
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS ’21),
April 19–23, 2021, Virtual, USA..

Citation for the original published paper:

Farshin, A., Barbette, T., Roozbeh, A., Maguire Jr., G Q., Kostic, D. (2021)
PacketMill: Toward Per-Core 100-Gbps Networking
In: Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’21), April 19–23,
2021, Virtual, USA. ACM Digital Library
https://doi.org/10.1145/3445814.3446724

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289665

PacketMill: Toward Per-Core 100-Gbps Networking
Alireza Farshin∗

KTH Royal Institute of Technology
Stockholm, Sweden

Tom Barbette∗
KTH Royal Institute of Technology

Stockholm, Sweden

Amir Roozbeh
KTH Royal Institute of Technology

Stockholm, Sweden
Ericsson Research
Stockholm, Sweden

Gerald Q. Maguire Jr.
KTH Royal Institute of Technology

Stockholm, Sweden

Dejan Kostić
KTH Royal Institute of Technology

Stockholm, Sweden

ABSTRACT
We present PacketMill, a system for optimizing software packet
processing, which (i) introduces a new model to efficiently manage
packet metadata and (ii) employs code-optimization techniques to
better utilize commodity hardware. PacketMill grinds the whole
packet processing stack, from the high-level network function
configuration file to the low-level userspace network (specifically
DPDK) drivers, to mitigate inefficiencies and produce a customized
binary for a given network function. Our evaluation results show
that PacketMill increases throughput (up to 36.4Gbps – 70%) &
reduces latency (up to 101 µs – 28%) and enables nontrivial packet
processing (e.g., router) at ≈100Gbps, when new packets arrive
> 10× faster than main memory access times, while using only one
processing core.

CCS CONCEPTS
• Networks → Middle boxes / network appliances; Net-
work servers; Network adapters; Programming interfaces; •
Computer systems organization → Multicore architectures; •
Software and its engineering → Compilers; Source code
generation.

KEYWORDS
PacketMill, X-Change, Packet Processing, Metadata Management,
100-Gbps Networking, Middleboxes, Commodity Hardware, LLVM,
Compiler Optimizations, Full-Stack Optimization, FastClick, DPDK.
ACM Reference Format:
Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr.,
and Dejan Kostić. 2021. PacketMill: Toward Per-Core 100-Gbps Networking.
In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’21),
April 19–23, 2021, Virtual, USA. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3445814.3446724

∗Both authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’21, April 19–23, 2021, Virtual, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04.
https://doi.org/10.1145/3445814.3446724

1 INTRODUCTION
Networking has shifted from inflexible, proprietary, and special-
ized hardware toward Software-defined Networking (SDN) and
Network Functions Virtualization (NFV). Today many network
appliances are realized using commodity hardware and the network
functions are increasingly software-driven. The flexibility and
programmability of such platforms has led to the emergence
of many software networking solutions (e.g., Open vSwitch
(OVS) [79], Click-based frameworks [6, 29, 65], BESS [36, 37],
and Vector Packet Processing (VPP) [2, 27]). Unfortunately, the
introduction of multi-hundred-gigabit network equipment and
dramatic increases in the telecommunication bandwidth strain the
performance of commodity hardware [63], due to the demise of
Moore’s law and Dennard scaling putting a cap on commodity
hardware’s performance [22]. While many try to introduce in-
network processing via modern hardware (e.g., P4 architecture [11]
and modern/programmable Network Interface Card (NIC)) to
address the performance limitations [92], many network functions
are deployed on commodity hardware, via unspecialized modular
software, as software-based packet processing is being promoted
by Ericsson, Cisco, and Intel [21, 49, 91]. Unfortunately, software-
driven networking solutions have come at the price of lower
performance. Two critical factors imposing performance limitations
on software-driven networking to process packets at multi-hundred-
gigabit rates are: (i) code inefficiencymainly coming from generality
and modularity of networking frameworks; and (ii) suboptimal
metadata management.

Our objective is to produce an optimized binary executable while
maintaining high-level modularity and flexibility, as opposed to
relying on handwritten assembly code [64]. This paper shows
that performing efficient metadata management (to specialize
Data Plane Development Kit (DPDK) buffers) and employing code
optimizations (to minimize unnecessary memory accesses, improve
cache locality, etc.) facilitates realizing our goal of software-based
packet processing at 100-Gbps and beyond on commodity hardware.

We design, build, and evaluate a system, called PacketMill,
to optimize the performance of a popular modular framework
used for composing complex network functions on top of com-
modity hardware. PacketMill proposes a new metadata man-
agement model that realizes customized buffers when using
DPDK, rather than relying on the generic rte_mbuf structure.
Additionally, our proposed system performs a set of common &
uncommon code optimizations to (i) the source code and (ii) the

https://doi.org/10.1145/3445814.3446724
https://doi.org/10.1145/3445814.3446724

ASPLOS ’21, April 19–23, 2021, Virtual, USA Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

9
9

th
 P

e
rc

e
n

til
e

 L
a
te

n
cy

 (
µ

s
)

Throughput (Gbps)

Vanilla
PacketMill

Figure 1: PacketMill improves per-core packet processing.
Overlapped markers show that the performance can be
capped despite the increasing offered load.

intermediate representation (IR) code while also employing link-
time optimization (LTO) techniques. More specifically, PacketMill
exploits the already-known information defining a Network
Function (NF), i.e., the input processing graph, to mitigate virtual
calls, improve constant propagation & constant folding, and reorder
commonly used data structures in modular software processing
frameworks.

Our evaluation results demonstrate that PacketMill improves not
only microarchitectural metrics (i.e., it reduces cache misses) but
also application-level metrics (i.e., it decreases latency and increases
throughput) of network functions running at 100Gbps. Figure 1
demonstrates that PacketMill improves the packet processing at
100Gbps when a router forwards packets using a single core
running at 2.3GHz. More specifically, our proposed model &
techniques shift the knee of the tail latency vs. throughput curve, i.e.,
achieving lower latency even when the load is higher. PacketMill’s
improvements are not limited to single-core NFs, see §4.5.

Our main insight is that efficient packet processing at 100-Gbps
calls for holistic system optimization, specifically milling the entire
software stack to squeeze every bit of performance from the
hardware. We believe we are the first to (i) empirically examine/
optimize metadata management models for packet processing and
(ii) advocate the importance of low-level optimizations to process
packets at near-100-Gbps rates with only one core. Although
we focus on optimizing one specific framework, our results and
techniques should be useful in other performance-sensitive contexts
interested in nanosecond- and microsecond-level improvements.
We think that our tool could be a starting point for further research
on optimizing software packet processing frameworks and, more
generally, on networking applications. Moreover, our optimization
techniques can be used in combination with modern NICs.
Why now? Our work is motivated by two main recent trends:

First, the introduction of 100-Gbps network interfaces dramati-
cally decreases the time budget for processing small packets, i.e.,
6.72 ns to process a 64-B packet before receiving the next one,
making nanosecond level savings count. Some works [24, 25, 89,
90] have advocated better cache management and avoiding any
memory access to realize packet processing at multi-hundred-Gbps
link rates. Additionally, CacheDirector [24] showed that nanosecond

improvements in Last Level Cache (LLC) access latency can result
in microsecond-scale reductions in latency.

Second, data center companies such as Facebook and Google
have recently taken an active interest in profile-guided and post-
link binary optimizations [15, 33, 51, 68, 71, 75], where they
often achieve sub-ten-percent speedups. These works suggest that
utilizing the full potential of the underlying hardware, even a little
bit more, is essential for cost-effectively providing Internet services.

Observing these trends motivated us to dive a level deeper to
find the underlying inefficiencies in modular packet processing
to improve the performance of network functions running on top
of commodity hardware. We rely on the fact that modular packet
processing frameworks are similar to general-purpose software,
i.e., they contain lots of code inefficiencies and perform lots of
unnecessary memory accesses & indirect branches, which could
lead to many opportunities for optimization. Additionally, for a
given network function and workload, there are a subset of all of the
execution paths that are very frequently used, hence improvements
to these execution paths can have a large impact on performance.
Contributions. In this paper, we:
• Highlight the importance of metadata management in packet
processing (§2.2) and propose a new model, called X-Change∗, to
mitigate its inefficiencies (§3.1),

• Design & implement PacketMill∗ to optimize the performance of
packet processing frameworks via low-level optimizations (§3.2),

• Operate at >100-Gbps rates by employing code optimizations &
efficient metadata management (§4).

2 SOFTWARE PACKET PROCESSING
Many network operators/providers have shifted toward pure
software solutions that can be run on commodity off-the-shelf
(COTS) servers, aka commodity hardware, to (i) avoid proprietary
inflexible hardware middleboxes and to (ii) reduce capital expense
(CAPEX) & operating expense (OPEX). These efforts can be
classified into three main categories [14, 54]:

(1) Low-level building blocks for realizing I/O frameworks (e.g.,
DPDK [18], PF_RING ZC [70], netmap [83], and XDP [39]).

(2) Specialized virtual NF as a unified piece of software
(e.g., OVS [79], ESwitch [64], PacketShader [38], and
DPDKStat [95]).

(3) Modular frameworks for composing network functions
(e.g., Click [65], FastClick [6], VPP [27], the Snabb NFV
project [77], and BESS [36, 37]).

This paper focuses on the third category, i.e., modular network
function composition frameworks. We briefly discuss some of the
popular frameworks for packet processing.
Click introduced one of the first modular architectures for
building software routers [65]. The building blocks of Click are
called elements, which can be connected together to compose
a graph defining a complex network function. Each element
implements a simple function (e.g., packet classification, queuing,
and decrementing TTL). During the initialization phase, Click
parses the input processing graph, provided by the user, and
virtually builds the control flow graph. Later, Click executes the

∗Our source code is publicly available [23], see packetmill.io and Appendix B.

https://packetmill.io/

PacketMill: Toward Per-Core 100-Gbps Networking ASPLOS ’21, April 19–23, 2021, Virtual, USA

elements while traversing the graph for every packet. FastClick [6]
is a high-speed variant of Click that leverages different acceleration
techniques (e.g., linked-list batching) and integrates kernel-bypass
networking frameworks (i.e., DPDK and netmap) into Click.
VPP or Vector Packet Processing framework is a software router,
developed by Cisco, which focuses on L2–L4 packet processing
based on vector processing. VPP is part of Fast Data Project (FD.io),
i.e., a collaborative open-source project aimed at establishing a
high-performance I/O services framework for dynamic compute
environments, and it has teamed up with Intel to take advantage of
SIMD instructions (e.g., SSE & AVX) as much as possible.
BESS or Berkeley Extensible Software Switch (aka SoftNIC [37])
is another modular framework that was inspired by Click but
simplifies & extends Click’s design choices. BESS was designed
with an eye toward utilizing new hardware NIC features and
kernel-bypass technologies (e.g., DPDK), thereby achieving better
performance compared to Click [65] by leaving out the unused &
old implementation.

Next, we discuss two important factors imposing performance
limitations to process packets at multi-hundred-gigabit rates, i.e.,
(i) code inefficiency and (ii) patched∗ metadata management.

