbations (denoted by a prime ()
′
), such as ρ = ρ̄+ρ′, u = ū+u′,

p = p̄ + p′ and s = s̄ + s′; By introducing such a decomposition into Eq. (1) -

Eq. (3) and keep only the terms of the first order, the LEE for the perturbations

in time are obtained as follows:

Linearized continuity equation:

∂ρ′

∂t
+ ū

∂ρ′

∂x
+ u′

∂ρ̄

∂x
+ ρ̄

∂u′

∂x
+ ρ′

∂ū

∂x
+ ρ̄u′

1

A

∂A

∂x
+ ρ′ū

1

A

∂A

∂x
= 0 (5)
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Linearized momentum equation:

∂u′

∂t
+ ū

∂u′

∂x
+ u′

∂ū

∂x
+

1

ρ̄

∂p′

∂x
− ρ′

ρ̄2
∂p̄

∂x
= 0 (6)

Linearized energy equation:

∂s′

∂t
+ ū

∂s′

∂x
+ u′

∂s̄

∂x
= 0 (7)

When an isentropic flow is considered, Eq. (7) reduces to

∂s′

∂t
+ ū

∂s′

∂x
= 0 (8)

Linearized state equation:

To linearize the state equation, the same decomposition for variables in

Eq. (4) is employed again. Afterwards, applying the Taylor series expansion

around the mean quantities and only keeping the terms of first order, the lin-

earized state equation reads:

p′

p̄
=
ρ′

ρ̄
+
T ′

T̄
(9)

Linearized entropy equation:

While the introduction of the state equation has brought in an extra equa-

tion, a new variable T is, however, introduced as well. The number of governing

equations is still one less than that of variables. In the context of thermoacous-

tic instabilities, the entropy equation, which bridges a relation among pressure,

density and entropy, is further added. It reads:

s− sref = Cv ln

(
p

pref

)
− Cp ln

(
ρ

ρref

)
(10)

where the subscript ref represents an arbitrary state to define the entropy value.

Cv and Cp stand for the specific heats at constant volume and pressure, respec-

tively. The linearized entropy expression is given by

p′

p̄
=

s′

Cv
+ γ

ρ′

ρ̄
(11)
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where γ is the specific heat ratio being γ = Cp/Cv. Hereby, a complete set of

governing equations including Eq. (5), Eq. (6) and Eq. (8), is obtained. By as-

suming that a fluctuating quantity g′(x, t) has a time-dependence in a harmonic

form as g′ = ĝ(x)eiωt, we obtain the linearized Euler equations in frequency

domain as :

ū
∂ρ̂

∂x
+ û

∂ρ̄

∂x
+ ρ̄

∂û

∂x
+ ρ̂

∂ū

∂x
+
ρ̄û

A

∂A

∂x
+
ρ̂ū

A

∂A

∂x
= iωρ̂

ū
∂û

∂x
+ û

∂ū

∂x
+

1

ρ̄

∂p̂

∂x
− ρ̂

ρ̄2
∂p̄

∂x
= iωû

ū
∂ŝ

∂x
= iωŝ

(12)

For the case of one-dimensional nozzle, we choose density, velocity and entropy

as the primary concerned variables to be solved. The pressure and the tempera-

ture thus need to be eliminated. The LEE as functions of û, ρ̂ and ŝ then arrive

at: (
∂ū

∂x
+
ū

A

∂A

∂x

)
ρ̂+ ū

∂ρ̂

∂x
+

(
∂ρ̄

∂x
+
ρ̄

A

∂A

∂x

)
û+ ρ̄

∂û

∂x
= iωρ̂(

1

ρ̄

∂c̄2

∂x
− 1

ρ̄2
∂p̄

∂x

)
ρ̂+

c̄2

ρ̄

∂ρ̂

∂x
+
∂ū

∂x
û+ ū

∂û

∂x
+

(γ − 1)T̄

p̄

∂p̄

∂x
ŝ+ (γ − 1)T̄

∂ŝ

∂x
= iωû

ū
∂ŝ

∂x
= iωŝ

(13)

Eq. (13) is the full LEE or the so-called 3LEE. When it is assumed that the

acoustic and entropy waves are propagating independently, the 3LEE degrades

to the so-called 2LEE by omitting the entropy terms in the momentum equation

of Eq. (13). Physically, those terms are responsible for the communication

between entropy and acoustic waves [3] [4].

