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since their product results in the aforementioned volumetric productivity. Previous experimental12

work has shown that a very high viable cell density and a cell-specific productivity comparable to13

fed-batch reactors can be achieved in perfusion bioreactors coupled to alternating tangential flow14

systems [2]. The improvement of the cell-specific productivity is the object of ongoing work since15

it highly depends on the cell line, culture medium, and product of interest.16

Hence, reliable and robust operation of perfusion bioreactors at a very high volumetric produc-17

tivity is one of the main goals of the current research on continuous manufacturing of biologics. For18

this purpose, mathematical modeling and model-based control and optimization are proposed here19

as alternatives to the exhaustive screening of culture media that is still the industrial practice [3].20

However, the use of mathematical models in the context of perfusion bioreactors is accompanied21

by significant challenges, such as the complexity and nonlinearity of these mathematical models22

and the lack of a widely accepted model structure that is guaranteed to capture the transient and23

steady-state behavior of the perfusion bioreactors under study. In addition, from the methodological24

point of view, there is no consensus regarding the modeling framework and the most appropriate25

procedures for model identification, experimental design, and use of the resulting mathematical26

model for control and optimization. This paper attempts to deal with some of these challenges via27

an integrated approach that encompasses procedures for modeling and identification of perfusion28

bioreactors, which complements another recently published paper about an integrated approach for29

experimental design, control, and optimization of perfusion bioreactors [4].30

A framework that is typically used for modeling of biological reaction systems such as perfusion31

bioreactors is metabolic flux analysis (MFA). The goal of MFA is the computation of rates (also32

known as fluxes) for each reaction in the cell network so that a certain cost, such as the difference33

to the rates of variation of measured metabolites, is minimized. In addition, these reaction rates34

should be such that (i) the rates of variation of intracellular metabolites are equal to zero and (ii)35

the reaction rates of irreversible reactions are nonnegative [5]. The computation of reaction rates is36

the first step for the modeling of biological systems such as perfusion bioreactors since one typically37

constructs a model for each reaction.38

Previous work onMFA has used the concept of elementary flux modes (EFMs), which correspond39

to the extreme rays of the polyhedral cone defined by the conditions (i) and (ii) satisfied by the40

reaction rates. This concept is useful since any vector of reaction rates satisfies (i) and (ii) if and41

only if it is a conical combination of EFMs [6]. However, the number of EFMs grows exponentially42

with the size of the reaction network [7]. Despite the existence of several approaches based on43

generation of EFMs followed by a selection procedure, these approaches still require the generation44

of all the EFMs as a first step [8, 9, 10]. Hence, these procedures for selection of EFMs would be45

applied to a very large number of EFMs and the computational cost would be very high in the case46

of large reaction networks. Fortunately, it has been shown that it is possible to obtain the reaction47

rates for one metabolic state, that is, the intracellular state induced by corresponding experimental48

conditions, as conical combinations of a minimal set of EFMs using the column generation method49

[11]. However, MFA for different metabolic states requires using the union of the EFMs that were50

obtained for each state [12]. Even if a procedure for selection of EFMs based on data from different51

metabolic states is used, the number of selected EFMs may need to increase linearly with the52

number of metabolic states to allow describing each state in terms of EFMs. This is inconvenient53

because it can lead to the selection of many EFMs in the case of many metabolic states. For this54

reason, the stoichiometries of these EFMs may be linearly dependent, and one may not be able55

to uniquely compute the rates of the EFMs. Also, since the model identification task amounts to56

finding the model of each reaction, this may have to be done for a large number of EFMs.57
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In this paper, we present an alternative type of flux modes that can model the system for any58

metabolic state using a unique and smaller set of flux modes that facilitates model identification.59

These flux modes allow modeling the biological reaction system only in terms of macroscopic re-60

actions that involve the extracellular species despite the existence of complex intracellular reaction61

networks, which is a concept that has already been used in previous work [13]. For each flux mode,62

the corresponding reaction rate can then be modeled using Monod-type kinetics to account for acti-63

vating or inhibitory effects of certain chemical species [14]. This type of kinetics has been frequently64

used in other modeling studies for animal cell cultures [15, 16]. On the other hand, it is known that65

Monod-type kinetics results in challenging nonlinear estimation problems due to large correlation66

between parameters [17]. The procedure for model identification and parameter estimation that67

we propose attempts to deal with two challenges that are typically present in system identification:68

(i) the difficulty in guaranteeing global optimality of the parameter estimates due to their compu-69

tation via numerical optimization algorithms that may either attain globally suboptimal solutions70

or result in intractable problems; and (ii) the identification of the correct model structure among71

a set of candidate model structures. Hence, the proposed procedure is in line with the purpose72

of other recently published methods but extends these methods in the sense that it circumvents73

the need to perform linear reparameterizations or to use modeling frameworks without a physical74

meaning [18, 19]. To this end, the rational structure of the kinetic model is used to express the75

parameter estimation problem as a polynomial optimization problem where the cost and constraints76

are explicitly written as quadratic functions that involve only a few decision variables, which can77

be reformulated as a convex semidefinite program via the concept of sum-of-squares polynomi-78

als and sparse semidefinite relaxations [20]. This leads to a tractable method that computes the79

maximum-likelihood parameter estimates with posterior certification of global optimality.80

The paper is organized as follows. Section 2 presents the generic model and the concept of flux81

modes that is used in this paper for modeling of perfusion bioreactors and shows how these flux82

modes and the corresponding reaction rates are computed. Then, Section 3 takes advantage of these83

computed reaction rates and shows how one can estimate globally optimal parameters and identify84

the structure of the Monod-type kinetic model that describes each reaction rate in a tractable way.85

Finally, Section 4 summarizes the conclusions of this paper.86

2. Computation of flux modes and reaction rates87

In this section, we present the model of perfusion bioreactors used throughout the paper and we88

propose to work with a reduced set of stoichiometries that are valid for any metabolic state, called89

basis flux modes (BFMs). By using BFMs, one can show that it is possible to model the biological90

reaction system for any metabolic state using a unique and much smaller set of stoichiometries91

than with EFMs, which results in unique computation of flux modes and reaction rates. Hence, the92

concept of BFMs is more convenient for model identification.93

2.1. Reaction network94

The quantitative relationships among S species that participate in Rd reactions are known as
stoichiometries. Hence, the net production of the sth species by the ith reaction is given by the
stoichiometric coefficient νi,s. The stoichiometric matrix Nd of dimension Rd × S contains the
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stoichiometric coefficients and is defined as1

Nd :=







ν1,1 · · · ν1,S
...

...
...

νRd,1 · · · νRd,S






. (1)

The species in the reaction system are composed of a number of quantities that are conserved by
the reactions, namely atoms of different elements and electrical charges. Let Ed denote the number
of such conserved quantities, and let αs,e denote the number of the eth conserved quantity in the
sth species. The atomic matrix A of dimension S × Ed and rank E > 0 is then defined as

A :=







α1,1 · · · α1,Ed

...
...

...
αS,1 · · · αS,Ed






. (2)

For any stoichiometric matrix Nd, the Rd stoichiometries must satisfy a conservation equation
for each one of the Ed conserved quantities, that is,

ATNT
d = 0Ed×Rd

, (3)

which implies that the columns of NT
d lie in the null space of AT and the rank of Nd, denoted as95

R, satisfies R := rank(Nd) ≤ S − E < S, as Theorem 3 in Appendix A shows.96

Now let rd(t) denote the Rd-dimensional vector of reaction rates that correspond to the stoichio-97

metric matrix Nd. These reaction rates are typically functions of the vector c(t) of concentrations98

of certain species and of the temperature T (t), which correspond to the so-called reaction kinetics,99

but they are represented here as time-varying signals rd(t), without indicating the explicit depen-100

dence on c(t) and T (t). One can observe that the net production of the S species by the reactions101

at time t is given by NT
d rd(t).102

The stoichiometries that correspond to the rows of the matrix Nd may be linearly dependent.103

Ideally, one would like to describe the net production by the reactions with linearly independent104

stoichiometries.105

2.2. Transformation to independent stoichiometries106

Recall that Nd is an Rd × S stoichiometric matrix of rank R, where Rd is the number of
possibly linearly dependent stoichiometries. The stoichiometries in the matrix Nd result from
linear combinations, specified by an Rd × R matrix LN of rank R, of R linearly independent
stoichiometries, specified by an R× S matrix N of rank R, which can be written as

Nd = LNN. (4)

Since it would be useful to find the underlying independent stoichiometries, two methods M1107

and M2 are presented below to decompose any matrix Nd with Rd rows and rank R as Nd = LNN,108

1In this paper, we use stoichiometric matrices where the rows correspond to the reactions and the columns
correspond to the species, which are easier to relate to the chemical equations of the reactions. Note that, in some
references [11, 12], the transposed matrices where the rows correspond to the species and the columns correspond to
the reactions are called “stoichiometric matrices”.
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where N is a matrix with R linearly independent rows. Hence, both methods can be used to obtain109

independent stoichiometries. A singular value decomposition could also be used for this purpose,110

which would be done in MATLAB by executing the commands R=rank(Nd); [U,S,V]=svd(Nd);111

LN=U*S(:,1:R); N=V(:,1:R)';. However, the goal here is to look for a more physically meaningful112

decomposition in the context of independent reactions by using rational bases of null spaces, that113

is, bases where the elements are ratios of small integers. These bases are obtained from the reduced114

row echelon form of the matrices for which the null spaces are computed, which can be done115

in MATLAB for some matrix M by executing the command Z=null(M,'r');. Note that this116

property of rational bases of null spaces also implies that executing the MATLAB commands117

Z=null(M,'r'); W=null(Z','r')'; for any matrix M results in the same matrix W as executing118

R=rank(M); Y=rref(fliplr(M)); W=fliplr(flipud(Y(1:R,:)));, as one can verify numerically,119

which means that W contains the nonzero rows of the reduced row echelon form of a flipped version120

of M. This fact is used below to interpret the results achieved by methods M1 and M2.121

Consequently, to obtain a model of the reaction system expressed only in terms of independent122

stoichiometries, the following steps are taken:123

1. One computes an Rd ×R matrix LN of rank R and an R× S matrix N of rank R such that124

Nd = LNN. In addition, one computes an S×(S−R) matrix AN of rank S−R with columns125

that span the null spaces of Nd and N and an Rd× (Rd−R) matrix KN of rank Rd−R with126

columns that span the null spaces of NT
d and LT

N since they are used in subsequent sections.127

To this end, one can use one of the two following methods, among other possible methods:128

M1. One finds a matrix LN with columns that are a rational basis of the null space of129

KT
N , where KN is a matrix with columns that are a rational basis of the null space130

of NT
d . Then, since LN is of full column rank, one computes N =

(

LT
NLN

)−1

LT
NNd131

and finds a matrix AN with columns that are a rational basis of the null space of N,132

which is also the null space of Nd since Nd = LNN. This can be done in MATLAB133

by executing the commands KN=null(Nd','r'); LN=null(KN','r'); N=pinv(LN)*Nd;134

AN=null(N,'r');. This results in a matrix LT
N where the linearly dependent stoichiome-135

tries that correspond to columns with pivots in the reduced row echelon form of a flipped136

version of NT
d are involved in only one independent stoichiometry and a matrix NT with137

the columns of NT
d that correspond to the columns with pivots in the said reduced row138

echelon form. Hence, this method is most useful when one aims to obtain a matrix LN139

such that most of the linearly dependent stoichiometries are involved in only one linearly140

independent stoichiometry and a matrix N with rows similar to the rows of Nd.141

M2. One finds a matrix NT with columns that are a rational basis of the null space of142

AT
N , where AN is a matrix with columns that are a rational basis of the null space143

of Nd. Then, since N is of full row rank, one computes LN = NdN
T
(

NNT
)−1

and144

finds a matrix KN with columns that are a rational basis of the null space of LT
N ,145

which is also the null space of NT
d since NT

d = NTLT
N . This can be done in MATLAB146

by executing the commands AN=null(Nd,'r'); N=null(AN','r')'; LN=Nd*pinv(N);147

KN=null(LN','r');. This results in a matrix N where the species that correspond to148

columns with pivots in the reduced row echelon form of a flipped version of Nd are149

involved in only one independent stoichiometry and a matrix LN with the columns of150

Nd that correspond to the columns with pivots in the said reduced row echelon form.151
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Hence, this method is most useful when one aims to obtain a matrix N such that most152

of the species are involved in only one linearly independent stoichiometry and a matrix153

LN with columns similar to the columns of Nd.154

2. At this point, one can write that

NT
d rd(t) = NTLT

Nrd(t). (5)

Let us denote the number of independent reactions as R. Then,

NT
d rd(t) = NTr(t), (6)

with

r(t) = LT
Nrd(t). (7)

Since it has been shown that the number of linearly independent stoichiometries is less than155

the number of species, that is, R < S, the number of independent reactions is also less than156

the number of species.157

In summary, one can assume without loss of generality that:158

• There are R independent reactions, and the number of independent reactions is less than the159

number of species, that is, R < S.160

• The stoichiometric matrix N is of dimension R× S and of rank R.161

• The vector of independent reaction rates r(t) is of dimension R.162

2.2.1. Illustrative example163

The previous results are now illustrated by a simple example of a biological reaction system. In
this system, the S = 18 species in Table 1 participate in the Rd = 14 reactions in Table 2 with the
linearly dependent stoichiometries in the Rd × S matrix

Nd =























−1 1 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 −1 2 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 1 0 −1 0 1 0 0 0 0 4
1 −1 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 2
0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 −2
0 0 0 0 0 0 0 1 0 0 0 0 0 −1 1 −1 0 0
0 −1 0 0 0 0 0 0 2 0 0 0 0 −1 1 0 −1 4
0 −2 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 1 6
0 −2 0 0 0 0 0 0 2 0 0 0 0 1 −1 0 0 6
0 −1 0 0 0 0 1 0 0 0 0 0 0 0 1 −1 0 1
0 −1 0 0 −1 0 1 0 0 0 0 0 0 0 0 1 0 −1

−4 13 0 0 −3 0 0 0 −1 2 0 0 −2 0 2 −2 −2 −8
0 0 0 0 0 0 0 0 0 0 2 1 −3 0 0 0 0 0
0 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4























(8)

of rank R = 13. This reaction network corresponds to an amendment of the networks proposed
by [21, 22] that was made to ensure that all the reactions satisfy the conservation of the Ed = 5
quantities that correspond to the atoms of C, H, N, O, P. The conserved quantities are given by
the S × Ed matrix A of rank E = 5, with

AT =

[

0 0 0 6 5 3 0 3 1 17 6 3 5 3 5 5 4 0
3 2 0 12 10 6 4 7 0 30 13 7 11 4 6 9 4 1
0 0 0 0 2 0 1 1 0 4 0 0 0 0 0 1 0 0
4 1 2 6 3 3 0 2 2 19 9 6 8 3 5 4 5 0
1 0 0 0 0 0 0 0 0 3 1 1 1 0 0 0 0 0

]

. (9)
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Assuming that one is interested in obtaining linearly independent stoichiometries in the rows of
the matrix N that are similar to the linearly dependent stoichiometries in the rows of the matrix
Nd, the method described in M1 is used. One can then compute the S × (S − R) matrix AN of
rank S −R, the Rd × (Rd −R) matrix KN of rank Rd −R, with

AT
N =





1 0 0 0 0 0 0 0 0 3 1 1 1 0 0 0 0 0
− 9

5
− 4

5
− 8

5
6
5

−1 3
5

− 9
5

− 2
5

− 3
5

− 6
5

1
5

− 2
5

0 3
5

1 0 0 0
0 0 0 0 2 0 1 1 0 4 0 0 0 0 0 1 0 0
1 1 2 0 0 0 1 0 1 −3 0 0 0 0 0 0 1 0

− 6
5

14
5

8
5

24
5

−2 12
5

9
5

2
5

− 2
5

− 99
5

4
5

− 8
5

0 2
5

0 0 0 1



, (10)

KT
N = [ 0 −1 3 −1 0 0 −1 −1 0 0 0 0 1 0 ], (11)

the Rd × R matrix LN of rank R, and the R × S matrix N of rank R, the rows of which are the164

R linearly independent stoichiometries, which are exactly the linearly dependent stoichiometries in165

the rows of the matrix Nd, with the exception of the stoichiometry in the second row of Nd.166

On the other hand, assuming that one is interested in obtaining linearly independent stoichiome-167

tries in the rows of the matrix N such that most of the species are involved in only one linearly168

independent stoichiometry, the method described in M2 is used. One can then compute the same169

matrices AN and KN , the Rd ×R matrix LN of rank R, and the R× S matrix N of rank R with170

the R linearly independent stoichiometries of the reactions in Table 3. Indeed, one can observe that171

most of the species are involved in only one of the linearly independent stoichiometries in the rows172

of the matrix N, with the exception of H3PO4ext, H2Oext, O2ext, Glcext, and Glnext.173

In both cases, KN corresponds to the single linear dependence among the linearly dependent
stoichiometries in the rows of the matrixNd, while AN corresponds to the conservation of quantities
in the species by these stoichiometries. For this reason, a single linearly dependent stoichiometry
can be removed from the rows of the matrix Nd, while the matrix AN can be related to the
conservation of atoms of C, H, N, O, P in the species given by the matrix A as follows:

AT
N =





0 0 0 0 1
1 0 − 9

5
− 4

5
7
5

0 0 1 0 0
−1 0 1 1 −3
−2 1 − 11

5
4
5

− 37
5



AT, (12)

which means that the fourth row of AT
N corresponds to the number of atoms of N and O minus the174

number of atoms of C minus 3 times the number of atoms of P in the species, for example.175

2.3. Generic model of perfusion bioreactors176

In perfusion bioreactors, suspended cells are cultivated in a liquid medium that is continuously177

renewed via the reactor inlets and outlets. The goal is to keep the cells in an environment that178

allows them to generate a certain product of interest from the nutrients and other species in the179

medium and to recover that product continuously. To avoid loss of productivity due to dilution180

of biomass as a result of the medium renewal and to facilitate the downstream processing of the181

product of interest, perfusion bioreactors are coupled to a cell retention device. This ensures that182

the biomass remains in the reactor and the other extracellular species, including the product of183

interest, are continuously harvested. In addition, a so-called bleed stream is typically used to avoid184

accumulation of dead cells. Figure 1 shows a schematic of a perfusion bioreactor coupled to a cell185

retention device.186

Hence, a perfusion bioreactor is typically a constant-volume, continuous, agitated bioreactor that
is intended to operate predominantly at steady state, but here its transient behavior is shown as a
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Table 1: List of species in the illustrative example.

Species Label Chemical formula

1 H3PO4ext H3PO4

2 H2Oext H2O
3 O2ext O2

4 Glcext C6H12O6

5 Glnext C5H10N2O3

6 Lacext C3H6O3

7 NH4ext NH4

8 Alaext C3H7NO2

9 CO2ext CO2

10 Nucext C17H30N4O19P3

11 G6P C6H13O9P
12 GA3P C3H7O6P
13 R5P C5H11O8P
14 Pyr C3H4O3

15 aKG C5H6O5

16 Glu C5H9NO4

17 Oxa C4H4O5

18 H H

Table 2: List of reactions with linearly dependent stoichiometries in the illustrative example.

Reaction Chemical equation

1 H3PO4ext + Glcext ↔ H2Oext + G6P

2 H3PO4ext + G6P ↔ H2Oext + 2 GA3P

3 H2Oext + G6P ↔ CO2ext + R5P + 4 H

4 H2Oext + GA3P ↔ H3PO4ext + Pyr + 2 H

5 Pyr + 2 H ↔ Lacext
6 Pyr + Glu ↔ Alaext + aKG

7 H2Oext + Pyr + Oxa ↔ 2 CO2ext + aKG + 4 H

8 2 H2Oext + aKG ↔ CO2ext + Oxa + 6 H

9 2 H2Oext + aKG ↔ 2 CO2ext + Pyr + 6 H

10 H2Oext + Glu ↔ NH4ext + aKG + H

11 H2Oext + Glnext + H ↔ NH4ext + Glu

12 4 H3PO4ext + 3 Glnext + CO2ext + 2 R5P + 2 Glu + 2 Oxa + 8 H ↔ 13 H2Oext + 2 Nucext + 2 aKG

13 3 R5P ↔ 2 G6P + GA3P

14 O2ext + 4 H ↔ 2 H2Oext

Table 3: List of reactions with linearly independent stoichiometries in the illustrative example using the method
described in M2.

Reaction Chemical equation

1 0.5 Glcext ↔ Lacext
2 2 H2Oext + 0.5 Glnext ↔ 0.5 O2ext + 0.41667 Glcext + NH4ext
3 0.5 H2Oext + 0.083333 Glcext + 0.5 Glnext ↔ 0.25 O2ext + Alaext
4 O2ext + 0.16667 Glcext ↔ H2Oext + CO2ext
5 3 H3PO4ext + 0.25 O2ext + 1.1667 Glcext + 2 Glnext ↔ 6.5 H2Oext + Nucext
6 H3PO4ext + Glcext ↔ H2Oext + G6P

7 H3PO4ext + 0.5 Glcext ↔ H2Oext + GA3P

8 H3PO4ext + 0.83333 Glcext ↔ H2Oext + R5P

9 0.5 O2ext + 0.5 Glcext ↔ H2Oext + Pyr

10 O2ext + 0.83333 Glcext ↔ 2 H2Oext + aKG

11 0.25 O2ext + 0.41667 Glcext + 0.5 Glnext ↔ 0.5 H2Oext + Glu

12 1.5 O2ext + 0.66667 Glcext ↔ 2 H2Oext + Oxa

13 0.5 H2Oext ↔ 0.25 O2ext + H
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Figure 1: Schematic of a perfusion bioreactor coupled to a cell retention device.

dynamic model in the form of differential-algebraic equations rather than a steady-state model in the
form of algebraic equations. In this biological reaction system, there are Sec extracellular species
and Sic intracellular species. Assuming that the species are ordered such that the extracellular
species precede the intracellular species, the extracellular and intracellular species are selected
from the complete set of species using the selection matrices Sec =

[

ISec 0Sec×Sic

]

of dimension

Sec × S and Sic =
[

0Sic×Sec ISic

]

of dimension Sic × S, respectively. The stoichiometries of the
independent reactions that affect the intracellular and extracellular species are given by the matrices
Nic = NST

ic and Nec = NST
ec, respectively. For these systems, a pseudo steady-state assumption

for the intracellular species is typically used. This means that the generic dynamic model of a
perfusion bioreactor is described by the following system of differential-algebraic equations:

ċ(t) = NT
ecrc

(

c(t)
)

+Cin(t)ωin(t) + ωh(t)R(t)c(t)− ωp(t)c(t), (13a)

0Sic = NT
icrc

(

c(t)
)

, (13b)

where c(t) is the Sec-dimensional vector of bioreactor concentrations of extracellular species includ-187

ing biomass in moles per unit of volume, ωin(t) is the p-dimensional vector of inlet rates in reactor188

volumes per unit of time, Cin(t) is the Sec×p matrix of inlet concentrations of extracellular species189

including biomass, with Cin,j(t), the jth column of Cin(t), being the vector of inlet concentrations190

of those species in the jth inlet for j = 1, . . . , p, R(t) is the Sec-dimensional diagonal matrix of191

retention factors for the extracellular species (fractions of these species retained by the cell retention192

device), and ωp(t) is the perfusion rate in reactor volumes per unit of time, which corresponds not193

only to the sum of the harvest rate ωh(t) and bleed rate ωb(t) but also to the sum of the inlet rates194

ωin(t), that is, 1
T
pωin(t) = ωp(t) = ωh(t) + ωb(t). Furthermore, rc

(

c(t)
)

are independent reaction195

rates in moles per unit of volume per unit of time, and their dependence on the concentrations of196

the species in the bioreactor is typically the only unknown part of the model, which needs to be197

estimated from experimental results via appropriate model identification techniques. The relation198

between the vectors of independent reaction rates rc (c(t)) and r(t) is given by r(t) = rc(c(t))
V C(t) . The199
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reaction rates r(t) are thus specific reaction rates in moles per cell per unit of time, expressed with-200

out the explicit dependence on the concentrations of the species in the bioreactor, where V C(t) is201

the viable cell concentration in viable cells per unit of volume.202

In the case of biomass, cbiom(t) is the biomass concentration in moles per unit of volume, obtained
from V C(t) upon multiplying by a scaling factor fbiom that expresses the moles of biomass per viable
cell, that is, cbiom(t) = fbiomV C(t). Biomass is selected from the extracellular species using the
Sec-dimensional selection vector sbiom such that cbiom(t) = sTbiomc(t), the stoichiometries of the
independent reactions that affect it are given by the vector nbiom = Necsbiom, and it is expected
that its retention factor is Rbiom(t) = sTbiomR(t)sbiom = 1 and its p-dimensional row vector of inlet
concentrations is cin,biom(t) = sTbiomCin(t) = 0T

p , which implies that

ċbiom(t) = nT
biomrc

(

c(t)
)

+ cin,biom(t)ωin(t) + ωh(t)Rbiom(t)cbiom(t)− ωp(t)cbiom(t)

= nT
biomrc

(

c(t)
)

− ωb(t)cbiom(t). (14)

It is possible to rewrite the generic model (13) in different ways. For example, one can denote the
specific rates of variation of the S species due to reactions as the S-dimensional vector q(t) = NTr(t)
and the overall inlet concentrations of extracellular species including biomass as the Sec-dimensional
vector cin(t) =

1
ωp(t)

Cin(t)ωin(t), which results in

[

Sec
Sic

]

q(t) =
1

V C(t)

[

ċ(t) + ωp(t) (c(t)− cin(t))− ωh(t)R(t)c(t)
0Sic

]

. (15)