2.1 Code Inefficiency
Packet processing frameworks are built based on a modular
design to bring a higher degree of flexibility and to simplify the
composition of complex network services, by customizing and
connecting simple monolithic elements. These frameworks usually
adapt a general-purpose binary based on an input configuration
file, which results in many inefficiencies, such as virtual calls, dead
code, and unordered basic blocks. More specifically, the binary
dynamically creates the control flow graph based on the input file
and then executes it. All of the above frameworks utilize different
acceleration techniques, such as kernel-bypass techniques and
batch processing to achieve performance comparable to custom
hardware appliances. However, as general-purpose processors were
not optimized for packet processing, they do not provide the same
performance as specialized hardware. Moreover, the modular &
flexible design of these frameworks prevents them from achieving
the performance of the underlying hardware.
Optimization Efforts. Two relevant attempts to overcome code
inefficiencies in packet processing frameworks are:
1 Kohler et al. [48] introduced a Click optimization toolkit
to eliminate modular inefficiencies in Click and improve its
performance. This toolkit is mainly a source-to-source tool that
scans a Click-language file and employs optimization techniques,
resembling general compiler optimizations, to transform the
code into a more efficient version. More specifically, the Click
optimization toolkit reads a Click configuration file, builds a graph
of elements, analyzes & transforms the graph, and finally produces
a more optimized configuration file and/or source code. The Click
optimization toolkit includes a number of tools. The most relevant
tool to our work is click-devirtualize, which is a static class
analysis tool that devirtualizes function calls, i.e., replacing virtual

∗We use patch since packet processing frameworks have tried to adapt themselves
to work with DPDK.

function calls during graph traversal with direct calls extracted
from the graph analysis.
2 Protocol space mismatch can occur between development and
deployment phases, leading to redundant logic. Thus, Bangwen et
al. [17] proposed a tool, called NFReducer, which employs classic
compiler optimization techniques to eliminate redundant logic
from a configured NFV instance. NFReducer has been developed
using LLVM and it has utilized a symbolic execution engine
(i.e., KLEE [13]) to filter out infeasible paths of NFs. This tool
performs three main optimizations based on the NF configuration:
(i) excluding unrelated logic from NFV code; (ii) applying constant
propagation, constant folding, and dead code elimination; and (iii)
eliminating cross-NF redundancy when multiple NFs are chained.

PacketMill also employs code optimizations and is complemen-
tary to these efforts (see §3.2).

2.2 Patched Metadata Management
Packet processing usually requires additional information beyond
the raw packets (i.e., bits received from the wire). The extra
information is divided into two categories: (i) metadata and (ii)
packet annotations (aka user/application metadata). The former
contains additional details on the raw packet/buffer itself, such as
its length, timestamp, checksum, and pointers to different protocol
stacks in the packet, which is required to operate on the raw packets.
The latter is the information used during the packet processing–i.e.,
the information that has to be calculated/extracted from the packet
at one place and used in another place [65], such as VLAN ID, MPLS
label, source & destination IP addresses & ports, statistics, and
Wi-Fi association. The metadata is usually defined by the driver
and the NIC, whereas the (packet) annotations are derived and
used by the application. Next, we briefly explain the evolution of
metadata management, starting from the Linux kernel.

The Linux kernel uses sk_buff data structures, aka socket
buffers, to manage/handle network packets†. An sk_buff contains
many metadata fields (the size/number of which depends on
the protocol standards) to facilitate manipulation of packets, see
linux/skbuff.h. Each sk_buff also provides a fixed 48-B free space,
aka control buffer (cb), which can be used for application-specific
annotations [81, 97].

Since Click started as a kernel-space packet processing frame-
work, it developed a metadata class, called Packet, for handling
packets, inspired by sk_buff. Packet had pointers to different pro-
tocol headers (e.g., network layer and transport layer). Additionally,
it likewise reserved 48 B to be used by Click elements for storing
packet annotations. As 48-B space may not be enough, developers
had to carefully prevent collisions.

Modern packet processing frameworks (e.g., FastClick, BESS,
and VPP) utilize kernel-bypass libraries (e.g., DPDK and netmap) to
achieve zero-copy packet transfers and eliminate Linux kernel stack
costs. In the rest of this paper, we focus on DPDK-based packet
processing.

DPDK uses mbufs to carry network packets/buffers. Each mbuf
has three sections: (i) a rte_mbuf data structure containing the
metadata, (ii) a fixed-size headroom reserved for prepending/
appending data, and (iii) a data segment used for storing the raw

†BSD buffers are called mbufs.

https://elixir.bootlin.com/linux/latest/source/include/linux/skbuff.h

ASPLOS ’21, April 19–23, 2021, Virtual, USA Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić

packets [19]. Each rte_mbuf struct is only two cache lines∗ (i.e.,
128 B) to keep it as small as possible, leaving the management of
packet annotations to the application (i.e., the packet processing
framework). DPDK provides userspace NIC drivers, aka Poll Mode
Driver (PMD), which enables the direct interaction of an application
and the NIC. DPDK allocates mbufs (metadata + headroom +
data) in the initialization phase. Subsequently, PMD uses these
pre-allocated mbufs to receive/transmit packets at run-time. To
receive packets, PMD passes the mbuf data address & its driver-
specific descriptors to the NIC so that the NIC can DMA the
received packets and their metadata to these addresses. Later,
when the PMD detects a DMA completion via polling, PMD
copies the relevant information from the driver descriptors to
the mbuf metadata (i.e., rte_mbuf struct). To transmit packets,
PMD performs a similar operation (i.e., updating driver-specific
descriptors) before passing the mbuf data address & driver
descriptors to the NIC. Unfortunately, integrating DPDK with
packet processing frameworks causes metadata management to
become a bottleneck, thereby achieving suboptimal performance at
multi-hundred-gigabit rates. The performance degradation happens
for three reasons:

First, modern packet processing frameworks typically employ
batch processing to improve cache locality, i.e., an application
receives a batch of packets, processes them, and then asks for
another batch. Therefore, the number of packets’metadata required
at any given time is equal to the batch size (i.e., the number of
packets received from the PMD). However, DPDK uses a distinct
rte_mbuf for every packet, which reduces the probability of the
metadata data structures remaining in the cache. More specifically,
warm cache lines containing recently processed packets’ metadata
may be evicted to make room for the newly arrived packets’
metadata. An optimal solution would use a limited number of
metadata data structures (e.g., rte_mbuf) and keep them in cache.

Second, since the rte_mbuf struct does not provide enough
space for storing/keeping (packet) annotations, packet processing
frameworks have to allocate larger data structures to enable/
facilitate packet processing. Figure 2 compares the two common
ways to extend the rte_mbuf metadata, which we refer to as
“Copying” vs. “Overlaying”.
Copying. This method is mainly used by Click & FastClick. They
handpick, via copying or converting, the information useful for
packet processing from the rte_mbuf struct into their own data
structure (i.e., Packet class [26]) that contains a 48-B space for
annotations, see 1 in Figure 2. Unfortunately, this method is
inefficient because it involves two copy/conversion operations: (i)
driver descriptors to rte_mbuf struct and (ii) rte_mbuf struct to
Packet object.
Overlaying. Some packet processing frameworks (e.g., BESS)
overlay the beginning of their data structures on the rte_mbuf

and cast it to avoid copying & conversion, see 2 in Figure 2. They
insert their dynamic metadata or annotations after the rte_mbuf
struct and before the headroom. More specifically, BESS uses
the sn_buff struct (recently renamed to Packet [9]), where they
provide a 384-B space for storing the rte_mbuf struct, 64-B for
the immutable fields (e.g., packet address and socket ID), 128-B

∗The most frequently used fields are defined to be in the first cache line.

Driver Descriptor
Driver Metadata

DPDK Descriptor
rte_mbuf struct

Data (Buffer)

Headroom

Poll Mode Driver
(PMD)

DPDK Libraries

Application

Copied Descriptor
Application Metadata

Buffer Address

1

Copy and Conversion
Point and Cast

Overlayed Descriptor

Application Metadata

Buffer Address

DPDK Metadata

2

2bis

Figure 2: Common metadata management methods in
packet processing frameworks (Copying vs. Overlaying).

static/dynamic metadata fields, and 64-B space for a module’s &
driver’s internal use [8].

VPP follows a similar approach, where they use vlib_buffer_t
to store the buffers’ metadata. vlib_buffer_t is also known as
primary buffer metadata used by the vector library (vlib). VPP
overlays the beginning of its data structure with the rte_mbuf
struct, but it does not use it. Instead, it copies/converts some fields
from the DPDK data structure into the vlib_buffer_t, as it needs
to make the metadata format fit for SSE instructions, see 2bis in
Figure 2.

FastClick also supports Overlaying, which should be enabled
at compile time. It casts every rte_mbuf into a Packet object and
then (similar to BESS) inserts its annotations after it [26].

Although overlaying mitigates the cost of copying, it is still
inefficient since packet processing frameworks have to adapt their
format to the DPDK format (e.g., BESS) and/or do a transformation
(e.g., VPP), which often results in carrying unnecessary fields while
processing packets, thereby reducing cache locality.

Third, since different NFs require different information for
processing a packet, using one standard data structure to keep the
metadata & packet annotations is non-optimal, as it could spread the
required information over multiple cache lines, thereby increasing
cache occupancy and increasing the number of memory accesses
needed to process a packet. A performant design should change the
type and/or order of variables used to keep the metadata & packet
annotations based on the functionally of a given NF.

3 PACKETMILL
This section explains PacketMill, our proposed system for opti-
mizing the performance of modular software packet processing
frameworks. Our goal is to mitigate the inefficiencies discussed
in §2.1 & §2.2. To do so, PacketMill introduces a new metadata

PacketMill: Toward Per-Core 100-Gbps Networking ASPLOS ’21, April 19–23, 2021, Virtual, USA

management model, called X-Change, to enable metadata cus-
tomization while improving cache locality. Additionally, it modifies
the code based on the input configuration file – as this contains
information that assists in the compilation process. Figure 3 shows
our proposed pipeline to produce a specialized binary for a given
NF configuration, where numbered/green shapes are proposed by
us. We start by explaining the metadata management model and
then continue with our efforts to mitigate code inefficiencies.

Click
Source

Config
File

Optimized
Click

Source
Click

Binary

Merged
IR

Code

Compile
LTO

NF
Configuration

IR-Code Modifications

Source-Code Modifications

PacketMill +

Optimized
IR

Code
Specialized

Binary
Compile

Linking

Reordering
Data Structures

Configuration-based
Optimizations DPDK

Sourcexchg.o +

X-Change
API

Customizing Metadata

2

3

1

Figure 3: PacketMill Overview.

3.1 Efficient Metadata Management
§2.2 discussed the problems associated with the current ways of
managing metadata in DPDK-enabled packet processing frame-
works. Current packet processing frameworks rely on the generic
rte_mbuf to store metadata, which requires adaptation & extra
overhead/effort to process packets efficiently. PacketMill introduces
a new metadata management model (X-Change) that enables
frameworks developed on top of DPDK to exchange their cus-
tomized/specialized metadata buffers with the userspace DPDK
drivers (i.e., PMD) and to bypass rte_mbuf, thus addressing
the second problem in §2.2. Additionally, PacketMill’s metadata
management model makes it possible to use a limited number of
metadata buffers (e.g., 32) to improve cache locality and prevent
unnecessary cache evictions, thus solving the first problem in §2.2.
It aims to provide efficiency while ensuring backward compatibility
for previously developed DPDK-based applications. To achieve our
goals, we develop an Application Programming Interface (API)
within DPDK, which requires some changes to DPDK’s PMDs, see
1 in Figure 3.
Implementation. To showcase X-Change, we modified MLX5∗
PMD (used by Mellanox NICs). We add a header file (.h) and a
source file (.c) to the MLX5 source code. The header file defines
conversion functions for both receive (RX) & transmit (TX) paths
to assign/copy different metadata fields, as opposed to the current
typical DPDK implementation where PMD directly assigns the

∗Our current prototype does not support vectorized PMD, so we have disabled it
in all of our experiments, except in §4.1.

metadata to a rte_mbuf struct. Note that these functions will
eventually get inlined, as we use LTO. Listing 1 compares our
proposed approach and the default DPDK behavior with a simple
example.

/* Default DPDK */
pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);

/* X-Change */
xchg_set_vlan_tci(pkt, rte_be_to_cpu_16(cqe->vlan_info));

Listing 1: X-Change introduces conversion functions
instead of directly writing to the rte_mbuf struct. The code
shows an example for setting the VLAN TCI field in the
driver.

