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Abstract: In this paper we consider a mobile platform controlled by two entities; an autonomous
agent and a human user. The human aims for the mobile platform to complete a task, which
we will denote as the human task, and will impose a control input accordingly, while not being
aware of any other tasks the system should or must execute. The autonomous agent will in turn
plan its control input taking in consideration all safety requirements which must be met, some
task which should be completed as much as possible (denoted as the robot task), as well as
what it believes the human task is based on previous human control input. A framework for the
autonomous agent and a mixed initiative controller are designed to guarantee the satisfaction of
the safety requirements while both the human and robot tasks are violated as little as possible.
The framework includes an estimation algorithm of the human task which will improve with
each cycle, eventually converging to a task which is similar to the actual human task. Hence, the
autonomous agent will eventually be able to find the optimal plan considering all tasks and the
human will have no need to interfere again. The process is illustrated with a simulated example.
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Algorithms, Formal Methods

1. INTRODUCTION

As the use of robots increases it becomes imperative to
address issues for human-in-the-loop systems. To construct
safe and effective systems we need to consider how the
robots should react to the actions of the humans and
how the robot best helps the human achieve their goal
or adapt in a way that satisfies both entities’ desires.
Many aspects of this have been considered in previous
work. For instance, Carr et al. (2018) and Schlossman
et al. (2019) both study the behaviour of humans and
use the constructed models to improve the system. In the
former, a control policy was created with the aim that
the system should act similarly to the human, allowing
other humans to be more comfortable around it and for
the system to take over simple tasks which humans would
otherwise perform. In the latter the constructed system
acts like a supervisor handing out tasks to workers, and
the human model is used to determine when tasks should
be given in order to reduce stress and improve efficiency. In
Cao et al. (2010), the roles are reversed and the human is
the one acting like a supervisor by assigning tasks to robots
in a multi-agent system, in turn she receives feedback
from the system in the form of rewards determined by
the choices she has made. In Okunev et al. (2012), where
both the human and the robot have direct impact on
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the control input. The issue addressed is to ensure safety
regardless of the actions of the human. This is done by
applying navigation functions around unsafe areas and
a mixed-initiative control policy, guaranteeing that the
human won’t be able to violate safety. In this paper we
will consider a similar setup in the sense that we focus
on a single robot which is co-piloted by a human and
an autonomous agent. However, in our case, instead of
assuming that they are cooperating, we consider that
each has their own task to complete. The aim is then to
construct a system which guarantees safety while finding
a solution which satisfies both tasks as much as possible.

With this in mind, we will use temporal logic to express the
tasks. More specifically, we will consider Metric Interval
Temporal Logic (MITL), which is built with logic connec-
tors, timed logic operators and boolean valued variables,
and allows to express tasks as logic formulas while still
being close to English. It has been studied and used in
multiple papers such as Zhou et al. (2016), Souza and
Prabhakar (2007), Ouaknine and Worrell (2005), Bouyer
(2009), Maler et al. (2006) and Brihaye et al. (2013). In the
latter is was shown that a MITL formula can be translated
into a timed automata Alur and Dill (1994), Alur (1999).
This allows to use formal methods for control synthesis to
construct a framework for finding a path which satisfies a
given MITL task. This has been done for MITL as well as
other temporal logic languages in Fainekos et al. (2009),
Kloetzer and Belta (2008), Kantaros and Zavlanos (2016)
and Fu and Topcu (2015) among others. We suggested a
framework for this for a multi-agent system in Andersson



et al. (2017), which is however not suitable for solving
the problem at hand since we have relaxed the goal from
finding a completely satisfying path to a maximally sat-
isfying one. This has been addressed in previous litera-
ture through formula revision Fainekos (2011), Lahijanian
and Kwiatkowska (2016), and approximative simulations
Girard and Pappas (2007), Fainekos and Pappas (2009),
yet not for the case of MITL. In the line of the latter we
introduced the novel metric hybrid distance in Andersson
and Dimarogonas (2018) which quantifies how much a
MITL formula is violated by a specific trajectory. This was
further expanded in Ahlberg and Dimarogonas (2019) to
address the concept of hard and soft constraints, allowing
us to find a path which guarantees satisfaction of a given
hard constraint while minimizing the violation of a given
soft constraint with respect to the hybrid distance. This
was presented in the setting of a human and robot working
together to complete a task. As mentioned above, we
have removed here the assumption that the entities are
cooperating by considering that the two have their own
task to complete. Furthermore, we assume that neither
the autonomous agent nor the human has any knowledge
of what the other one is attempting to do.