In the case of biomass, its specific rate of variation due to reactions is qbiom(t) = sTbiomNT
ecr(t),

and it is expected that its overall inlet concentration is cin,biom(t) = 0, which implies that

qbiom(t) =
ċbiom(t)+ωp(t)(cbiom(t)−cin,biom(t))−ωh(t)Rbiom(t)cbiom(t)

V C(t) = ċbiom(t)
V C(t) + ωb(t)fbiom. (16)

2.4. Basis flux modes203

We would like to construct a minimal set of flux modes that is uniquely defined for any metabolic204

state of the cells and enables the computation of unique results for the rates of all the independent205

reactions. Furthermore, it should be possible to obtain any vector of rates that satisfies the pseudo206

steady-state assumption for the intracellular species if and only if it is a linear combination of the207

stoichiometries of this minimal set of flux modes. This explains why these flux modes are called208

basis flux modes (BFMs) in the remainder. Let Rm denote the dimension of this set of BFMs, and209

let Nm of dimension Rm × S and rank Rm denote the stoichiometric matrix that represents the210

stoichiometry of these BFMs.211

It is known that flux modes satisfy some properties: (i) they are obtained from linear combina-
tions of reactions in the reaction system, which also implies that they satisfy the same conservation
of quantities as the original reactions, and (ii) their stoichiometry involves only the extracellular
species, and not the intracellular species. The first property implies that the rows of Nm are in
a space that is orthogonal to the column space of AN , since this space of dimension q := S − R
spans the null space of Nd. The second property implies that the rows of Nm are in a space that
is orthogonal to the row space of Sic. In other words, any candidate for Nm is such that the Rm

columns of NT
m span the null space of

[

AT
N

Sic

]

, which can be expressed mathematically as

[

AT
N

Sic

]

NT
m =

[

0q×Rm

0Sic×Rm

]

. (17)
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If we denote the rank of AT
NST

ec as qec and the rank of ATST
ec as Eec, Theorem 4 in Appendix A212

shows the following implications:213

• From the definitions of Sec and Sic, the matrix NT
m can also be constructed as

[

SecN
T
m

SicN
T
m

]

,214

where SicN
T
m = 0Sic×Rm and the Rm columns of SecN

T
m span the null space of AT

NST
ec.215

• The rank of
[

AT
N

Sic

]

is qec + Sic ≥ Eec + Sic > Sic, that is, greater than the number of216

intracellular species.217

• The number of BFMs, the number of columns of NT
m, and the dimension of the null spaces218

of
[

AT
N

Sic

]

and AT
NST

ec are Rm = Sec − qec ≤ Sec − Eec < Sec, that is, less than the number of219

extracellular species.220

Once a candidate for Nm is chosen, one would like to know which linear combinations of the
independent stoichiometries in the rows of N correspond to the stoichiometries of the BFMs in the
rows of Nm. In other words, one would like to compute the R × Rm matrix Em of rank Rm such
that

NTEm = NT
m. (18)

Since the stoichiometric matrix N is of full row rank and the rows of Nm are in the row space of221

N, it is guaranteed that there is a unique solution for Em for a given matrix Nm. In Appendix A,222

Theorem 5 shows that the rank of NT
ic is equal to R−Rm and the Rm columns of Em span the null223

space of NT
ic, which indicates the desired relation between the concept of BFMs and the pseudo224

steady-state assumption for the intracellular species.225

The solution for Em can still be uniquely obtained if we consider only the Sic intracellular226

species and a subset of Sa extracellular species, represented by the Sa × S selection matrix Sa =227
[

ISa 0Sa×(S−Sa)

]

and the stoichiometric matrix Na = NST
a . In that case, it is required that the228

stoichiometric matrix
[

Na Nic

]

be of full row rank R, which is the case if and only if SaN
T
m is229

of full column rank Rm. Note that this can occur only if Sa ≥ Rm = Sec − qec, that is, only if at230

least Sec − qec extracellular species are part of the subset of Sa extracellular species. Theorem 6 in231

Appendix A shows the more general fact that rank
([

Na Nic

])

−R = rank
(

SaN
T
m

)

−Rm.232

A question that can be asked at this point is whether the true reaction system can always be
described correctly by using the stoichiometry of the BFMs represented by a particular Nm. It is
possible to show that this is always the case as in Theorem 7 since there exists some Rm-dimensional
vector of rates ψ(t) such that

[

q(t)
r(t)

]

=

[

NT
m

Em

]

ψ(t), (19)

which means that the true reaction system can always be recovered by using

ψ(t) =
(

ET
mEm

)−1

ET
mr(t). (20)

The previous remarks and the fact that ψc
(

c(t)
)

are reaction rates related to the BFMs in moles
per unit of volume per unit of time imply that the model (13) can be equivalently written as

ċ(t) = NT
ecEmψc

(

c(t)
)

+Cin(t)ωin(t) + ωh(t)R(t)c(t)− ωp(t)c(t), (21)
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Table 4: List of BFMs in the illustrative example.

BFM Chemical equation

1 0.5 Glcext ↔ Lacext
2 2 H2Oext + 0.5 Glnext ↔ 0.5 O2ext + 0.41667 Glcext + NH4ext
3 0.5 H2Oext + 0.083333 Glcext + 0.5 Glnext ↔ 0.25 O2ext + Alaext
4 O2ext + 0.16667 Glcext ↔ H2Oext + CO2ext
5 3 H3PO4ext + 0.25 O2ext + 1.1667 Glcext + 2 Glnext ↔ 6.5 H2Oext + Nucext

while ψ(t) = ψc(c(t))
V C(t) are specific reaction rates related to the BFMs in moles per cell per unit233

of time, expressed without the explicit dependence on the concentrations of the species in the234

bioreactor.235

In the case of biomass, it is expected that Rbiom(t) = 1 and cin,biom(t) = 0T
p , which implies that

ċbiom(t) = nT
biomEmψc

(

c(t)
)

+ cin,biom(t)ωin(t) + ωh(t)Rbiom(t)cbiom(t)− ωp(t)cbiom(t)

= nT
biomEmψc

(

c(t)
)

− ωb(t)cbiom(t). (22)

Note that the connection between stoichiometric and atomic matrices and balances for species236

and elements has been investigated in the literature for many years [23]. However, these concepts237

have typically been used without any distinction between groups of species, such as intracellular238

or extracellular. Nevertheless, the use of knowledge about the stoichiometry to detect structural239

invariants in biological reaction networks has been documented [24]. Furthermore, the use of knowl-240

edge about the space that is spanned by the stoichiometries of a reaction system to identify these241

stoichiometries has been proposed previously in slightly different contexts. For example, target242

factor analysis has been used to identify target stoichiometries based on the fact that they are valid243

if and only if they belong to the row space of a data matrix and the null space of an atomic matrix244

[25, 26]. The main difference in this paper is that the prior knowledge of a reaction network is used245

instead of data to identify the stoichiometries of BFMs.246

2.4.1. Illustrative example247

The illustrative example in Section 2.2.1 is considered again to show how the corresponding
BFMs can be computed. Out of the S = 18 species, Sec = 10 are extracellular and Sic = 8 are
intracellular. The species are ordered as follows: extracellular, intracellular. The matrix A results
in the Sec × Ed matrix SecA of rank Eec = 5, while the matrix AN results in the Sec × q matrix
SecAN of rank qec = 5. One can then execute the MATLAB command Nm=null([AN';Sic],'r')';

to compute the Rm × S matrix

Nm =









0 0 0 − 1
2

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −2 1
2

5
12

− 1
2

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 1
2

1
4

− 1
12

− 1
2

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 − 1
6

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−3 13
2

− 1
4

− 7
6

−2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0









(23)

of rank Rm = 5 with the Rm linearly independent stoichiometries of the BFMs in Table 4 and the248

R×Rm matrix Em of rank Rm.249

2.5. Estimating the reaction rates from measurements250

Now assume that measurements q̃a(t) of the rates of variation Saq(t) of Sa extracellular species251

due to reactions are available and corrupted by zero-mean noise. Also, assume that the covariance252
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matrix of the noise that corrupts q̃a(t) is known and given by the Sa × Sa matrix Σq̃a
.2253

In the context of MFA, we would like to compute simultaneously (i) estimates q̂ of the rates of
variation of all the S species due to reactions such that they fit the measurements in the sense of
minimization of the sum of weighted squared errors, (ii) estimates r̂ of the R rates of the independent
reactions, and (iii) estimates r̂d of the original Rd rates of reaction. These estimates should be
related as follows:

q̂ = NTr̂, (24)

r̂ = LT
N r̂d. (25)

It is also known that a subset of the original Rd rates of reaction given by the Rir × Rd254

selection matrix Sir is nonnegative, since this subset of Rir reactions is assumed to be irreversible.255

Furthermore, recall that there is a pseudo steady-state assumption for the intracellular species,256

which correspond to the stoichiometries given by the matrix Nic.257

These considerations lead to the formulation of the following optimization problem with the
estimated rates of variation of the species q̂ and the estimated rates of reaction r̂ and r̂d as decision
variables:

min
q̂,r̂,r̂d

(Saq̂− q̃a)
T
Σ−1

q̃a
(Saq̂− q̃a) , (26a)

s.t.

[

IS −NT

0Sic×S NT
ic

] [

q̂

r̂

]

=

[

0S
0Sic

]

, (26b)

[

IR −LT
N

]

[

r̂

r̂d

]

= 0R, (26c)

Sir r̂d ≥ 0Rir . (26d)

The optimization problem above corresponds to a standard convex quadratic programming258

problem. Next, we analyze different formulations of problem (26) that are equivalent to it but259

result in alternative parameterizations with different interpretations. For this, we will often use260

the following known result: any optimization problem with decision variables x and constrained by261

the linear equality constraints Ax = 0 can be converted to an equivalent optimization problem,262

in which these constraints are discarded and x is replaced by Fψ, where ψ are the new decision263

variables and the columns of F are a basis of the null space of A [27].264

2.5.1. Using EFMs265

The first method presented here uses EFMs to solve problem (26). For this, one needs to change
the problem such that it is fully expressed in terms of irreversible reactions. This is achieved by
denoting the estimates of the nonnegative rates of these Rn := 2Rd − Rir irreversible reactions as
r̂n, related to r̂d as follows:

r̂d =
[

ST
ir ST

r −ST
r

]

r̂n, (27)

2For the sake of simplicity, the dependence on the time t is omitted in most of this section.
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where r̂n ≥ 0Rn and the Rr := Rd −Rir columns of ST
r span the null space of Sir . By replacing q̂

by NTr̂, r̂ by LT
N r̂d, and r̂d by

[

ST
ir ST

r −ST
r

]

r̂n, one obtains the equivalent problem

min
r̂n

(

SaN
TLT

N

[

ST
ir ST

r −ST
r

]

r̂n − q̃a

)T

Σ−1
q̃a

(

SaN
TLT

N

[

ST
ir ST

r −ST
r

]

r̂n − q̃a

)

, (28a)

s.t. NT
icL

T
N

[

ST
ir ST

r −ST
r

]

r̂n = 0Sic , (28b)

r̂n ≥ 0Rn . (28c)

Then, note that any r̂n ≥ 0Rn is such that NT
icL

T
N

[

ST
ir ST

r −ST
r

]

r̂n = 0Sic if and only if there
exists an Rn × R

n
m matrix Enm ≥ 0Rn×Rn

m
such that each column of Enm is an extreme ray of the

polyhedral cone defined by
{

e ≥ 0Rn : NT
icL

T
N

[

ST
ir ST

r −ST
r

]

e = 0Sic

}

and

r̂n = Enmψ̂n, (29)

for some ψ̂n ≥ 0Rn
m
, or in other words, r̂n can be expressed as a conical combination of the columns266

of Enm and is a ray of the polyhedral cone [6, 7].267

This means that, upon computing a matrix Enm that satisfies the aforementioned requirements,
the optimization problem can be further reformulated as

min
ψ̂n

(

SaN
TLT

N

[

ST
ir ST

r −ST
r

]

Enmψ̂n − q̃a

)T

Σ−1
q̃a

(

SaN
TLT

N

[

ST
ir ST

r −ST
r

]

Enmψ̂n − q̃a

)

,

(30a)

s.t. ψ̂n ≥ 0Rn
m
. (30b)

In this particular case, one can observe that the columns of Enm represent the EFMs and the268

variables ψ̂n can be interpreted as rates of reaction related to the EFMs. Now, there are two269

possibilities for the computation of the EFMs in the columns of Enm:270

1. The matrix Enm(t) is computed individually for each set of measurements q̃a(t). This means271

that, if there exist different sets of measurements q̃a(1), . . . , q̃a(N) for each one of N experi-272

mental conditions, there exist corresponding matrices Enm(1), . . . ,Enm(N), where each matrix273

Enm(t) has a relatively small number of columns. This is what is done in the case of the274

column generation method, for example [12]. However, if Sa is no larger than the differ-275

ence Rn − Sic between the number of columns and rows of NT
icL

T
N

[

ST
ir ST

r −ST
r

]

, each276

matrix Enm(t) may have up to Sa columns [7]. To make sure that each one of the vectors277

r̂n(1), . . . , r̂n(N) is a conical combination of the columns of the same matrix Enm, this ma-278

trix must correspond to the union of the columns of Enm(1), . . . ,Enm(N). In the worst case,279

the number of columns of Enm may be equal to NSa, which equals the number of individual280

measurements in q̃a(1), . . . , q̃a(N).281

2. The matrix Enm is pre-computed such that it is valid for any set of measurements q̃a(t). This282

means that the columns of Enm must correspond to all the EFMs for the considered reaction283

network to make sure that any vector r̂n(t) that satisfies the constraints in (28) is a conical284

combination of the columns of the same matrix Enm. However, the number of EFMs grows285

exponentially with the size of the reaction network [7].286

In both cases, if the same matrix Enm must be valid for many sets of measurements q̃a(t), the287

number of columns of Enm and EFMs may become very large. This motivates the use of BFMs as288

described next.289
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2.5.2. Using BFMs with no active inequality constraints290

In general, the solution to problem (26) may be determined by the inequality constraints, that
is, the solution may be such that some inequality constraints are active. In that case, the solution
cannot be expressed analytically and needs to be computed via optimization. However, let us
analyze first what occurs when the solution is not determined by the inequality constraints, and let
us also change the notation from q̂, r̂ to q̃, r̃ for this case. In this case, the optimization problem is
simpler and can be expressed as

min
q̃,r̃

(Saq̃− q̃a)
T
Σ−1

q̃a
(Saq̃− q̃a) , (31a)

s.t.

[

IS −NT

0Sic×S NT
ic

] [

q̃

r̃

]

=

[

0S
0Sic

]

. (31b)

For the linear equality constraints (31b), the columns of
[

NT
m

Em

]

are a basis of the null space of
[

IS −NT

0Sic×S NT
ic

]

. Then, if these constraints are discarded, q̃ is replaced by NT
mψ̃, and r̃ is replaced

by Emψ̃, where ψ̃ are the new decision variables, the constrained optimization problem (31) can
be reformulated as the equivalent unconstrained problem

min
ψ̃

(

SaN
T
mψ̃ − q̃a

)T

Σ−1
q̃a

(

SaN
T
mψ̃ − q̃a

)

. (32)

In this particular case, one can observe that the variables ψ̃ can be interpreted as rates of
reaction related to the Rm BFMs that correspond to the rows of Nm. If the matrix SaN

T
m is

of full column rank (which is possible only if Sa ≥ Rm = Sec − qec), then the Hessian matrix

2NmST
aΣ

−1
q̃a

SaN
T
m is positive definite and invertible for all ψ̃ and the solution ψ̃

∗
is given by the

stationarity condition 0Rm = 2NmST
aΣ

−1
q̃a

SaN
T
mψ̃

∗
− 2NmST

aΣ
−1
q̃a

q̃a, thus

ψ̃
∗
=

(

NmST
aΣ

−1
q̃a

SaN
T
m

)−1

NmST
aΣ

−1
q̃a

q̃a, (33)

and the solution to the original problem corresponds to the optimal estimated rates of variation of
the species

q̃∗ = NT
mψ̃

∗
= NT

m

(

NmST
aΣ

−1
q̃a

SaN
T
m

)−1

NmST
aΣ

−1
q̃a

q̃a, (34)

and the optimal estimated rates of the independent reactions

r̃∗ = Emψ̃
∗
= Em

(

NmST
aΣ

−1
q̃a

SaN
T
m

)−1

NmST
aΣ

−1
q̃a

q̃a, (35)

which satisfy the original linear equality constraints (31b).291

Note that ψ̃
∗
, q̃∗, and r̃∗ result from a linear transformation of q̃a that takes into account292

the weighting matrix Σ−1
q̃a

, and ψ̃
∗
determine unique estimates for q̃∗ and r̃∗. Moreover, if the293

measured data q̃a are such that q̃a = SaN
T
mψ for some ψ, then ψ̃

∗
= ψ, Saq̃

∗ = SaN
T
mψ = q̃a,294

and r̃∗ = Emψ.295

15



2.5.3. Using BFMs with active inequality constraints296

Now we recover the original optimization problem (26) with inequality constraints and assume
that the solution to this problem is determined by the inequality constraints. However, we express
it in terms of ψ̂ instead of q̂, r̂, since q̂ = NT

mψ̂ = NTEmψ̂ and r̂ = Emψ̂. This results in the
following optimization problem:

min
ψ̂,r̂d

(

SaN
T
mψ̂ − q̃a

)T

Σ−1
q̃a

(

SaN
T
mψ̂ − q̃a

)

, (36a)

s.t.
[

Em −LT
N

]

[

ψ̂

r̂d

]

= 0R, (36b)

Sir r̂d ≥ 0Rir . (36c)

Note that
[

Em −LT
N

]

is an R×(Rm+Rd) matrix of rank R, which implies that its null space is
of dimension Rm+Rk, where Rk := Rd−R. For the linear equality constraints (36b), the columns

of
[

IRm 0Rm×Rk

LN(LT
NLN)

−1
Em KN

]

are a basis of the null space of
[

Em −LT
N

]

, where KN is a matrix of

rank Rk with columns that span the null space of NT
d . Then, if these constraints are discarded and

r̂d is replaced by LN

(

LT
NLN

)−1

Emψ̂+KN r̂r, where ψ̂ and r̂r are the new decision variables, the

optimization problem with equality constraints (36) can be reformulated as the equivalent problem
without equality constraints

min
ψ̂,r̂r

(

SaN
T
mψ̂ − q̃a

)T

Σ−1
q̃a

(

SaN
T
mψ̂ − q̃a

)

, (37a)

s.t. Sir

[

LN

(

LT
NLN

)−1

Em KN

] [

ψ̂

r̂r

]

≥ 0Rir . (37b)

Again, the variables ψ̂ can be interpreted as rates of reaction related to the Rm BFMs that297

correspond to the rows of Nm. From the solution ψ̂
∗
, r̂∗r to this optimization problem, one can then298

compute q̂
∗ = NT

mψ̂
∗
, r̂∗ = Emψ̂

∗
, and r̂

∗
d = LN

(

LT
NLN

)−1

r̂
∗ +KN r̂

∗
r .299

Obviously, any matrix with Rm + Rk columns that span the null space of
[

Em −LT
N

]

can

be used in lieu of
[

IRm 0Rm×Rk

LN(LT
NLN)

−1
Em KN

]

, for example a nonnegative matrix
[

Mr

Er
m

]

. Hence, an

alternative reformulation of the optimization problem with equality constraints (36) as an equivalent
problem without equality constraints is

min
ψ̂r

(

SaN
T
mMrψ̂r − q̃a

)T

Σ−1
q̃a

(

SaN
T
mMrψ̂r − q̃a

)

, (38a)

s.t. SirE
r
mψ̂r ≥ 0Rir . (38b)

From the solution ψ̂
∗

r to this optimization problem, one can then compute q̂
∗ = NT

mMrψ̂
∗

r ,300

r̂
∗ = EmMrψ̂

∗

r , and r̂
∗
d = Ermψ̂

∗

r .301

2.6. Example of a perfusion bioreactor302

Consider the example of a biological reaction system that consists in a perfusion bioreactor303

with Chinese hamster ovary (CHO) cells that produce monoclonal antibodies. In this system, the304
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S = 128 species in Table 5 participate in the Rd = 131 reactions in Table 6 with the linearly305

dependent stoichiometries in the Rd × S matrix Nd of rank R = 117. This reaction network306

corresponds to a slight amendment of the network proposed by [12] that was made to ensure that307

all the reactions satisfy the conservation of the Ed = 6 quantities that correspond to the atoms of C,308

H, N, O, P, S. One can observe that this is a more complex version of the network in Sections 2.2.1309

and 2.4.1. Due to the large size of the reaction network, it becomes rather challenging to compute310

all the EFMs, thus it is beneficial to use the concept of BFMs. Out of the S species, Sec = 33 are311

extracellular and Sic = 95 are intracellular. Out of the Sec extracellular species, Sa = 25 species are312

measured. Out of the Rd reactions, Rir = 74 are irreversible. The species are ordered as follows:313

measured extracellular, unmeasured extracellular, intracellular. The measured extracellular species314

are ordered as follows: biomass, glucose, 20 amino acids (ordered alphabetically), ammonium,315

monoclonal antibodies, lactate. The conserved quantities are given by the S×Ed matrix A of rank316

E = 6 that results in the Sec × Ed matrix SecA of rank Eec = 6.317

One can then use the method described in M1 of Section 2.2 to compute the S × q matrix AN318

of rank q = 11 that results in the Sec × q matrix SecAN of rank qec = 8, the Rd × Rk matrix KN319

of rank Rk = 14, the Rd ×R matrix LN of rank R, and the R× S matrix N of rank R with the R320

linearly independent stoichiometries of the reactions in Table 7.321

In addition, one can then compute the Rm×S matrix Nm of rank Rm = 25 with the Rm linearly322

independent stoichiometries of the BFMs and the R × Rm matrix Em of rank Rm. Interestingly,323

Sa = Rm = 25 in this case, that is, the number of measured species is equal to the number of324

BFMs. Recall that, when the solution to the optimization problem (26) is not determined by the325

inequality constraints, the condition for the unique computation of Rm estimates ψ̂ of the reaction326

rates related to the BFMs from the Sa measurements of the rates of variation q̃a of the measured327

extracellular species is Sa ≥ Rm, which means that the condition is marginally satisfied.328

Regarding the matrix Nm of independent stoichiometries of the BFMs, we present below two329

different options that can be chosen among others. Then, once a matrix Nm is chosen, the resulting330

computation of reaction rates is unique. These two options for Nm are as follows:331

1. Initially a matrix Nm is obtained such that SaN
T
m = −IRm . All the resulting columns of Em332

correspond to admissible BFMs, in the sense that each one satisfies the pseudo steady-state333

assumption for the intracellular species and the irreversibility constraints. The only exceptions334

are: (i) the columns that correspond to biomass and monoclonal antibodies, which need to335

be multiplied by -1 (to indicate production instead of consumption) and added to a conical336

combination of the columns that correspond to the 9 essential amino acids (and the column337

that corresponds to glucose in the case of biomass production) to yield admissible BFMs; and338

(ii) the column that corresponds to lactose, which needs to be multiplied by -1 and added to339

the column that corresponds to glucose times the appropriate positive coefficient (0.5). The340

resulting BFMs are listed in Table 8.341

2. The EFMs that were identified in at least 4 metabolic states in the work by [12] (except the342

ones that correspond to production of biomass and monoclonal antibodies) are used as BFMs.343

This amounts to 20 BFMs. Since none of these BFMs involves the essential amino acids lysine,344

threonine, and histidine, two more BFMs that consist in consumption of lysine and threonine345

are added, where these BFMs correspond to the most frequent EFMs that involved these346

two amino acids in the work by [12]. Since none of the EFMs in this previous work involved347

the amino acid histidine, the three remaining BFMs that are added to the set of 25 BFMs348

consist in two BFMs for production of biomass and one BFM for production of monoclonal349
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Table 5: List of species in the perfusion bioreactor under study.