The source file implements the standard behavior of DPDK
(i.e., using rte_mbuf). Consequently, since DPDK compiles our
pre-implemented source file by default, X-Change enables full
backward compatibility to metedata-agnostic applications.
However, it enables developers to re-implement the conversion
functions and customize DPDK’s metadata to their needs, thereby
enabling the PMD to write the metadata directly to their applica-
tion’s data structures. Moreover, X-Change makes it possible to
easily try out (or switch between) different metadata management
models with low overhead (i.e., simply by linking to a different
object file implementing the conversion functions). Listing 2 shows
an example re-implementation of a conversion function.

/* X-Change Implementation of Default DPDK */
void
xchg_set_vlan_tci(struct xchg* pkt, uint16_t vlan_tci) {

((struct rte_mbuf*)pkt)->vlan_tci = vlan_tci;
}

/* X-Change Implementation for Custom Buffers */
void
xchg_set_vlan_tci(struct xchg* pkt, uint16_t vlan_tci) {

SET_VLAN_ANNO((Packet*)pkt, vlan_tci);
}

Listing 2: X-Change simplifies the metadata management.
The code compares the default DPDK and a custom
implementation to set the VLAN TCI field.

PacketMill’s model also proposes a new way to interact with
PMD. The default DPDK implementation asks applications to
provide an empty array of pointers in order to receive packets.
Later, PMD fills this array with the address of received packet
buffers (i.e., the metadata and the raw packet), and DPDK provides
new untouched packet buffers to the PMD to replace the cached
buffers used for the received packets. However, X-Change enables
applications to provide their own packet buffers to the PMD. By
doing so, the PMD can directly write into the application’s metadata
and “exchange” the used buffers (containing received packets) with
the newly received ones from the application. X-Change uses a
similar workflow for the TX path. After processing the received
packets, the application passes the processed buffers to the PMD.
Subsequently, the PMD copies/converts the application’s metadata
to the NIC descriptors and does a swap of the previously sent
buffers, sitting in the transmit ring, with to-be-sent buffers; thus,

ASPLOS ’21, April 19–23, 2021, Virtual, USA Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić

the application has as many empty buffers as it has sent (which can
be exchanged again in the RX path).
Summary. X-Change is an optimization to DPDK that provides
custom buffers to drivers; thus, metadata can be directly written
into the applications’ buffers rather than using an intermedi-
ate DPDK metadata (i.e., rte_mbuf). X-Change uses conversion
functions instead of direct assignment to set the metadata fields.
The X-Change implementation (i.e., the definition of different
conversion functions) is dependent on the driver’s features and
descriptors. A recent work called TinyNF, done by Pirelli et al. [80],
proposes a simple and formally verifiable driver model (for Intel
82599 NIC) that removes the need for dynamic packet metadata.
However, it prevents buffering of packets, such as switching packets
between cores, reordering packets, and stream processing, which
introduces lots of drawbacks for some network functions. In
contrast, X-Change also reduces the number ofmetadata buffers, but
without imposing those restrictions. Moreover, X-Change is more
generic (as opposed to TinyNF) since it pushes programmability into
the driver, making it possible to implement buffer exchanging, or
even TinyNF, without even re-compiling DPDK. X-Change results
in the following improvements:

• Enables applications to use their tailored metadata and to bypass
the generic rte_mbuf, thus avoiding unnecessary copy/transform
operations and cache evictions;

• Pushes down part of the application’s RX/TX loops to initialize
packet annotations into the PMD, thereby simplifying the
application’s processing path;

• Limits the amount of metadata used to the application’s
requirement (i.e., proportional to the RX burst size + the number
of packets enqueued in software), keeping metadata cache lines
warmer and making the most out of DDIO [25];

• Skips buffer allocation/release operations through DPDK buffer
pools, which are inefficient due to supporting/maintaining many
(unnecessary) features; and

• Makes it possible for the application to easily use different packet
chaining models (e.g., vector, linked list, or a combination of both)
to better fit their needs.

3.2 Optimized Code
PacketMill performs two main types of code optimizations:
(i) source-code modifications and (ii) IR code modifications. The
former embeds & modifies the source code, as early as possible,
based on the information provided by the NF configuration file.
Informing the compiler of this known information should enable
many optimizations, as compilers have become much smarter [32].
The latter exploits the LLVM toolchain to modify the final IR bitcode
produced by LTO, making it possible to perform optimizations,
as late as possible, i.e., when the whole program’s IR bitcode is
available.

3.2.1 Source Code Modifications. Our first step to produce a more
specialized binary is to perform configuration-based optimization,
which gets rid of unnecessary pointers to already-known data
structure/variables, while removing unused code. To do so, we
embed some of the already-known information about the NF into
the source code, see 2 in Figure 3. More specifically, we use

(i) the packet processing graph and (ii) constant element parameters
defined in the NF configuration file, see Listing 3.

// Elements Definition
input :: FromDPDKDevice(PORT 0, N_QUEUES 1, BURST 32);
output :: ToDPDKDevice(PORT 0, BURST 32);
// Processing Graph
input -> EtherMirror -> output

Listing 3: A Click’s NF configuration file defining a
simple forwarder that receives packets from a DPDK-
enabled NIC, swaps the Ethernet MAC addresses, and
transmits the packets. The graph contains three elements:
(i) FromDPDKDevice alias input, (ii) EtherMirror, and (iii)
ToDPDKDevice alias output, chained together sequentially.

Embedding the packet processing graph, i.e., the processing
elements and their connections, informs the compiler about the
NF’s control flow graph (CFG), resulting in better code layout. It
also makes it possible to declare the processing elements statically
in the source code, i.e., allocating them in a static .data or .bss
segment (or stack) rather than the heap∗, potentially resulting in
a less fragmented access pattern and fewer translation lookaside
buffer (TLB) misses. Moreover, using statically defined elements
and defining the CFG enables us to perform full devirtualization,
i.e., inlining the virtual calls, as opposed to click-devirtualize
that only defines the type of the function pointer rather than the
actual object reference.

Constant element parameters define the characteristics of
processing elements. For example, an element receiving packets
(e.g., FromDPDKDevice in Listing 3) should define the maximum
number of packets fetched from the I/O device (i.e., a BURST
size). Embedding these values in the source code enables the
compiler to perform constant propagation & constant folding
while removing/eliminating dead code & unrolling loops, thereby
improving cache locality.
Implementation. To benefit from the click-devirtualize
toolchain [48] and reduce the implementation overhead, we resur-
rected & adopted click-devirtualize to work with FastClick [6]
and then implemented additional optimization on top of it. These
optimizations are similar to NFVReducer [17], as both share the
same goal, i.e., removing redundant/unnecessary code. However,
NFVReducer focuses on optimizing the performance of popular
Intrusion Detection Systems (IDSs), whereas our techniques are
applicable to any kind of NFs composed by modular packet
processing frameworks. Despite these differences, PacketMill can
potentially be combined with NFVReducer to filter out infeasible
paths via symbolic execution. Finally, it is important to highlight
that our proposed optimizations are not limited to Click-based
frameworks; they could be useful for other software packet
processing frameworks.

3.2.2 Intermediate Code Modifications. Modern compilers (e.g.,
gcc and clang/LLVM) support LTO [30, 31, 57], making it possible
to perform inter-procedural optimizations during the linking phase
where the whole program is visible to the linker/optimizer. When

∗We define the element objects in the source code and re-initialize them properly
after executing the binary.

PacketMill: Toward Per-Core 100-Gbps Networking ASPLOS ’21, April 19–23, 2021, Virtual, USA

LTO is enabled, compilers typically produce IR code rather than
regular object files (containing machine code), so that whole-
program analysis and optimization can be done during linking.
LTO can realize better code layout and smaller binaries, as it
is easier for the compiler to collect/use the information about
symbols, variables, functions, and the callgraph to eliminate dead
code and reorder functions. Additionally, since the whole program
is available, developers can potentially implement customized
optimization passes to optimize the executable even further.

PacketMill exploits LLVM’s LTO to address the third problem
in §2.2, i.e., lack of per-NF data structure speciality. Our goal is to
specialize/customize the one standard metadata used in a packet
processing framework for a given NF. To do so, we develop an
optimization pass (via LLVM) that reorders the variables/fields of
a metadata structure based on the access pattern of a given NF,
see 3 in Figure 3. By doing so, the more frequently accessed
fields will be placed at the beginning of a data structure (i.e., the
first cache line(s)), prevent extra accesses to multiple cache lines.
More specifically, our pass finds the references (done by the NF) to
different variables/fields of a metadata structure within a module
and then sorts these variables based on the estimated∗ number of
accesses to the variables. Later, the pass fixes these references so
that LLVM’s GetElementPtrInst (GEPI)† instructions perform the
correct accesses. Listing 4 shows an example LLVM IR bitcode for
accessing a variable of a C++ object. The current version of our
pass only sorts the variables, but one could also remove unused
variables/fields. Additionally, it is possible to extend our pass to
consider other sorting criteria (e.g., order of access), which remains
as our future work. To examine the full potential of LTO, we extend
DPDK’s build system to work with clang and produce LLVM IR
bitcode‡. It is worth mentioning that using LTO increases the
compilation time, which could be reduced by using a scalable
variant of LTO (e.g., ThinLTO [58]).

1 /* A Simple Metadata Class */
2 class Packet {
3 public:
4 long unusedlong;
5 void *unusedptr;
6 void *data;
7 char unusedchar;
8 int length; // <-- accessed
9 };
10 /* Access Example */
11 Packet p;
12 p.length = 100;

; Class Declaration (line 2-9)
%class.Packet = type { i64, i8*, i8*, i8, i32 }
; Object Definition + Initialization (line 11-12)
%1 = alloca %class.Packet, align 8 ; Allocate p
%2 = getelementptr inbounds %class.Packet,

%class.Packet* %1, i32 0, i32 4 ; Get addr. of length
store i32 100, i32* %2, align 4 ; Store 100

Listing 4: Accessing a metadata field in LLVM IR bitcode
(bottom). The top shows the C++ version of the code.

Challenges. While some compilers (e.g., Rust) support structure
reordering [82], C & C++ compilers are forbidden to reorder

∗The real number of accesses depends on the received workload.
†It calculates the address of a sub-element of an aggregate data structure.
‡Note that DPDK currently only supports LTO for gcc and icc that produce

fat-lto-objects containing both machine and IR codes.

data structures (e.g., struct or class) [74], which makes reorder-
ing variables/fields of a data structure at IR level challenging.
When compilers make some assumptions about a data struc-
ture’s order [72–74], reordering cannot be done for any data
structures without careful consideration. Particularly, it requires
deep knowledge of the workflow of the code and the relationship
between different data structures. For instance, reordering the
data structures that exchange data with hardware could break the
program’s correctness. Two common scenarios where this problem
can occur are: 1 when a piece of code relies on the order of
the variables in a data structure (e.g., (i) using vector instruction
to initialize or process a data structure and (ii) interacting with
hardware) and 2 when dynamically linked libraries access the
data structure. Note that the references in statically linked libraries
can be fixed (repaired) if we apply the reordering when the
whole program’s IR bitcode is available. Moreover, in case of
aggregation/composition, it is important to fix the references to
the container class/struct. Our pass currently does not perform any
verification, but it is possible to verify the correctness of the NF
when reordering the metadata, see §5.
Implementation. To mitigate these challenges, our pass reorders
the metadata structure (i.e., Packet in FastClick) only when the
metadata management model is set to use the Copying model.
However, it is possible to apply a similar approach for the Over-
laying model by extending our pass to reorder rte_mbuf & PMD’s
descriptors. To fix the references, our pass takes into account refer-
ences done by class.WritablePacket and class.PacketBatch,
which are dependent classes of class.Packet. We apply our pass
via LLVM’s opt on the pre code generation output of LTO (i.e.,
click.0.5.precodegen.bc) [56]. However, it would be possible
to develop a custom LTO pass and then extend clang’s C++ frontend
to define a keyword for our proposed optimization.