Our approach to the problem at hand is for the au-
tonomous agent to plan for the maximal satisfaction of
its own task while attempting to determine what task the
human has in mind, allowing it to then plan for that task
as well. These tasks are both considered as soft constraints.
Simultaneously, the system must consider a safety require-
ment which is to be handled as a hard constraint. The
main contribution of this paper is the framework which the
system uses to replan based on newly found knowledge as
well as an algorithm for estimating the human task based
on human control input. We then use algorithms and solu-
tions from our previous work Andersson and Dimarogonas
(2018), Ahlberg and Dimarogonas (2019) to address the
mixed-initiative control policy needed to guarantee safety
and the planning for finding a least-violating path for hard
and soft constraints with respect to the hybrid distance.

2. PRELIMINARIES AND NOTATION

In this paper we will use a weighted transition system
as an abstraction of the dynamics of the robot and the
environment it is located within.

Definition 1. A Weighted Transition System (WTS) is a
tuple T = (Π,Πinit,→, AP, L, d) where Π = {πi : i =
0, ...,M} is a finite set of states, Πinit ⊂ Π is a set of initial
states, →⊆ Π × Π is a transition relation; the expression
πi → πk is used to express transition from πi to πk, AP
is a finite set of atomic propositions, L : Π → 2AP is
an labelling function and d :→→ R+ is a positive weight
assignment map; the expression d(πi, πk) is used to express
the weight assigned to the transition πi → πk.

A discrete path through a WTS with corresponding time
stamps is defined as a timed run.

Definition 2. A timed run rt = (π0, τ0)(π1, τ1)... of a WTS
T is an infinite sequence where π0 ∈ Πinit, πj ∈ Π,
and πj → πj+1 ∀j ≥ 1 s.t. τ0 = 0 and τj+1 = τj +
d(πj , πj+1), ∀j ≥ 1.

Table 1. Operators categorized according to the tem-
porally bounded/non-temporally bounded notation and

Definition 4.

Operator b = ∞ b 6= ∞
�[a,b] non-temporally

bounded, type II
temporally bounded

♦[a,b] non-temporally
bounded, type I

temporally bounded

U[a,b] non-temporally
bounded, type I

temporally bounded

The tasks which the robot aims to complete are expressed
using metric interval temporal logic:

Definition 3. The syntax of MITL over a set of atomic
propositions AP is defined by the grammar φ :=
> | ap | ¬ φ | φ∧ψ | φU[a,b]ψ where ap ∈ AP , a, b ∈ [0,∞]
and φ, ψ are formulas over AP . The operators are Negation
(¬), Conjunction (∧) and Until (U) respectively. Given a
timed run rt = (π0, τ0)(π1, τ1), ... of a WTS, the semantics
of the satisfaction relation is then defined as Souza and
Prabhakar (2007), Ouaknine and Worrell (2005):

(rt, i) |= ap⇔ L(πi) |= ap ( or ap ∈ L(πi)), (1a)

(rt, i) |= ¬φ⇔ (rt, i) 2 φ, (1b)

(rt, i) |= φ ∧ ψ ⇔ (rt, i) |= φ and (rt, i) |= ψ, (1c)

(rt, i) |= φ U[a,b] ψ ⇔ ∃j ∈ [a, b], s.t. (rt, j) |= ψ

and ∀i ≤ j, (rt, i) |= φ. (1d)

From this we can define the extended operators Eventually
(♦[a,b]φ = >U[a,b]φ) and Always (�[a,b]φ = ¬♦[a,b]¬φ).