Species Label Chemical formula

1 Biomassext C0.9611H1.8716N0.2295

O0.5488P0.0189S0.0052

2 Glcext C6H12O6

3 Alaext C3H7NO2

4 Argext C6H14N4O2

5 Asnext C4H8N2O3

6 Aspext C4H7NO4

7 Cysext C3H7NO2S
8 Glnext C5H10N2O3

9 Gluext C5H9NO4

10 Glyext C2H5NO2

11 Hisext C6H9N3O2

12 Ileext C6H13NO2

13 Leuext C6H13NO2

14 Lysext C6H14N2O2

15 Metext C5H11NO2S
16 Pheext C9H11NO2

17 Proext C5H9NO2

18 Serext C3H7NO3

19 Thrext C4H9NO3

20 Trpext C11H12N2O2

21 Tyrext C9H11NO3

22 Valext C5H11NO2

23 NH4ext NH4

24 mAbext CH1.9584N0.2654O0.5135S0.0073

25 Lacext C3H6O3

26 CO2ext CO2

27 Ethnext C2H7NO
28 Choext C5H14NO
29 Ureaext CH4N2O
30 H3PO4ext H3PO4

31 H2SO4ext H2SO4

32 O2ext O2

33 H2Oext H2O
34 G6P C6H13O9P
35 F6P C6H13O9P
36 DHAP C3H7O6P
37 GA3P C3H7O6P
38 3PG C3H7O7P
39 PEP C3H5O6P
40 Pyr C3H4O3

41 AcCoA C23H38N7O17P3S
42 Cit C6H8O7

43 aKG C5H6O5

44 SucCoA C25H40N7O19P3S
45 Suc C4H6O4

46 Fum C4H4O4

47 Mal C4H6O5

48 Oxa C4H4O5

49 Rl5P C5H11O8P
50 R5P C5H11O8P
51 X5P C5H11O8P
52 E4P C4H9O7P
53 Glu C5H9NO4

54 Asp C4H7NO4

55 Gly C2H5NO2

56 Ser C3H7NO3

57 Tyr C9H11NO3

58 Cys C3H7NO2S
59 Ala C3H7NO2

60 Arg C6H14N4O2

61 Asn C4H8N2O3

62 Gln C5H10N2O3

63 His C6H9N3O2

64 Ile C6H13NO2

Species Label Chemical formula

65 Leu C6H13NO2

66 Lys C6H14N2O2

67 Met C5H11NO2S
68 Phe C9H11NO2

69 Pro C5H9NO2

70 Thr C4H9NO3

71 Trp C11H12N2O2

72 Val C5H11NO2

73 aKbut C4H6O3

74 PropCoA C24H40N7O17P3S
75 aKad C6H8O5

76 AcetoacCoA C25H40N7O18P3S
77 Acetoac C4H6O3

78 GluySA C5H9NO3

79 Orn C5H12N2O2

80 Cln C6H13N3O3

81 Argsucc C10H18N4O6

82 Urea CH4N2O
83 PRPP C5H13O14P3

84 IMP C10H13N4O8P
85 Orot C5H4N2O4

86 UTPrn C9H15N2O15P3

87 ATPrn C10H16N5O13P3

88 GTPrn C10H16N5O14P3

89 CTPrn C9H16N3O14P3

90 dATP C10H16N5O12P3

91 dGTP C10H16N5O13P3

92 dTTP C10H17N2O14P3

93 dCTP C9H16N3O13P3

94 Ethn C2H7NO
95 Cho C5H14NO
96 Glyc3P C3H9O6P
97 PhosphE C41H80NO8P
98 PhosphC C44H84NO8P
99 PhosphS C42H80NO10P
100 Sphm C41H81N2O6P
101 Cholesterol C27H46O
102 Proteins C4.8194H9.633N1.3493O2.6254S0.0337

103 DNA C9.785H16.285N3.715O13P3

104 RNA C9.5H15.715N3.715O14P3

105 Lipids C40.475H76.975N0.925

O6.95P0.85

106 TC C6H10O5

107 NH4 NH4

108 CO2 CO2

109 H3PO4 H3PO4

110 H2O H2O
111 CoA C21H34N7O16P3S
112 H2SO4 H2SO4

113 O2 O2

114 H H
115 Pyrm C3H4O3

116 AcCoAm C23H38N7O17P3S
117 Oxam C4H4O5

118 Citm C6H8O7

119 aKGm C5H6O5

120 SucCoAm C25H40N7O19P3S
121 Sucm C4H6O4

122 Fumm C4H4O4

123 Malm C4H6O5

124 Glum C5H9NO4

125 Alam C3H7NO2

126 Aspm C4H7NO4

127 NH4m NH4

128 CO2m CO2
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Table 6: List of reactions with linearly dependent stoichiometries in the perfusion bioreactor under study.

Reaction Chemical equation

1 Glcext + H3PO4 → G6P + H2O

2 G6P ↔ F6P

3 F6P + H3PO4 → DHAP + GA3P + H2O

4 DHAP ↔ GA3P

5 GA3P + H2O ↔ 3PG + 2 H

6 3PG ↔ PEP + H2O

7 PEP + H2O → Pyr + H3PO4

8 Pyr + 2 H → Lacext
9 G6P + H2O → Rl5P + CO2 + 4 H

10 Rl5P ↔ R5P

11 Rl5P ↔ X5P

12 R5P + X5P ↔ F6P + E4P

13 X5P + E4P ↔ F6P + GA3P

14 CoA + Pyrm → AcCoAm + CO2m
15 H2O + AcCoAm + Oxam → CoA + 2 H + Citm
16 Citm → 2 H + aKGm + CO2m
17 CoA + aKGm → SucCoAm + CO2m
18 H2O + SucCoAm ↔ CoA + 2 H + Sucm
19 Sucm ↔ 2 H + Fumm
20 H2O + Fumm ↔ Malm
21 Malm ↔ 2 H + Oxam
22 Cit + CoA + 2 H ↔ AcCoA + Oxa + H2O

23 Cit → aKG + CO2 + 2 H

24 Fum + H2O ↔ Mal

25 Mal ↔ Oxa + 2 H

26 Malm ↔ 2 H + Pyrm + CO2m
27 Oxam ↔ Pyrm + CO2m
28 PEP + CO2 + H2O ↔ Oxa + H3PO4

29 Mal ↔ Pyr + CO2 + 2 H

30 Pyr + Glu ↔ aKG + Ala

31 Pyrm + Glum ↔ aKGm + Alam
32 Oxa + Glu ↔ aKG + Asp

33 Oxam + Glum ↔ aKGm + Aspm
34 Asn + H2O + H → Asp + NH4

35 Glu + Asn ↔ Asp + Gln

36 Gln + H2O + H ↔ Glu + NH4

37 Glu + H2O ↔ aKG + NH4 + H

38 H2O + Glum ↔ H + aKGm + NH4m
39 3PG + Glu + H2O → aKG + Ser + H3PO4 + 2 H

40 Ser + H → Pyr + NH4

41 Ser + H2O ↔ Gly + CO2 + 4 H

42 Gly + 2 H2O ↔ NH4 + 2 CO2 + 5 H

43 aKG + Orn ↔ Glu + GluySA

44 Pro + H2O ↔ GluySA + 2 H

45 GluySA + H2O ↔ Glu + 2 H

46 Thr + CoA → Gly + AcCoAm
47 Thr + H → aKbut + NH4

48 aKbut + CoA → PropCoA + CO2

49 PropCoA + CO2 → SucCoAm
50 Trp + 9 H2O → Ala + aKad + NH4 + 2 CO2 + 11 H

51 2 aKG + Lys + H2O → 2 Glu + aKad + 2 H

52 aKad + H2O + CoA → AcetoacCoA + 2 CO2 + 4 H

53 AcetoacCoA + CoA + 2 H → 2 AcCoAm
54 aKG + Val + 2 H2O + CoA → Glu + PropCoA + 2 CO2

+ 6 H

55 aKG + Ile + H2O + 2 CoA → Glu + PropCoA + CO2 +

2 H + AcCoAm
56 aKG + Leu + H2O + CoA → Glu + Acetoac + 2 H +

AcCoAm
57 Acetoac + SucCoAm → AcetoacCoA + Sucm
58 Phe + H2O → Tyr + 2 H

59 aKG + Tyr + 5 H2O → Fum + Glu + Acetoac + CO2 + 8

H

60 Ser + Met + 2 H2O → Cys + aKbut + NH4 + CO2 + 5 H

61 Cys + 5 H2O → Pyr + NH4 + H2SO4 + 7 H

62 Arg + H2O → Orn + Urea

63 His + 4 H2O → Glu + 2 NH4 + CO2

64 Orn + NH4m + CO2m → Cln + H2O + H

65 Asp + Cln → Argsucc + H2O

66 Argsucc → Fum + Arg

67 R5P + 2 H3PO4 → PRPP + 2 H2O

68 Asp + Gly + 2 Gln + PRPP + 3 CO2 + 4 H → Fum + 2

Glu + IMP + 2 H3PO4 + 4 H2O

69 Asp + IMP + 2 H3PO4 → Fum + ATPrn + 3 H2O

70 Gln + IMP + 2 H3PO4 → Glu + GTPrn + H2O + 2 H

71 Asp + NH4 + CO2 → Orot + 2 H2O + 3 H

72 PRPP + Orot → UTPrn + CO2 + H2O

Reaction Chemical equation

73 Gln + UTPrn → Glu + CTPrn

74 0.285 UTPrn + 0.285 ATPrn + 0.215 GTPrn + 0.215 CT-

Prn → RNA

75 ATPrn + 2 H → dATP + H2O

76 GTPrn + 2 H → dGTP + H2O

77 UTPrn + CO2 + 8 H → dTTP + 3 H2O

78 CTPrn + 2 H → dCTP + H2O

79 0.285 dATP + 0.215 dGTP + 0.285 dTTP + 0.215 dCTP

→ DNA

80 DHAP + 2 H → Glyc3P

81 18 AcCoA + Cho + Glyc3P + 23 H → PhosphC + 17 H2O

+ 18 CoA

82 18 AcCoA + Ethn + Glyc3P + 26 H → PhosphE + 17 H2O

+ 18 CoA

83 Ser + PhosphE → Ethn + PhosphS

84 16 AcCoA + Ser + Cho + Glyc3P + 19 H → Sphm + 2

CO2 + 16 H2O + 16 CoA

85 16 AcCoA → Cholesterol + 5 CO2 + 5 H2O + 16 CoA + 8

H

86 0.2 PhosphE + 0.5 PhosphC + 0.075 PhosphS + 0.075

Sphm + 0.15 Cholesterol → Lipids

87 0.0087873 Glu + 0.0084944 Asp + 0.01406 Gly + 0.024897

Ser + 0.0090803 Tyr + 0.0052724 Cys + 0.012009 Ala

+ 0.0058582 Arg + 0.0073228 Asn + 0.0090803 Gln +

0.0043937 His + 0.0055653 Ile + 0.015231 Leu + 0.013181

Lys + 0.0020504 Met + 0.0070299 Phe + 0.013474 Pro +

0.017282 Thr + 0.0038079 Trp + 0.018746 Val → mAbext
88 0.11952 Glu + 0.084994 Asp + 0.075289 Gly + 0.055603 Ser

+ 0.019101 Tyr + 0.014495 Cys + 0.073479 Ala + 0.045166

Arg + 0.045623 Asn + 0.050412 Gln + 0.012685 His +

0.037452 Ile + 0.076276 Leu + 0.086585 Lys + 0.019229

Met + 0.034729 Phe + 0.043283 Pro + 0.045641 Thr +

0.0058582 Trp + 0.054579 Val → Proteins

89 G6P → TC + H3PO4

90 0.15299 Proteins + 0.001405 DNA + 0.0041309 RNA +

0.0026611 Lipids + 0.010513 TC → Biomassext
91 Pyr → Pyrm
92 Citm ↔ Cit

93 aKGm ↔ aKG

94 Malm ↔ Mal

95 Alam ↔ Ala

96 Glu ↔ Glum
97 Mal + aKGm → aKG + Malm
98 Glu + Aspm ↔ Asp + Glum
99 NH4 ↔ NH4m
100 CO2 ↔ CO2m
101 Mal + Citm ↔ Cit + Malm
102 O2 + 4 H → 2 H2O

103 CO2 ↔ CO2ext
104 Aspext ↔ Asp

105 Cysext ↔ Cys

106 Gly ↔ Glyext
107 Serext ↔ Ser

108 Glu ↔ Gluext
109 Tyrext ↔ Tyr

110 Ala ↔ Alaext
111 Argext ↔ Arg

112 Asnext ↔ Asn

113 Glnext ↔ Gln

114 Hisext → His

115 Ileext → Ile

116 Leuext → Leu

117 Lysext → Lys

118 Metext → Met

119 Pheext → Phe

120 Proext → Pro

121 Thrext → Thr

122 Trpext → Trp

123 Valext → Val

124 Ethnext → Ethn

125 Choext → Cho

126 NH4 ↔ NH4ext
127 Urea → Ureaext
128 H3PO4ext ↔ H3PO4

129 H2SO4ext ↔ H2SO4

130 H2O ↔ H2Oext
131 O2ext ↔ O2

19



Table 7: List of reactions with linearly independent stoichiometries in the perfusion bioreactor under study.

Reaction Chemical equation

1 Glcext + H3PO4 ↔ G6P + H2O

2 F6P + H3PO4 ↔ DHAP + GA3P + H2O

3 DHAP ↔ GA3P

4 GA3P + H2O ↔ 3PG + 2 H

5 Pyr + 2 H ↔ Lacext
6 G6P + H2O ↔ Rl5P + CO2 + 4 H

7 Rl5P ↔ R5P

8 Rl5P ↔ X5P

9 R5P + X5P ↔ F6P + E4P

10 X5P + E4P ↔ F6P + GA3P

11 CoA + aKGm ↔ SucCoAm + CO2m
12 H2O + SucCoAm ↔ CoA + 2 H + Sucm
13 Sucm ↔ 2 H + Fumm
14 H2O + Fumm ↔ Malm
15 Cit + CoA + 2 H ↔ AcCoA + Oxa + H2O

16 Cit ↔ aKG + CO2 + 2 H

17 Fum + H2O ↔ Mal

18 Oxam ↔ Pyrm + CO2m
19 PEP + CO2 + H2O ↔ Oxa + H3PO4

20 Mal ↔ Pyr + CO2 + 2 H

21 Pyrm + Glum ↔ aKGm + Alam
22 Oxa + Glu ↔ aKG + Asp

23 Oxam + Glum ↔ aKGm + Aspm
24 Glu + Asn ↔ Asp + Gln

25 Gln + H2O + H ↔ Glu + NH4

26 H2O + Glum ↔ H + aKGm + NH4m
27 3PG + Glu + H2O ↔ aKG + Ser + H3PO4 + 2 H

28 Ser + H ↔ Pyr + NH4

29 Ser + H2O ↔ Gly + CO2 + 4 H

30 Gly + 2 H2O ↔ NH4 + 2 CO2 + 5 H

31 aKG + Orn ↔ Glu + GluySA

32 Pro + H2O ↔ GluySA + 2 H

33 GluySA + H2O ↔ Glu + 2 H

34 Thr + CoA ↔ Gly + AcCoAm
35 Thr + H ↔ aKbut + NH4

36 aKbut + CoA ↔ PropCoA + CO2

37 PropCoA + CO2 ↔ SucCoAm
38 Trp + 9 H2O ↔ Ala + aKad + NH4 + 2 CO2 + 11 H

39 2 aKG + Lys + H2O ↔ 2 Glu + aKad + 2 H

40 aKad + H2O + CoA ↔ AcetoacCoA + 2 CO2 + 4 H

41 AcetoacCoA + CoA + 2 H ↔ 2 AcCoAm
42 aKG + Val + 2 H2O + CoA ↔ Glu + PropCoA + 2 CO2

+ 6 H

43 aKG + Ile + H2O + 2 CoA ↔ Glu + PropCoA + CO2 +

2 H + AcCoAm
44 aKG + Leu + H2O + CoA ↔ Glu + Acetoac + 2 H +

AcCoAm
45 Acetoac + SucCoAm ↔ AcetoacCoA + Sucm
46 Phe + H2O ↔ Tyr + 2 H

47 aKG + Tyr + 5 H2O ↔ Fum + Glu + Acetoac + CO2 + 8

H

48 Ser + Met + 2 H2O ↔ Cys + aKbut + NH4 + CO2 + 5 H

49 Cys + 5 H2O ↔ Pyr + NH4 + H2SO4 + 7 H

50 Arg + H2O ↔ Orn + Urea

51 His + 4 H2O ↔ Glu + 2 NH4 + CO2

52 Orn + NH4m + CO2m ↔ Cln + H2O + H

53 Asp + Cln ↔ Argsucc + H2O

54 Argsucc ↔ Fum + Arg

55 R5P + 2 H3PO4 ↔ PRPP + 2 H2O

56 Asp + Gly + 2 Gln + PRPP + 3 CO2 + 4 H ↔ Fum + 2

Glu + IMP + 2 H3PO4 + 4 H2O

57 Asp + IMP + 2 H3PO4 ↔ Fum + ATPrn + 3 H2O

58 Gln + IMP + 2 H3PO4 ↔ Glu + GTPrn + H2O + 2 H

59 Asp + NH4 + CO2 ↔ Orot + 2 H2O + 3 H

60 PRPP + Orot ↔ UTPrn + CO2 + H2O

61 Gln + UTPrn ↔ Glu + CTPrn

62 0.285 UTPrn + 0.285 ATPrn + 0.215 GTPrn + 0.215 CT-

Prn ↔ RNA

63 ATPrn + 2 H ↔ dATP + H2O

64 GTPrn + 2 H ↔ dGTP + H2O

Reaction Chemical equation

65 UTPrn + CO2 + 8 H ↔ dTTP + 3 H2O

66 CTPrn + 2 H ↔ dCTP + H2O

67 0.285 dATP + 0.215 dGTP + 0.285 dTTP + 0.215 dCTP

↔ DNA

68 DHAP + 2 H ↔ Glyc3P

69 18 AcCoA + Cho + Glyc3P + 23 H ↔ PhosphC + 17 H2O

+ 18 CoA

70 18 AcCoA + Ethn + Glyc3P + 26 H ↔ PhosphE + 17 H2O

+ 18 CoA

71 Ser + PhosphE ↔ Ethn + PhosphS

72 16 AcCoA + Ser + Cho + Glyc3P + 19 H ↔ Sphm + 2

CO2 + 16 H2O + 16 CoA

73 16 AcCoA ↔ Cholesterol + 5 CO2 + 5 H2O + 16 CoA + 8

H

74 0.2 PhosphE + 0.5 PhosphC + 0.075 PhosphS + 0.075

Sphm + 0.15 Cholesterol ↔ Lipids

75 0.0087873 Glu + 0.0084944 Asp + 0.01406 Gly + 0.024897

Ser + 0.0090803 Tyr + 0.0052724 Cys + 0.012009 Ala

+ 0.0058582 Arg + 0.0073228 Asn + 0.0090803 Gln +

0.0043937 His + 0.0055653 Ile + 0.015231 Leu + 0.013181

Lys + 0.0020504 Met + 0.0070299 Phe + 0.013474 Pro +

0.017282 Thr + 0.0038079 Trp + 0.018746 Val ↔ mAbext
76 0.11952 Glu + 0.084994 Asp + 0.075289 Gly + 0.055603 Ser

+ 0.019101 Tyr + 0.014495 Cys + 0.073479 Ala + 0.045166

Arg + 0.045623 Asn + 0.050412 Gln + 0.012685 His +

0.037452 Ile + 0.076276 Leu + 0.086585 Lys + 0.019229

Met + 0.034729 Phe + 0.043283 Pro + 0.045641 Thr +

0.0058582 Trp + 0.054579 Val ↔ Proteins

77 G6P ↔ TC + H3PO4

78 0.15299 Proteins + 0.001405 DNA + 0.0041309 RNA +

0.0026611 Lipids + 0.010513 TC ↔ Biomassext
79 Pyr ↔ Pyrm
80 Malm ↔ Mal

81 Alam ↔ Ala

82 Glu ↔ Glum
83 Mal + aKGm ↔ aKG + Malm
84 Glu + Aspm ↔ Asp + Glum
85 NH4 ↔ NH4m
86 CO2 ↔ CO2m
87 Mal + Citm ↔ Cit + Malm
88 O2 + 4 H ↔ 2 H2O

89 CO2 ↔ CO2ext
90 Aspext ↔ Asp

91 Cysext ↔ Cys

92 Gly ↔ Glyext
93 Serext ↔ Ser

94 Glu ↔ Gluext
95 Tyrext ↔ Tyr

96 Ala ↔ Alaext
97 Argext ↔ Arg

98 Asnext ↔ Asn

99 Glnext ↔ Gln

100 Hisext ↔ His

101 Ileext ↔ Ile

102 Leuext ↔ Leu

103 Lysext ↔ Lys

104 Metext ↔ Met

105 Pheext ↔ Phe

106 Proext ↔ Pro

107 Thrext ↔ Thr

108 Trpext ↔ Trp

109 Valext ↔ Val

110 Ethnext ↔ Ethn

111 Choext ↔ Cho

112 NH4 ↔ NH4ext
113 Urea ↔ Ureaext
114 H3PO4ext ↔ H3PO4

115 H2SO4ext ↔ H2SO4

116 H2O ↔ H2Oext
117 O2ext ↔ O2
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Table 8: List of BFMs in the perfusion bioreactor under study obtained in option 1 for the generation of BFMs.

BFM Chemical equation

1 0.014204 Glcext + 0.03234 Hisext + 0.00573 Ileext + 0.01167 Leuext + 0.013247 Lysext + 0.0051595 Metext +
0.0082357 Pheext + 0.0069828 Thrext + 0.028883 Trpext + 0.0083503 Valext + 0.0019424 CO2ext + 0.00053223
Ethnext + 0.0015302 Choext + 0.01887 H3PO4ext + 0.13401 H2Oext ↔ Biomassext

2 Glcext + 6 O2ext ↔ 6 CO2ext + 6 H2Oext

3 Alaext + 3 O2ext ↔ 2.5 CO2ext + 0.5 Ureaext + 2.5 H2Oext

4 Argext + 5.5 O2ext ↔ 4 CO2ext + 2 Ureaext + 3 H2Oext

5 Asnext + 3 O2ext ↔ 3 CO2ext + Ureaext + 2 H2Oext

6 Aspext + 3 O2ext ↔ 3.5 CO2ext + 0.5 Ureaext + 2.5 H2Oext

7 Cysext + 4.5 O2ext ↔ 2.5 CO2ext + 0.5 Ureaext + H2SO4ext + 1.5 H2Oext

8 Glnext + 4.5 O2ext ↔ 4 CO2ext + Ureaext + 3 H2Oext

9 Gluext + 4.5 O2ext ↔ 4.5 CO2ext + 0.5 Ureaext + 3.5 H2Oext

10 Glyext + 1.5 O2ext ↔ 1.5 CO2ext + 0.5 Ureaext + 1.5 H2Oext

11 Hisext + 5 O2ext ↔ 4.5 CO2ext + 1.5 Ureaext + 1.5 H2Oext

12 Ileext + 7.5 O2ext ↔ 5.5 CO2ext + 0.5 Ureaext + 5.5 H2Oext

13 Leuext + 7.5 O2ext ↔ 5.5 CO2ext + 0.5 Ureaext + 5.5 H2Oext

14 Lysext + 7 O2ext ↔ 5 CO2ext + Ureaext + 5 H2Oext

15 Metext + 7.5 O2ext ↔ 4.5 CO2ext + 0.5 Ureaext + H2SO4ext + 3.5 H2Oext

16 Pheext + 10 O2ext ↔ 8.5 CO2ext + 0.5 Ureaext + 4.5 H2Oext

17 Proext + 5.5 O2ext ↔ 4.5 CO2ext + 0.5 Ureaext + 3.5 H2Oext

18 Serext + 2.5 O2ext ↔ 2.5 CO2ext + 0.5 Ureaext + 2.5 H2Oext

19 Thrext + 4 O2ext ↔ 3.5 CO2ext + 0.5 Ureaext + 3.5 H2Oext

20 Trpext + 11.5 O2ext ↔ 10 CO2ext + Ureaext + 4 H2Oext

21 Tyrext + 9.5 O2ext ↔ 8.5 CO2ext + 0.5 Ureaext + 4.5 H2Oext

22 Valext + 6 O2ext ↔ 4.5 CO2ext + 0.5 Ureaext + 4.5 H2Oext

23 NH4ext + 0.5 CO2ext + 0.25 O2ext ↔ 0.5 Ureaext + H2Oext

24 0.041952 Hisext + 0.0055653 Ileext + 0.015231 Leuext + 0.013181 Lysext + 0.0073228 Metext + 0.01611 Pheext
+ 0.017282 Thrext + 0.016451 Trpext + 0.018746 Valext + 0.018997 CO2ext + 0.15451 H2Oext ↔ mAbext

25 0.5 Glcext ↔ Lacext

antibodies. One of the BFMs for production of biomass uses glucose and a combination of all350

the amino acids as reactants, while the other BFM for production of biomass uses only glucose351

and a combination of essential amino acids as reactants. Regarding the BFM for production352

of monoclonal antibodies, it uses a combination of all the amino acids as reactants. Once353

again, all the resulting columns of Em correspond to admissible BFMs. The resulting BFMs354

are listed in Table 9.355

In either option, the reaction system under study can always be represented as a reaction network356

with 25 BFMs, and each measured species participates in only a few BFMs. In option 1, each BFM357

corresponds to a stoichiometric coefficient 1 for only one measured species. In option 2, each BFM358

involves only a few species in a way that is biologically meaningful according to previous work by359

[12].360

In summary, the rates of the 25 BFMs can be uniquely computed from the rates of variation of361

25 measured extracellular species. However, it must be stressed that the concept of BFMs remains362

a virtual concept that is not guaranteed to correspond to true reactions since the stoichiometries363

of BFMs are constructed as linear combinations of the stoichiometries of independent reactions in364

the reaction network (as shown in (18)), the reaction rates of BFMs are also linear combinations of365

the rates of independent reactions (as shown in (20)), and these linear combinations may include366

negative coefficients. In particular, this means that the rates of certain BFMs may be negative,367

even if the stoichiometries of these BFMs seem to indicate that their rates should be nonnegative.368

Nevertheless, the 5-fold reduction (from 125 EFMs in [12] to 25 BFMs) in the number of flux modes369

that need to be modeled alleviates the modeling effort that is needed in the subsequent sections of370

this paper.371
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Table 9: List of BFMs in the perfusion bioreactor under study obtained in option 2 for the generation of BFMs.