To the best of our knowledge, PINstruct [46] is the only published
work that has considered reordering data structures for a C program.
They traced memory accesses via MemPin (a tool that uses the Intel
Pin tool [60]) and reordered the OpenMPI data structures manually.
However, they neither automated the data structure reordering nor
evaluated its benefits.

4 EVALUATION
To better understand each optimization done by PacketMill, this
section discusses them individually and then evaluates their impact
on microarchitectural & application-level metrics. Later, we apply
all of the optimizations together and demonstrate their combined
impact.
NF configurations. We focus on five network functions: (i) a
simple forwarder, (ii) a router, (iii) an IDS followed by the router, (iv)
a Network Address Translation (NAT), and (v) a synthetic memory-
& compute-intensive NF, check Appendix A for details. The simple
forwarder & the router represents those scenarios where a network
function is relatively I/O bound rather than CPU-bound, whereas
the IDS+router, the NAT, and the synthetic NF demonstrate more
sophisticated network functions that require more processing.
Testbed. We use a testbed with two (Skylake) servers equipped
with Mellanox ConnectX-5 VPI and interconnected via a 100-Gbps
link. One server acts as a packet generator, and generates/sinks

ASPLOS ’21, April 19–23, 2021, Virtual, USA Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić

packets and measures the end-to-end latency & throughput, while
the other server acts as a Device Under Test (DUT) and processes
packets based on the given input NF configuration file. The packet
generator and the DUT are equipped with 2×8-core Xeon Gold
6134@ 3.2GHz and 2×18-core Xeon Gold 6140@ 2.3GHz (nominal
frequency), respectively. Both servers run Ubuntu 18.04.4 (Linux
kernel 4.15.0-112). We use perf to measure microarchitectural
metrics. Additionally, we isolate the DUT ’s CPU socket on which
we run the experiment to increase our measurement accuracy.
We use LLVM 10.0.0 (trunk 375507) to compile and optimize
FastClick [6] and DPDK (v20.02). To prevent Intel Data Direct
I/O (DDIO) from becoming a bottleneck in our measurements,
we change IIO LLC WAYS’ register’s value to 0x7F8 (i.e., 8 set
bits) [25]. Additionally, we set the uncore frequency to 2.4GHz (i.e.,
the maximum frequency in our testbed) to minimize DRAM and
LLC latency [35, 88]. We use the Copying model (i.e., the default
metadata management model in FastClick) unless stated otherwise.
We use the Network Performance Framework (NPF) tool [93] to
facilitate reproducibility of our tests.
Generated traffic. We use two types of traffic in our evaluation:
(i) a 28-min campus trace and (ii) synthetically generated traces
with fixed-size packets (see §4.3 and §4.6). The campus trace which
has 799 M packets with an average size of 981 B. In each run, we
replay the first two million packets of the trace 25 times. We repeat
each test five times and report the median values when there are
no error bars. Note that the achieved throughput is proportional to
processed packets packets per second (pps) × packet size. Therefore,
replaying a trace with smaller average packet size could result in
lower throughput, but the same improvements (i.e., more pps).

4.1 Do PacketMill’s Code Optimizations
Improve Packet Processing at 100 Gbps?

We evaluate the router’s performance when processing the repeated
campus trace at different clock frequencies. We change the
processor’s clock frequency of the DUT to assess the impact of
PacketMill on different classes of processors, i.e., more cores with
lower frequency vs. fewer cores with higher frequency. Additionally,
reducing the clock frequency somewhat emulates the situation
where the processor receives traffic at a higher rate (than the
injected rate, e.g., >100Gbps) or when the NF is more CPU-bound.
Configuration-based optimizations. Figure 4 & Table 1 show
the results of our experiments when applying different source-
code optimization techniques: (i) devirtualization (done by click-
devirtualize), (ii) constant embedding, and (iii) static graph
(i.e., defining the elements statically and their connections in the
source code). These results demonstrate that all techniques & their
combination have positive impact on the number of cache misses,
throughput, and median latency. More specifically, using a static
graph rather than a dynamic one improves throughput by up to
20% (or 14.8Gbps) and dramatically reduces the LLC misses (up
to ∼300×), see the second row of Table 1. Note that 10-Gbps-
throughput improvements are significant, as they would translate
to supporting more 10-Gbps links, thus reducing the number of
NFs in the network.
LTO & structure reordering. Applying LTO and reordering
Packet class of FastClick for the router configuration (running

 0

 20

 40

 60

 80

 100

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

T
h

ro
u

g
h

p
u

t
(G

b
p

s
) Vanilla

Devirtualize
Constant Embedding
Static Graph (elements + connections)
All

All(f) = 2.903 + 28.65f (R2=0.9996)

Graph(f) = 2.594 + 28.06f (R2=0.9996)

Constant(f) = 7.631 + 23.55f (R2=0.9981)

Devirt(f) = 7.486 + 23.38f (R2=0.998)

Vanilla(f) = 6.854 + 22.50f (R2=0.998)

 0

 100

 200

 300

 400

 500

 600

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

M
e

d
ia

n
 L

a
te

n
cy

 (
µ

s
)

Processor Frequency (GHz)

All(f) = 521.353 - 212.234f + 39.560f2 (R2=0.9655)

Graph(f) = 539.193 - 224.627f + 41.809f2 (R2=0.9651)

Constant(f) = 821.29 - 334.06f + 57.53f2 (R2=0.9925)

Devirt(f) = 831.212 - 341.139f + 58.973f2 (R2=0.993)

Vanilla(f) = 874.522 - 367.700f + 63.707f2 (R2=0.9655)

Figure 4: Exploiting the information in the router
configuration improves throughput and median latency.
The server is processing packets with one core running at
different frequencies (f in GHz).

Table 1: PacketMill’s code optimizations improve
microarchitectural metrics by up to 300× (i.e., reducing
the number of LLC load misses). We measure cache misses
& IPC with perf every 100ms and report average measured
during the experiment, performed at 3GHz.

Metric
Scenario Vanilla Devirtualization Constant Static AllEmbedding Graph

LLC kilo loads 1097 1159 1176 24 26
LLC kilo load-misses 803 841 845 0.98 2.58
instructions per cycle (IPC) 2.24 2.30 2.28 2.58 2.59
Million packets per second (Mpps) 8.66 9.05 9.12 10.16 10.41

at 3GHz) increases throughput and decreases median latency, at no
additional cost, by up to 5.4Gbps (6.8%) and 13 µs (∼3.8%), respec-
tively. Reordering contributes to one third of the improvements.
As mentioned earlier, these sub-ten-percent improvements should
not be ignored, as these are essential for cost effectively deploying
Internet services, facilitating service providersmeeting their Service
Level Objectives (SLOs). Note that other frequencies also result in
similar improvements.

PacketMill: Toward Per-Core 100-Gbps Networking ASPLOS ’21, April 19–23, 2021, Virtual, USA

4.2 How Effective is PacketMill’s Model
(X-Change) Compared to the Existing
Metadata Management Models?

We use FastClick to compare all three methods (i.e., Copying,
Overlaying, and X-Change) for a simple forwarding configuration.
We disable PacketMill’s code optimizations to examine the impact
of metadata management alone. We enable LTO in all scenarios
to have the best achievable performance of each model. Note that
disabling LTO could underestimate the benefits of X-Change, due to
not inlined conversion calls. However, DPDK could be recompiled
with X-Change’s source file included as a header file to achieve a
similar result without LTO.

Figure 5a demonstrates that PacketMill’s metadata management
model (X-Change) improves throughput significantly by mitigating
inefficiencies of the other two models. These results show that
increasing the processor’s frequency does not improve the through-
put of X-Change & Overlaying models after a certain frequency (i.e.,
2.2GHz & 2.6GHz, respectively), as there may be other bottlenecks
in the system (e.g., using one RX/TX queue or other NIC-related
issues [42]). To investigate the full potential of X-Change, we set up
a 200-Gbps testbed, where two servers generate traffic toward the
DUT equipped with two NICs (connected to the same CPU socket).
DUT forwards the received packets from the two generators via
only one core.

 0

 20

 40

 60

 80

 100

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Processor Frequency (GHz)

Copying
Overlaying
X-Change

(a) One NIC via one core.

 0

 20

 40

 60

 80

 100

 120

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

T
o
ta

l T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Processor Frequency (GHz)

Copying
Overlaying
X-Change

(b) Two NICs via one core.

Figure 5: X-Change makes it possible to forward packets at
>100-Gbps rates. The experiments with two NICs reports the
sum of throughput achieved by one core.

Figure 5b shows that X-Change is the only metadata manage-
ment model which enables a single core to forward packets at
>100Gbps. Additionally, both Figure 5a and 5b show that Over-
laying model performs better than Copying, as Copying involves
double copy/transform operations. Moreover, our measurements
show that X-Change significantly reduces the number of LLC load
misses; for instance, the X-Change-enabled forwarder running at
3GHz only results in ∼200 misses per 100ms, whereas Copying and
Overlaying cause ∼3000 and ∼6000 misses per 100ms, respectively .
We also observed that the performance of Copying+Overlaying
method (used by VPP) is similar to Copying model. In summary,
an inefficient metadata management model prevents the system
from processing packets at higher rate, i.e., degrades throughput
by >10Gbps (i.e., typical data center link speed).

4.3 How does the Workload/Trace Affect
PacketMill?

We have performed most of our experiments with the campus trace,
as we thought using fixed-size packets could increase the effect of
measurement/layout bias. Additionally, we reported throughput in
bytes per second since we were targeting 100-Gbps networking. In
this section, we use FastClick to generate fixed-size packets to show
that PacketMill’s improvements are not trace-dependent. Figure 6
reports the throughput in both bytes per second and packets
per second (PPS) for a router running at 2.3GHz while receiving
fixed-size packets. It shows that PacketMill’s improvements are
consistent for different packet sizes, as long as there are no other
bottlenecks in the system. Note that increasing the packet size after
a certain point (e.g., ∼800 B) would reduce the number of processed
packets per second, due to the PCIe bandwidth [25, 67].

 0

 20

 40

 60

 80

 100

 64 192 320 448 576 704 832 960 1088 1216 1344 1472

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Vanilla (Copying)
PacketMill (X-Change + Source-Code Optimizations)

 0
 3
 6
 9

 12

 64 192 320 448 576 704 832 960 1088 1216 1344 1472

P
P

S
 (

M
ill

io
n

)

Packet Size (Bytes)

Figure 6: For a router running at 2.3GHz, PacketMill
improves the number of processed packets per second for
different packet sizes.

4.4 How about more Sophisticated Network
Functions?

So far, we have shown the individual (§4.2, §4.2) and combined∗
benefits (see Figure 1 and §4.3) of using different optimizations
proposed by PacketMill on the router and the simple forwarder
configuration. We showed that using PacketMill improves the

∗Combined impact does not take into account data structure reordering.

ASPLOS ’21, April 19–23, 2021, Virtual, USA Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić

0
4

8
12

16
20

 0
 4

 8
 12

 16

 10

 20

 30

 40

 50

 60

Compute-Intensiveness
Number of Generated pseudo-random Numbers

Memory Footprint
Size of the Accessed Memory (MB)

T
h

ro
u

g
h

p
u
t

Im
p

ro
ve

m
e

n
ts

 (
%

)

 0

 15

 30

 45

 60

V
a
n
ill

a
 T

h
ro

u
g

h
p

u
t

(G
b

p
s)

(a) 1 access per packet (N = 1).

0
4

8
12

16
20

 0
 4

 8
 12

 16

 10

 20

 30

 40

 50

 60

Compute-Intensiveness
Number of Generated pseudo-random Numbers

Memory Footprint
Size of the Accessed Memory (MB)

T
h

ro
u

g
h

p
u
t

Im
p

ro
ve

m
e

n
ts

 (
%

)

 0

 15

 30

 45

 60

V
a
n
ill

a
 T

h
ro

u
g

h
p

u
t

(G
b

p
s)

(b) 5 accesses per packet (N = 5).