The operators UI , ♦I and �I , are bounded by the interval
I = [a, b], which indicates that the operator should be
satisfied within [a, b]. We will denote time bounded oper-
ators with b 6= ∞ as temporally bounded operators. All
operators that are not included in the set of temporally
bounded operators, are called non-temporally bounded op-
erators. The operator UI can be temporally bounded (if a
deadline is associated to the second part of the formula)
but contains a non-temporally bounded part. When we use
the term violating non-temporally bounded operators, we
refer to the non-temporally bounded part of an operator
being violated. A formula φ which contains a temporally
bounded operator will be called a temporally bounded
formula. The same holds for non-temporally bounded for-
mulas. An MITL specification φ can be written as φ =∧

i∈{1,2,...,n} φi = φ1∧φ2∧ ...∧φn for some n > 0 and some

subformulas φi. In this paper, the notation subformulas
φi of φ, refers to the set of subformulas which satisfies
φ =

∧
i∈{1,2,...,n} φi for the largest possible choice of n

such that φi 6= φj ∀i 6= j. At every point in time a subfor-
mula can be evaluated as satisfied, violated or uncertain.
If the subformula is non-temporally bounded there are
only two possible outcomes, either uncertain/violated or
uncertain/satisfied. We use Type I and Type II notation:

Definition 4. Andersson and Dimarogonas (2018) A non-
temporally bounded formula is denoted as Type I if it
cannot be concluded to be violated at any time, and as
Type II if it cannot be concluded to be satisfied at any
time. Table 1 shows the categorization.

The hybrid distance Andersson and Dimarogonas (2018)
is a metric which shows the degree of violation of a



run with respect to a given MITL formula. A plan can
violate a formula i) by continuous violation, i.e. exceeding
deadlines, or ii) by discrete violation, i.e. the violation
of non-temporally bounded operators. We quantify these
violations with a metric with respect to time:

Definition 5. The hybrid distance dh is a satisfaction
metric with respect to a MITL formula φ and a timed run
rt = (π0, τ0), (π1, τ1), ..., (πm, τm), defined as: dh = hdc +
(1−h)dd, where dc and dd are the continuous and discrete
distances between the run and the satisfaction of φ, such
that dc =

∑
i∈X T c

i , and dd =
∑

j=0,1,...,m T d
j , where X

is the set of clocks (given next in Definition 7), T c
i is the

time which the run violates the deadline expressed by clock
i, T d

j = 0 if no non-temporally bounded operators are

violated by the action L(πj) and T d
j = τj−τj−1 otherwise,

and h ∈ [0, 1] is the weight assigning constant which
determines the priority between continuous and discrete
violations.

To be able to calculate dh we define its derivative:

Definition 6. ΦH = (ḋc, ḋd), is a tuple, where ḋc ∈
{0, ..., nc} and ḋd ∈ {0, 1}, and nc = |X| is the number
of time bounds associated with the MITL specification.

In Andersson and Dimarogonas (2018), we introduced
an extension of the timed Büchi automaton (TBA) Alur
and Dill (1994) denoted Timed Automaton with hybrid
distance or TAhd for short:

Definition 7. Andersson and Dimarogonas (2018) A Timed
Automaton with hybrid distance (TAhd) is a tuple AH =
(S, S0, AP,X, F, IX , IH , E,H,L) where S = {si : i =
0, 1, ...m} is a finite set of locations, S0 ⊆ S is the set of
initial locations, 2AP is the alphabet (i.e. set of actions),
where AP is the set of atomic propositions, X = {xi :
i = 1, 2, ..., nc} is a finite set of clocks (nc is the number of
clocks), F ⊆ S is a set of accepting locations, IX : S → ΦX

is a map of clock constraints, H = (dc, dd) is the hybrid
distance, IH : S → ΦH is a map of hybrid distance
derivative, where IH is such that IH(s) = (d1, d2) where d1
is the number of temporally bounded operators violated in
s, and d2 = 0 if no non-temporally bounded operators are
violated in s and d2 = 1 otherwise, E ⊆ S×ΦX ×2AP ×S
is a set of edges, and L : S → 2AP is a labelling function.