BFM Chemical equation

1 4 Gluext + 4 NH4ext + O2ext ↔ 4 Glnext + 6 H2Oext

2 Serext + O2ext ↔ Glyext + CO2ext + H2Oext

3 2 Pheext + O2ext ↔ 2 Tyrext
4 Ileext + 3 O2ext ↔ Gluext + CO2ext + 2 H2Oext

5 Glcext ↔ 2 Lacext
6 Proext + O2ext ↔ Gluext

7 2 Trpext + 17 O2ext ↔ 2 Alaext + 15 CO2ext + Ureaext + 3 H2Oext

8 2 Gluext + 3 O2ext ↔ 2 Aspext + 2 CO2ext + 2 H2Oext

9 12 NH4ext + 9 CO2ext ↔ 2 Glyext + 5 Ureaext + 9 H2Oext

10 Valext + 3 O2ext ↔ Aspext + CO2ext + 2 H2Oext

11 Alaext + 3 Aspext + 2 Leuext + 3 CO2ext ↔ 6 Gluext

12 4 Aspext + 4 NH4ext + O2ext ↔ 4 Asnext + 6 H2Oext

13 4 Cysext + 5 O2ext + 10 H2Oext ↔ 4 NH4ext + 4 Lacext + 4 H2SO4ext
14 Aspext ↔ Alaext + CO2ext
15 Alaext + Aspext + 2 Tyrext + 7 O2ext ↔ 4 Gluext + 5 CO2ext
16 2 Cysext + 3 O2ext + 2 H2Oext ↔ 2 Alaext + 2 H2SO4ext
17 Argext + O2ext ↔ Glnext + Ureaext
18 Metext + Serext + Tyrext + 6 O2ext ↔ Cysext + 2 Gluext + 4 CO2ext + 2 H2Oext

19 2 Alaext + O2ext ↔ 2 Serext
20 Metext + CO2ext + H2Oext ↔ Cysext + Lacext
21 2 Thrext + 2 O2ext ↔ Gluext + Glyext + CO2ext + 2 H2Oext

22 2 Aspext + Lysext + 4 O2ext ↔ 2 Glnext + 4 CO2ext + 4 H2Oext

23 0.014204 Glcext + 0.03234 Hisext + 0.00573 Ileext + 0.01167 Leuext + 0.013247 Lysext + 0.0051595 Metext +
0.0082357 Pheext + 0.0069828 Thrext + 0.028883 Trpext + 0.0083503 Valext + 0.0019424 CO2ext + 0.00053223
Ethnext + 0.0015302 Choext + 0.01887 H3PO4ext + 0.13401 H2Oext ↔ Biomassext

24 0.014204 Glcext + 0.011242 Alaext + 0.0013577 Argext + 0.0022176 Cysext + 0.0019408 Hisext + 0.00573 Ileext
+ 0.01167 Leuext + 0.013247 Lysext + 0.0029419 Metext + 0.0053133 Pheext + 0.038173 Proext + 0.092324
Serext + 0.0069828 Thrext + 0.00089628 Trpext + 0.0029223 Tyrext + 0.0083503 Valext + 0.00053223 Ethnext

+ 0.0015302 Choext + 0.01887 H3PO4ext ↔ Biomassext + 0.013085 CO2ext + 0.10061 H2Oext

25 0.0058582 Argext + 0.0052724 Cysext + 0.017501 Gluext + 0.0043937 Hisext + 0.0055653 Ileext + 0.015231
Leuext + 0.013181 Lysext + 0.0020504 Metext + 0.0070299 Pheext + 0.097027 Serext + 0.017282 Thrext +
0.0038079 Trpext + 0.0090803 Tyrext + 0.018746 Valext ↔ mAbext + 0.019772 CO2ext + 0.049429 H2Oext
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3. Parameter estimation for Monod-type kinetics372

The specific reaction rates related to the BFMs that were presented in the previous section373

are typically modeled using Monod-type kinetics to account for activating or inhibitory effects of374

certain chemical species [12]. This means that each specific reaction rate is expressed as a sum375

of Monod terms, where each Monod term may be subject to activation or inhibition by several376

species, and the inhibition mechanism may be any combination of competitive, non-competitive, or377

uncompetitive inhibition. In this section, the goal is to develop methods to identify the activation378

and inhibition mechanisms and compute globally optimal parameter estimates in an efficient way.379

3.1. Monod terms380

We start by observing that each Monod term v can be written in different ways, depending381

on the activation and inhibition mechanisms. Consider a particular case, where a certain Monod382

term is either activated by the species S and inhibited by the species I or activated by the species383

S and A. In what follows, vmax is the maximum rate of the Monod term, cS, cA, and cI are the384

concentrations of the species S, A, and I, and kS, kA, and kI are the corresponding kinetic constants.385

Next, we observe how the Monod term would be written in different cases [28].386

In the case of no activation by A and no inhibition by I:

v = vmax
cS

kS + cS
. (39)

In the case of non-competitive inhibition by I:

v = vmax
cS

kS

(

1 + cI
kI

)

+ cS

(

1 + cI
kI

) . (40)

In the case of competitive inhibition by I:

v = vmax
cS

kS

(

1 + cI
kI

)

+ cS
. (41)

In the case of uncompetitive inhibition by I:

v = vmax
cS

kS + cS

(

1 + cI
kI

) . (42)

In the case of non-cooperative activation by A:

v = vmax
cScA

kS (cA + kA) + cS (cA + kA)
. (43)

It is known that all the inhibition mechanisms are particular cases of the so-called mixed inhi-
bition. More generally, the Monod term for mixed inhibition by I is written as:

v = vmax
cS

kS

(

1 + cI
kI

)

+ cS

(

1 + cI
k′
I

) . (44)
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where for the case of no activation and no inhibition one uses 1
kI

= 1
k′I

= 0, for the case of non-387

competitive inhibition one uses 1
kI

= 1
k′
I

, for the case of competitive inhibition one uses 1
k′
I

= 0, and388

for the case of uncompetitive inhibition one uses 1
kI

= 0.389

Similarly, one can show that, in the case of activation by A, the Monod term is written as:

v = vmax
cScA

kS (cA + kA) + cS (cA + k′A)
, (45)

where the case of no activation and no inhibition is obtained with kA = k′A = 0 and the case of390

non-cooperative activation is obtained with kA = k′A.391

Hence, any Monod term with activation by S and inhibition by I is given by:

v =
bcS

cS + a1cScI + a2cI + a3
, (46)

with unknown parameters a1 = 1
k′I
, a2 = kS

kI
, a3 = kS, b = vmax. This parameterization of Monod392

terms includes all the combinations of inhibition mechanisms without assuming which one is truly393

present.394

In addition, any Monod term with activation by S and A is given by:

v =
bcScA

cScA + a1cS + a2cA + a3
, (47)

with unknown parameters a1 = k′A, a2 = kS, a3 = kSkA, b = vmax.395

3.2. Monod-type kinetics396

If we add several Monod terms to express the rate of a certain reaction, we obtain the so-called
Monod-type kinetics. The general expression for the model of a reaction with Monod-type kinetics
using L Monod terms is

ψ̃(t) = e(t) +

L
∑

l=1

nl(t, θ)

dl(t, θ)
, t = 1, . . . , N, (48)

with

nl(t, θ) := bl
∏

i∈Al

ci(t), l = 1, . . . , L, t = 1, . . . , N, (49a)

dl(t, θ) :=

|Cl|
∑

c=1

al,c−1

∏

i∈(Cl)c

ci(t), l = 1, . . . , L, t = 1, . . . , N, (49b)

where:397

• N is the sample size,398

• ψ̃(t) is the specific reaction rate for the sample t corrupted by additive noise,399

• e(t) is the additive noise for the sample t,400
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• ci(t) is the concentration of the ith species for the sample t,401

• Al is the set of activating species of the lth Monod term,402

• Sl of size |Sl| is the set of activating and inhibiting species of the lth Monod term,403

• Cl of size |Cl| = 2|Sl| is a set of combinations of elements of Sl with (Cl)1 = Al,404

• al,0 = 1, and al,1, . . . , al,|Cl|−1 and bl are unknown parameters θ, with al,1, . . . , al,|Cl|−1 non-405

negative.406

For example, for a reaction rate expressed as a sum of L = 2 Monod terms, where each term is
activated by one species and activated or inhibited by another species, which implies that |S1| =
|S2| = 2 and |C1| = |C2| = 4, the Monod-type kinetics is given by:

nl(t, θ) := bl
∏

i∈Al

ci(t), l = 1, 2, t = 1, . . . , N, (50a)

dl(t, θ) :=
∏

i∈Al

ci(t) + al,1
∏

i∈(Cl)2

ci(t) + al,2
∏

i∈(Cl)3

ci(t) + al,3
∏

i∈(Cl)4

ci(t), l = 1, 2, t = 1, . . . , N.

(50b)

In particular, if the first term is activated by species 1 and inhibited by species 3, and the
second term is activated by species 2 and 4, then A1 = {1}, A2 = {2, 4}, S1 = {1, 3}, S2 = {2, 4},
C1 = {{1} , {1, 3} , {3} , {}}, C2 = {{2, 4} , {2} , {4} , {}}, which means that

n1(t, θ) := b1c1(t), n2(t, θ) := b2c2(t)c4(t), t = 1, . . . , N, (51a)

d1(t, θ) := c1(t) + a1,1c1(t)c3(t) + a1,2c3(t) + a1,3,

d2(t, θ) := c2(t)c4(t) + a2,1c2(t) + a2,2c4(t) + a2,3, t = 1, . . . , N. (51b)

3.3. Toward tractable global parameter estimation407

Now that the model structure expressed by the Monod-type kinetics has been presented, we
would like to estimate the unknown parameters θ that provide the globally optimal fit of measured

rates ψ̃(t) and predicted rates ψ̂(t|θ) :=
∑L

l=1
nl(t,θ)
dl(t,θ)

in a computationally tractable way. In this con-

text, global optimality means that the estimated parameters globally minimize the mean squared er-
ror (MSE) Ĵ(θ) =

∑N
t=1 ê(t|θ)

2/N , where ê(t|θ) := ψ̃(t)−ψ̂(t|θ) is the prediction error. For the sake

of simplicity, the prediction error ê(t|θ) and the predicted rate ψ̂(t|θ) are denoted as ê(t) and ψ̂(t),

respectively, and the definitions ê :=
[

ê(1) · · · ê(N)
]T

and ψ̂ :=
[

ψ̂(1) · · · ψ̂(N)
]T

are used in
the remainder of this paper. Hence, the parameters θ := (a1,1, . . . , a1,|C1|−1, . . . , aL,1, . . . , aL,|CL|−1,
b1, . . . , bL) are the global solution to the problem

min
ê,θ

N
∑

t=1

ê(t)2

N
, (52a)

s.t. ê(t) = ψ̃(t)−

L
∑

l=1

nl(t, θ)

dl(t, θ)
, t = 1, . . . , N, (52b)

a1,1 ≥ 0, . . . a1,|C1|−1 ≥ 0, . . . aL,1 ≥ 0, . . . aL,|CL|−1 ≥ 0, (52c)
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with nl(t, θ) and dl(t, θ) defined as in (49). An equivalent reformulation of this problem is

min
ê,d̂,θ

N
∑

t=1

ê(t)2

N
, (53a)

s.t.

L
∏

l=1

dl(t, θ)− d̂(t) = 0, t = 1, . . . , N, (53b)

L
∑

l=1

nl(t, θ)
L
∏

l′=1
l′ 6=l

dl′(t, θ) +
(

ê(t)− ψ̃(t)
)

d̂(t) = 0, t = 1, . . . , N, (53c)

a1,1 ≥ 0, . . . a1,|C1|−1 ≥ 0, . . . aL,1 ≥ 0, . . . aL,|CL|−1 ≥ 0, (53d)

with the common denominators d̂ :=
[

d̂(1) · · · d̂(N)
]T

. With this reformulation, not only the408

cost but also the constraints become polynomial functions of the decision variables since nl(t, θ)409

and dl(t, θ) are linear in θ.410

In the remainder, we assume that the Monod-type kinetics for a reaction rate is expressed as a411

sum of L = 2 Monod terms, where each term is activated by one species and activated or inhibited412

by another species, which implies that the parameters are θ := (a1,1, a1,2, a1,3, a2,1, a2,2, a2,3, b1, b2),413

with a1,1, a1,2, a1,3, a2,1, a2,2, a2,3 nonnegative. The use of 2 Monod terms is appropriate not only to414

make the problem more computationally tractable, but also because the addition of more parameters415

to the model would risk to overparameterize the model, especially if we consider that the available416

sample sizes are typically small. In addition, a model with 2 Monod terms is still sufficiently complex417

to capture the potential case of one Monod term for a forward reaction and another Monod term418

for the corresponding backward reaction.419

For this, we compute the global solution to the following optimization problem:

min
ê,d̂,θ

N
∑

t=1

ê(t)2

N
, (54a)

s.t. d1(t, θ)d2(t, θ)− d̂(t) = 0, t = 1, . . . , N, (54b)

n1(t, θ)d2(t, θ) + n2(t, θ)d1(t, θ) +
(

ê(t)− ψ̃(t)
)

d̂(t) = 0, t = 1, . . . , N, (54c)

a1,1 ≥ 0, a1,2 ≥ 0, a1,3 ≥ 0, a2,1 ≥ 0, a2,2 ≥ 0, a2,3 ≥ 0, (54d)

with nl(t, θ) and dl(t, θ) defined as in (50). In this problem, the cost and constraints are quadratic420

functions of the decision variables since nl(t, θ) and dl(t, θ) are linear in θ.421

For example, if the first term is activated by species 1 and inhibited by species 3, and the second422

term is activated by species 2 and 4, the optimization problem is (54), with nl(t, θ) and dl(t, θ)423

defined as in (51).424

To reduce the model overparameterization in the case of small sample sizes, one may consider425

using the sample variance σ̂2(θ) =
∑N

t=1 ê(t)
2/(N − np) as the cost instead of the MSE Ĵ(θ) in a426

final step of the estimation procedure, where np is the number of nonzero parameters.427

If the additive noise e(t) that corrupts the measured rates ψ̃(t) is independent, identically dis-
tributed (i.i.d.) zero-mean Gaussian noise with variance σ2, the global solution to the optimization
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problem (54) provides maximum-likelihood estimates. In this case, the Cramér-Rao lower bound

Var
[

θ̂
]

� σ2
(

∂ψ̂
∂θ (θ)

T ∂ψ̂
∂θ (θ)

)−1

, (55)

with ψ̂ defined as in the first paragraph of this section, allows one to achieve the lower bound for428

the variance of the estimator θ̂ that corresponds to the estimate θ when the problem (54) is solved429

to global optimality. In (55), the true variance σ2 can be replaced by σ̂2(θ) if σ2 is unknown.430

To solve (54) efficiently to global optimality, one can reformulate it via the concept of sum-of-431

squares (SOS) polynomials as a hierarchy of sparse linear matrix inequality (LMI) feasibility prob-432

lems of increasing relaxation order d. This reformulation as a hierarchy of sparse SOS relaxations433

using semidefinite programs (SDPs) is detailed in Appendix B. Note that a similar reformulation434

has been proposed in the context of maximum-likelihood and Bayesian point estimation problems435

for linear models that share a similar rational structure [29, 30].436

This reformulation takes advantage of the fact that, in the problem (54), each equality constraint437

corresponds to a quadratic polynomial in the decision variables ê, d̂, θ that involves at most |C1|+438

|C2| + 2 = 10 of these variables, and the cost function can be written as a sum of quadratic439

polynomials that involve only a few variables. This allows the use of sparse semidefinite relaxations440

if each equality constraint is transformed into a pair of inequality constraints to obtain a basic441

semi-algebraic set. For this, we need to define p index subsets Ik with the corresponding nk :=442

|Ik| variables x(Ik) = {xi : i ∈ Ik}, for k = 1, . . . , p, such that ∪pk=1Ik = {1, . . . , n}, where n is443

the number of decision variables, such that the index subsets I1, . . . , Ip satisfy the conditions in444

Theorem 8 in Appendix B.445

Hence, for problem (54), we introduce the following definitions:

f(x) := J(x)− τ, (56a)

gj(x) :=































−hdj (x), j = 1, . . . , N,

−hej−N (x), j = N + 1, . . . , 2N,

hdj−2N (x), j = 2N + 1, . . . , 3N,

hej−3N (x), j = 3N + 1, . . . , 4N,

θj−4N , j = 4N + 1, . . . , 4N + 6,

(56b)

with x := (ê, d̂, θ) = (ê(1), . . . , ê(N), d̂(1), . . . , d̂(N), a1,1, a1,2, a1,3, a2,1, a2,2, a2,3, b1, b2) and

J(x) :=

N
∑

t=1

ê(t)2

N
, (56c)

hdt (x) :=
(

∏

i∈A1
ci(t) + a1,1

∏

i∈(C1)2
ci(t) + a1,2

∏

i∈(C1)3
ci(t) + a1,3

∏

i∈(C1)4
ci(t)

)

(

∏

i∈A2
ci(t) + a2,1

∏

i∈(C2)2
ci(t) + a2,2

∏

i∈(C2)3
ci(t) + a2,3

∏

i∈(C2)4
ci(t)

)

− d̂(t), t = 1, . . . , N, (56d)

het (x) := b1

(

∏

i∈A2
ci(t) + a2,1

∏

i∈(C2)2
ci(t) + a2,2

∏

i∈(C2)3
ci(t) + a2,3

∏

i∈(C2)4
ci(t)

)

∏

i∈A1
ci(t)

+ b2

(

∏

i∈A1
ci(t) + a1,1

∏

i∈(C1)2
ci(t) + a1,2

∏

i∈(C1)3
ci(t) + a1,3

∏

i∈(C1)4
ci(t)

)

∏

i∈A2
ci(t)

+
(

ê(t)− ψ̃(t)
)

d̂(t), t = 1, . . . , N. (56e)
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Then, problem (54) is equivalent to that of computing the maximum τ such that f(x) is strictly
positive ∀x ∈ K = {x : gj(x) ≥ 0, ∀j = 1, . . . , 4N + 6}. The previous definitions seem to suggest

the choice of nk = |C1| + |C2| + 2 = 10 variables x(Ik) = (ê(k), d̂(k), θ) and corresponding index
subsets Ik = {k,N + k, 2N + 1, . . . , 2N + 8}, for k = 1, . . . , p, with p := N . To satisfy Condition
4 of Theorem 8 in Appendix B for these index subsets, additional constraints must be added. For
this, we redefine K = {x : gj(x) ≥ 0, ∀j = 1, . . . ,m}, with m := 5N + 6, by adding the quadratic
polynomials

gj(x) := −h̄j−4N−6(x), j = 4N + 7, . . . ,m, (56f)

with

h̄t(x) = −r
2 + ê(t)2 + d̂(t)2 + a21,1 + a21,2 + a21,3 + a22,1 + a22,2 + a22,3 + b21 + b22, t = 1, . . . , N,

(56g)

where r is some finite constant. If r is chosen large enough to ensure that the minimizers x∗ of446

problem (54) are such that ||x(Ik)
∗|| ≤ r, for k = 1, . . . , p, then the new constraints are redundant447

because adding them does not change the minimizers. Moreover, the polynomials (56g) are chosen448

to be quadratic since the polynomials with compact superlevel sets (as in Condition 4 of Theorem 8)449

are at least of degree 2 and the polynomials that specify the other constraints gj(x) ≥ 0 are also of450

degree 2vj = 2.451

Some comments about the boundedness of ||x(Ik)
∗||, for k = 1, . . . , p, are necessary at this452

point. Since x(Ik) = (ê(k), d̂(k), θ), this boundedness implies that the prediction error ê(t), the453

prediction common denominator d̂(t), and the parameters θ are bounded. It seems reasonable to454

assume that the parameters θ are bounded if the data are scaled to units such that the magnitude455

of the non-zero parameters is expected to be approximately the same as the magnitude of 1, that456

is, below 2 but not too close to 0. Regarding the prediction errors, they are expected to have457

the same magnitude as the noise realizations, which are assumed to be realizations of a normally458

distributed random variable with zero mean and variance σ2 in this paper. More precisely, in our459

implementation of the estimation procedure, we assume that the sum of squares of the variables460

x(Ik) is bounded by r2 = 22 (|C1|+ |C2|) = 22 (4 + 4) = 32.461

Since all the conditions in Theorem 8 in Appendix B are satisfied for the formulation (56) and462

the index subsets Ik = {k,N + k, 2N + 1, . . . , 2N + 8}, for k = 1, . . . , p, it is possible to state the463

following theorem:464

Theorem 1. Solving problem (54) to global optimality is equivalent to solving the SDP (B.3) for465

some integer relaxation order d ≥ 1, with f(x) and gj(x), for j = 1, . . . ,m, given in (56).466

Proof. This follows from the fact that solving problem (54) to global optimality is equivalent to467

the problem that consists in computing the global minimum of J(x) subject to gj(x) ≥ 0, for468

j = 1, . . . ,m, and thus can be formulated as the SDP (B.3) for some integer relaxation order469

d ≥ vj = 1 as described in Appendix B.470

A certificate of the representation in terms of SOS polynomials for some order d can be obtained471

upon convergence of the SDP as shown in Theorem 9 in Appendix B, which is a certificate of global472

optimality of the solution x∗ := (ê∗, d̂∗, θ∗) and the MSE τ∗ = J∗. This certification uses the473

rank deficiency of the coefficient matrices Q∗
0,k and the rank of the moment matrices L∗

0,k, for474

k = 1, . . . , p, which are in the primal and dual solutions to the SDP, respectively. If a unique global475
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solution can be certified, the rank deficiency of the coefficient matrices and the rank of the moment476

matrices are equal to 1, as shown in Theorem 9.477

If the certificate of global optimality is obtained, the globally optimal solution x∗ is extracted478

from the null space of Q∗
0,k and the row space of L∗

0,k, for k = 1, . . . , p. If the certificate of global479

optimality is not obtained, there are two options: either (i) the relaxation order d is incremented and480

a larger SDP is formulated and solved, or (ii) the relaxation order d is considered to be sufficiently481

large (for example, equal to some bound dmax) such that increasing the relaxation order would lead482

to an SDP with an excessively large size. Then, in the latter option (ii), one ignores the fact that483

the rank of the moment matrices and the rank deficiency of the coefficient matrices are not equal484

to 1 and extracts a unique solution x∗ as if the null space of Q∗
0,k and the row space of L∗

0,k were485

of dimension 1. Although this solution is not guaranteed to be the global solution, its optimality486

gap can be computed, as discussed in Remark 2 in Appendix B.487

Hence, an important issue is the size of the SDP that needs to be solved to compute and488

certify a global optimum for a given relaxation order d since the size of the SDP strongly affects489

the tractability of this problem. The following theorem summarizes the problem size for a given490

relaxation order d.491

Theorem 2. Suppose that a global optimum for problem (54) is computed and certified for some492

relaxation order d ≥ 1. Then, an SDP with N
(

10+2d
10

)

− (N − 1)
(

8+2d
8

)

equality constraints, N LMIs493

of size
(

10+d
10

)

, and 5N + 6 LMIs of size
(

9+d
10

)

has been solved.494

Proof. This results from the fact that the SDP (B.3) has been solved for d ≥ vj = 1, which is an495

SDP with p
(

nk+2d
nk

)

−
∑p−1

k=1

(|Ik∩Ik+1|+2d
|Ik∩Ik+1|

)

= N
(

10+2d
10

)

− (N − 1)
(

8+2d
8

)

equality constraints, p = N496

LMIs of size
(

nk+d
nk

)

=
(

10+d
10

)

, and m = 5N + 6 LMIs of size
(

nk+d−vj
nk

)

=
(

9+d
10

)

since nk = 10,497

|Ik ∩ Ik+1| = 8, and vj = 1.498

Note that, thanks to the sparse representation, the input size of this SDP is linear in the sample499

size N for any order d. In particular, now suppose that a global optimum for problem (54) is500

computed and certified for the relaxation order d = 2 (in fact, this is always the case in the example501

of Section 3.5). This implies that an SDP with 506N +495 equality constraints, N LMIs of size 66,502

and 5N + 6 LMIs of size 11 has been solved. Since the complexity of SDPs is polynomial in their503

input size, that is, the number of constraints and the size of the LMIs, it means that it has been504

possible to compute and certify a global solution x∗ in polynomial time.505

The procedure for global parameter estimation of Monod-type kinetics is summarized in Algo-506

rithm 1.507

3.4. Use of the model for simulation, control, and optimization508

As mentioned throughout this section, the goal of the described procedure is to identify the509

correct model and compute maximum-likelihood parameter estimates for the reaction rate of each510

BFM, that is, for each macroscopic reaction in the bioreactor. Suppose that the parametric model511

ψ̂(t|θ) is identified for one BFM at a time. The variance of the function ψ̂(t|θ̂) of the estimator θ̂ is512

given by Gauss’ approximation formula Var
[

ψ̂(t|θ̂)
]

≃ ∂ψ̂
∂θ (t|θ)Var

[

θ̂
]

∂ψ̂
∂θ (t|θ)

T, with a lower bound513

for Var
[

θ̂
]

given by (55). Then, it is possible to obtain the column vector ψ̂(t|Θ) of reaction rates of514

all the BFMs with elements ψ̂(t|θ) and the covariance matrix Var
[

ψ̂(t|Θ̂)
]

that consists in a diagonal515

matrix with diagonal elements Var
[

ψ̂(t|θ̂)
]

, where Θ denotes the matrix of parameters for all BFMs516

29



Algorithm 1: Procedure for global parameter estimation of Monod-type kinetics.

Input: Specific reaction rate ψ̃(t) and concentrations c(t) for the samples t = 1, . . . , N , and
sets Al of activating species and Cl of combinations of elements of the set of
activating and inhibiting species for the Monod terms l = 1, 2.

Output: MSE J∗ and estimated parameters θ∗ := (a∗1,1, a
∗
1,2, a

∗
1,3, a

∗
2,1, a

∗
2,2, a

∗
2,3, b

∗
1, b

∗
2).

1 Compute coefficients of the polynomials f(x) and gj(x) in the variables x := (ê, d̂, θ), for
j = 1, . . . ,m, as given in (56), and fix an integer relaxation order d ≥ 1 (for example d = 2)
and a maximum relaxation order dmax.

2 Formulate SDP (B.3) for the order d using the computed coefficients of f(x) and gj(x), for
j = 1, . . . ,m.

3 Solve SDP (B.3).
4 Use the solution to the SDP as described in Theorem 9 to check whether a solution

x∗ := (ê∗, d̂∗, θ∗) and an MSE τ∗ = J∗ with certified global optimality can be obtained from
the solution to the SDP.