Figure 7: PacketMill is effective for sophisticated network functions. Left and right figures show synthetic NFs that perform
one and five memory accesses per packet, respectively. The improvements reduces when memory footprint, compute-
intensiveness, and/or number of accesses per packet of an NF increases. A WorkPackage+router is running at 2.3GHz.

 0

 20

 40

 60

 80

 100

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Vanilla (Copying)
PacketMill (X-Change + Source-Code Optimizations)

 0

 200

 400

 600

 800

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

M
e

d
ia

n
 L

a
te

n
cy

 (
µ

s
)

Processor Frequency (GHz)

Figure 8: PacketMill improves the performance of a
more compute-intensive NF (i.e., an IDS+router running at
2.3GHz), by up to 20% throughput and 17% latency.

system’s performance when performing relatively lightweight
processing. This section investigates the impact of PacketMill on
more sophisticated NFs. We start by applying PacketMill to an IDS
followed by a router, which requires more processing to check the
correctness of TCP, UDP, and ICMP headers and encapsulating
the packet in a VLAN header. Figure 8 shows the throughput
& median latency vs. frequency curve for the IDS+router. These
results demonstrate that PacketMill is also beneficial for more CPU-
demanding NFs.

To generalize this notion to more sophisticated NFs, we use
FastClick’s WorkPackage [3] element to emulate the behavior of
more memory- and compute-intensive functions. This element
generates 𝑁 (1 and 5 in our configuration) random accesses (per-
packet) to a static memory of 𝑆 MB. Additionally, it generates𝑊
pseudo-random numbers to simulate more CPU-bound workloads.
Figures 7a and 7b show the 3D colormaps of improvements for
different values of𝑊 and 𝑆 , when a core is performing different

number of random accesses per packet (i.e., 𝑁). In these figures, 𝑋
& 𝑌 axes represent𝑊 & 𝑆 while the 𝑍 axis & colormap show the
PacketMill’s improvements & Vanilla’s throughput, respectively.
While it is difficult to come up with a unified benchmark that
succinctly captures a wide variety of applications, these results
demonstrates that PacketMill is beneficial for a wide range of
CPU- and memory-bound NFs. PacketMill’s gain reduces when
the application becomes less I/O intensive; in other words when
its throughput decreases, i.e., the lighter the color, the lower
the Z. Additionally, comparing Figures 7a and 7b (i.e., 𝑁 = 1
vs. 𝑁 = 5) shows that increasing the number of accesses per
packet amplifies the impact of increasing memory intensiveness,
reducing Vanilla’s throughput and PacketMill’s improvements. The
key behind these gains is PacketMill’s highly efficient use of the
underlying hardware. It is worth mentioning that the results of this
section could underestimate PacketMill’s improvements for real
NFs, as the emulated NFs presented in this section do not contain a
complicated processing graph (as opposed to real NF chains).
Impact of memory intensiveness. To have a more detailed
understanding of memory intensiveness, we zoom into a slice of
Figure 7a where an NF performs a single memory access per packet
(𝑁 = 1) and generates four random numbers (𝑊 = 4), i.e., doing
light-weight processing∗. Figure 9 shows the impact of changing
memory footprint on throughput, LLC load misses, and LLC kilo
loads. Comparing the three sub-figures, we can make the following
observations:

(1) We notice that Vanilla’s throughput is inversely proportional
to Vanilla’s LLC loads–PacketMill also shows a similar
behavior.

(2) The number of LLC loads gets saturated when the size of the
accessed memory is increased to ∼3MB, which suggests the
threshold where almost all of the memory accesses are being
done through LLC, see the bottom sub-figure in Figure 9.

∗This specific slice can represent an emulated simple Key-Value Store (KVS) with
variable memory footprints.

PacketMill: Toward Per-Core 100-Gbps Networking ASPLOS ’21, April 19–23, 2021, Virtual, USA

(3) The number of LLC loads is never zero, even for accessed
memory sizes of smaller than 1MB. This observation implies
that the application is still not L1/L2 bound, as there is always
a considerable amount of LLC accesses, most probably due
to the application footprint and DDIO [25].

(4) The percentage of LLC load misses increases after ∼14MB,
highlighting the point where the application starts accessing
the main memory (i.e., DRAM), see the middle sub-figure in
Figure 9. However, the performance does not get substan-
tially affected, as significant number of LLC loads are still
hitting LLC (i.e., ∼90% hits).

(5) PacketMill results in more LLC loads and LLC load misses
per 100ms, as PacketMill is processing more packets.

(6) PacketMill’s improvements are consistent for this specific
NF that performs one memory access per packet.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Vanilla (Copying)
PacketMill (X-Change + Source-Code Optimizations)

 0

 5

 10

 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

L
L
C

 L
o

a
d

 M
is

se
s

(%
)

Out of LLC Threshold (14 MB)

DRAMLLC

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

L
L
C

 L
o

a
d

s
(k

)

Memory Footprint
Size of the Accessed Memory (MB)

All Inside LLC Threshold (3 MB)

LLC DRAM

Figure 9: Increasing memory intensiveness results in larger
number of LLC loads that is inversely proportional to the
performance of the synthetic NF. From top to bottom, the
figures show throughput, LLC load misses, and LLC loads,
respectively.

4.5 Is PacketMill Useful for Multicore Network
Functions?

The evaluation mainly focused on showing the single-core perfor-
mance to highlight the gains achieved by our approach. Figure 10
shows that applying PacketMill to multicore NFs is also beneficial;
in this case, for a NAT with different numbers of cores∗. These
results demonstrate that the benefits of applying PacketMill to
multicore NFs is comparable to the single-core improvements
shown in Figure 7.

∗We use RSS to distribute packet among different cores.

 0

 20

 40

 60

 80

 100

 1 2 3 4

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Number of Cores

Vanilla (Copying)
PacketMill (X-Change + Source-Code Optimizations)

Figure 10: PacketMill also improves the performance of
multicore NFs. A NAT is running at 2.3GHz.

4.6 How about state-of-the-art Packet
Processing Frameworks?

A fair comparison between PacketMill and state-of-the-art packet
processing frameworks (e.g., BESS [36, 37] & VPP [2, 27]) requires
(i) developing a high-performance NF in pure DPDK, (ii) modifying
those other frameworks to enable the case for source-to-source
optimizations & LLVM pass that reorders metadata, and (ii) devising
scenarios/experiments to avoid any incorrect conclusions, which
is beyond the scope of this paper (as done by [102] previously
in a separate research publication). However, we have performed
a simple comparison to, specifically, show the full potential of
X-Change. This section compares the performance of a simple
forwarding application running via FastClick, PacketMill, DPDK,
DPDK+X-Change, BESS, and VPP.

For the DPDK+X-Change case, we developed a sample
application, called l2fwd-xchg, for DPDK to support X-Change,
which is a modified version of the L2 forwarding sample application
(l2fwd). In this example, the metadata is reduced to two simple
fields (i.e., the buffer address and packet length) instead of the
128-B rte_mbuf. This application† can also serve as a template
for developers to write their own applications, benefiting from
X-Change. Note that since X-Change currently does not support
vectorized PMD, we disabled it for all experiments. However, this
should not affect the improvement trend, as a full vectorized
implementation of X-Change would still result in the same benefits,
addressing the inefficiencies of current metadata management
models. Extending X-Change to support vectorized PMD remains
as our future work.

Figure 11 shows the results of our experiments when different
frameworks/applications are forwarding fixed-size packets while a
single core is running at 1.2GHz. Increasing the frequency would
eventually result in the same behavior as Figure 5a, as these
applications perform simple forwarding operations, hiding the full
potential of X-Change due to other bottlenecks (e.g., using one
RX/TX queues).
FastClick vs. DPDK. Figure 11a compares the performance of
DPDK-based forwarding applications with default FastClick (i.e., it
uses Copying model) and PacketMill (i.e., it uses X-Change). These
results shows that PacketMill enables FastClick to process packets

†It is available at � tbarbette/xchange/examples/l2fwd-xchg

https://github.com/tbarbette/xchange/tree/main/examples/l2fwd-xchg

ASPLOS ’21, April 19–23, 2021, Virtual, USA Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Packet Size (Bytes)

FastClick (Copying)
l2fwd
PacketMill (X-Change)
l2fwd-xchg

(a) X-Change improves the performance of twoDPDK-based applications (i.e.,
FastClick and l2fwd application). Moreover, PacketMill enables FastClick to
process packets faster than a simple forwarding application (i.e.,l2fwd) with
limited metadata.

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Packet Size (Bytes)

VPP
FastClick (Copying)
FastClick-Light (Overlaying)
BESS
PacketMill (X-Change)

(b) PacketMill performs better than other packet processing frameworks.

Figure 11: Comparison of packet processing frameworks
forwarding fixed-size packets with a single core.

faster than l2fwd that is a simple forwarding application with
minimal features & footprint and limited metadata. Additionally,
it shows that applying X-Change to even simple DPDK-based
applications could result in significant improvements, as l2fwd-
xchg is forwarding packets up to ∼59% faster than l2fwd.
FastClick vs. BESS vs. VPP. Figure 11b compares the achieved
throughput of different modular packet processing frameworks
when they only perform simple forwarding. These results show
that PacketMill achieves the best overall performance. Additionally,
both VPP and default FastClick achieve similar performance, as
both of them use the Copying model that performs an extra copying.
Moreover, these results show that FastClick can achieve similar
throughput as BESS after disabling extra features and using the
Overlaying model .

5 FREQUENTLY ASKED QUESTIONS
Why should I use PacketMill instead of PGO? Specializing a
binary for a specific workload via profiling + re-compiling, aka
profile-guided optimization (PGO), has recently gained a lot of
interest, due to modular programming language (PL) tools (e.g.,
LLVM toolchain) and convenient/accessible profiling tools (e.g.,
perf). For example, Bolt [75] and Propeller [33] have shown that
exploiting dynamic program control flow information, extracted
via profiling, could improve large-scale applications’ performance.
However, these techniques work best when there exists a defined
workload, rather than different and varying workloads.

Software packet processing frameworks typically have to
process various kinds of packets. For instance, a router should
handle ARP requests while forwarding different versions/types
of IP packets, which requires different execution paths, thereby
reducing cache locality. To improve locality, Metron [43] exploited
modern networking equipment to distribute traffic classes to
different cores–i.e., each core operates on a specific workload
independently. Although Metron defines a per-core workload,
it cannot substantially benefit from PGO∗ since it relies on one
codebase for all execution paths (or traffic classes). PacketMill could
be extended to duplicate the necessary code per-traffic class and
benefit from PGO, which remains as our future work.
Does PacketMill affect the correctness? Premature optimiza-
tions could be the root of all evil [47], as it may result in unexpected
bugs. While our goal was to emphasize the impact of low-level
optimizations for 100-Gbps packet processing, deploying optimized
network functions should be accompanied by a verification stage
to formally prove the correctness of the optimized NF and avoid
bugs. Since PacketMill relies on optimizing the whole IR code,
it is possible to integrate our system with a IR-based symbolic
execution engine (e.g., KLEE [13]), as done by VigNAT [100] and
Vigor [99]. Furthermore, using a symbolic execution engine could
facilitate further optimizations as demonstrated in NFReducer [17]
and Castan [78].
Why should I trust your measurements? Mytkowicz et
al. [66] showed that measurement bias is a common phenomenon
in evaluating computer systems. We have taken the following
measures to avoid drawing incorrect conclusions. 1 We use NPF
to perform our experiments to ensure testbed consistency– as it
clones/compiles repositories, sets up/configures the testbed, and
collects measurements. Additionally, it randomizes the environment
variables in each run to mitigate the measurement bias due to
stack alignment. 2 We randomize the location where the binary is
loaded for each run of the experiment using Address Space Layout
Randomization (ASLR). 3 We use different NF configurations and
various traces to broaden our evaluation space. The best approach
to mitigate measurement bias is to use/develop tools, such as
STABILIZER [16].
Is PacketMill applicable to other frameworks? Although we
have designed PacketMill with an eye toward optimizing click-
based packet processing, our optimizations are not limited to
Click, as the code inefficiencies (e.g., unembedded graph and
parameters) are also present in other packet processing frameworks
such as BESS and VPP. Moreover, PacketMill’s X-Change can be
easily adapted to improve the performance of other frameworks
since it modifies DPDK userspace drivers, making it a common
optimization for DPDK-based frameworks. As our target was to
achieve 100-Gbps per core, we modified the MLX5 driver used by
Mellanox NICs. However, X-Change is applicable to other drivers,
as other (e.g., Intel) drivers are implemented similarly and have the
same inefficiencies. Moreover, our techniques/optimizations could
be combined with other existing middlebox optimizations such as
Metron [43], see Appendix A.
Would PacketMill still be relevant given current technology
trends? While many try to exploit recent accelerators to improve