The notation (s, g, a, s′) ∈ E is used to state that there
exists an edge from s to s′ under the action a ∈ 2AP where
the valuation of the clocks satisfy the guard g = IX(s) ⊆
ΦX . The expressions dc(s) and dd(s) are used to denote

the hybrid distance derivatives ḋc and ḋd assigned to s by
IH .

Definition 8. Alur and Dill (1994) A clock constraint Φx is
a conjunctive formula of the form x ./ a, where ./∈ {<,>
,≤,≥}, x is a clock and a is some non-negative constant.
Let ΦX denote the set of clock constraints over the set of
clocks X.

We will use the notation of automata timed run for a
discrete path through an automaton with corresponding
time stamps, indicating at which time evaluations each
location in the path is reached.

Definition 9. An automata timed run rtAH
= (s0, τ0), ...,

(sm, τm) of AH , corresponding to the timed run rt =

(π0, τ0), ..., (πm, τm), is a sequence where s0 ∈ S0, sj ∈ S,
and (sj , gj+1, aj+1, sj+1) ∈ E ∀j ≥ 1 such that i) τj |= gj ,
j ≥ 1, and ii) L(πj) ∈ L(sj), ∀j.
Definition 10. The continuous violation for the automata
timed run rtAH

= (s0, τ0), ..., (sm, τm) is dc(r
t
AH

) =∑
i=0,...,m−1 d

c(si)(τi+1 − τi), and similarly, the discrete

violation for the automata timed run is dd(rtAH
) =∑

i=0,...,m−1 d
d(si)(τi+1 − τi), and hence the hybrid dis-

tance, dh, as defined in Definition 5, is equivalently given
with respect to an automata timed run as

dh(rtAH
, h) =

m−1∑
i=0

(hdc(si) + (1− h)dd(si))(τi+1 − τi) (2)

Definition 11. Given a weighted transition system T =
(Π,Πinit,Σ,→, AP, L, d) and a timed automaton with
hybrid distance AH = (S, S0, AP,X, F, IX , IH , E,H,L)
their Product Automaton (P) is defined as T p = T ⊗
AH = (Q,Qinit,;, d,F , AP,Lp, IpX , I

p
H , X,H), where

Q ⊆ {(π, s) ∈ Π×S : L(π) ∈ L(s)} ∪ {(π, s) ∈ Πinit×S0}
is the set of states, Qinit = Πinit × S0 is the set of initial
states, ; is the set of transitions defined such that q ; q′

if and only if i) q = (π, s), q′ = (π′, s′) ∈ Q, ii) (π, π′) ∈→,
and iii) ∃ g, a, s.t. (s, g, a, s′) ∈ E, d(q, q′) = d(π, π′) if
(q, q′) ∈;, is a positive weight assignment map, F =
{(π, s) ∈ Q : s ∈ F}, is the set of accepting states,
Lp(q) = L(π) is an observation map, IpX(q) = IX(s) is
a map of clock constraints, and IpH(q) = IH(s) is a map of
hybrid distance derivative constraints.

3. PROBLEM FORMULATION

The aim in this paper is to design a controller u for
the mobile platform such that both the human and the
autonomous agent have impact on the resulting trajectory
while guaranteeing satisfaction of safety requirements, as
well as finding the robotic control input ur which satisfies
both the robot task and the unknown human task as
much as possible. From here on, we will denote the MITL
formulas expressing the considered tasks as follows; human
task as φh, robot task as φr, and safety requirements as
φs.