5 if Global optimality is certified then

6 Compute the global minimum τ∗ = J∗ and global minimizers x∗ (including θ∗) from the
null space of Q∗

0,k and the row space of L∗
0,k, for k = 1, . . . , p, as described in Theorem 9.

7 else if d = dmax then

8 Compute τ∗ = J∗ and x∗ (including θ∗) without certification of global optimality from
the null space of Q∗

0,k and the row space of L∗
0,k, for k = 1, . . . , p, as if these spaces were

of dimension 1.
9 else

10 Set d← d+ 1 and return to Step 2.

and Θ̂ denotes its estimator. Finally, one can compute q̂(t|Θ) = NT
mψ̂(t|Θ) for the rates of variation517

of all extracellular species and the covariance matrix Var
[

q̂(t|Θ̂)
]

= NT
mVar

[

ψ̂(t|Θ̂)
]

Nm.518

However, note that this parametric model does not guarantee that the irreversibility constraints
for the irreversible reactions are satisfied. To make sure that the model used for simulation, control,
and optimization satisfies these constraints, the following procedure can be used. In problem (37),
the measurements q̃a(t) are replaced by the parametric model Saq̂(t|Θ) and the noise covariance

matrix Σq̃a
is replaced by SaVar

[

q̂(t|Θ̂)
]

ST
a , which results in the problem

min
ψ̂(t),r̂r(t)

(

SaN
T
mψ̂(t)− Saq̂(t|Θ)

)T (

SaVar
[

q̂(t|Θ̂)
]

ST
a

)−1 (

SaN
T
mψ̂(t)− Saq̂(t|Θ)

)

, (57a)

s.t. Sir

[

LN

(

LT
NLN

)−1

Em KN

] [

ψ̂(t)
r̂r(t)

]

≥ 0Rir , t = 1, . . . , N. (57b)

From the solution ψ̂
∗
(t), r̂∗r(t) to this optimization problem, one can then compute q̂

∗(t) =519

NT
mψ̂

∗
(t), r̂

∗(t) = Emψ̂
∗
(t), and r̂

∗
d(t) = LN

(

LT
NLN

)−1

Emψ̂
∗
(t) + KN r̂

∗
r(t). Note that this520

solution is guaranteed to satisfy the irreversibility constraints and can be used for simulation,521

control, and optimization.522

Another relevant issue is related to the fact that the described procedure is able to compute523

maximum-likelihood parameter estimates for the reaction rate of each BFM, but in general it does524
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not compute maximum-likelihood parameter estimates for the rates of variation of the extracellular525

species, when in fact we are interested in predicting the evolution of these extracellular species.526

For this reason, one may wonder at this point why it is not ensured during the execution of the527

model identification procedure that (i) the irreversibility constraints are guaranteed for all the528

possible concentration values and (ii) the computation of maximum-likelihood parameter estimates529

is performed for the extracellular species rather than for each BFM.530

In both cases, the answer is related to intractability of the problem that would be obtained if one
tried to achieve (i) and (ii) at the same time. In that case, instead of solving the smaller problem
(52) individually and separately for each BFM, one would have to solve the problem that can be

obtained by replacing ψ̂r(t) by the parametric model ψ̂r(t|Θr) in problem (38) and minimizing the
MSE as in problem (52), as follows:

min
Θr

N
∑

t=1

1

N

(

SaN
T
mMrψ̂r(t|Θr)− q̃a(t)

)T

Σ−1
q̃a

(

SaN
T
mMrψ̂r(t|Θr)− q̃a(t)

)

, (58a)

s.t. SirE
r
mψ̂r(t|Θr) ≥ 0Rir , ∀t. (58b)

This is clearly a much larger problem since it requires identifying the model and estimating531

the parameters Θr simultaneously for the entire reaction network. If we consider the nonlinear-532

ity of the parametric model ψ̂r(t|Θr) with respect to most parameters Θr and the large number533

of possible models for each BFM, which results in a nonconvex problem with an extremely large534

number of possible models for the entire reaction network, we conclude that problem (58) is in-535

deed intractable. Consequently, although the procedure in this section does not guarantee the536

irreversibility constraints for all the possible concentration values during the execution of the model537

identification procedure and does not yield statistically optimal parameter estimates for the rates of538

variation of the extracellular species, it seems to be the best available option to identify the model539

of perfusion bioreactors. Nevertheless, when the model is used subsequently for simulation, control,540

and optimization, it is possible to ensure that the irreversibility constraints are satisfied.541

Note that the same paradigm has already been proposed for identification of reaction kinet-542

ics using the so-called incremental approach, in which the reaction rates are first estimated from543

concentration data and then used to identify the model structure and estimate parameters for one544

reaction at a time [31, 32]. This incremental approach was indeed suggested as a way to deal with545

the computational complexity associated with the simultaneous approach, in which the identifica-546

tion of the model structure and parameter estimation is performed by fitting the prediction of the547

full kinetic model for all the reactions to the experimental data.548

The following subsections show that, although the model identification and parameter estimation549

for the Monod-type kinetics that is used to describe each BFM remains a challenging problem, it550

is a tractable problem for which good results can be achieved.551

3.5. Simulation example552

In this simulation example, we suppose that:553

• The true specific reaction rate is given by two Monod terms.554

• The first term is subject to activation by species 1 and uncompetitive inhibition by species 3555

(vmax,1 = 2, kS,1 = 0.24, kI,1 = 1.12).556
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• The second term is subject to non-cooperative activation by species 2 and 4 (vmax,2 = 1,557

kS,2 = 0.48, kA,2 = 0.56).558

• The measured rate ψ̃(t) is corrupted by additive noise e(t).559

• The sample size is N = 16.560

These assumptions correspond to the model (51), with a1,1 = 1
kI,1

, a1,2 = 0, a1,3 = kS,1,561

a2,1 = kA,2, a2,2 = kS,2, a2,3 = kS,2kA,2, b1 = vmax,1, b2 = vmax,2. Furthermore, the concentrations562

ci(t) of the species i = 1, 2, 3, 4 are generated randomly, with log10 (ci(t)) being realizations of563

a random variable with mean log10 (0.4) and variance 0.52, and the additive noise e(t) is i.i.d.564

Gaussian noise with zero mean and variance σ2 = 0.012.565

Then, the measured rates ψ̃(t) and the corresponding concentrations ci(t) are used by the566

proposed approach to formulate the SDP (B.3), where f(x) and gj(x), for j = 1, . . . ,m, are given567

in (56). The implementation was performed on MATLAB R2018a running on an Intel Core i7 1.9568

GHz processor, and MOSEK 8.1 was used as SDP solver. This procedure yields the following result:569

570

Testing uncompetitive inhibition for Monod term 1, non-cooperative activation for Monod term 2:571

With measurement noise:572

Minimizing with polynomial basis up to degree 2:573

Status returned by the solver: OPTIMAL574

Optimal value of the cost function: 7.8169e-04575

Dual solution: moment matrices with rank 1 and 1576

Primal solution: coefficient matrix with rank deficiency 1577

MSE =578

4.8856e-05579

sol =580

0.9031 0 0.2424 0.5472 0.5018 0.3240 2.0254 1.0083581

true sol =582

0.8929 0 0.2400 0.5600 0.4800 0.2688 2.0000 1.0000583

As one can observe, the estimated parameters in sol are similar to the true parameters true sol,584

and the MSE is of the same order of magnitude as the variance σ2. Similar results are obtained585

for all combinations of activation and inhibition mechanisms (no activation and no inhibition,586

non-competitive, competitive, and uncompetitive inhibition, and non-cooperative activation). Fur-587

thermore, each problem is solved to global optimality and a unique global solution is computed in588

approximately 20 s from the solution to the SDP for the relaxation order d = 2. This is certified by589

the fact that the coefficient matrices Q∗
0,k are of rank deficiency 1 and the moment matrices L∗

0,k590

are of rank 1, for k = 1, . . . , p (see Theorem 9 in Appendix B).591

3.6. Experimental example592

The proposed procedure that was used above for global parameter estimation with simulation
data is also applied to global parameter estimation with experimental data. These data result from
experiments with pseudo-perfusion bioreactors detailed in [12]. In summary, these bioreactors do
not have inlets and outlets, but the medium is renewed once a day using a feed solution with the
same composition, and concentration measurements are obtained before and after each medium
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renewal for each one of the Sa = 25 measured extracellular species. This experimental procedure
results in a metabolic state similar to steady state after some days (4 to 7 days). Then one can
obtain replicated measurements for that experimental condition by continuing the experiments for
some more days (3 to 6 days). According to (15), this allows computing the measurements q̃a of
the rates of variation of Sa extracellular species between consecutive medium renewals (at times t̄)
from the measurements ˜V C of viable cell concentrations and c̃a of Sa bioreactor concentrations of
extracellular species including biomass (with c̃biom = fbiom ˜V C) after the preceding medium renewal
and before the following medium renewal (at times t0 and tf ) as

q̃a(t̄) = SaS
T
ec

ċ(t̄)+ωp(t̄)(c(t̄)−cin(t̄))−ωh(t̄)R(t̄)c(t̄)
V C(t̄) = ċa(t̄)

V C(t̄) = µ̃(t̄)
c̃a(tf )−c̃a(t0)
˜V C(tf )− ˜V C(t0)

, (59)

by using the fact that ωp(t̄) = ωh(t̄) = 0, the measured growth rate µ̃(t̄) =
log( ˜V C(tf ))−log( ˜V C(t0))

tf−t0
,593

and the approximations V C(t̄) =
˜V C(tf )− ˜V C(t0)

log( ˜V C(tf ))−log( ˜V C(t0))
and ċa(t̄) =

c̃a(tf )−c̃a(t0)
tf−t0

. In the case of594

biomass, ċbiom(t̄) = fbiom
˜V C(tf )− ˜V C(t0)

tf−t0
implies that q̃biom(t̄) = ċbiom(t̄)

V C(t̄) = fbiomµ̃(t̄).595

From the Sa measured rates q̃a(t̄) of variation of extracellular species and the knowledge of a596

set of BFMs, one can compute Rm measured reaction rates ψ̃(t̄) related to the BFMs using (33).597

In the work of [12], this procedure has been repeated for 16 feed solutions with different amino598

acid compositions that induce 16 different metabolic states. Hence, one can use the experimental599

data from these 16 different conditions to construct a single kinetic model. In the remainder of600

this example, we assume that the variable t denotes the sample t, where each sample corresponds601

to a single feed solution and q̃a(t) and ψ̃(t) consist in the mean of the replicated measurements602

q̃a(t̄) and ψ̃(t̄) for that experimental condition. Figure 2 shows a total of 100 measurements q̃a(t̄)603

divided in 16 groups according to the corresponding feed solution, as well as the resulting mean604

q̃a(t) for each experimental condition. Figure 3 shows the same information for the measurements605

ψ̃(t̄) and the resulting mean ψ̃(t) for each experimental condition. Due to the imprecision in the606

measurements of Arg and His, certain constant rate values were assumed in each condition.607

Note that one can also compute the estimated rates q̂(t) of variation of extracellular species608

and estimated reaction rates ψ̂(t) related to the BFMs from q̃a(t) using (37). Figures 2 and 3609

compare q̃a(t) and ψ̃(t) with q̂a(t) and ψ̂(t). It was decided to use ψ̃(t) rather than ψ̂(t) as data610

for parameter estimation since the inequality constraints of problem (37) seem to introduce bias in611

ψ̂(t) for certain BFMs and conditions (see Figure 3).612

Then, as discussed before, for each reaction rate ψ(t), one can determine which sum of 2 Monod613

terms (where each term is activated by one species and activated or inhibited by another species) and614

corresponding parameters θ result in predicted rates ψ̂(t|θ) that provide the best fit to the measured615

rates ψ̃(t). Recall that these Monod terms depend on not only the unknown parameters θ but also616

the concentrations ci(t) of the species involved in the Monod terms as activating or inhibiting617

species. In this example, we postulate that the concentrations c(t) for the sample t correspond to618

the mean of the concentrations c̃(t0) after the medium renewals for that experimental condition.619

Figure 4 shows the 100 measurements c̃(t0) divided in 16 groups according to the corresponding620

feed solution, as well as the resulting mean c(t) for each experimental condition. Since these621

concentrations are expected to be similar to the ones in the feed solution for the sample t, this622

allows relating the reaction rates to the composition of the feed solution. Furthermore, since the623

composition of the feed solution is known, which increases the precision of the concentrations c(t),624

it is reasonable to assume that only the measured rates ψ̃(t) are corrupted by noise.625
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Figure 2: Measured rates q̃
a
(t̄) of variation of extracellular species (indicated in the y-axis) between consecutive

medium renewals (blue circles), grouped according to the corresponding feed solution (indicated in the x-axis and
separated by vertical lines), mean q̃

a
(t) of the measurements for each experimental condition (blue solid horizontal

lines)± standard deviation (blue dashed horizontal lines), and rates Saq̂(t) estimated via problem (37) (red horizontal
lines). Constant values are assumed for Arg and His in each condition.
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Figure 3: Measured reaction rates ψ̃(t̄) related to the BFMs (indicated in the y-axis) between consecutive medium
renewals (blue circles), grouped according to the corresponding feed solution (indicated in the x-axis and separated
by vertical lines), mean ψ̃(t) of the measurements for each experimental condition (blue solid horizontal lines) ±

standard deviation (blue dashed horizontal lines), and rates ψ̂(t) estimated via problem (37) (red horizontal lines).
Constant values are assumed for Arg and His in each condition.
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Figure 4: Concentrations c̃(t0) of extracellular species (indicated in the y-axis) after the medium renewals (blue
circles), grouped according to the corresponding feed solution (indicated in the x-axis and separated by vertical
lines), and mean c(t) of the measurements for each experimental condition (blue solid horizontal lines) ± standard
deviation (blue dashed horizontal lines). Zero values are assumed for Arg and His in all conditions.
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Table 10: Rules that relate the reactants and products in the chemical equation of each BFM to the activating
and inhibiting species of the corresponding Monod terms. The species Ss1, Ss2, S, A, and I refer only to measured
extracellular species, therefore the subscript ext is omitted in this table. The set of essential amino acids is denoted
as EAA = {His, Ile,Leu,Lys,Met,Phe,Thr,Trp,Val}.

Type Chemical equation of BFM Monod term

1a |νi,s1|Ss1 + |νi,s2|Ss2 +
∑

s/∈{s1,s2}:
νi,s<0

|νi,s|Ss ↔
∑

s:νi,s>0 |νi,s|Ss

∀s (νi,s = 0 ∨ Ss /∈ {Biomass,mAb})

Activation by Ss1 and Ss2,
Ss1 /∈ {Asn,Gln, Ser}, Ss2 /∈ {Asn,Gln, Ser}

1b
∑

s:νi,s<0 |νi,s|Ss ↔ |νi,s1|Ss1 + |νi,s2|Ss2 +
∑

s/∈{s1,s2}:
νi,s>0

|νi,s|Ss

∀s (νi,s = 0 ∨ Ss /∈ {Biomass,mAb})

Activation by Ss1 and Ss2,
Ss1 /∈ {Asn,Gln, Ser}, Ss2 /∈ {Asn,Gln, Ser}

2a |νi,s1|Ss1 +
∑

s/∈{s1}:
νi,s<0

|νi,s|Ss ↔
∑

s:νi,s>0 |νi,s|Ss

∀s (νi,s = 0 ∨ Ss /∈ {Biomass,mAb})

Activation by Ss1 and A,
Ss1 /∈ {Asn,Gln, Ser}, A ∈ {Asn,Gln, Ser}

2b
∑

s:νi,s<0 |νi,s|Ss ↔ |νi,s1|Ss1 +
∑

s/∈{s1}:
νi,s>0

|νi,s|Ss

∀s (νi,s = 0 ∨ Ss /∈ {Biomass,mAb})

Activation by Ss1 and A,
Ss1 /∈ {Asn,Gln, Ser}, A ∈ {Asn,Gln, Ser}

3a |νi,s1|Ss1 +
∑

s/∈{s1}:
νi,s<0

|νi,s|Ss ↔
∑

s:νi,s>0 |νi,s|Ss

∀s (νi,s = 0 ∨ Ss /∈ {Biomass,mAb})

Activation by Ss1, Inhibition by I,
Ss1 /∈ {Asn,Gln, Ser},
I ∈ {Ala,Asn,Asp,Cys,Gln,Glu,Gly, Ser}

3b
∑

s:νi,s<0 |νi,s|Ss ↔ |νi,s1|Ss1 +
∑

s/∈{s1}:
νi,s>0

|νi,s|Ss

∀s (νi,s = 0 ∨ Ss /∈ {Biomass,mAb})

Activation by Ss1, Inhibition by I,
Ss1 /∈ {Asn,Gln, Ser},
I ∈ {Ala,Asn,Asp,Cys,Gln,Glu,Gly, Ser}

3c
∑

s:νi,s<0 |νi,s|Ss ↔
∑

s:νi,s>0 |νi,s|Ss

∀s (νi,s = 0 ∨ Ss /∈ {Biomass,mAb})

Activation by S, Inhibition by I,
S ∈ {Asn,Gln, Ser}, I ∈ {Ala,Asn,Asp,Cys,Gln}

4a
∑

s:νi,s<0 |νi,s|Ss ↔ Biomass +
∑

s:νi,s>0,

Ss /∈{Biomass}

|νi,s|Ss Activation by S and A,
S ∈ EAA ∪ {Cys}, A ∈ {Asn,Asp,Gln, Ser}

4b
∑

s:νi,s<0 |νi,s|Ss ↔ mAb +
∑

s:νi,s>0,

Ss /∈{mAb}

|νi,s|Ss Activation by S and A,
S ∈ EAA ∪ {Cys}, A ∈ {Asp,Gln,Glu,Gly}

5a
∑

s:νi,s<0 |νi,s|Ss ↔ Biomass +
∑

s:νi,s>0,

Ss /∈{Biomass}

|νi,s|Ss Activation by S, Inhibition by I,
S ∈ EAA ∪ {Cys}, I ∈ {Asn,Asp,Cys,Gln, Ser}

5b
∑

s:νi,s<0 |νi,s|Ss ↔ mAb +
∑

s:νi,s>0,

Ss /∈{mAb}

|νi,s|Ss Activation by S, Inhibition by I,
S ∈ EAA ∪ {Cys}, I ∈ {Asp,Cys,Gln,Glu,Gly}

Clearly, another important issue that arises at this point concerns the choice of the Monod terms626

for each BFM. In this example, we relate the reactants and products in the chemical equation of627

the BFM to the activating and inhibiting species of the Monod terms under consideration according628

to the rules listed in Table 10. Note that all the activating and inhibiting species are measured629

extracellular species. The application of these rules to the 25 BFMs in Table 9 leads to the Monod630

terms listed in Table 11. Then, for each BFM, the estimation procedure in this section is applied631

to each combination of 2 Monod terms related to that BFM.632

In this example with experimental data, one expects a structural mismatch between the structure633

of the model expressed by any sum of 2 Monod terms and the true reaction rate in the experimental634

system where the data were collected. For this reason, it is not surprising that the proposed proce-635

dure for global parameter estimation cannot certify a globally optimal solution for the relaxation636

order d = 2, in contrast to the simulation example. However, one can extract a unique solution as637

if the null space of Q∗
0,k and the row space of L∗

0,k were of dimension 1, although this solution is638

not guaranteed to be the global solution, as mentioned in Section 3.3 for the case d = dmax. Then,639

the resulting solution is used as an initial guess for the solution to problem (54) via a nonlinear640

optimization algorithm, which is still expected to be much better than a random initial guess.641

Note that, when the initial guess for one of the nonnegative parameters a1,1, a1,2, a1,3, a2,1, a2,2, a2,3642

is close to zero, that parameter is set to zero during the subsequent execution of the nonlinear643

optimization algorithm.644
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Table 11: List of Monod terms considered for each BFM in Table 9 according to the rules in Table 10.

BFM Type Monod term

1 1a Act: Glu, NH4
1 2a Act: Glu, Asn
1 2a Act: NH4, Asn
1 2a Act: Glu, Gln
1 2a Act: NH4, Gln
1 2a Act: Glu, Ser
1 2a Act: NH4, Ser
1 3a Act: Glu, Inh: Ala
1 3a Act: NH4, Inh: Ala
1 3a Act: Glu, Inh: Asn
1 3a Act: NH4, Inh: Asn
1 3a Act: Glu, Inh: Asp
1 3a Act: NH4, Inh: Asp
1 3a Act: Glu, Inh: Cys
1 3a Act: NH4, Inh: Cys
1 3a Act: Glu, Inh: Gln
1 3a Act: NH4, Inh: Gln
1 3a Act: Glu, Inh: Glu
1 3a Act: NH4, Inh: Glu
1 3a Act: Glu, Inh: Gly
1 3a Act: NH4, Inh: Gly
1 3a Act: Glu, Inh: Ser
1 3a Act: NH4, Inh: Ser
1 3c Act: Asn, Inh: Ala
1 3c Act: Gln, Inh: Ala
1 3c Act: Ser, Inh: Ala
1 3c Act: Asn, Inh: Asn
1 3c Act: Gln, Inh: Asn
1 3c Act: Ser, Inh: Asn
1 3c Act: Asn, Inh: Asp
1 3c Act: Gln, Inh: Asp
1 3c Act: Ser, Inh: Asp
1 3c Act: Asn, Inh: Cys
1 3c Act: Gln, Inh: Cys
1 3c Act: Ser, Inh: Cys
1 3c Act: Asn, Inh: Gln
1 3c Act: Gln, Inh: Gln
1 3c Act: Ser, Inh: Gln
2 2b Act: Gly, Asn
2 2b Act: Gly, Gln
2 2b Act: Gly, Ser
2 3b Act: Gly, Inh: Ala
2 3b Act: Gly, Inh: Asn
2 3b Act: Gly, Inh: Asp
2 3b Act: Gly, Inh: Cys
2 3b Act: Gly, Inh: Gln
2 3b Act: Gly, Inh: Glu
2 3b Act: Gly, Inh: Gly
2 3b Act: Gly, Inh: Ser
2 3c Act: Asn, Inh: Ala
2 3c Act: Gln, Inh: Ala
2 3c Act: Ser, Inh: Ala
2 3c Act: Asn, Inh: Asn
2 3c Act: Gln, Inh: Asn
2 3c Act: Ser, Inh: Asn
2 3c Act: Asn, Inh: Asp
2 3c Act: Gln, Inh: Asp
2 3c Act: Ser, Inh: Asp
2 3c Act: Asn, Inh: Cys
2 3c Act: Gln, Inh: Cys
2 3c Act: Ser, Inh: Cys
2 3c Act: Asn, Inh: Gln
2 3c Act: Gln, Inh: Gln
2 3c Act: Ser, Inh: Gln
3 2a Act: Phe, Asn
3 2a Act: Phe, Gln
3 2a Act: Phe, Ser
3 2b Act: Tyr, Asn
3 2b Act: Tyr, Gln
3 2b Act: Tyr, Ser
3 3a Act: Phe, Inh: Ala
3 3a Act: Phe, Inh: Asn
3 3a Act: Phe, Inh: Asp
3 3a Act: Phe, Inh: Cys
3 3a Act: Phe, Inh: Gln
3 3a Act: Phe, Inh: Glu
3 3a Act: Phe, Inh: Gly
3 3a Act: Phe, Inh: Ser
3 3b Act: Tyr, Inh: Ala
3 3b Act: Tyr, Inh: Asn
3 3b Act: Tyr, Inh: Asp
3 3b Act: Tyr, Inh: Cys
3 3b Act: Tyr, Inh: Gln
3 3b Act: Tyr, Inh: Glu
3 3b Act: Tyr, Inh: Gly
3 3b Act: Tyr, Inh: Ser
3 3c Act: Asn, Inh: Ala
3 3c Act: Gln, Inh: Ala
3 3c Act: Ser, Inh: Ala
3 3c Act: Asn, Inh: Asn
3 3c Act: Gln, Inh: Asn
3 3c Act: Ser, Inh: Asn
3 3c Act: Asn, Inh: Asp
3 3c Act: Gln, Inh: Asp
3 3c Act: Ser, Inh: Asp
3 3c Act: Asn, Inh: Cys
3 3c Act: Gln, Inh: Cys
3 3c Act: Ser, Inh: Cys
3 3c Act: Asn, Inh: Gln
3 3c Act: Gln, Inh: Gln
3 3c Act: Ser, Inh: Gln
4 2a Act: Ile, Asn
4 2a Act: Ile, Gln
4 2a Act: Ile, Ser
4 2b Act: Glu, Asn
4 2b Act: Glu, Gln
4 2b Act: Glu, Ser
4 3a Act: Ile, Inh: Ala
4 3a Act: Ile, Inh: Asn
4 3a Act: Ile, Inh: Asp
4 3a Act: Ile, Inh: Cys
4 3a Act: Ile, Inh: Gln
4 3a Act: Ile, Inh: Glu
4 3a Act: Ile, Inh: Gly
4 3a Act: Ile, Inh: Ser
4 3b Act: Glu, Inh: Ala
4 3b Act: Glu, Inh: Asn