∗See PacketMill’s public repository for more information, see Appendix B.

https://github.com/aliireza/packetmill/tree/master/experiments#profile-guided-optimization-pgo--bolt-binary-optimizer

PacketMill: Toward Per-Core 100-Gbps Networking ASPLOS ’21, April 19–23, 2021, Virtual, USA

packet processing, we think our approach would still be relevant for
two reasons: (i) current accelerators (e.g., programmable switches &
NICs) have many limitations, which force applications to perform
all stateful processing in the commodity hardware, and (ii) our
research shows that performing holistic optimizations makes it
possible to achieve performance similar to accelerators while still
benefiting from the flexibility of commodity hardware. Moreover,
we believe PacketMill optimizations become evenmore critical with
increasing link speeds (i.e., 200 and 400Gbps).
What are future directions for PacketMill? PacketMill’s use
of LTO and access to the whole program’s IR facilitates application
of additional techniques to improve/evaluate the performance of
software packet processing frameworks, such as: llvm-mca [10]
for performance estimation, IR-based superoptimizers [62] (e.g.,
Souper [34, 84]), and/or customized code generation/instruction
scheduling [59]. Additionally, it is possible to extend our code
optimizations with new passes, e.g., performing liveness analysis to
overlay the metadata that is not alive at the same processing stage.
Examining these techniques remains as future work.

6 RELATEDWORKS
In addition to the works discussed throughout the paper, the
work on NFV performance acceleration can be classified into
three categories: 1 relies on hardware accelerators to improve
processing speed by offloading (part of) packet processing into an
FPGA, GPU, or modern NIC [20, 28, 45, 52, 53, 69, 87, 96, 98, 101,
104, 105]; 2 focuses on NFV execution models and tries to improve
the performance of either the pipeline/parallelism model [43,
55, 61, 86, 103] or run-to-completion (RTC) model [37, 76]; and
3 improves the performance of NFV by reducing/eliminating
redundant operations and/or merging similar packet processing
elements into (one) consolidated optimized equivalent [1, 12, 40,
44, 55, 85]. The second category also includes efforts toward better
scheduling & load balancing [4, 5, 7, 41, 50, 94] or more efficient
I/O [24, 25]. Our work is orthogonal and complementary to these.

7 CONCLUSION
Despite the availability of 100- & 200-Gbps interfaces, networked
systems are generally unable to operate at these rates, due to
both software and hardware limitations. PacketMill addresses some
of these software limitations in packet processing by mitigating
code inefficiencies & improving the metadata management. Our
goal was to highlight the importance of low-level optimizations
in order to utilize the full potential of commodity hardware. Our
main takeaway is that efficient packet processing at multi-hundred-
gigabit rates calls for holistic system optimizations, i.e., milling the
whole solution/software stack to squeeze every bit of performance
from the available hardware. We hope our work motivates the
system community to pay extra attention to multi-hundred-gigabit
networking.

ACKNOWLEDGMENTS
Wewould like to thank our shepherd, JacobNelson, for his insightful
suggestions; the anonymous reviewers for their valuable comments;
the anonymous artifact evaluators for their effort to review our
artifact; and Voravit Tanyingyong for providing feedback on the

paper. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation. The work was also funded
by the Swedish Foundation for Strategic Research (SSF). This project
has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 770889).

A NETWORK FUNCTION CONFIGURATIONS
This section explains the details of NF configurations used in the
evaluation section (§4).

A.1 Simpler Forwarder
The simpler forwarder receives packets from DPDK, rewrites the
Ethernet MAC addresses via EtherRewrite element, and transmits
them.

A.2 Router
The router configuration is the standard Click router, compliant
with IP routing standards[65]. The processing graph produced by
this configuration exhibits multiple, more complex paths. Thewhole
IP header is loaded in memory, as the routing element (with only
one rule per port) does a lookup for each destination IP address.
We do not consider the impact of more rules, as they could be
potentially offloaded to the NIC [43].

A.3 NAT, IDS, and VLAN
All these configurations are optional supplements for the two
previous configurations (i.e., the simple forwarder and the router).
The NAT is a standard Network Address and Port Translation
(NAPT) that rewrites source IP addresses of outgoing packets. The
NAT configuration is stateful and it uses the DPDK Cuckoo hash
table, resulting in more lookups and higher memory usage. The
IDS checks the correctness of TCP, UDP, and ICMP headers, except
for the checksum that can be verified in hardware. The VLAN
supplement eventually encapsulates the packet in a VLAN header.

A.4 WorkPackage
This configuration uses WorkPackage element that is a purely
synthetic element built for microbenchmarking [3]. It generates
𝑁 random accesses to a static memory of 𝑆 MB. Additionally, it
generates𝑊 pseudo-random numbers to artificially emulate more
CPU-bound workloads. The WorkPackage element enables us to
study the impact of our optimizations onmore memory- & compute-
intensive configurations. The WorkPackage is also supplementary
to the base configurations. In our tests, we use it along with the
forwarding configuration.

B ARTIFACT APPENDIX
B.1 Abstract
PacketMill is a system that optimizes the performance of network
functions via holistic inter-stack optimizations. More specifically,
PacketMill provides a new metadata management model, called
X-Change, enabling the packet processing frameworks to pro-
vide their custom buffer to DPDK and fully bypass rte_mbuf.

ASPLOS ’21, April 19–23, 2021, Virtual, USA Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić

Additionally, PacketMill performs a set of source-code & IR-code
optimizations.

Our paper’s artifact contains the source code, the experimental
workflow, and additional information to (i) set up PacketMill & its
testbed, (ii) perform some of the experiments presented in the paper,
and (iii) validates the reusability & effectiveness of PacketMill.

B.2 Artifact check-list (meta-information)
• Program: FastClick (PacketMill branch), DPDK (with X-Change
modifications), and Network Performance Framework (NPF).

• Compilation: LLVM Toolchain and Clang (10.0).
• Hardware: Mellanox ConnectX-5 (Ethernet or VPI in Ethernet
mode) and Intel Xeon processors.

• Metrics: Throughput and Latency.
• Output: An optimized click binary and its measured performance
while receiving traffic.

• How much disk space required (approximately)?: ≈20GB.
• How much time is needed to prepare workflow (approxi-
mately)?: ≈1 hour.

• Howmuch time is needed to complete experiments (approx-
imately)?: ≈1 day.

• Publicly available?: Code, measured results, and experiments are
publicly available. The only unpublished material is our campus
trace (due to GDPR).

• Code licenses (if publicly available)?: We have three reposito-
ries: (i) PacketMill repo has MIT License, (ii) X-Change uses the
same license as DPDK (i.e., BSD), and (iii) FastClick (PacketMill
branch) uses the same license as Click/FastClick (i.e., MIT license).

• Workflow framework used?: We use Network Performance
Framework (NPF) [93] to clone/compile repositories, set up/con-
figure the testbed, and collect measured results.

• Archived (provide DOI)?: 10.5281/zenodo.4435970

B.3 Description
B.3.1 How to access. Our artifact and guidelines for using/eval-
uating PacketMill is publicly available at the following GitHub
repositories:

• PacketMill source: https://github.com/tbarbette/fastclick/
tree/packetmill

• X-Change: https://github.com/tbarbette/xchange
• ExperimentalworkflowandLLVMOptimizationPasses:
https://github.com/aliireza/packetmill

Please refer to PacketMill main README.md for more information:
https://github.com/aliireza/packetmill/blob/master/README.md

B.3.2 Hardware dependencies. PacketMill’s metadatamanagement
model (X-Change) only supports MLX5 driver in DPDK. Although
MLX5 driver is used by several Mellanox NICs, we have only tested
Mellanox Connect-X 5 NICs. To perform PacketMill’s experiments,
you need two servers (preferably with Xeon processors) equipped
withMellanox Connect-X 5NICs and interconnected via a 100-Gbps
link.

B.3.3 Software dependencies. Our source-code & IR-code optimiza-
tions currently only works on FastClick (PacketMill branch). Ad-
ditionally, IR-code optimizations currently only supports Copying
model (i.e., the default model in FastClick).

B.4 Installation & Experiment Workflow
PacketMill’s README.md (https://github.com/aliireza/packetmill/
blob/master/README.md) describes the testbed preparation, instal-
lation process, and the experimental workflow to use PacketMill
and perform different experiments.

B.5 Evaluation and Expected Results
This section explains the available experiments in our repository
and their expected/sample results.

Most of the experiments in our paper have been performed
using a captured trace from a campus network. Unfortunately,
we are unable to make the campus trace available to the public
due to GDPR. While it is possible to use our experiments with
other traces, our artifact provides some scripts to perform some
experiments with synthetic traces (i.e., using fixed-size packets) to
validate the reusability and effectiveness of PacketMill. Our artifact
also includes (i) the experimental data captured using our campus
trace, and (ii) the scripts to generate the graphs presented in the
paper.

B.5.1 Source-code Modifications (Router). This experiment shows
the benefits of using our proposed source-code optimizations
when a router is receiving fixed-size packets (e.g., 64-B and 1024-B
packets). The results should follow a similar trend as Figure 4. This
experiment uses Copying metadata management model.

B.5.2 X-Change (Forwarder). This experiment compares the per-
formance of different metadata management model: (i) Copying, (ii)
Overlaying, and (iii) X-Change, where a single core is forwarding
fixed-size packets. The output results should be similar to Figure 5a.
Note that this experiment uses LTO in all configurations.

B.5.3 PacketMill (Router). This experiment applies PacketMill to
a router that receives fixed-size packets. The results should result
in similar improvements as Figure 1. As opposed to Figure 1, this
experiment uses a fixed-size packets and a fixed rate, which only
considers the “saturated” condition in that figure.

B.5.4 Sophisticated Network Functions (Router+IDS+VLAN). This
experiment demonstrates the benefits of PacketMill for a router+IDS
configuration, where a single core is receiving fixed-size packets.
The expected results should be similar to Figure 8.

B.5.5 Multicore Network Functions (Router+NAT). This experiment
shows the benefits of PacketMill for a router+NAT configuration,
where different number of cores are receiving 1024-B packets. The
expected results should be similar to Figure 10.

B.5.6 Others. We believe the five mentioned experiments are suf-
ficient to demonstrate the reusability & effectiveness of PacketMill.
However, we have included more experiments in our publicly
available repository, which can benefit the community. Please check
PacketMill’s experiments README.md for more information.

REFERENCES
[1] Bilal Anwer, Theophilus Benson, Nick Feamster, and Dave Levin. 2015.