There are then four subproblems which need to be ad-
dressed to find a solution to the stated problem; 1) Finding
an initial control input ur such that the closed-loop system
satisfies all safety requirements φs completely and the
robot task φr as much as possible, 2) Designing a control
policy such that the human has as much input as possible
while guaranteeing satisfaction of all safety requirements
φs, 3) Continuously updating the control input ur to adapt
for the human input uh, and 4) Estimating the human task
uh and replanning accordingly.

In previous work we have solved the control problem for a
system under a hard constraint φhard and a soft constraint
φsoft. Here, we will use this by identifying φhard and φsoft

in each subproblem, formally;

Problem 1. Find an initial control policy ur such that the
closed-loop system



ẋ = Ax+Bu (3)

u = ur, x(0) = x0 (4)

satisfies the hard constraint φhard = φs completely and
the soft constraint φsoft = φr as much as possible, using
the hybrid distance as the metric of satisfaction.

Here ẋ = Ax+Bu are the of the robot.

Problem 2. Design the mixed-initiative control policy u =
ur + κuh such that the closed-loop system

ẋ = Ax+Bu (5)

u = ur + κuh, x(0) = x0, x ∈ X (6)

satisfies the hard constraint φhard = φs completely while
allowing the human as much control uh as possible. Here,
κ ∈ X × φhard → [0, 1] is a mapping from position and
hard task onto a weight constant between 0 and 1.

Problem 3. Continuosly update ur to maximize the satis-
faction of the soft constraint φsoft = φr ∧φesth , while guar-
anteeing satisfaction of the hard constraint φhard = φs, to
adapt for the differences between the planned trajectory
following ur and the one resulting from following u. Here
φesth refers to the estimation of φh and is initially empty.

Problem 4. Estimate the human specification φh, as φesth ,
based on previous human control input uh, and redesign
the control policy ur s.t. the closed-loop system

ẋ = Ax+Bu (7)

u = ur + κuh, x(0) = x0 (8)

satisfies the hard constraint φhard = φs completely, and
satisfies the soft constraint φsoft = φr ∧ φesth as much
as possible, using the hybrid distance as the metric of

satisfaction. We assume that φh =
∧k

i=1 ♦Iiai where Ii =
[0, ti], i.e. that the human task consists of visiting a finite
set of areas ai in the workspace within some deadlines.

4. CONTROL DESIGN

4.1 Initial Robotic Control

Subproblem 1 was addressed in Ahlberg and Dimarogonas
(2019). Here we will give a brief overview. For a given
hard specification (safety) φs and a given soft specification
(robot task) φr, a control policy ur, which satisfies φs
and minimizes the violation of φr, can be found by the
following steps;

i) Abstract the environment and dynamics of the mo-
bile platform into a weighted transition system T =
(Π,Πinit,→, AP, L, d) where the weights d corre-
sponds to the worst case transition times, as described
in Andersson et al. (2017).

ii) Construct a Timed Automaton with hybrid distance
AH = (S, S0, AP, F, IX , IH , E,H,L) from the spec-
ifications φs and φr as described in Ahlberg and
Dimarogonas (2019).

iii) Construct the product P = (Q,Qinit,;, d,F , AP,Lp,
IpX , I

p
H , X,H) of T and AH .

iv) Use a graph search algorithm, such as the modified
Dijkstra algorithm suggested in Andersson and Di-
marogonas (2018), to find the control input ur which

minimizes the hybrid distance for a given value of
h. The suggested algorithm for this is Alg. 1 where
d0c = d0d = d0h = 0. That is, we set the initial values
of all distances to 0 and search for the shortest path
between the initial state and an accepting state using
dh as the distance.