BFM Type Monod term

4 3b Act: Glu, Inh: Asp
4 3b Act: Glu, Inh: Cys
4 3b Act: Glu, Inh: Gln
4 3b Act: Glu, Inh: Glu
4 3b Act: Glu, Inh: Gly
4 3b Act: Glu, Inh: Ser
4 3c Act: Asn, Inh: Ala
4 3c Act: Gln, Inh: Ala
4 3c Act: Ser, Inh: Ala
4 3c Act: Asn, Inh: Asn
4 3c Act: Gln, Inh: Asn
4 3c Act: Ser, Inh: Asn
4 3c Act: Asn, Inh: Asp
4 3c Act: Gln, Inh: Asp
4 3c Act: Ser, Inh: Asp
4 3c Act: Asn, Inh: Cys
4 3c Act: Gln, Inh: Cys
4 3c Act: Ser, Inh: Cys
4 3c Act: Asn, Inh: Gln
4 3c Act: Gln, Inh: Gln
4 3c Act: Ser, Inh: Gln
5 2a Act: Glc, Asn
5 2a Act: Glc, Gln
5 2a Act: Glc, Ser
5 2b Act: Lac, Asn
5 2b Act: Lac, Gln
5 2b Act: Lac, Ser
5 3a Act: Glc, Inh: Ala
5 3a Act: Glc, Inh: Asn
5 3a Act: Glc, Inh: Asp
5 3a Act: Glc, Inh: Cys
5 3a Act: Glc, Inh: Gln
5 3a Act: Glc, Inh: Glu
5 3a Act: Glc, Inh: Gly
5 3a Act: Glc, Inh: Ser
5 3b Act: Lac, Inh: Ala
5 3b Act: Lac, Inh: Asn
5 3b Act: Lac, Inh: Asp
5 3b Act: Lac, Inh: Cys
5 3b Act: Lac, Inh: Gln
5 3b Act: Lac, Inh: Glu
5 3b Act: Lac, Inh: Gly
5 3b Act: Lac, Inh: Ser
5 3c Act: Asn, Inh: Ala
5 3c Act: Gln, Inh: Ala
5 3c Act: Ser, Inh: Ala
5 3c Act: Asn, Inh: Asn
5 3c Act: Gln, Inh: Asn
5 3c Act: Ser, Inh: Asn
5 3c Act: Asn, Inh: Asp
5 3c Act: Gln, Inh: Asp
5 3c Act: Ser, Inh: Asp
5 3c Act: Asn, Inh: Cys
5 3c Act: Gln, Inh: Cys
5 3c Act: Ser, Inh: Cys
5 3c Act: Asn, Inh: Gln
5 3c Act: Gln, Inh: Gln
5 3c Act: Ser, Inh: Gln
6 2a Act: Pro, Asn
6 2a Act: Pro, Gln
6 2a Act: Pro, Ser
6 2b Act: Glu, Asn
6 2b Act: Glu, Gln
6 2b Act: Glu, Ser
6 3a Act: Pro, Inh: Ala
6 3a Act: Pro, Inh: Asn
6 3a Act: Pro, Inh: Asp
6 3a Act: Pro, Inh: Cys
6 3a Act: Pro, Inh: Gln
6 3a Act: Pro, Inh: Glu
6 3a Act: Pro, Inh: Gly
6 3a Act: Pro, Inh: Ser
6 3b Act: Glu, Inh: Ala
6 3b Act: Glu, Inh: Asn
6 3b Act: Glu, Inh: Asp
6 3b Act: Glu, Inh: Cys
6 3b Act: Glu, Inh: Gln
6 3b Act: Glu, Inh: Glu
6 3b Act: Glu, Inh: Gly
6 3b Act: Glu, Inh: Ser
6 3c Act: Asn, Inh: Ala
6 3c Act: Gln, Inh: Ala
6 3c Act: Ser, Inh: Ala
6 3c Act: Asn, Inh: Asn
6 3c Act: Gln, Inh: Asn
6 3c Act: Ser, Inh: Asn
6 3c Act: Asn, Inh: Asp
6 3c Act: Gln, Inh: Asp
6 3c Act: Ser, Inh: Asp
6 3c Act: Asn, Inh: Cys
6 3c Act: Gln, Inh: Cys
6 3c Act: Ser, Inh: Cys
6 3c Act: Asn, Inh: Gln
6 3c Act: Gln, Inh: Gln
6 3c Act: Ser, Inh: Gln
7 2a Act: Trp, Asn
7 2a Act: Trp, Gln
7 2a Act: Trp, Ser
7 2b Act: Ala, Asn
7 2b Act: Ala, Gln
7 2b Act: Ala, Ser
7 3a Act: Trp, Inh: Ala
7 3a Act: Trp, Inh: Asn
7 3a Act: Trp, Inh: Asp
7 3a Act: Trp, Inh: Cys
7 3a Act: Trp, Inh: Gln
7 3a Act: Trp, Inh: Glu
7 3a Act: Trp, Inh: Gly
7 3a Act: Trp, Inh: Ser
7 3b Act: Ala, Inh: Ala
7 3b Act: Ala, Inh: Asn
7 3b Act: Ala, Inh: Asp
7 3b Act: Ala, Inh: Cys
7 3b Act: Ala, Inh: Gln
7 3b Act: Ala, Inh: Glu
7 3b Act: Ala, Inh: Gly
7 3b Act: Ala, Inh: Ser

BFM Type Monod term

7 3c Act: Asn, Inh: Ala
7 3c Act: Gln, Inh: Ala
7 3c Act: Ser, Inh: Ala
7 3c Act: Asn, Inh: Asn
7 3c Act: Gln, Inh: Asn
7 3c Act: Ser, Inh: Asn
7 3c Act: Asn, Inh: Asp
7 3c Act: Gln, Inh: Asp
7 3c Act: Ser, Inh: Asp
7 3c Act: Asn, Inh: Cys
7 3c Act: Gln, Inh: Cys
7 3c Act: Ser, Inh: Cys
7 3c Act: Asn, Inh: Gln
7 3c Act: Gln, Inh: Gln
7 3c Act: Ser, Inh: Gln
8 2a Act: Glu, Asn
8 2a Act: Glu, Gln
8 2a Act: Glu, Ser
8 2b Act: Asp, Asn
8 2b Act: Asp, Gln
8 2b Act: Asp, Ser
8 3a Act: Glu, Inh: Ala
8 3a Act: Glu, Inh: Asn
8 3a Act: Glu, Inh: Asp
8 3a Act: Glu, Inh: Cys
8 3a Act: Glu, Inh: Gln
8 3a Act: Glu, Inh: Glu
8 3a Act: Glu, Inh: Gly
8 3a Act: Glu, Inh: Ser
8 3b Act: Asp, Inh: Ala
8 3b Act: Asp, Inh: Asn
8 3b Act: Asp, Inh: Asp
8 3b Act: Asp, Inh: Cys
8 3b Act: Asp, Inh: Gln
8 3b Act: Asp, Inh: Glu
8 3b Act: Asp, Inh: Gly
8 3b Act: Asp, Inh: Ser
8 3c Act: Asn, Inh: Ala
8 3c Act: Gln, Inh: Ala
8 3c Act: Ser, Inh: Ala
8 3c Act: Asn, Inh: Asn
8 3c Act: Gln, Inh: Asn
8 3c Act: Ser, Inh: Asn
8 3c Act: Asn, Inh: Asp
8 3c Act: Gln, Inh: Asp
8 3c Act: Ser, Inh: Asp
8 3c Act: Asn, Inh: Cys
8 3c Act: Gln, Inh: Cys
8 3c Act: Ser, Inh: Cys
8 3c Act: Asn, Inh: Gln
8 3c Act: Gln, Inh: Gln
8 3c Act: Ser, Inh: Gln
9 2a Act: NH4, Asn
9 2a Act: NH4, Gln
9 2a Act: NH4, Ser
9 2b Act: Gly, Asn
9 2b Act: Gly, Gln
9 2b Act: Gly, Ser
9 3a Act: NH4, Inh: Ala
9 3a Act: NH4, Inh: Asn
9 3a Act: NH4, Inh: Asp
9 3a Act: NH4, Inh: Cys
9 3a Act: NH4, Inh: Gln
9 3a Act: NH4, Inh: Glu
9 3a Act: NH4, Inh: Gly
9 3a Act: NH4, Inh: Ser
9 3b Act: Gly, Inh: Ala
9 3b Act: Gly, Inh: Asn
9 3b Act: Gly, Inh: Asp
9 3b Act: Gly, Inh: Cys
9 3b Act: Gly, Inh: Gln
9 3b Act: Gly, Inh: Glu
9 3b Act: Gly, Inh: Gly
9 3b Act: Gly, Inh: Ser
9 3c Act: Asn, Inh: Ala
9 3c Act: Gln, Inh: Ala
9 3c Act: Ser, Inh: Ala
9 3c Act: Asn, Inh: Asn
9 3c Act: Gln, Inh: Asn
9 3c Act: Ser, Inh: Asn
9 3c Act: Asn, Inh: Asp
9 3c Act: Gln, Inh: Asp
9 3c Act: Ser, Inh: Asp
9 3c Act: Asn, Inh: Cys
9 3c Act: Gln, Inh: Cys
9 3c Act: Ser, Inh: Cys
9 3c Act: Asn, Inh: Gln
9 3c Act: Gln, Inh: Gln
9 3c Act: Ser, Inh: Gln
10 2a Act: Val, Asn
10 2a Act: Val, Gln
10 2a Act: Val, Ser
10 2b Act: Asp, Asn
10 2b Act: Asp, Gln
10 2b Act: Asp, Ser
10 3a Act: Val, Inh: Ala
10 3a Act: Val, Inh: Asn
10 3a Act: Val, Inh: Asp
10 3a Act: Val, Inh: Cys
10 3a Act: Val, Inh: Gln
10 3a Act: Val, Inh: Glu
10 3a Act: Val, Inh: Gly
10 3a Act: Val, Inh: Ser
10 3b Act: Asp, Inh: Ala
10 3b Act: Asp, Inh: Asn
10 3b Act: Asp, Inh: Asp
10 3b Act: Asp, Inh: Cys
10 3b Act: Asp, Inh: Gln
10 3b Act: Asp, Inh: Glu
10 3b Act: Asp, Inh: Gly
10 3b Act: Asp, Inh: Ser
10 3c Act: Asn, Inh: Ala
10 3c Act: Gln, Inh: Ala
10 3c Act: Ser, Inh: Ala
10 3c Act: Asn, Inh: Asn
10 3c Act: Gln, Inh: Asn
10 3c Act: Ser, Inh: Asn

BFM Type Monod term

10 3c Act: Asn, Inh: Asp
10 3c Act: Gln, Inh: Asp
10 3c Act: Ser, Inh: Asp
10 3c Act: Asn, Inh: Cys
10 3c Act: Gln, Inh: Cys
10 3c Act: Ser, Inh: Cys
10 3c Act: Asn, Inh: Gln
10 3c Act: Gln, Inh: Gln
10 3c Act: Ser, Inh: Gln
11 1a Act: Ala, Asp
11 1a Act: Ala, Leu
11 1a Act: Asp, Leu
11 2a Act: Ala, Asn
11 2a Act: Asp, Asn
11 2a Act: Leu, Asn
11 2a Act: Ala, Gln
11 2a Act: Asp, Gln
11 2a Act: Leu, Gln
11 2a Act: Ala, Ser
11 2a Act: Asp, Ser
11 2a Act: Leu, Ser
11 2b Act: Glu, Asn
11 2b Act: Glu, Gln
11 2b Act: Glu, Ser
11 3a Act: Ala, Inh: Ala
11 3a Act: Asp, Inh: Ala
11 3a Act: Leu, Inh: Ala
11 3a Act: Ala, Inh: Asn
11 3a Act: Asp, Inh: Asn
11 3a Act: Leu, Inh: Asn
11 3a Act: Ala, Inh: Asp
11 3a Act: Asp, Inh: Asp
11 3a Act: Leu, Inh: Asp
11 3a Act: Ala, Inh: Cys
11 3a Act: Asp, Inh: Cys
11 3a Act: Leu, Inh: Cys
11 3a Act: Ala, Inh: Gln
11 3a Act: Asp, Inh: Gln
11 3a Act: Leu, Inh: Gln
11 3a Act: Ala, Inh: Glu
11 3a Act: Asp, Inh: Glu
11 3a Act: Leu, Inh: Glu
11 3a Act: Ala, Inh: Gly
11 3a Act: Asp, Inh: Gly
11 3a Act: Leu, Inh: Gly
11 3a Act: Ala, Inh: Ser
11 3a Act: Asp, Inh: Ser
11 3a Act: Leu, Inh: Ser
11 3b Act: Glu, Inh: Ala
11 3b Act: Glu, Inh: Asn
11 3b Act: Glu, Inh: Asp
11 3b Act: Glu, Inh: Cys
11 3b Act: Glu, Inh: Gln
11 3b Act: Glu, Inh: Glu
11 3b Act: Glu, Inh: Gly
11 3b Act: Glu, Inh: Ser
11 3c Act: Asn, Inh: Ala
11 3c Act: Gln, Inh: Ala
11 3c Act: Ser, Inh: Ala
11 3c Act: Asn, Inh: Asn
11 3c Act: Gln, Inh: Asn
11 3c Act: Ser, Inh: Asn
11 3c Act: Asn, Inh: Asp
11 3c Act: Gln, Inh: Asp
11 3c Act: Ser, Inh: Asp
11 3c Act: Asn, Inh: Cys
11 3c Act: Gln, Inh: Cys
11 3c Act: Ser, Inh: Cys
11 3c Act: Asn, Inh: Gln
11 3c Act: Gln, Inh: Gln
11 3c Act: Ser, Inh: Gln
12 1a Act: Asp, NH4
12 2a Act: Asp, Asn
12 2a Act: NH4, Asn
12 2a Act: Asp, Gln
12 2a Act: NH4, Gln
12 2a Act: Asp, Ser
12 2a Act: NH4, Ser
12 3a Act: Asp, Inh: Ala
12 3a Act: NH4, Inh: Ala
12 3a Act: Asp, Inh: Asn
12 3a Act: NH4, Inh: Asn
12 3a Act: Asp, Inh: Asp
12 3a Act: NH4, Inh: Asp
12 3a Act: Asp, Inh: Cys
12 3a Act: NH4, Inh: Cys
12 3a Act: Asp, Inh: Gln
12 3a Act: NH4, Inh: Gln
12 3a Act: Asp, Inh: Glu
12 3a Act: NH4, Inh: Glu
12 3a Act: Asp, Inh: Gly
12 3a Act: NH4, Inh: Gly
12 3a Act: Asp, Inh: Ser
12 3a Act: NH4, Inh: Ser
12 3c Act: Asn, Inh: Ala
12 3c Act: Gln, Inh: Ala
12 3c Act: Ser, Inh: Ala
12 3c Act: Asn, Inh: Asn
12 3c Act: Gln, Inh: Asn
12 3c Act: Ser, Inh: Asn
12 3c Act: Asn, Inh: Asp
12 3c Act: Gln, Inh: Asp
12 3c Act: Ser, Inh: Asp
12 3c Act: Asn, Inh: Cys
12 3c Act: Gln, Inh: Cys
12 3c Act: Ser, Inh: Cys
12 3c Act: Asn, Inh: Gln
12 3c Act: Gln, Inh: Gln
12 3c Act: Ser, Inh: Gln
13 1b Act: NH4, Lac
13 2a Act: Cys, Asn
13 2a Act: Cys, Gln
13 2a Act: Cys, Ser
13 2b Act: NH4, Asn
13 2b Act: Lac, Asn
13 2b Act: NH4, Gln
13 2b Act: Lac, Gln

BFM Type Monod term

13 2b Act: NH4, Ser
13 2b Act: Lac, Ser
13 3a Act: Cys, Inh: Ala
13 3a Act: Cys, Inh: Asn
13 3a Act: Cys, Inh: Asp
13 3a Act: Cys, Inh: Cys
13 3a Act: Cys, Inh: Gln
13 3a Act: Cys, Inh: Glu
13 3a Act: Cys, Inh: Gly
13 3a Act: Cys, Inh: Ser
13 3b Act: NH4, Inh: Ala
13 3b Act: Lac, Inh: Ala
13 3b Act: NH4, Inh: Asn
13 3b Act: Lac, Inh: Asn
13 3b Act: NH4, Inh: Asp
13 3b Act: Lac, Inh: Asp
13 3b Act: NH4, Inh: Cys
13 3b Act: Lac, Inh: Cys
13 3b Act: NH4, Inh: Gln
13 3b Act: Lac, Inh: Gln
13 3b Act: NH4, Inh: Glu
13 3b Act: Lac, Inh: Glu
13 3b Act: NH4, Inh: Gly
13 3b Act: Lac, Inh: Gly
13 3b Act: NH4, Inh: Ser
13 3b Act: Lac, Inh: Ser
13 3c Act: Asn, Inh: Ala
13 3c Act: Gln, Inh: Ala
13 3c Act: Ser, Inh: Ala
13 3c Act: Asn, Inh: Asn
13 3c Act: Gln, Inh: Asn
13 3c Act: Ser, Inh: Asn
13 3c Act: Asn, Inh: Asp
13 3c Act: Gln, Inh: Asp
13 3c Act: Ser, Inh: Asp
13 3c Act: Asn, Inh: Cys
13 3c Act: Gln, Inh: Cys
13 3c Act: Ser, Inh: Cys
13 3c Act: Asn, Inh: Gln
13 3c Act: Gln, Inh: Gln
13 3c Act: Ser, Inh: Gln
14 2a Act: Asp, Asn
14 2a Act: Asp, Gln
14 2a Act: Asp, Ser
14 2b Act: Ala, Asn
14 2b Act: Ala, Gln
14 2b Act: Ala, Ser
14 3a Act: Asp, Inh: Ala
14 3a Act: Asp, Inh: Asn
14 3a Act: Asp, Inh: Asp
14 3a Act: Asp, Inh: Cys
14 3a Act: Asp, Inh: Gln
14 3a Act: Asp, Inh: Glu
14 3a Act: Asp, Inh: Gly
14 3a Act: Asp, Inh: Ser
14 3b Act: Ala, Inh: Ala
14 3b Act: Ala, Inh: Asn
14 3b Act: Ala, Inh: Asp
14 3b Act: Ala, Inh: Cys
14 3b Act: Ala, Inh: Gln
14 3b Act: Ala, Inh: Glu
14 3b Act: Ala, Inh: Gly
14 3b Act: Ala, Inh: Ser
14 3c Act: Asn, Inh: Ala
14 3c Act: Gln, Inh: Ala
14 3c Act: Ser, Inh: Ala
14 3c Act: Asn, Inh: Asn
14 3c Act: Gln, Inh: Asn
14 3c Act: Ser, Inh: Asn
14 3c Act: Asn, Inh: Asp
14 3c Act: Gln, Inh: Asp
14 3c Act: Ser, Inh: Asp
14 3c Act: Asn, Inh: Cys
14 3c Act: Gln, Inh: Cys
14 3c Act: Ser, Inh: Cys
14 3c Act: Asn, Inh: Gln
14 3c Act: Gln, Inh: Gln
14 3c Act: Ser, Inh: Gln
15 1a Act: Ala, Asp
15 1a Act: Ala, Tyr
15 1a Act: Asp, Tyr
15 2a Act: Ala, Asn
15 2a Act: Asp, Asn
15 2a Act: Tyr, Asn
15 2a Act: Ala, Gln
15 2a Act: Asp, Gln
15 2a Act: Tyr, Gln
15 2a Act: Ala, Ser
15 2a Act: Asp, Ser
15 2a Act: Tyr, Ser
15 2b Act: Glu, Asn
15 2b Act: Glu, Gln
15 2b Act: Glu, Ser
15 3a Act: Ala, Inh: Ala
15 3a Act: Asp, Inh: Ala
15 3a Act: Tyr, Inh: Ala
15 3a Act: Ala, Inh: Asn
15 3a Act: Asp, Inh: Asn
15 3a Act: Tyr, Inh: Asn
15 3a Act: Ala, Inh: Asp
15 3a Act: Asp, Inh: Asp
15 3a Act: Tyr, Inh: Asp
15 3a Act: Ala, Inh: Cys
15 3a Act: Asp, Inh: Cys
15 3a Act: Tyr, Inh: Cys
15 3a Act: Ala, Inh: Gln
15 3a Act: Asp, Inh: Gln
15 3a Act: Tyr, Inh: Gln
15 3a Act: Ala, Inh: Glu
15 3a Act: Asp, Inh: Glu
15 3a Act: Tyr, Inh: Glu
15 3a Act: Ala, Inh: Gly
15 3a Act: Asp, Inh: Gly
15 3a Act: Tyr, Inh: Gly
15 3a Act: Ala, Inh: Ser
15 3a Act: Asp, Inh: Ser
15 3a Act: Tyr, Inh: Ser
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Table 11: List of Monod terms considered for each BFM in Table 9 according to the rules in Table 10. (cont.)

BFM Type Monod term

15 3b Act: Glu, Inh: Ala
15 3b Act: Glu, Inh: Asn
15 3b Act: Glu, Inh: Asp
15 3b Act: Glu, Inh: Cys
15 3b Act: Glu, Inh: Gln
15 3b Act: Glu, Inh: Glu
15 3b Act: Glu, Inh: Gly
15 3b Act: Glu, Inh: Ser
15 3c Act: Asn, Inh: Ala
15 3c Act: Gln, Inh: Ala
15 3c Act: Ser, Inh: Ala
15 3c Act: Asn, Inh: Asn
15 3c Act: Gln, Inh: Asn
15 3c Act: Ser, Inh: Asn
15 3c Act: Asn, Inh: Asp
15 3c Act: Gln, Inh: Asp
15 3c Act: Ser, Inh: Asp
15 3c Act: Asn, Inh: Cys
15 3c Act: Gln, Inh: Cys
15 3c Act: Ser, Inh: Cys
15 3c Act: Asn, Inh: Gln
15 3c Act: Gln, Inh: Gln
15 3c Act: Ser, Inh: Gln
16 2a Act: Cys, Asn
16 2a Act: Cys, Gln
16 2a Act: Cys, Ser
16 2b Act: Ala, Asn
16 2b Act: Ala, Gln
16 2b Act: Ala, Ser
16 3a Act: Cys, Inh: Ala
16 3a Act: Cys, Inh: Asn
16 3a Act: Cys, Inh: Asp
16 3a Act: Cys, Inh: Cys
16 3a Act: Cys, Inh: Gln
16 3a Act: Cys, Inh: Glu
16 3a Act: Cys, Inh: Gly
16 3a Act: Cys, Inh: Ser
16 3b Act: Ala, Inh: Ala
16 3b Act: Ala, Inh: Asn
16 3b Act: Ala, Inh: Asp
16 3b Act: Ala, Inh: Cys
16 3b Act: Ala, Inh: Gln
16 3b Act: Ala, Inh: Glu
16 3b Act: Ala, Inh: Gly
16 3b Act: Ala, Inh: Ser
16 3c Act: Asn, Inh: Ala
16 3c Act: Gln, Inh: Ala
16 3c Act: Ser, Inh: Ala
16 3c Act: Asn, Inh: Asn
16 3c Act: Gln, Inh: Asn
16 3c Act: Ser, Inh: Asn
16 3c Act: Asn, Inh: Asp
16 3c Act: Gln, Inh: Asp
16 3c Act: Ser, Inh: Asp
16 3c Act: Asn, Inh: Cys
16 3c Act: Gln, Inh: Cys
16 3c Act: Ser, Inh: Cys
16 3c Act: Asn, Inh: Gln
16 3c Act: Gln, Inh: Gln
16 3c Act: Ser, Inh: Gln
17 2a Act: Arg, Asn
17 2a Act: Arg, Gln
17 2a Act: Arg, Ser
17 3a Act: Arg, Inh: Ala
17 3a Act: Arg, Inh: Asn
17 3a Act: Arg, Inh: Asp
17 3a Act: Arg, Inh: Cys
17 3a Act: Arg, Inh: Gln
17 3a Act: Arg, Inh: Glu
17 3a Act: Arg, Inh: Gly
17 3a Act: Arg, Inh: Ser
17 3c Act: Asn, Inh: Ala
17 3c Act: Gln, Inh: Ala
17 3c Act: Ser, Inh: Ala
17 3c Act: Asn, Inh: Asn
17 3c Act: Gln, Inh: Asn
17 3c Act: Ser, Inh: Asn
17 3c Act: Asn, Inh: Asp
17 3c Act: Gln, Inh: Asp
17 3c Act: Ser, Inh: Asp
17 3c Act: Asn, Inh: Cys
17 3c Act: Gln, Inh: Cys
17 3c Act: Ser, Inh: Cys
17 3c Act: Asn, Inh: Gln
17 3c Act: Gln, Inh: Gln
17 3c Act: Ser, Inh: Gln
18 1a Act: Met, Tyr
18 1b Act: Cys, Glu
18 2a Act: Met, Asn
18 2a Act: Tyr, Asn
18 2a Act: Met, Gln
18 2a Act: Tyr, Gln
18 2a Act: Met, Ser
18 2a Act: Tyr, Ser
18 2b Act: Cys, Asn
18 2b Act: Glu, Asn
18 2b Act: Cys, Gln
18 2b Act: Glu, Gln
18 2b Act: Cys, Ser
18 2b Act: Glu, Ser
18 3a Act: Met, Inh: Ala
18 3a Act: Tyr, Inh: Ala
18 3a Act: Met, Inh: Asn
18 3a Act: Tyr, Inh: Asn
18 3a Act: Met, Inh: Asp
18 3a Act: Tyr, Inh: Asp
18 3a Act: Met, Inh: Cys
18 3a Act: Tyr, Inh: Cys
18 3a Act: Met, Inh: Gln
18 3a Act: Tyr, Inh: Gln
18 3a Act: Met, Inh: Glu
18 3a Act: Tyr, Inh: Glu
18 3a Act: Met, Inh: Gly
18 3a Act: Tyr, Inh: Gly
18 3a Act: Met, Inh: Ser
18 3a Act: Tyr, Inh: Ser
18 3b Act: Cys, Inh: Ala