3.2 Numerical Setup and Implementation

3.2.1 Implementations

The 2LEE and 3LEE for the one-dimensional converging nozzle with an isen-

tropic flow, i.e. Eq. (13) is numerically solved by calling the PDE module in

COMSOL. The built-in discretization method is the Finite Element Method

(FEM). In COMSOL’s PDE module, each equation can be implemented straight-

forward by defining the coefficients of the generalized PDE.
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3.2.2 Boundary Conditions

Figure 3: Perturbed boundary conditions for the 1D subcritical converging noz-

zle where Z = −1.

At the inlet of the duct, as Fig. 3 shows, an acoustic impedance boundary

condition Z = −1 is prescribed, where Z represents the non-dimensional acous-

tic impedance at the inlet. It indicates a relation between the pressure per-

turbations p̂in and the velocity perturbations ûin, i.e., ûin = p̂in/(ρincinZ).

For the perturbed field, the acoustic pressure perturbation amplitude is set to

p̂in = 100 Pa.The entropy perturbation is normalized by Cp and is prescribed as

ŝ = 0.01∗Cp. In this test case, a prescribed/enforced frequency of f = 4265.4 Hz

is used. The Helmholtz number, defined as the ratio of duct height and the wave-

length, is 0.44 at the nozzle inlet. At the inlet of the nozzle, different perturbed

quantities can be calculated, e.g., density perturbation ρ̂, which is the primary

dependent variable to be solved for in the continuity equation.

3.3 Numerical Results for Isentropic Flow

In this section, the acoustic transfer functions obtained by solving Eq. (13) as

ODE are compared against the numerical results from COMSOL PDE module

for the converging nozzle in the presence of an isentropic flow. The results from

two numerical approaches, i.e., 2LEE and 3LEE, are both presented. The 2LEE

results are provided as a reference to show the interactions between acoustic and

entropy waves. In the comparisons, the gain and phase of the acoustic transfer

functions at various axial locations are displayed. The gain and phase of the
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acoustic transfer functions are defined as [3]:

Fp(x, f) =
p̂(x, f)

ρincinûin(f)
(14)

and

Fu(x, f) =
û(x, f)

ûin(f)
(15)

It is important to highlight that all the mean flow properties, such as temper-

ature, velocity, density and the speed of sound gradually vary along the nozzle

from the inlet to the outlet due to change of the cross section area. Com-

pared to the previous studies on the entropy and acoustic waves affected by the

mean flow profile with the jump condition [5], the numerical method has been

broadly extended and generalized by allowing a gradual variation of the mean

flow properties along the axial direction.

Fig. 4 presents a comparison between the gain and phase of acoustic transfer

functions from COMSOL PDE module (i.e., 2LEE-PDE) against that obtained

from the direct solutions (i.e., 2LEE-ODE) at various axial locations for an

isentropic flow. Excellent agreements can be observed between two different nu-

merical methods, thus proving that our numerical implementations in COMSOL

are accurate. In addition, the gain of acoustic transfer functions show dramatic

growth towards the nozzle outlet. It clearly shows the influence of the mean flow

on the the perturbed field. In Fig. 5, a comparison between the 3LEE-PDE and

3LEE-ODE is made. The numerical results from these two different methods

also exhibit good agreement each other.

In order to evaluate the impact of entropy waves on acoustic waves, Fig. 6

further compares the gain and phase of the acoustic transfer function between

the 2LEE and 3LEE, where only the PDE results are presented. It can be

observed that the gain of the acoustic transfer functions exhibits differences

in the vicinity of the nozzle outlet. These differences indicate that, for the

converging nozzle with an isentropic flow, the entropy waves produce a non-

negligible effect on the acoustic field. Together with Fig. 2, it may be stated that

the communication between acoustic waves and entropy waves are associated

with variations of mean flow quantities. In general, large variations of mean

flow properties would lead to strong influences.

4 Nozzle with Isothermal Flow

In this section, an isothermal flow is considered for the one-dimensional con-

verging nozzle. Being different to the isentropic flow, a heat source has been

involved. Thus, the energy equation with the source term presents as:
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Figure 4: Comparisons of gain and phase of the acoustic transfer functions along

the axial direction for the isentropic flow (2LEE).
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Figure 5: Comparisons of gain and phase of the acoustic transfer functions along

the axial direction for isentropic flow (3LEE).
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Figure 6: Comparisons of using 2LEE and 3LEE in terms of gain and phase of

the acoustic transfer functions for isentropic flow.