Algorithm 1. dijkstraHD()
% Dijkstra Algorithm with Hybrid Distance as cost function

Data: P , h, d0c , d
0
d, d

0
h

Result: rmin
hd , dh, dc, dd

Q =set of states; q0 =initial state; SearchSet = q0;
d(q, q′) =weight of transition q ; q′ in P

if q = q0 then
dh(q) = d0h, dc(q) = d0c , dd(q) = d0d

else
dh(q) = dc(q) = dd(q) =∞

end
for q ∈ Q do

pred(q) = ∅
end
while no path found do

Pick q ∈ SearchSet s.t. q = arg min(dh(q))
if q ∈ F then

path found
end
else

find all q′ s.t. q ; q′

for every q′ do

dsteph = (hḋc(q) + (1− h)ḋd(q))d(q, q′)

if dh(q′) > dh(q) + dsteph then
update dh(q′), dc(q

′), dd(q′) and pred(q′)
and add q′ to SearchSet Remove q from
SearchSet

end
end

end
end
while q 6= q0 do

use pred(q) to iteratively form the path back to q0
→ rmin

hd
end

Applying the resulting control input without human input
i.e. u = ur will correspond to the high level plan which
violates the φr the least, while satisfying φs completely.

4.2 Mixed-Initiative Control

Subproblem 2, i.e. designing the mixed-initiative controller
to ensure safety, was also addressed in Ahlberg and Di-
marogonas (2019). The idea is to give the human as much
influence as possible at all time, and only restricting her
to not enter states which would violate φs. This is done
by constructing a set of pairs of states and time-stamps
Qt

T = {(q, t) : q ∈ QT , t ≥ 0} where QT is the set of states
from which accepting states F are not reachable, and t are
time-stamps corresponding to the minimum time required
to enter q. We can then design κ s.t.

κ ∈

{
0 if dt < ds
(0, 1) if dt ∈ (ds, ds + ε)
1 if dt > ds + ε

(9)



where ds > 0 and ε > 0 are design parameters and dt is
defined as dt = min(q,t)∈Qt

T
dist(x, (q, t)) for

dist(x, (q, t)) =

{ ‖x− proj(q, T )‖ if t0 + d(π0,
proj(q, T )) > t

∞ otherwise,
(10)

where π0 and t0 corresponds to the current location and
the valuation of time and the projection of a state onto the
transition system (and onto the automaton) are defined as:

Definition 12. The projections of a timed run of a prod-
uct automaton rtP = (π1, s1)(π2, s2), ..., (πm, sm) onto a
TAhd AH and a WTS T are defined as proj(rtP , AH) =
s1, s2, ..., sm and proj(rtP , T ) = π1, π2, ..., πm.

That is, dt is the minimum distance to any state in Qt
T

which can be reached in the given transition time. This is
satisfied by

κ(x,Qt
T ) =

ρ(dt − ds)
ρ(dt − ds) + ρ(ε+ ds − dt)

(11)

where ρ(s) = e−1/s for s > 0 and ρ(s) = 0 for s ≤ 0 which
will take on the values:

κ =


0 if dt < ds

e1/(ds−dt)

e1/(ds−dt)+e1/(dt−ds−ε) ∈ (0, 1) if dt ∈ (ds, ds + ε)
1 if dt > ds + ε

(12)

4.3 Updating Robotic Control Policy

In this section we address subproblem 3, i.e. updating
the robotic control policy ur to minimize the violation of
φsoft given the actions of the human. Initially we will use
φsoft = φr, this will then be updated to φsoft = φr ∧φesth .
The approach is to re-run Alg. 1 on the product automaton
P (constrcuted from the TAhd representing φsoft ∧φhard)
where the initial state is set as the current state consid-
ering progress made in AH and current state in T . When
re-running the search algorithm the setting of the initial
values of the distances (hybrid d0h, discrete d0d and contin-
uous d0c) should also be updated to the current valuations.
The initial state and distances are found by considering
the trajectory which has been followed by the mobile
platform so far. More specifically, if the result of u = ur +
κuh has been the trajectory which corresponds to the
discrete path (π0, t0), (π1, t1), (π2, t2), ..., (πm, tm) and the
automata run rtAH

= (s0, t
′
0), (s1, t

′
1), (s2, t

′
2), ..., (si, t

′
i),

then Qinit = (πm, si), d
0
c = dc(r

t
AH

), d0d = dd(rtAH
) and

d0h = dh(rtAH
, h) (from definition 10).