BFM Type Monod term

18 3b Act: Glu, Inh: Ala
18 3b Act: Cys, Inh: Asn
18 3b Act: Glu, Inh: Asn
18 3b Act: Cys, Inh: Asp
18 3b Act: Glu, Inh: Asp
18 3b Act: Cys, Inh: Cys
18 3b Act: Glu, Inh: Cys
18 3b Act: Cys, Inh: Gln
18 3b Act: Glu, Inh: Gln
18 3b Act: Cys, Inh: Glu
18 3b Act: Glu, Inh: Glu
18 3b Act: Cys, Inh: Gly
18 3b Act: Glu, Inh: Gly
18 3b Act: Cys, Inh: Ser
18 3b Act: Glu, Inh: Ser
18 3c Act: Asn, Inh: Ala
18 3c Act: Gln, Inh: Ala
18 3c Act: Ser, Inh: Ala
18 3c Act: Asn, Inh: Asn
18 3c Act: Gln, Inh: Asn
18 3c Act: Ser, Inh: Asn
18 3c Act: Asn, Inh: Asp
18 3c Act: Gln, Inh: Asp
18 3c Act: Ser, Inh: Asp
18 3c Act: Asn, Inh: Cys
18 3c Act: Gln, Inh: Cys
18 3c Act: Ser, Inh: Cys
18 3c Act: Asn, Inh: Gln
18 3c Act: Gln, Inh: Gln
18 3c Act: Ser, Inh: Gln
19 2a Act: Ala, Asn
19 2a Act: Ala, Gln
19 2a Act: Ala, Ser
19 3a Act: Ala, Inh: Ala
19 3a Act: Ala, Inh: Asn
19 3a Act: Ala, Inh: Asp
19 3a Act: Ala, Inh: Cys
19 3a Act: Ala, Inh: Gln
19 3a Act: Ala, Inh: Glu
19 3a Act: Ala, Inh: Gly
19 3a Act: Ala, Inh: Ser
19 3c Act: Asn, Inh: Ala
19 3c Act: Gln, Inh: Ala
19 3c Act: Ser, Inh: Ala
19 3c Act: Asn, Inh: Asn
19 3c Act: Gln, Inh: Asn
19 3c Act: Ser, Inh: Asn
19 3c Act: Asn, Inh: Asp
19 3c Act: Gln, Inh: Asp
19 3c Act: Ser, Inh: Asp
19 3c Act: Asn, Inh: Cys
19 3c Act: Gln, Inh: Cys
19 3c Act: Ser, Inh: Cys
19 3c Act: Asn, Inh: Gln
19 3c Act: Gln, Inh: Gln
19 3c Act: Ser, Inh: Gln
20 1b Act: Cys, Lac
20 2a Act: Met, Asn
20 2a Act: Met, Gln
20 2a Act: Met, Ser
20 2b Act: Cys, Asn
20 2b Act: Lac, Asn
20 2b Act: Cys, Gln
20 2b Act: Lac, Gln
20 2b Act: Cys, Ser
20 2b Act: Lac, Ser
20 3a Act: Met, Inh: Ala
20 3a Act: Met, Inh: Asn
20 3a Act: Met, Inh: Asp
20 3a Act: Met, Inh: Cys
20 3a Act: Met, Inh: Gln
20 3a Act: Met, Inh: Glu
20 3a Act: Met, Inh: Gly
20 3a Act: Met, Inh: Ser
20 3b Act: Cys, Inh: Ala
20 3b Act: Lac, Inh: Ala
20 3b Act: Cys, Inh: Asn
20 3b Act: Lac, Inh: Asn
20 3b Act: Cys, Inh: Asp
20 3b Act: Lac, Inh: Asp
20 3b Act: Cys, Inh: Cys
20 3b Act: Lac, Inh: Cys
20 3b Act: Cys, Inh: Gln
20 3b Act: Lac, Inh: Gln
20 3b Act: Cys, Inh: Glu
20 3b Act: Lac, Inh: Glu
20 3b Act: Cys, Inh: Gly
20 3b Act: Lac, Inh: Gly
20 3b Act: Cys, Inh: Ser
20 3b Act: Lac, Inh: Ser
20 3c Act: Asn, Inh: Ala
20 3c Act: Gln, Inh: Ala
20 3c Act: Ser, Inh: Ala
20 3c Act: Asn, Inh: Asn
20 3c Act: Gln, Inh: Asn
20 3c Act: Ser, Inh: Asn
20 3c Act: Asn, Inh: Asp
20 3c Act: Gln, Inh: Asp
20 3c Act: Ser, Inh: Asp
20 3c Act: Asn, Inh: Cys
20 3c Act: Gln, Inh: Cys
20 3c Act: Ser, Inh: Cys
20 3c Act: Asn, Inh: Gln
20 3c Act: Gln, Inh: Gln
20 3c Act: Ser, Inh: Gln
21 1b Act: Glu, Gly
21 2a Act: Thr, Asn
21 2a Act: Thr, Gln
21 2a Act: Thr, Ser
21 2b Act: Glu, Asn
21 2b Act: Gly, Asn
21 2b Act: Glu, Gln
21 2b Act: Gly, Gln
21 2b Act: Glu, Ser
21 2b Act: Gly, Ser
21 3a Act: Thr, Inh: Ala
21 3a Act: Thr, Inh: Asn

BFM Type Monod term

21 3a Act: Thr, Inh: Asp
21 3a Act: Thr, Inh: Cys
21 3a Act: Thr, Inh: Gln
21 3a Act: Thr, Inh: Glu
21 3a Act: Thr, Inh: Gly
21 3a Act: Thr, Inh: Ser
21 3b Act: Glu, Inh: Ala
21 3b Act: Gly, Inh: Ala
21 3b Act: Glu, Inh: Asn
21 3b Act: Gly, Inh: Asn
21 3b Act: Glu, Inh: Asp
21 3b Act: Gly, Inh: Asp
21 3b Act: Glu, Inh: Cys
21 3b Act: Gly, Inh: Cys
21 3b Act: Glu, Inh: Gln
21 3b Act: Gly, Inh: Gln
21 3b Act: Glu, Inh: Glu
21 3b Act: Gly, Inh: Glu
21 3b Act: Glu, Inh: Gly
21 3b Act: Gly, Inh: Gly
21 3b Act: Glu, Inh: Ser
21 3b Act: Gly, Inh: Ser
21 3c Act: Asn, Inh: Ala
21 3c Act: Gln, Inh: Ala
21 3c Act: Ser, Inh: Ala
21 3c Act: Asn, Inh: Asn
21 3c Act: Gln, Inh: Asn
21 3c Act: Ser, Inh: Asn
21 3c Act: Asn, Inh: Asp
21 3c Act: Gln, Inh: Asp
21 3c Act: Ser, Inh: Asp
21 3c Act: Asn, Inh: Cys
21 3c Act: Gln, Inh: Cys
21 3c Act: Ser, Inh: Cys
21 3c Act: Asn, Inh: Gln
21 3c Act: Gln, Inh: Gln
21 3c Act: Ser, Inh: Gln
22 1a Act: Asp, Lys
22 2a Act: Asp, Asn
22 2a Act: Lys, Asn
22 2a Act: Asp, Gln
22 2a Act: Lys, Gln
22 2a Act: Asp, Ser
22 2a Act: Lys, Ser
22 3a Act: Asp, Inh: Ala
22 3a Act: Lys, Inh: Ala
22 3a Act: Asp, Inh: Asn
22 3a Act: Lys, Inh: Asn
22 3a Act: Asp, Inh: Asp
22 3a Act: Lys, Inh: Asp
22 3a Act: Asp, Inh: Cys
22 3a Act: Lys, Inh: Cys
22 3a Act: Asp, Inh: Gln
22 3a Act: Lys, Inh: Gln
22 3a Act: Asp, Inh: Glu
22 3a Act: Lys, Inh: Glu
22 3a Act: Asp, Inh: Gly
22 3a Act: Lys, Inh: Gly
22 3a Act: Asp, Inh: Ser
22 3a Act: Lys, Inh: Ser
22 3c Act: Asn, Inh: Ala
22 3c Act: Gln, Inh: Ala
22 3c Act: Ser, Inh: Ala
22 3c Act: Asn, Inh: Asn
22 3c Act: Gln, Inh: Asn
22 3c Act: Ser, Inh: Asn
22 3c Act: Asn, Inh: Asp
22 3c Act: Gln, Inh: Asp
22 3c Act: Ser, Inh: Asp
22 3c Act: Asn, Inh: Cys
22 3c Act: Gln, Inh: Cys
22 3c Act: Ser, Inh: Cys
22 3c Act: Asn, Inh: Gln
22 3c Act: Gln, Inh: Gln
22 3c Act: Ser, Inh: Gln
23 4a Act: His, Asn
23 4a Act: Ile, Asn
23 4a Act: Leu, Asn
23 4a Act: Lys, Asn
23 4a Act: Met, Asn
23 4a Act: Phe, Asn
23 4a Act: Thr, Asn
23 4a Act: Trp, Asn
23 4a Act: Val, Asn
23 4a Act: Cys, Asn
23 4a Act: His, Asp
23 4a Act: Ile, Asp
23 4a Act: Leu, Asp
23 4a Act: Lys, Asp
23 4a Act: Met, Asp
23 4a Act: Phe, Asp
23 4a Act: Thr, Asp
23 4a Act: Trp, Asp
23 4a Act: Val, Asp
23 4a Act: Cys, Asp
23 4a Act: His, Gln
23 4a Act: Ile, Gln
23 4a Act: Leu, Gln
23 4a Act: Lys, Gln
23 4a Act: Met, Gln
23 4a Act: Phe, Gln
23 4a Act: Thr, Gln
23 4a Act: Trp, Gln
23 4a Act: Val, Gln
23 4a Act: Cys, Gln
23 4a Act: His, Ser
23 4a Act: Ile, Ser
23 4a Act: Leu, Ser
23 4a Act: Lys, Ser
23 4a Act: Met, Ser
23 4a Act: Phe, Ser
23 4a Act: Thr, Ser
23 4a Act: Trp, Ser
23 4a Act: Val, Ser
23 4a Act: Cys, Ser
23 5a Act: His, Inh: Asn
23 5a Act: Ile, Inh: Asn

BFM Type Monod term

23 5a Act: Leu, Inh: Asn
23 5a Act: Lys, Inh: Asn
23 5a Act: Met, Inh: Asn
23 5a Act: Phe, Inh: Asn
23 5a Act: Thr, Inh: Asn
23 5a Act: Trp, Inh: Asn
23 5a Act: Val, Inh: Asn
23 5a Act: Cys, Inh: Asn
23 5a Act: His, Inh: Asp
23 5a Act: Ile, Inh: Asp
23 5a Act: Leu, Inh: Asp
23 5a Act: Lys, Inh: Asp
23 5a Act: Met, Inh: Asp
23 5a Act: Phe, Inh: Asp
23 5a Act: Thr, Inh: Asp
23 5a Act: Trp, Inh: Asp
23 5a Act: Val, Inh: Asp
23 5a Act: Cys, Inh: Asp
23 5a Act: His, Inh: Cys
23 5a Act: Ile, Inh: Cys
23 5a Act: Leu, Inh: Cys
23 5a Act: Lys, Inh: Cys
23 5a Act: Met, Inh: Cys
23 5a Act: Phe, Inh: Cys
23 5a Act: Thr, Inh: Cys
23 5a Act: Trp, Inh: Cys
23 5a Act: Val, Inh: Cys
23 5a Act: Cys, Inh: Cys
23 5a Act: His, Inh: Gln
23 5a Act: Ile, Inh: Gln
23 5a Act: Leu, Inh: Gln
23 5a Act: Lys, Inh: Gln
23 5a Act: Met, Inh: Gln
23 5a Act: Phe, Inh: Gln
23 5a Act: Thr, Inh: Gln
23 5a Act: Trp, Inh: Gln
23 5a Act: Val, Inh: Gln
23 5a Act: Cys, Inh: Gln
23 5a Act: His, Inh: Ser
23 5a Act: Ile, Inh: Ser
23 5a Act: Leu, Inh: Ser
23 5a Act: Lys, Inh: Ser
23 5a Act: Met, Inh: Ser
23 5a Act: Phe, Inh: Ser
23 5a Act: Thr, Inh: Ser
23 5a Act: Trp, Inh: Ser
23 5a Act: Val, Inh: Ser
23 5a Act: Cys, Inh: Ser
24 4a Act: His, Asn
24 4a Act: Ile, Asn
24 4a Act: Leu, Asn
24 4a Act: Lys, Asn
24 4a Act: Met, Asn
24 4a Act: Phe, Asn
24 4a Act: Thr, Asn
24 4a Act: Trp, Asn
24 4a Act: Val, Asn
24 4a Act: Cys, Asn
24 4a Act: His, Asp
24 4a Act: Ile, Asp
24 4a Act: Leu, Asp
24 4a Act: Lys, Asp
24 4a Act: Met, Asp
24 4a Act: Phe, Asp
24 4a Act: Thr, Asp
24 4a Act: Trp, Asp
24 4a Act: Val, Asp
24 4a Act: Cys, Asp
24 4a Act: His, Gln
24 4a Act: Ile, Gln
24 4a Act: Leu, Gln
24 4a Act: Lys, Gln
24 4a Act: Met, Gln
24 4a Act: Phe, Gln
24 4a Act: Thr, Gln
24 4a Act: Trp, Gln
24 4a Act: Val, Gln
24 4a Act: Cys, Gln
24 4a Act: His, Ser
24 4a Act: Ile, Ser
24 4a Act: Leu, Ser
24 4a Act: Lys, Ser
24 4a Act: Met, Ser
24 4a Act: Phe, Ser
24 4a Act: Thr, Ser
24 4a Act: Trp, Ser
24 4a Act: Val, Ser
24 4a Act: Cys, Ser
24 5a Act: His, Inh: Asn
24 5a Act: Ile, Inh: Asn
24 5a Act: Leu, Inh: Asn
24 5a Act: Lys, Inh: Asn
24 5a Act: Met, Inh: Asn
24 5a Act: Phe, Inh: Asn
24 5a Act: Thr, Inh: Asn
24 5a Act: Trp, Inh: Asn
24 5a Act: Val, Inh: Asn
24 5a Act: Cys, Inh: Asn
24 5a Act: His, Inh: Asp
24 5a Act: Ile, Inh: Asp
24 5a Act: Leu, Inh: Asp
24 5a Act: Lys, Inh: Asp
24 5a Act: Met, Inh: Asp
24 5a Act: Phe, Inh: Asp
24 5a Act: Thr, Inh: Asp
24 5a Act: Trp, Inh: Asp
24 5a Act: Val, Inh: Asp
24 5a Act: Cys, Inh: Asp
24 5a Act: His, Inh: Cys
24 5a Act: Ile, Inh: Cys
24 5a Act: Leu, Inh: Cys
24 5a Act: Lys, Inh: Cys
24 5a Act: Met, Inh: Cys
24 5a Act: Phe, Inh: Cys
24 5a Act: Thr, Inh: Cys
24 5a Act: Trp, Inh: Cys
24 5a Act: Val, Inh: Cys
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24 5a Act: Cys, Inh: Cys
24 5a Act: His, Inh: Gln
24 5a Act: Ile, Inh: Gln
24 5a Act: Leu, Inh: Gln
24 5a Act: Lys, Inh: Gln
24 5a Act: Met, Inh: Gln
24 5a Act: Phe, Inh: Gln
24 5a Act: Thr, Inh: Gln
24 5a Act: Trp, Inh: Gln
24 5a Act: Val, Inh: Gln
24 5a Act: Cys, Inh: Gln
24 5a Act: His, Inh: Ser
24 5a Act: Ile, Inh: Ser
24 5a Act: Leu, Inh: Ser
24 5a Act: Lys, Inh: Ser
24 5a Act: Met, Inh: Ser
24 5a Act: Phe, Inh: Ser
24 5a Act: Thr, Inh: Ser
24 5a Act: Trp, Inh: Ser
24 5a Act: Val, Inh: Ser
24 5a Act: Cys, Inh: Ser
25 4b Act: His, Asp
25 4b Act: Ile, Asp
25 4b Act: Leu, Asp
25 4b Act: Lys, Asp
25 4b Act: Met, Asp
25 4b Act: Phe, Asp
25 4b Act: Thr, Asp
25 4b Act: Trp, Asp
25 4b Act: Val, Asp
25 4b Act: Cys, Asp
25 4b Act: His, Gln
25 4b Act: Ile, Gln
25 4b Act: Leu, Gln
25 4b Act: Lys, Gln
25 4b Act: Met, Gln
25 4b Act: Phe, Gln
25 4b Act: Thr, Gln
25 4b Act: Trp, Gln
25 4b Act: Val, Gln
25 4b Act: Cys, Gln
25 4b Act: His, Glu
25 4b Act: Ile, Glu
25 4b Act: Leu, Glu
25 4b Act: Lys, Glu
25 4b Act: Met, Glu
25 4b Act: Phe, Glu
25 4b Act: Thr, Glu
25 4b Act: Trp, Glu
25 4b Act: Val, Glu
25 4b Act: Cys, Glu
25 4b Act: His, Gly
25 4b Act: Ile, Gly
25 4b Act: Leu, Gly
25 4b Act: Lys, Gly
25 4b Act: Met, Gly
25 4b Act: Phe, Gly
25 4b Act: Thr, Gly
25 4b Act: Trp, Gly
25 4b Act: Val, Gly
25 4b Act: Cys, Gly
25 5b Act: His, Inh: Asp
25 5b Act: Ile, Inh: Asp
25 5b Act: Leu, Inh: Asp
25 5b Act: Lys, Inh: Asp
25 5b Act: Met, Inh: Asp
25 5b Act: Phe, Inh: Asp
25 5b Act: Thr, Inh: Asp
25 5b Act: Trp, Inh: Asp
25 5b Act: Val, Inh: Asp
25 5b Act: Cys, Inh: Asp
25 5b Act: His, Inh: Cys
25 5b Act: Ile, Inh: Cys
25 5b Act: Leu, Inh: Cys
25 5b Act: Lys, Inh: Cys
25 5b Act: Met, Inh: Cys
25 5b Act: Phe, Inh: Cys
25 5b Act: Thr, Inh: Cys
25 5b Act: Trp, Inh: Cys
25 5b Act: Val, Inh: Cys
25 5b Act: Cys, Inh: Cys
25 5b Act: His, Inh: Gln
25 5b Act: Ile, Inh: Gln
25 5b Act: Leu, Inh: Gln
25 5b Act: Lys, Inh: Gln
25 5b Act: Met, Inh: Gln
25 5b Act: Phe, Inh: Gln
25 5b Act: Thr, Inh: Gln
25 5b Act: Trp, Inh: Gln
25 5b Act: Val, Inh: Gln
25 5b Act: Cys, Inh: Gln
25 5b Act: His, Inh: Glu
25 5b Act: Ile, Inh: Glu
25 5b Act: Leu, Inh: Glu
25 5b Act: Lys, Inh: Glu
25 5b Act: Met, Inh: Glu
25 5b Act: Phe, Inh: Glu
25 5b Act: Thr, Inh: Glu
25 5b Act: Trp, Inh: Glu
25 5b Act: Val, Inh: Glu
25 5b Act: Cys, Inh: Glu
25 5b Act: His, Inh: Gly
25 5b Act: Ile, Inh: Gly
25 5b Act: Leu, Inh: Gly
25 5b Act: Lys, Inh: Gly
25 5b Act: Met, Inh: Gly
25 5b Act: Phe, Inh: Gly
25 5b Act: Thr, Inh: Gly
25 5b Act: Trp, Inh: Gly
25 5b Act: Val, Inh: Gly
25 5b Act: Cys, Inh: Gly
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By using the described methodology, one can obtain the kinetic model for each BFM shown645

in Table 12 that results in the good fit between measured and predicted reaction rates of each646

BFM and relatively precise predicted reaction rates that are shown in Figure 5, despite the large647

imprecision in the estimation of some kinetic parameters. Using this information, the parameters648

with a confidence interval that includes zero could be set to zero and discarded from the model in a649

subsequent step if a simpler model is necessary. From the predicted reaction rate ψ̂(t|θ) of each BFM650

and the corresponding variance Var
[

ψ̂(t|θ̂)
]

, one can obtain the predicted reaction rates ψ̂(t|Θ) of651

all the BFMs, the predicted rates of variation of extracellular species q̂(t|Θ) = NT
mψ̂(t|Θ), and652

the corresponding standard deviations, which equal the square root of the diagonal elements of653

Var
[

ψ̂(t|Θ̂)
]

and Var
[

q̂(t|Θ̂)
]

. The resulting fit between measured and predicted rates of variation654

of extracellular species and precision of the predicted rates of variation, shown in Figure 6, are655

also good in general, except for some amino acids and some experimental conditions. Again, the656

implementation was performed on MATLAB R2018a running on an Intel Core i7 1.9 GHz processor,657

and MOSEK 8.1 was used as SDP solver. Since a total of 30899 combinations of Monod terms658

had to be evaluated and the computation of the initial guess took approximately 20 s for each659

combination of Monod terms as in Section 3.5, it took approximately one week to complete this660

model identification procedure. However, note that, since the different combinations of Monod terms661

are evaluated independently, this computation time could be reduced by using parallel computation.662

In addition, the relatively high computational load seems to be acceptable if one considers that663

parameter estimation is typically executed offline and the identification task proposed in this section664

is rather challenging due to the large number of modeled species, the complexity of models of665

biological reaction systems based on Monod-type kinetics, and the intended goal of global optimality.666

4. Conclusions667

This paper has presented an integrated approach that includes methods for computation of flux668

modes and reaction rates and system identification applied to modeling of perfusion bioreactors.669

The contributions can be summarized as follows:670

• A framework for modeling of perfusion bioreactors using flux modes has been presented.671

This framework enables the computation of a unique set of flux modes for all the metabolic672

states and the unique computation of the corresponding reaction rates, which leads to a much673

more compact description of perfusion bioreactors and facilitates model identification and674

parameter estimation.675

• A method for computationally tractable computation of maximum-likelihood parameter esti-676

mates of Monod-type kinetics has been presented. This method allows posterior certification677

of global optimality of the estimates and identification of the activation or inhibition mech-678

anism. In an example with synthetic data, it was possible to guarantee global optimality of679

the estimates and identify the activation or inhibition mechanism. The reformulation of the680

problem as a semidefinite program takes advantage of the sparse structure of the optimiza-681

tion problem that results from the maximum-likelihood approach for the case of Monod-type682

kinetics. Furthermore, the procedure for global parameter estimation has been applied to real683

data from CHO cell bioreactors, resulting in a good fit between measurements and model.684

This paper foresees that the ideal operation of perfusion bioreactors would consist in an approach685

for optimization of steady-state setpoints that takes advantage of a steady-state model obtained686
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Table 12: Kinetic model expressed by the sum of 2 Monod terms that is identified for each BFM, and corresponding kinetic parameters θ :=
(a1,1, a1,2, a1,3, a2,1, a2,2, a2,3, b1, b2) ± their standard deviation.