∂s

∂t
+ u

∂s

∂x
=
R

p
q (16)

where q denotes the heat flux.

It is worth to point out that there are no differences for the mass and mo-

mentum equations between the isothermal and isentropic cases. The isothermal

mean flow properties are obtained by a same way as the isentropic case through

solving the Euler equations, and the quantities are shown in Fig. 7. It can be

observed that the mean flow temperature remains constant in the nozzle for the

isothermal flow.

4.1 Linearized Euler Equations for Isothermal Flow

The linearization of the continuity equation and the momentum equation has

been described above. The linearization technique applied for the energy equa-

tion involving heat source can be found to [5] and it yields

Linearized energy equation:

∂s′

∂t
+ ū

∂s′

∂x
+ u′

∂s̄

∂x
= −Rq̄

p̄2
p′ +

R

p̄
q′ (17)
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Figure 7: Isothermal mean flow properties along the axial direction in the nozzle.

After assuming a harmonic time dependence described above, it reads

ū
∂ŝ

∂x
+ û

∂s̄

∂x
+
Rq̄

p̄2
p̂− R

p̄
q̂ = iωŝ (18)

Here we assume that there is no additional heat fluctuations for the converging

nozzle with an isothermal flow, indicating that q̄ 6= 0 and q̂ = 0. The energy

equation is thus reduced to

ū
∂ŝ

∂x
+ û

∂s̄

∂x
+
Rq̄

p̄2
p̂ = iωŝ (19)

For the energy equation Eq. (16) with respect to only the mean flow variables,

we have the followng relation
∂s̄

∂x
=
Rq̄

ūp̄
(20)

Substitute Eq. (20) into the Eq. (19), we arrive at:

− iωŝ+ ū
∂ŝ

∂x
= −Rq̄

p̄

(
û

ū
+
p̂

p̄

)
(21)

Using Eq. (11) to replace the pressure fluctuation with the combination of the

density and entropy fluctuations, it yields(
−iω +

Rq̄

p̄

γ

cp

)
ŝ+ ū

∂ŝ

∂x
= −Rq̄

p̄ū
û− c2Rq̄

p̄2
ρ̂ (22)

11



Finally, the full LEEs for the converging nozzle with an isothermal flow is pre-

sented as (
∂ū

∂x
+
ū

A

∂A

∂x

)
ρ̂+ ū

∂ρ̂

∂x
+

(
∂ρ̄

∂x
+
ρ̄

A

∂A

∂x

)
û+ ρ̄

∂û

∂x
= iωρ̂(

1

ρ̄

∂c̄2

∂x
− 1

ρ̄2
∂p̄

∂x

)
ρ̂+

c̄2

ρ̄

∂ρ̂

∂x
+
∂ū

∂x
û+ ū

∂û

∂x
+

(γ − 1)T̄

p̄

∂p̄

∂x
ŝ+ (γ − 1)T̄

∂ŝ

∂x
= iωû

c̄2Rq̄

p̄2
ρ̂+

Rq̄

p̄ū
û+

Rq̄

p̄

γ

cp
ŝ+ ū

∂ŝ

∂x
= iωŝ

(23)

4.2 Numerical Results for Isothermal Flow

In this section, the gain and phase of the acoustic transfer functions in the

presence of an isothermal flow is shown in Fig. 8 and Fig. 9. Again, the numerical

results are generated by solving both the 2LEE and 3LEE, respectively, using

the PDE and ODE methods mentioned above. As observed, the PDE and ODE

methods show exact same results for both the 2LEE and 3LEE theories. A

similar trend of gain and phase of the acoustic transfer functions for isothermal

flow is similar to that for isentropic flow.

Figure 8: Comparisons of gain and phase of the acoustic transfer functions

against the axial distance for isothermal flow (2LEE).

12



Figure 9: Comparisons of gain and phase of the acoustic transfer functions

against the axial distance for isothermal flow (3LEE).