4.4 Estimating Human Task and Re-planning

Finally, we consider subproblem 4, i.e. estimating φh to
find the optimal plan given the specifications known by the
robot. During a run, the human will have maximal control
as long as she is not violating a safety constraint. She will
stop interfering (i.e. uh = 0) when φh is completed as well
as possible. Any region in the resulting discrete path is
potentially a goal in the human task. Here, we use the term
goal to denote a label of a region which the human task
includes visiting. The last region which the human actively
steers the robot into, πlast

h , must then be a goal since the
human task wasn’t satisfied prior to arriving in the region
but was so afterwards. We can therefore conclude that the

label L(πlast
h ) is a goal in φh. We can then construct our

first estimate of φh such that φesth = ♦IL(πlast
h ) where

I = [0, T ], where T is the time of arrival at πlast
h in

the resulting trajectory. This is depicted in Alg. 2. The
robot can then replan to find ur by planning for the task
φs ∧ φr ∧ φesth following the steps in 4.1 (reconstructing
the automata, product and re-running the graph-search
algorithm).

Algorithm 2. estimateHumanTask()
%Algorithm for improving the estimate of φh
Data: human control input uh(t), resulting timed run rt =

(π0, t0), (π1, t1), ..., (πm, tm), previous estimate of

human task φest,oldh

Result: φest,newh
T = max t s.t. uh(t) 6= 0
πlast
h = π ∈ Π s.t. (π, ti) ∈ rt and T ∈ (ti, ti+1)

φest,newh = φest,oldh ∧ ♦[0,ti]L(πest
h )

Here we assume that the human will only interfere to
improve the path with respect to her task. Hence, if the
human is shown the new plan, she should not try to
guide us towards the goals which are part of the plan. By
repeating the process until the human no longer interferes,
i.e., until uh = 0 ∀t, the remainder of the goals in the
human task can then be added to the estimate. When
uh = 0 is constant throughout a run it then follows that
φesth is either identical or similar to φh. Here we say that
φesth is similar to φh if all goals in φh are included in φesth
with potentially inaccurate time intervals I, or any missing
goal in φesth is visited in the resulting discrete plan despite
not being planned for. If the human wishes to add further
tasks this is possible by guiding the robot to new regions.
These will then eventually be added. As a result any goals
in φh which hadn’t been added to φesth may be added in
following runs as the need arises if the robot changes its
plan to not include them. It is however not possible to
remove tasks by simple control action since the human
can’t indicate that a region doesn’t need to be visited by
applying control input.

Completion It follows from Alg. 2, that the robot will
require at most k+ 1 runs to construct a plan which takes
k human goals into consideration. This is due to the fact
that one goal is being added at each run if uh(t) 6= 0 ∀t and
that the robot is able to plan for each added goal during
the following run. Hence, the estimation φesth will converge
to a task similar to φh in at most k runs.

5. EXAMPLE

Consider a workspace in Fig. 1 consisting of a 7 by 6 grid.
It requires 1 time unit to move between any two regions
in the workspace. The robot starts in region 3 (marked as
initial). The goal of the human is to complete the task:
φh = ♦≤3g1 ∧ ♦≤5 ∧ g2♦≤15 ∧ g3♦≤20g4, i.e., visiting all
green areas. The robot task is: φr = ♦≤12b1 ∧ ♦≤4g2 ∧
¬g2Ub1, i.e., visiting the blue regions and the light green
region, enforcing the order to visit the dark blue before
the green. The safety requirement is: φs = �¬r1 ∧ �¬r2,
i.e., avoiding the red areas.

Following the suggested framework the result will be:



(1) First run:
(a) The autonomous agent plans for: φ = φs ∧ φr

resulting in the path illustrated in Figure 1a, i.e.,
3, 10, 17, 18, 19, 26, 25, 24, 23, 22, 29, 36.