Programming Slick Network Functions. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research (Santa Clara, California)
(SOSR ’15). Association for Computing Machinery, New York, NY, USA, Article
14, 13 pages. https://doi.org/10.1145/2774993.2774998

http://doi.org/10.5281/zenodo.4435970
https://github.com/tbarbette/fastclick/tree/packetmill
https://github.com/tbarbette/fastclick/tree/packetmill
https://github.com/tbarbette/xchange
https://github.com/aliireza/packetmill
https://github.com/aliireza/packetmill/blob/master/README.md
https://github.com/aliireza/packetmill/blob/master/README.md
https://github.com/aliireza/packetmill/blob/master/README.md
https://github.com/aliireza/packetmill/blob/master/experiments/README.md#other-experiments
https://doi.org/10.1145/2774993.2774998

PacketMill: Toward Per-Core 100-Gbps Networking ASPLOS ’21, April 19–23, 2021, Virtual, USA

[2] D. Barach, L. Linguaglossa, D. Marion, P. Pfister, S. Pontarelli, and D. Rossi.
2018. High-Speed Software Data Plane via Vectorized Packet Processing. IEEE
Communications Magazine 56, 12 (2018), 97–103. https://doi.org/10.1109/MCOM.
2018.1800069

[3] Tom Barbette. 2018. Architecture for programmable network infrastructure. Ph.D.
Dissertation. University of Liege. http://www.diva-portal.org/smash/record.
jsf?pid=diva2%3A1249035, accessed 2020-12-23.

[4] Tom Barbette, Marco Chiesa, Gerald Q. Maguire Jr., and Dejan Kostić. 2020.
Stateless CPU-Aware Datacenter Load-Balancing. Association for Computing
Machinery, New York, NY, USA, 548–549. https://doi.org/10.1145/3386367.
3431672

[5] TomBarbette, Georgios P. Katsikas, Gerald Q.Maguire Jr., and Dejan Kostić. 2019.
RSS++: Load and State-Aware Receive Side Scaling. In Proceedings of the 15th
International Conference on Emerging Networking Experiments And Technologies
(Orlando, Florida) (CoNEXT ’19). Association for Computing Machinery, New
York, NY, USA, 318–333. https://doi.org/10.1145/3359989.3365412

[6] Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast Userspace Packet
Processing. In Proceedings of the Eleventh ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (Oakland, California, USA) (ANCS
’15). IEEE Computer Society, Washington, DC, USA, 5–16. https://doi.org/10.
1109/ANCS.2015.7110116

[7] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostić, Gerald Q. Maguire Jr.,
Panagiotis Papadimitratos, and Marco Chiesa. 2020. A High-Speed Load-
Balancer Design with Guaranteed Per-Connection-Consistency . In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20). USENIX
Association, Santa Clara, CA, 667–683. https://www.usenix.org/conference/
nsdi20/presentation/barbette

[8] BESS. 2017. sn_buff Layout. https://github.com/NetSys/bess/blob/master/core/
snbuf_layout.h.

[9] BESS. 2019. Packet. https://github.com/NetSys/bess/blob/master/core/packet.h.
[10] Andrea Di Biagio and Matt Davis. 2020. llvm-mca - LLVM Machine Code

Analyzer. https://llvm.org/docs/CommandGuide/llvm-mca.html, accessed
2020-06-15.

[11] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. https://doi.org/10.
1145/2656877.2656890

[12] Anat Bremler-Barr, Yotam Harchol, and David Hay. 2016. OpenBox: A Software-
Defined Framework for Developing, Deploying, and Managing Network
Functions. In Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis,
Brazil) (SIGCOMM ’16). Association for Computing Machinery, New York, NY,
USA, 511–524. https://doi.org/10.1145/2934872.2934875

[13] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (San Diego, California) (OSDI’08). USENIX Association, USA,
209–224.

[14] D. Cerović, V. Del Piccolo, A. Amamou, K. Haddadou, and G. Pujolle. 2018. Fast
Packet Processing: A Survey. IEEE Communications Surveys Tutorials 20, 4
(2018), 3645–3676. https://doi.org/10.1109/COMST.2018.2851072

[15] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO: Automatic
Feedback-Directed Optimization for Warehouse-Scale Applications. In CGO
2016 Proceedings of the 2016 International Symposium on Code Generation and
Optimization. New York, NY, USA, 12–23.

[16] Charlie Curtsinger and Emery D. Berger. 2013. STABILIZER: Statistically Sound
Performance Evaluation. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating Systems
(Houston, Texas, USA) (ASPLOS ’13). Association for Computing Machinery,
New York, NY, USA, 219–228. https://doi.org/10.1145/2451116.2451141

[17] Bangwen Deng, Wenfei Wu, and Linhai Song. 2020. Redundant Logic
Elimination in Network Functions. In Proceedings of the Symposium on SDN
Research (San Jose, CA, USA) (SOSR ’20). Association for Computing Machinery,
New York, NY, USA, 34–40. https://doi.org/10.1145/3373360.3380832

[18] DPDK. 2020. Data Plane Development Kit (DPDK). https://dpdk.org.
[19] DPDK. 2020. Mbuf Library. https://doc.dpdk.org/guides/prog_guide/mbuf_lib.

html.
[20] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. 2019.

NICA: An Infrastructure for Inline Acceleration of Network Applications. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 345–362. https://www.usenix.org/conference/atc19/presentation/
eran

[21] Ericsson. 2017. Supercharging the Evolved Packet Gateway. Technical
Report. Ericsson. https://www.ericsson.com/assets/local/digital-
services/doc/Supercharging-the-Evolved-Packet-Gateway.pdf https:
//www.ericsson.com/assets/local/digital-services/doc/Supercharging-the-
Evolved-Packet-Gateway.pdf, accessed 2020-07-24.

[22] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. 2011.
Dark silicon and the end of multicore scaling. In 2011 38th Annual International
Symposium on Computer Architecture (ISCA). 365–376.

[23] Alireza Farshin and Tom Barbette. 2021. PacketMill: Toward per-core 100-Gbps
Networking - Artifact for ASPLOS’21. https://doi.org/10.5281/zenodo.4435970
Note that this is just an archive for ASPLOS’21 artifact evaluation; you can
access the latest version at https://github.com/aliireza/packetmill.

[24] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić. 2019.
Make the Most out of Last Level Cache in Intel Processors. In Proceedings of the
Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). ACM,
NewYork, NY, USA, Article 8, 17 pages. https://doi.org/10.1145/3302424.3303977

[25] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić. 2020.
Reexamining Direct Cache Access to Optimize I/O Intensive Applications for
Multi-hundred-gigabit Networks. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, 673–689. https://www.usenix.org/
conference/atc20/presentation/farshin

[26] FastClick. 2019. Packet Class. https://github.com/tbarbette/fastclick/blob/
master/include/click/packet.hh.

[27] FD.io. 2017. Vector Packet Processing - One Terabit Software Router on Intel Xeon
Scalable Processor Family Server. Technical Report. Cisco, Intel Corporation,
FD.io. https://fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf https:
//fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf, accessed 2020-07-24.

[28] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey,
Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham
Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan
Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak
Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg.
2018. Azure Accelerated Networking: SmartNICs in the Public Cloud. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 18).
USENIX Association, Renton, WA, 51–66. https://www.usenix.org/conference/
nsdi18/presentation/firestone

[29] Massimo Gallo and Rafael Laufer. 2018. ClickNF: a Modular Stack for Custom
Network Functions. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18). USENIX Association, Boston, MA, 745–757. https://www.usenix.
org/conference/atc18/presentation/gallo

[30] GCC. 2009. Link Time Optimization. https://gcc.gnu.org/wiki/
LinkTimeOptimization, accessed 2020-06-15.

[31] Taras Glek and Jan HubiČka. 2010. Optimizing real world applications with
GCC Link Time Optimization. arXiv:1010.2196 [cs.PL] http://sciencewise.info/
media/pdf/1010.2196v2.pdf, accessed 2020-06-15.

[32] Matt Godbolt. 2020. Optimizations in C++ Compilers. Commun. ACM 63, 2 (Jan.
2020), 41–49. https://doi.org/10.1145/3369754

[33] Google. 2020. GitHub - Propeller: Profile Guided Optimizing Large Scale LLVM-
based Relinker. https://github.com/google/llvm-propeller, accessed 2020-06-15.

[34] Google. 2020. GitHub - Souper: A superoptimizer for LLVM IR. https://github.
com/google/souper, accessed 2020-06-15.

[35] Corey Gough, Ian Steiner, and Winston A. Saunders. 2015. Energy Efficient
Servers: Blueprints for Data Center Optimization (1st ed.). Apress, USA.

[36] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and
Sylvia Ratnasamy. 2015. Berkeley Extensible Software Switch (BESS). http:
//span.cs.berkeley.edu/bess.html, accessed 2020-07-22.

[37] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia
Ratnasamy. 2015. SoftNIC: A Software NIC to Augment Hardware. Technical
Report UCB/EECS-2015-155. EECS Department, University of California,
Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-
155.html

[38] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. PacketShader:
A GPU-Accelerated Software Router. SIGCOMM Comput. Commun. Rev. 40, 4
(Aug. 2010), 195–206. https://doi.org/10.1145/1851275.1851207

[39] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, TomHerbert, David Ahern, and DavidMiller. 2018. The EXpress Data
Path: Fast Programmable Packet Processing in the Operating System Kernel.
In Proceedings of the 14th International Conference on Emerging Networking
EXperiments and Technologies (Heraklion, Greece) (CoNEXT ’18). Association
for Computing Machinery, New York, NY, USA, 54–66. https://doi.org/10.1145/
3281411.3281443

[40] Y. Jiang, Y. Cui, W. Wu, Z. Xu, J. Gu, K. K. Ramakrishnan, Y. He, and X.
Qian. 2019. SpeedyBox: Low-Latency NFV Service Chains with Cross-NF
Runtime Consolidation. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). 68–79. https://doi.org/10.1109/ICDCS.2019.00016

[41] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David
Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling for
𝜇second-scale Tail Latency. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIXAssociation, Boston, MA, 345–360.
https://www.usenix.org/conference/nsdi19/presentation/kaffes

https://doi.org/10.1109/MCOM.2018.1800069
https://doi.org/10.1109/MCOM.2018.1800069
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1249035
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1249035
https://doi.org/10.1145/3386367.3431672
https://doi.org/10.1145/3386367.3431672
https://doi.org/10.1145/3359989.3365412
https://doi.org/10.1109/ANCS.2015.7110116
https://doi.org/10.1109/ANCS.2015.7110116
https://www.usenix.org/conference/nsdi20/presentation/barbette
https://www.usenix.org/conference/nsdi20/presentation/barbette
https://github.com/NetSys/bess/blob/master/core/snbuf_layout.h
https://github.com/NetSys/bess/blob/master/core/snbuf_layout.h
https://github.com/NetSys/bess/blob/master/core/packet.h
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2934872.2934875
https://doi.org/10.1109/COMST.2018.2851072
https://doi.org/10.1145/2451116.2451141
https://doi.org/10.1145/3373360.3380832
https://dpdk.org
https://doc.dpdk.org/guides/prog_guide/mbuf_lib.html
https://doc.dpdk.org/guides/prog_guide/mbuf_lib.html
https://www.usenix.org/conference/atc19/presentation/eran
https://www.usenix.org/conference/atc19/presentation/eran
https://www.ericsson.com/assets/local/digital-services/doc/Supercharging-the-Evolved-Packet-Gateway.pdf
https://www.ericsson.com/assets/local/digital-services/doc/Supercharging-the-Evolved-Packet-Gateway.pdf
https://www.ericsson.com/assets/local/digital-services/doc/Supercharging-the-Evolved-Packet-Gateway.pdf
https://www.ericsson.com/assets/local/digital-services/doc/Supercharging-the-Evolved-Packet-Gateway.pdf
https://www.ericsson.com/assets/local/digital-services/doc/Supercharging-the-Evolved-Packet-Gateway.pdf
https://doi.org/10.5281/zenodo.4435970
https://github.com/aliireza/packetmill
https://doi.org/10.1145/3302424.3303977
https://www.usenix.org/conference/atc20/presentation/farshin
https://www.usenix.org/conference/atc20/presentation/farshin
https://github.com/tbarbette/fastclick/blob/master/include/click/packet.hh
https://github.com/tbarbette/fastclick/blob/master/include/click/packet.hh
https://fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf
https://fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf
https://fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/atc18/presentation/gallo
https://www.usenix.org/conference/atc18/presentation/gallo
https://gcc.gnu.org/wiki/LinkTimeOptimization
https://gcc.gnu.org/wiki/LinkTimeOptimization
https://arxiv.org/abs/1010.2196
http://sciencewise.info/media/pdf/1010.2196v2.pdf
http://sciencewise.info/media/pdf/1010.2196v2.pdf
https://doi.org/10.1145/3369754
https://github.com/google/llvm-propeller
https://github.com/google/souper
https://github.com/google/souper
http://span.cs.berkeley.edu/bess.html
http://span.cs.berkeley.edu/bess.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1109/ICDCS.2019.00016
https://www.usenix.org/conference/nsdi19/presentation/kaffes

ASPLOS ’21, April 19–23, 2021, Virtual, USA Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić

[42] Georgios P. Katsikas, Tom Barbette, Marco Chiesa, Dejan Kostić, and Gerald Q.
Maguire Jr. 2021. What you need to know about (Smart) Network Interface
Cards. In Proceedings of the Passive and Active Measurement (PAM) Conference.
Springer International Publishing.