Figure 10: Comparisons of two approaches (2LEE and 3LEE) in terms of gain

and phase of the acoustic transfer functions for isothermal flow.
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Fig. 10 compares the gain and phase of the acoustic transfer functions

obtained from the 2LEE and 3LEE approaches to analyze the interaction of

the acoustic and entropy waves. In contrast to the isentropic case, a negligible

difference is seen between the results from the 2LEE and 3LEE in the presence of

isothermal flow. It is possible due to that there is no mean temperature change

within the isothermal mean flow, shown as Fig. 7. It also implies that the mean

temperature variation may be the primary factor affecting the communication

between the acoustic and entropy waves. If a very large mean temperature

variation exists, a full 3LEE has to be applied and the reduced 2LEE would

give arise to unacceptable errors.

5 Conclusions

This numerical work presented investigates the interaction between the acoustic

and entropy waves in a converging nozzle with isentropic and isothermal mean

flows, respectively. A comparison of the results from the 2LEE and the 3LEE

shows that in the presence of mean flow variations, the effects of entropy waves

on the acoustic field can be neglected for this isothermal flow case, however

a non-negligible effect is observed for the present isentropic flow case. The

different effects for isentropic and isothermal flows imply that it is the mean

flow temperature variation that is the key factor. When there is a big mean

temperature variation, the full 3LEE method has to be considered.

Although the numerical methodology of solving the frequency-domain LNSE

is not used in this research, the work performed here can provide a good basis

for the future development of an LNSE. In the future, numerical investigations

on the interactions of acoustic and entropy waves for a three-dimensional nozzle

could then be performed.

Acknowledgements

This research is financially supported by the Marcus Wallenberg Laboratory

for Sound and Vibration Research (MWL) and ECO2 Vehicle Design Center at

KTH Royal Institute of Technology, Sweden. Acknowledgement to Dr. Dong

Yang and colleges in Professor Aimee Morgans’ group at Imperial College for

providing numerical comparison data.

14



References

[1] Ann P Dowling. The calculation of thermoacoustic oscillations. Journal

of sound and vibration, 180(4):557–581, 1995. https://doi.org/10.1006/

jsvi.1995.0100.

[2] Nader Karimi, Michael J Brear, and William H Moase. Acoustic and distur-

bance energy analysis of a flow with heat communication. Journal of Fluid

Mechanics, 597:67, 2008. https://doi.org/10.1017/S0022112007009573.

[3] Jingxuan Li and Aimee S Morgans. The one-dimensional acoustic field in a

duct with arbitrary mean axial temperature gradient and mean flow. Journal

of Sound and Vibration, 400:248–269, 2017. https://doi.org/10.1016/j.

jsv.2017.03.047.

[4] Jingxuan Li, Dong Yang, and Aimee S Morgans. The effect of an axial mean

temperature gradient on communication between one-dimensional acoustic

and entropy waves. International Journal of Spray and Combustion Dynam-

ics, 10(2):131–153, 2018. https://doi.org/10.1177/1756827717743910.

[5] Wei Na. Frequency domain linearized Navier-Stokes equations methodology

for aeroacoustic and thermoacoustic simulations, 2015. Licentate Thesis.

[6] Saikumar R Yeddula and Aimee S Morgans. A semi-analytical solution for

acoustic wave propagation in varying area ducts with mean flow. Journal

of Sound and Vibration, 492:115770. https://doi.org/10.1016/j.jsv.

2020.115770.

15

https://doi.org/10.1006/jsvi.1995.0100
https://doi.org/10.1006/jsvi.1995.0100
https://doi.org/10.1017/S0022112007009573
https://doi.org/10.1016/j.jsv.2017.03.047
https://doi.org/10.1016/j.jsv.2017.03.047
https://doi.org/10.1177/1756827717743910
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A885566&dswid=-677
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A885566&dswid=-677
https://doi.org/10.1016/j.jsv.2020.115770
https://doi.org/10.1016/j.jsv.2020.115770

	Introduction
	Configuration of Test Case
	Nozzle with Isentropic Flow
	Linearized Euler Equations for Isentropic Flow
	Numerical Setup and Implementation
	Implementations
	Boundary Conditions

	Numerical Results for Isentropic Flow

	Nozzle with Isothermal Flow
	Linearized Euler Equations for Isothermal Flow
	Numerical Results for Isothermal Flow 

	Conclusions