(b) The human interupts the run and steers the robot
into the green regions along the way, while the
robot reacts and replans to continue with its own
task. The resulting path is illustrated in Figure
2a, i.e., 3, 10, 9, 16, 17, 18, 19, 26, 27, 28, 35, 42, 41,
40, 39, 38, 31, 30, 29, 36.

(c) The autonomous agent estimates the human task
to be: φesth = ♦≤16g3, where g3 was the last region
entered due to human input and 16 is the time it
was entered upon.

(2) Second run:
(a) The autonomous agent plans for: φ = φs ∧ φr ∧

φesth resulting in the path illustrated in Figure 1b,
i.e., 3, 10, 17, 18, 19, 26, 25, 24, 31, 38, 37, 36.

(b) The human interrupts the run and steers the
robot into the remaining green regions along the
way, while the robot reacts and replans to con-
tinue with its own task. The resulting path is
illustrated in Figure 2b, i.e., 3, 10, 9, 16, 17, 18, 19,
26, 25, 24, 31, 38, 39, 40, 41, 42, 41, 40, 39, 38, 37, 36.

(c) The autonomous agent estimates the human task
to be: φesth = ♦≤16g3 ∧ ♦≤15g4, where g4 was the
last region entered due to human input and 15 is
the time it was entered upon.

(3) Third run:
(a) The autonomous agent plans for: φ = φs ∧ φr ∧

φesth resulting in the path illustrated in Figure 1c,
i.e., 3, 10, 17, 18, 19, 26, 25, 24, 31, 30, 29, 36, 37, 38,
39, 40, 41, 42.

(b) The human interrupts the run and steers the
robot into the remaining green region, while the
robot reacts and replan to continue with its own
task. The resulting path is illustrated in Figure
2c, i.e. 3, 10, 9, 16, 17, 18, 19, 26, 25, 24, 31, 30, 29,
36, 37, 38, 39, 40, 41, 42.

(c) The autonomous agent estimate the human task
to be: φesth = ♦≤16g3 ∧ ♦≤15g4 ∧ ♦≤2g1, where g1
was the last region entered due to human input
and 2 is the time it was entered upon.

(4) Fourth run:
(a) The autonomous agent plans for: φ = φs ∧ φr ∧

φesth resulting in the same path as the last step in
the previous run.

(b) The humans task is completed and hence she
gives no new control input.

It should be noted that the last plan from the autonomous
agent doesn’t have to be identical to the last path sug-
gested by the human. If the human has chosen a non-
optimal path which leads to greater hybrid distance the
system will find the better option. The resulting path
meets all criteria since the safety requirement is satisfied
and both the human’s and the robot tasks are considered.
The final estimation of the human task is φesth = ♦≤16g3 ∧
♦≤15g4∧♦≤2g1. Comparing it to the original task we note
two differences; one goal region (g2) is missing and the
times associated with reaching the goal regions are not
the same. The first is due to the goal region being part
of the path despite not being added to the estimation.
In this case, since it was also part of the robot task,

this will always be true. The time differences are due
to the actions of the human. In two cases (g1 and g4)
the human managed to steer the mobile platform to the
goal regions quicker than required, resulting in a smaller
deadline for the estimated task. In the last case (g3) the
human was slower than the original deadline resulting in
a more generous time limit for the estimation.

6. CONCLUSIONS AND FUTURE WORK

We have suggested a framework where a human and an
autonomous agent co-pilot a mobile platform in order
to complete some given tasks. It is assumed that each
entity has its own task to perform and that neither has
any knowledge of the other’s task. The aim is for the
autonomous agent to estimate the human task based on
human control input, and to then find the path that max-
imizes the satisfaction of both tasks. A mixed-initiative
control policy is applied to ensure that safety requirements
are met. The process is illustrated with an example.

For future work the system should be validated with real-
time experiments. Other directions to investigate include
improved methods to remove goal regions, extending the
estimation algorithm to include different forms of specifi-
cations and improving the efficiency to add multiple goal
regions to the estimation during a single run.
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Fig. 1. Paths suggested by autonomous agent.
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Fig. 2. Paths resulting from human input during runs.
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