BFM Sum of Monod terms a1,1 a1,2 a1,3 a2,1 a2,2 a2,3 b1 b2

1
b1cNH4

cNH4+a1,1cNH4cAsn+a1,2cAsn+a1,3
+

b2cGlu
cGlu+a2,1cGlucGln+a2,2cGln+a2,3

0

± 0

0.125

± 0.0263

0

± 0

0.467

± 0.227

0

± 0

0

± 0

-0.582

± 0.0355

-0.295

± 0.0403

2
b1cSer

cSer+a1,1cSercAsn+a1,2cAsn+a1,3
+

b2cAsn
cAsn+a2,1cAsncGln+a2,2cGln+a2,3

0.384

± 0.833

0

± 0

0

± 0

0.479

± 0.606

0

± 0

0

± 0

-0.231

± 0.0489

-0.802

± 0.146

3
b1cPhe

cPhe+a1,1cPhecCys+a1,2cCys+a1,3
+

b2cPhe
cPhe+a2,1cPhecGln+a2,2cGln+a2,3

0

± 0

0

± 0

0

± 0

0

± 0

0.0177

± 0.285

0.419

± 6.87

-0.16

± 1.52

0.35

± 0.203

4
b1cIle

cIle+a1,1cIlecAsn+a1,2cAsn+a1,3
+

b2cGln
cGln+a2,1cGlncCys+a2,2cCys+a2,3

0

± 0

0.0637

± 0.0504

0.699

± 0.58

0

± 0

0

± 0

0.0554

± 0.0357

0.856

± 0.297

-0.0291

± 0.00194

5
b1cGlc

cGlc+a1,1cGlccCys+a1,2cCys+a1,3
+

b2cGln
cGln+a2,1cGlncAsp+a2,2cAsp+a2,3

0

± 0

0

± 0

24.1

± 350

0

± 0

0.0442

± 0.0324

0

± 0

5.69

± 79.4

-0.413

± 0.0206

6
b1cGlucGln

cGlucGln+a1,1cGlu+a1,2cGln+a1,3
+

b2cGlu
cGlu+a2,1cGlucGly+a2,2cGly+a2,3

0

± 0

0.0122

± 0.00848

0

± 0

0

± 0

0

± 0

0

± 0

-0.0729

± 0.0148

0.862

± 0.0264

7
b1cTrpcGln

cTrpcGln+a1,1cTrp+a1,2cGln+a1,3
+

b2cAla
cAla+a2,1cAlacGly+a2,2cGly+a2,3

0

± 0

0.000224

± 0.000132

0

± 0

0.0091

± 0.00514

0

± 0

0

± 0

0.00989

± 0.000169

-0.182

± 0.00157

8
b1cGlu

cGlu+a1,1cGlucGln+a1,2cGln+a1,3
+

b2cSer
cSer+a2,1cSercAsn+a2,2cAsn+a2,3

0.993

± 0.52

0

± 0

0

± 0

0.148

± 0.0696

0

± 0

0

± 0

1.92

± 0.156

0.626

± 0.0766

9
b1cNH4

cNH4+a1,1cNH4cGln+a1,2cGln+a1,3
+

b2cAsn
cAsn+a2,1cAsncAsn+a2,2cAsn+a2,3

0

± 0

0.184

± 0.0326

0

± 0

10

± 253

0

± 0

0

± 0

0.88

± 0.045

0.666

± 15.5

10
b1cVal

cVal+a1,1cValcAsn+a1,2cAsn+a1,3
+

b2cGln
cGln+a2,1cGlncCys+a2,2cCys+a2,3

0

± 0

0.0756

± 0.0744

0.786

± 0.867

0

± 0

0

± 0

0.0334

± 0.0476

0.623

± 0.309

-0.0245

± 0.00226

11
b1cLeucGln

cLeucGln+a1,1cLeu+a1,2cGln+a1,3
+

b2cLeu
cLeu+a2,1cLeucAsn+a2,2cAsn+a2,3

0.0367

± 0.0328

0

± 0

0

± 0

0

± 0

0.0797

± 0.0941

1.27

± 1.35

-0.0132

± 0.00111

0.544

± 0.332

12
b1cAsn

cAsn+a1,1cAsncCys+a1,2cCys+a1,3
+

b2cAsn
cAsn+a2,1cAsncGln+a2,2cGln+a2,3

9.44

± 68.7

0

± 0

0

± 0

0

± 0

0.471

± 0.633

0.782

± 1.4

0.0841

± 0.469

-0.367

± 0.385

13
b1cNH4

cNH4+a1,1cNH4cAsn+a1,2cAsn+a1,3
+

b2cAsn
cAsn+a2,1cAsncGln+a2,2cGln+a2,3

0

± 0

0.192

± 0.421

0

± 0

0.666

± 0.712

0

± 0

0

± 0

0.434

± 0.0739

1.13

± 0.151

14
b1cAla

cAla+a1,1cAlacGln+a1,2cGln+a1,3
+

b2cGln
cGln+a2,1cGlncCys+a2,2cCys+a2,3

0

± 0

1.67

± 1.11

0

± 0

0

± 0

0

± 0

0

± 0

10.6

± 0.325

0.201

± 0.02

15
b1cAla

cAla+a1,1cAlacGln+a1,2cGln+a1,3
+

b2cGln
cGln+a2,1cGlncCys+a2,2cCys+a2,3

0

± 0

1.21

± 0.784

0

± 0

0

± 0

0

± 0

0

± 0

-5.24

± 0.203

-0.053

± 0.0127

16
b1cAla

cAla+a1,1cAlacGln+a1,2cGln+a1,3
+

b2cGln
cGln+a2,1cGlncCys+a2,2cCys+a2,3

0

± 0

0

± 0

0

± 0

0

± 0

0

± 0

0

± 0

-3.53

± 0.142

0.198

± 0.0106

17
b1cAsn

cAsn+a1,1cAsncCys+a1,2cCys+a1,3
+

b2cAsn
cAsn+a2,1cAsncGln+a2,2cGln+a2,3

0

± 0

0

± 0

0.597

± 0.655

0.182

± 0.0762

0

± 0

0

± 0

-0.915

± 0.4

1.82

± 0.224

18
b1cCys

cCys+a1,1cCyscGln+a1,2cGln+a1,3
+

b2cGln
cGln+a2,1cGlncAla+a2,2cAla+a2,3

0

± 0

0.00606

± 0.00402

0

± 0

0

± 0

0.0528

± 0.0345

0

± 0

12.1

± 0.429

-0.589

± 0.0562

19
b1cAla

cAla+a1,1cAlacGln+a1,2cGln+a1,3
+

b2cGln
cGln+a2,1cGlncGln+a2,2cGln+a2,3

0

± 0

0.848

± 0.544

0

± 0

0

± 0

0

± 0

0

± 0

3.99

± 0.201

0.0513

± 0.013

20
b1cCys

cCys+a1,1cCyscGlu+a1,2cGlu+a1,3
+

b2cGln
cGln+a2,1cGlncAla+a2,2cAla+a2,3

0

± 0

0

± 0

0.0448

± 0.0288

0

± 0

0.0533

± 0.0373

0.0648

± 0.063

-13.2

± 0.81

0.738

± 0.0796

21
b1cThr

cThr+a1,1cThrcGln+a1,2cGln+a1,3
+

b2cSer
cSer+a2,1cSercGln+a2,2cGln+a2,3

0.00425

± 0.0561

0.0117

± 0.1

0

± 0

0.0167

± 0.0295

0

± 0

0

± 0

0.247

± 2.12

-0.346

± 3.19

22
b1cAsp

cAsp+a1,1cAspcGln+a1,2cGln+a1,3
+

b2cLys
cLys+a2,1cLyscGly+a2,2cGly+a2,3

4.92

± 17.6

0

± 0

0

± 0

0

± 0

0.533

± 0.396

0

± 0

0.181

± 0.0225

-0.0393

± 0.0148

23
b1cLyscGln

cLyscGln+a1,1cLys+a1,2cGln+a1,3
+

b2cThr
cThr+a2,1cThrcCys+a2,2cCys+a2,3

0

± 0

0.00237

± 0.000604

0

± 0

0.00287

± 0.00177

0

± 0

0.00292

± 0.00181

-0.488

± 0.00554

5.52

± 0.0257

24
b1cLyscGln

cLyscGln+a1,1cLys+a1,2cGln+a1,3
+

b2cThr
cThr+a2,1cThrcAsn+a2,2cAsn+a2,3

0

± 0

0.0209

± 0.011

0

± 0

0

± 0

0

± 0

0.0957

± 0.0392

0.911

± 0.139

-5.84

± 0.431

25
b1cTrpcGln

cTrpcGln+a1,1cTrp+a1,2cGln+a1,3
+

b2cIle
cIle+a2,1cIlecCys+a2,2cCys+a2,3

0

± 0

0

± 0

0.0201

± 0.00783

0

± 0

0

± 0

1.82

± 1.77

-0.106

± 0.0101

8

± 5.01

4
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Figure 5: Measured reaction rates ψ̃(t̄) related to the BFMs (indicated in the y-axis) between consecutive medium
renewals (blue circles), grouped according to the corresponding feed solution (indicated in the x-axis and separated
by vertical lines), mean ψ̃(t) of the measurements for each experimental condition (blue solid horizontal lines) ±

standard deviation (blue dashed horizontal lines), and predicted rates ψ̂(t|Θ) (green solid horizontal lines)± standard
deviation (green dashed horizontal lines). Constant values are assumed for Arg and His in each condition.
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Figure 6: Measured rates q̃
a
(t̄) of variation of extracellular species (indicated in the y-axis) between consecutive

medium renewals (blue circles), grouped according to the corresponding feed solution (indicated in the x-axis and
separated by vertical lines), mean q̃

a
(t) of the measurements for each experimental condition (blue solid horizontal

lines) ± standard deviation (blue dashed horizontal lines), and predicted rates Saq̂(t|Θ) (green solid horizontal lines)
± standard deviation (green dashed horizontal lines). Constant values are assumed for Arg and His in each condition.
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via experimental design and model identification techniques that are designed for the purpose of687

steady-state optimization. Hence, the methods in this paper and [4] pave the way for rational design688

of models for perfusion bioreactors that are suited to their reliable and optimal operation.689
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[12] E. Hagrot, H. A. Oddsdóttir, M. Mäkinen, A. Forsgren, V. Chotteau, Novel column generation-725

based optimization approach for poly-pathway kinetic model applied to CHO cell culture,726

Metab. Eng. Commun. 8 (2018) e00083.727

[13] J. E. Haag, A. V. Wouwer, P. Bogaerts, Dynamic modeling of complex biological systems: a728

link between metabolic and macroscopic description, Math. Biosci. 193 (1) (2005) 25–49.729

[14] G. Bastin, D. Dochain, On-line Estimation and Adaptive Control of Bioreactors, Elsevier,730

Amsterdam, 1990.731

[15] C. Kontoravdi, S. P. Asprey, E. N. Pistikopoulos, A. Mantalaris, Application of global sensi-732

tivity analysis to determine goals for design of experiments: an example study on antibody-733

producing cell cultures, Biotechnol. Prog. 21 (4) (2005) 1128–1135.734

[16] Z. Amribt, H. Niu, P. Bogaerts, Macroscopic modelling of overflow metabolism and model735

based optimization of hybridoma cell fed-batch cultures, Biochem. Eng. J. 70 (2013) 196–209.736

[17] C. Liu, J. M. Zachara, Uncertainties of Monod kinetic parameters nonlinearly estimated from737

batch experiments, Environ. Sci. Technol. 35 (1) (2001) 133–141.738

[18] M. Wang, E. W. Jacobsen, V. Chotteau, H. Hjalmarsson, A multi-step least-squares method for739

nonlinear rational models, in: Proc. 2019 American Control Conference (ACC), Philadelphia,740

PA, 2019.741

[19] M. Wang, R. S. Risuleo, E. W. Jacobsen, V. Chotteau, H. Hjalmarsson, Identification of742

nonlinear kinetics of macroscopic bio-reactions using multilinear Gaussian processes, Comput.743

Chem. Eng. 133 (2020) 106671.744

[20] J. B. Lasserre, Moments, Positive Polynomials and Their Applications, Imperial College Press,745

London, UK, 2010.746

[21] A. Provost, G. Bastin, Dynamic metabolic modelling under the balanced growth condition, J.747

Process Control 14 (7) (2004) 717–728.748

[22] A. Provost, G. Bastin, S. N. Agathos, Y. J. Schneider, Metabolic design of macroscopic biore-749

action models: application to Chinese hamster ovary cells, Bioprocess Biosyst. Eng. 29 (5-6)750

(2006) 349–366.751

[23] D. R. Schneider, G. V. Reklaitis, On material balances for chemically reacting systems, Chem.752

Eng. Sci. 30 (2) (1975) 243–247.753

[24] J. Behre, L. F. Figueiredo, S. Schuster, C. Kaleta, Detecting structural invariants in biological754

reaction networks, in: J. van Helden, A. Toussaint, D. Thieffry (Eds.), Bacterial Molecular755

Networks: Methods and Protocols, Springer, New York, 2012, pp. 377–407.756

[25] D. Bonvin, D. W. T. Rippin, Target factor analysis for the identification of stoichiometric757

models, Chem. Eng. Sci. 45 (12) (1990) 3417–3426.758

45



[26] M. Amrhein, B. Srinivasan, D. Bonvin, Target factor analysis of reaction data: Use of data759

pre-treatment and reaction-invariant relationships, Chem. Eng. Sci. 54 (5) (1999) 579–591.760

[27] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge,761

2004.762

[28] A. Cornish-Bowden, Fundamentals of Enzyme Kinetics, 4th Edition, Wiley-Blackwell, Wein-763

heim, Germany, 2012.764

[29] D. Rodrigues, M. R. Abdalmoaty, H. Hjalmarsson, Toward tractable global solutions to765

maximum-likelihood estimation problems via sparse sum-of-squares relaxations, in: Proc. 58th766

IEEE Conference on Decision and Control (CDC), Nice, France, 2019.767

[30] D. Rodrigues, M. R. Abdalmoaty, H. Hjalmarsson, Toward tractable global solutions to768

Bayesian point estimation problems via sparse sum-of-squares relaxations, in: Proc. 2020769

American Control Conference (ACC), Denver, CO, 2020.770

[31] A. Bardow, W. Marquardt, Incremental and simultaneous identification of reaction kinetics:771

Methods and comparison, Chem. Eng. Sci. 59 (13) (2004) 2673–2684.772

[32] M. Brendel, D. Bonvin, W. Marquardt, Incremental identification of kinetic models for homo-773

geneous reaction systems, Chem. Eng. Sci. 61 (16) (2006) 5404–5420.774

[33] T. S. Motzkin, The arithmetic-geometric inequality, in: Proc. Symposium on Inequalities, New775

York, NY, 1967, pp. 205–224.776

[34] M. Putinar, Positive polynomials on compact semi-algebraic sets, Ind. Univ. Math. J. 42 (1993)777

969–984.778

[35] M. Kojima, S. Kim, M. Maramatsu, Sparsity in sums of squares of polynomials, Math. Pro-779

gram. 103 (2005) 45–62.780

[36] J. B. Lasserre, Convergent SDP-relaxations in polynomial optimization with sparsity, SIAM781

J. Optim. 17 (2006) 822–843.782

Appendix A. Rank conditions for reactions and BFMs783

Theorem 3. The rank of Nd, denoted as R, satisfies R := rank(Nd) ≤ S − E < S.784

Proof. The rank of Nd cannot be greater than the dimension of the null space of AT. Since AT
785

has S columns, one can infer from the rank-nullity theorem that the dimension of the null space of786

AT is S − E, which implies that R := rank(Nd) ≤ S − E < S since E > 0.787

Theorem 4. The following statements hold:788

• From the definitions of Sec and Sic, the matrix NT
m can also be constructed as

[

SecN
T
m

SicN
T
m

]

, where789

SicN
T
m = 0Sic×Rm and the Rm columns of SecN

T
m span the null space of AT

NST
ec.790

• The rank of
[

AT
N

Sic

]

is qec+Sic ≥ Eec+Sic > Sic, that is, greater than the number of intracellular791

species.792
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• The number of BFMs, the number of columns of NT
m, and the dimension of the null spaces793

of
[

AT
N

Sic

]

and AT
NST

ec are Rm = Sec − qec ≤ Sec − Eec < Sec, that is, less than the number of794

extracellular species.795

Proof. The definitions of AN , Sic, and Sec imply that NT
m =

[

Sec

Sic

]

NT
m =

[

SecN
T
m

SicN
T
m

]

and the rank of796

[

AT
N

Sic

]

is qec + Sic, where qec ≤ S −R, while the definition of Nm implies that SicN
T
m = 0Sic×Rm .797

From the rank-nullity theorem, one can infer that the dimension of the null spaces of
[

AT
N

Sic

]

and798

AT
NST

ec is S − qec − Sic = Sec − qec, which implies that Rm = Sec − qec and the Rm columns of799

SecN
T
m span the null space of AT

NST
ec.800

Furthermore, note that the columns of the matrix A of rank E lie in the null space of Nd, which801

is spanned by the column space of AN of dimension q = S − R. Hence, the rank of A cannot be802

greater than the rank of AN , which implies that E ≤ q = S −R as well. Along the same lines, the803

column space of SecA of dimension Eec > 0 lies in the column space of SecAN of dimension qec,804

from which we can conclude that Eec ≤ qec. Hence,
[

AT
N

Sic

]

is of rank qec + Sic ≥ Eec + Sic > Sic,805

and Rm = Sec − qec ≤ Sec − Eec < Sec.806

Theorem 5. The definitions in Section 2.4 imply that rank
(

NT
ic

)

= R−Rm and the Rm columns807

of Em span the null space of NT
ic.808

Proof. One can use Sylvester’s rank inequality and Frobenius’ rank inequality to prove that

R−Rm = Sic + qec +R− S = rank

([

AT
N

Sic

])

+ rank
(

NT
)

− S

≤ rank

([

AT
N

Sic

]

NT

)

= rank
(

NT
ic

)

, (A.1)

rank
(

NT
ic

)

+Rm = rank
(

SicN
T
)

+ rank
(

NTEm

)

≤ rank
(

SicN
TEm

)

+ rank
(

NT
)

= R, (A.2)

which shows that rank
(

NT
ic

)

= R−Rm as claimed.809

For the second part of the theorem, note that Em lies in the null space of NT
ic, the columns of

which contain the stoichiometries of the independent reactions that affect the intracellular species,
since

NT
icEm = SicN

TEm = SicN
T
m = 0Sic×Rm . (A.3)

To show that the Rm columns of Em span the null space of NT
ic, we need to notice that the810

rank of Em is equal to Rm, which is also the dimension of the null space of NT
ic. This results from811

the fact that the rank of NT
ic is equal to R−Rm, as shown in the first part of the theorem.812

Theorem 6. The definitions in Section 2.4 imply that rank
([

Na Nic

])

−R = rank
(

SaN
T
m

)

−Rm.813
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Proof. First, we note that rank

(

Sic
[

ST
a ST

ic

]

[

NT
a

NT
ic

])

= R−Rm since Sic
[

ST
a ST

ic

]

[

NT
a

NT
ic

]

= NT
ic.

Then, one can use Sylvester’s rank inequality and Frobenius’ rank inequality to prove that

rank
([

Na Nic

])

+Rm −R = rank

([

NT
a

NT
ic

])

+ rank (Em)−R

≤ rank

([

NT
a

NT
ic

]

Em

)

= rank
(

SaN
T
m

)

, (A.4)

R −Rm + rank
(

SaN
T
m

)

= rank

(

Sic
[

ST
a ST

ic

]

[

NT
a

NT
ic

])

+ rank

([

NT
a

NT
ic

]

Em

)

≤ rank

(

Sic
[

ST
a ST

ic

]

[

NT
a

NT
ic

]

Em

)

+ rank

([

NT
a

NT
ic

])

= rank
([

Na Nic

])

, (A.5)

which shows that rank
([

Na Nic

])

−R = rank
(

SaN
T
m

)

−Rm as claimed.814

Theorem 7. There exists some Rm-dimensional vector of rates ψ(t) such that

[

q(t)
r(t)

]

=

[

NT
m

Em

]

ψ(t). (A.6)

Proof. Recall that the true rates of variation of the S species due to reactions are given by

q(t) = NTr(t). (A.7)

It is also known from the dynamic model (13) that Sicq(t) = 0Sic , which imposes the constraint

NT
icr(t) = SicN

Tr(t) = Sicq(t) = 0Sic . (A.8)

If we combine both constraints, we observe that

[

IS −NT

0Sic×S NT
ic

] [

q(t)
r(t)

]

=

[

0S
0Sic

]

. (A.9)

Since the Rm columns of Em span the null space of NT
ic, this implies that the Rm columns of

[

NT
m

Em

]

span the null space of
[

IS −NT

0Sic×S NT
ic

]

and there is always some Rm-dimensional vector of rates

ψ(t) such that

[

q(t)
r(t)

]

=

[

NT
m

Em

]

ψ(t). (A.10)

815
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Appendix B. Sum-of-squares polynomials for global optimization816

This appendix summarizes the discussion about the concept of sum-of-squares polynomials and817

its application to global optimization. For a more comprehensive discussion, the reader is referred818

to previous papers that apply the same concept in another context related to parameter estimation819

[29, 30].820

A polynomial p(x) of degree 2d in the n variables x := (x1, . . . , xn) is a sum-of-squares (SOS)821

polynomial if it can be written as a sum of squares of polynomials of degree up to d in x. The concept822

of SOS polynomials is useful for optimization because p(x) is an SOS polynomial if and only if there823

exists a positive semidefinite matrix Q such that p(x) = vd(x)
TQvd(x) = tr

(

vd(x)vd(x)
TQ

)

,824

where vd(x) is the s(n, d)-dimensional vector of monomials of degree up to d in the n variables825

x, with s(n, d) :=
(

n+d
n

)

[20]. Hence, constraining p(x) to the set of SOS polynomials amounts to826

satisfying the linear matrix inequality (LMI) Q � 0s(n,d)×s(n,d), which can be done via a convex827

semidefinite program (SDP) [27].828

However, it is not generally true that a nonnegative polynomial is an SOS polynomial [33]. On829

the other hand, if f(x) of degree 2v0 or 2v0 − 1 is a strictly positive polynomial on a compact830

basic semi-algebraic set K specified by some polynomials gj(x) of degree 2vj or 2vj − 1, with831

cd := maxj=1,...,nc vj , that is, if f(x) > 0 ∀x ∈ K ={x : gj(x) ≥ 0, ∀j = 1, . . . , nc} and K satisfies832

some technical assumptions, then f(x) can be represented as a combination of SOS polynomials up833

to some degree 2d, where d ≥ v := maxj=0,1,...,nc vj is the relaxation order [34].834

A sparse representation can be obtained by taking advantage of the fact that each polynomial835

gj(x) may involve only a few variables, and f(x) may be written as a sum of polynomials that also836

involve only a few variables [35]. For this, we define p index subsets Ik with the corresponding837

nk := |Ik| variables x(Ik) = {xi : i ∈ Ik}, for k = 1, . . . , p, such that ∪pk=1Ik = {1, . . . , n}. This838

important result about sparse representation is summarized in the following theorem [36].839

Theorem 8. Consider the basic semi-algebraic set K := {x : gj(x) ≥ 0, ∀j = 1, . . . , nc} and assume840

that the index subsets I1, . . . , Ip satisfy the following conditions:841

1. The polynomial f(x) can be written as a sum of p polynomials that involve only the variables842

x(I1), . . . ,x(Ip), that is, f(x) =
∑p

k=1 fk(x(Ik)).843

2. The running intersection property holds, that is, for all k = 1, . . . , p − 1, Ik+1 ∩
(

∪kj=1Ij
)

⊆ Is844

for some s ≤ k.845

3. For all j = 1, . . . , nc, there exists some Kj ∈ {1, . . . , p} that indicates that gj(x) involves only846

the variables x(IKj ), that is, gj(x) = cj(x(IKj )).847

4. For all k = 1, . . . , p, there exists some qk ∈ {1, . . . , nc} such that the set {x(Ik) : cqk(x(Ik)) ≥ 0}848

is compact.849

If f(x) is strictly positive ∀x ∈ K, then

f(x) =

p
∑

k=1

p0,k(x(Ik)) +

nc
∑

j=1

gj(x)pj(x(IKj )) (B.1)

for some SOS polynomials p0,1(x(I1)), . . . , p0,p(x(Ip)) and p1(x(IK1
)), . . . , pnc(x(IKnc

)).850

Proof. The proofs of Theorems 8–9 can be found in the references before each theorem and are not851

replicated.852
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Remark 1. This representation can be used to relax the verification of positivity of f(x) ∀x ∈ K

as a hierarchy of sparse LMI feasibility problems of increasing order d [36]. To introduce the sparse
relaxations, note that the monomials xα := xα1

1 . . . xαn
n of degree up to 2d in the variables x(Ik)

involve powers α := (α1, . . . , αn) in the set X̄d,k := Xd ∩ {(α1, . . . , αn) ∈ N
n
0 : αi 6= 0⇒ i ∈ Ik}, for

k = 1, . . . , p, where Xd := {(α1, . . . , αn) ∈ N
n
0 : 0 ≤ α1 + . . .+ αn ≤ 2d}. We define X̄d := ∪

p
k=1X̄d,k

and use fα and gj,α to denote the coefficients of f(x) and gj(x) such that f(x) =
∑

α∈X̄d
fαx

α

and gj(x) =
∑

α∈X̄vj
gj,αx

α, for j = 1, . . . , nc. Moreover, the matrices Rv,k,α are defined such that
∑

α∈X̄d−v
Rv,k,αx

α = vd−v(x(Ik))vd−v(x(Ik))
T, for v = 0, . . . , d and k = 1, . . . , p. If Theorem 8

applies and f(x) is strictly positive ∀x ∈ K, then there exists a positive integer d such that

fα =

p
∑

k=1

tr (R0,k,αQ0,k) +

nc
∑

j=1

∑

β∈X̄d−vj

α−β∈X̄vj

gj,α−βtr
(

Rvj ,Kj,βQj

)

, α ∈ X̄d, (B.2a)

and

Q0,k � 0s(nk,d)×s(nk,d), k = 1, . . . , p, (B.2b)

Qj � 0s(nKj
,d−vj)×s(nKj

,d−vj), j = 1, . . . , nc. (B.2c)

This result is very useful for the problem of computing J∗, an accurate approximation of the
global minimum of J(x) subject to the constraints gj(x) ≥ 0, for j = 1, . . . , nc, or equivalently, the
maximum value τ such that f(x) = J(x)− τ > 0 ∀x ∈ K = {x : gj(x) ≥ 0, ∀j = 1, . . . , nc}. Such a
problem can be formulated as the SDP

min
τ,Q0,1,...,Q0,p,Q1,...,Qnc

−τ, s.t. (B.2). (B.3)

Hence, if nk and the maximum degree v of the polynomials are relatively small, the SDP can853

be solved efficiently since the relaxation order d that provides a sparse representation in terms of854

SOS polynomials is usually not much larger than v. If this representation exists for some order d, a855

certificate can be obtained upon convergence of the SDP. The result about the sparse representation856

for the order d is stated as follows [36]:857

Theorem 9. Denote the optimal values of the dual variables for the constraints (B.2a) as µ∗
α858

∀α ∈ X̄d and of the dual variables for the LMIs (B.2b) as L∗
0,k ∀k = 1, . . . , p. If ∃G : G =859

rank
(

L∗
0,k

)

= rank
(
∑

α∈X̄d−cd
Rcd,k,αµ

∗
α

)

∀k = 1, . . . , p, then f(x) = J(x)− J∗ can be represented860

as in (B.1) with p0,k(x(Ik)) of degree 2d, for k = 1, . . . , p, and pj(x(IKj )) of degree 2(d − vj),861

for j = 1, . . . , nc. In addition, the global minimum J∗ = τ∗ and G global minimizers x∗ can be862

computed using the fact that vd(x(Ik)
∗) lie both in the null space of Q∗

0,k and in the row space of863

L∗
0,k, ∀k = 1, . . . , p. �864

Remark 2. Note that the rank condition in Theorem 9 is sufficient but not necessary. In addition,865

even if the rank condition is not satisfied, τ∗ ≤ J∗ [36]. Consequently, if a solution x∗ is extracted866

from the solution to the SDP and satisfies the constraints gj(x
∗) ≥ 0, for j = 1, . . . , nc, then867

τ∗ ≤ J∗ ≤ J(x∗). This implies that J(x∗)− τ∗ can be seen as the optimality gap, that is, an upper868

bound on the difference J(x∗)− J∗ ≥ 0, which may be very small even if the rank condition is not869

satisfied. Hence, this remark supports the procedure used in steps 7-8 of Algorithm 1.870
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