[43] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert, and Gerald Q.
Maguire Jr. 2018. Metron: NFV Service Chains at the True Speed of the
Underlying Hardware. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18). USENIX Association, Renton, WA, 171–186.
https://www.usenix.org/conference/nsdi18/presentation/katsikas

[44] Georgios P. Katsikas, Marcel Enguehard, Maciej Kuźniar, Gerald Q. Maguire
Jr., and Dejan Kostić. 2016. SNF: Synthesizing high performance NFV service
chains. PeerJ Computer Science 2, e98. https://doi.org/10.7717/peerj-cs.98

[45] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas Anderson, and
Arvind Krishnamurthy. 2016. High Performance Packet Processingwith FlexNIC.
In Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems (Atlanta, Georgia,
USA) (ASPLOS ’16). Association for Computing Machinery, New York, NY, USA,
67–81. https://doi.org/10.1145/2872362.2872367

[46] Rainer Keller and Shiqing Fan. 2013. PINstruct – Efficient Memory Access to
Data Structures. Springer Berlin Heidelberg, Berlin, Heidelberg, 127–128. https:
//doi.org/10.1007/978-3-642-35893-7_14

[47] Donald E. Knuth. 1974. Structured Programming with Go to Statements. ACM
Comput. Surv. 6, 4 (Dec. 1974), 261–301. https://doi.org/10.1145/356635.356640

[48] Eddie Kohler, Robert Morris, and Benjie Chen. 2002. Programming Language
Optimizations for Modular Router Configurations. In Proceedings of the 10th
International Conference onArchitectural Support for Programming Languages and
Operating Systems (San Jose, California) (ASPLOS X). Association for Computing
Machinery, New York, NY, USA, 251–263. https://doi.org/10.1145/605397.605424

[49] Maciek Konstantynowicz, Patrick Lu, and Shrikant M. Shah. 2017. Benchmarking
and Analysis of Software Data Planes. Technical Report. Cisco, Intel Corporation,
FD.io. https://fd.io/wp-content/uploads/sites/34/2018/01/performance_
analysis_sw_data_planes_dec21_2017.pdf https://fd.io/wp-content/uploads/
sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf, ac-
cessed 2019-07-24.

[50] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ramakrishnan, T.
Wood, M. Arumaithurai, and X. Fu. 2020. NFVnice: Dynamic Backpressure and
Scheduling for NFV Service Chains. IEEE/ACM Transactions on Networking 28,
2 (2020), 639–652. https://doi.org/10.1109/TNET.2020.2969971

[51] Rahman Lavaee, John Criswell, and Chen Ding. 2019. Codestitcher: Inter-
Procedural Basic Block Layout Optimization. In Proceedings of the 28th
International Conference on Compiler Construction (Washington, DC, USA)
(CC 2019). Association for Computing Machinery, New York, NY, USA, 65–75.
https://doi.org/10.1145/3302516.3307358

[52] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,
YongqiangXiong, Peng Cheng, and EnhongChen. 2016. ClickNP: Highly Flexible
and High Performance Network Processing with Reconfigurable Hardware.
In Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil)
(SIGCOMM ’16). Association for Computing Machinery, New York, NY, USA,
1–14. https://doi.org/10.1145/2934872.2934897

[53] X. Li, X.Wang, F. Liu, and H. Xu. 2018. DHL: Enabling Flexible Software Network
Functions with FPGA Acceleration. In 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS). 1–11. https://doi.org/10.1109/ICDCS.
2018.00011

[54] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zinner, R.
Bifulco, M. Jarschel, and G. Bianchi. 2019. Survey of Performance Acceleration
Techniques for Network Function Virtualization. Proc. IEEE 107, 4 (2019), 746–
764. https://doi.org/10.1109/JPROC.2019.2896848

[55] Guyue Liu, Yuxin Ren, Mykola Yurchenko, K. K. Ramakrishnan, and Timothy
Wood. 2018. Microboxes: High Performance NFV with Customizable,
Asynchronous TCP Stacks and Dynamic Subscriptions. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (Budapest,
Hungary) (SIGCOMM ’18). Association for Computing Machinery, New York,
NY, USA, 504–517. https://doi.org/10.1145/3230543.3230563

[56] LLVM. 2018. Four bitcode generated with plugin-opt=save-temps. http:
//lists.llvm.org/pipermail/llvm-dev/2018-May/123341.html, accessed 2020-06-
15.

[57] LLVM. 2020. LLVM Link Time Optimization: Design and Implementation.
https://llvm.org/docs/LinkTimeOptimization.html, accessed 2020-06-15.

[58] LLVM. 2020. ThinLTO. https://clang.llvm.org/docs/ThinLTO.html, accessed
2020-06-15.

[59] Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort Blindell, and Christian
Schulte. 2019. Combinatorial Register Allocation and Instruction Scheduling.
ACM Trans. Program. Lang. Syst. 41, 3, Article 17 (July 2019), 53 pages. https:
//doi.org/10.1145/3332373

[60] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language

Design and Implementation (Chicago, IL, USA) (PLDI ’05). Association for
Computing Machinery, New York, NY, USA, 190–200. https://doi.org/10.1145/
1065010.1065034

[61] JoaoMartins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and FelipeHuici. 2014. ClickOS and theArt of Network Function
Virtualization. In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14). USENIX Association, Seattle, WA, 459–473. https:
//www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins

[62] Henry Massalin. 1987. Superoptimizer: A Look at the Smallest Program. In
Proceedings of the Second International Conference on Architectual Support for
Programming Languages and Operating Systems (Palo Alto, California, USA)
(ASPLOS II). IEEE Computer Society Press, Washington, DC, USA, 122–126.
https://doi.org/10.1145/36206.36194

[63] Niall McDonnell and Gage Eads. 2020. Queue Management and Load Balancing
on Intel Architecture. https://tinyurl.com/yxv9cgpj, accessed 2020-08-08.

[64] László Molnár, Gergely Pongrácz, Gábor Enyedi, Zoltán Lajos Kis, Levente
Csikor, Ferenc Juhász, Attila Kőrösi, and Gábor Rétvári. 2016. Dataplane
Specialization for High-Performance OpenFlow Software Switching. In
Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil)
(SIGCOMM ’16). Association for Computing Machinery, New York, NY, USA,
539–552. https://doi.org/10.1145/2934872.2934887

[65] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. 1999. The
Click Modular Router. In Proceedings of the Seventeenth ACM Symposium on
Operating Systems Principles (Charleston, South Carolina, USA) (SOSP ’99).
Association for Computing Machinery, New York, NY, USA, 217–231. https:
//doi.org/10.1145/319151.319166

[66] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney.
2009. Producing Wrong Data without Doing Anything Obviously Wrong!.
In Proceedings of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems (Washington, DC, USA)
(ASPLOS XIV). Association for Computing Machinery, New York, NY, USA,
265–276. https://doi.org/10.1145/1508244.1508275

[67] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and AndrewW.Moore. 2018. Understanding PCIe Performance for
End Host Networking. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (Budapest, Hungary) (SIGCOMM ’18).
ACM, New York, NY, USA, 327–341. https://doi.org/10.1145/3230543.3230560

[68] Andy Newell and Sergey Pupyrev. 2020. Improved Basic Block Reordering. IEEE
Trans. Comput. (2020), 1–1. https://doi.org/10.1109/tc.2020.2982888

[69] G. S. Niemiec, L. M. S. Batista, A. E. Schaeffer-Filho, and G. L. Nazar. 2020. A
Survey on FPGA Support for the Feasible Execution of Virtualized Network
Functions. IEEE Communications Surveys Tutorials 22, 1 (2020), 504–525. https:
//doi.org/10.1109/COMST.2019.2943690

[70] ntop. 2020. PF_RING ZC (Zero Copy). https://www.ntop.org/products/packet-
capture/pf_ring/pf_ring-zc-zero-copy/, accessed 2020-08-02.

[71] G. Ottoni and B. Maher. 2017. Optimizing function placement for large-scale
data-center applications. In 2017 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). 233–244. https://doi.org/10.1109/CGO.
2017.7863743

[72] Stack Overflow. 2008. Why doesn’t GCC optimize structs? https://stackoverflow.
com/questions/118068/why-doesnt-gcc-optimize-structs, accessed 2020-06-15.

[73] Stack Overflow. 2012. Why can’t C compilers rearrange struct members to
eliminate alignment padding? https://tinyurl.com/yxncnqk8, accessed 2020-08-
07.

[74] Stack Overflow. 2016. Struct Reordering by compiler. https://stackoverflow.
com/questions/38244689/struct-reordering-by-compiler, accessed 2020-06-15.

[75] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. BOLT:
A Practical Binary Optimizer for Data Centers and Beyond. In Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and Optimization
(Washington, DC, USA) (CGO 2019). IEEE Press, 2–14.

[76] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and
Scott Shenker. 2016. NetBricks: Taking the V out of NFV. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX
Association, Savannah, GA, 203–216. https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/panda

[77] M. Paolino, N. Nikolaev, J. Fanguede, and D. Raho. 2015. SnabbSwitch user space
virtual switch benchmark and performance optimization for NFV. In 2015 IEEE
Conference on Network Function Virtualization and Software Defined Network
(NFV-SDN). 86–92. https://doi.org/10.1109/NFV-SDN.2015.7387411

[78] Luis Pedrosa, Rishabh Iyer, Arseniy Zaostrovnykh, Jonas Fietz, and Katerina
Argyraki. 2018. Automated Synthesis of Adversarial Workloads for Network
Functions. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (Budapest, Hungary) (SIGCOMM ’18). Association for
Computing Machinery, New York, NY, USA, 372–385. https://doi.org/10.1145/
3230543.3230573

[79] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon,
and Martin Casado. 2015. The Design and Implementation of Open vSwitch.

https://www.usenix.org/conference/nsdi18/presentation/katsikas
https://doi.org/10.7717/peerj-cs.98
https://doi.org/10.1145/2872362.2872367
https://doi.org/10.1007/978-3-642-35893-7_14
https://doi.org/10.1007/978-3-642-35893-7_14
https://doi.org/10.1145/356635.356640
https://doi.org/10.1145/605397.605424
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://doi.org/10.1109/TNET.2020.2969971
https://doi.org/10.1145/3302516.3307358
https://doi.org/10.1145/2934872.2934897
https://doi.org/10.1109/ICDCS.2018.00011
https://doi.org/10.1109/ICDCS.2018.00011
https://doi.org/10.1109/JPROC.2019.2896848
https://doi.org/10.1145/3230543.3230563
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123341.html
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123341.html
https://llvm.org/docs/LinkTimeOptimization.html
https://clang.llvm.org/docs/ThinLTO.html
https://doi.org/10.1145/3332373
https://doi.org/10.1145/3332373
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://doi.org/10.1145/36206.36194
https://tinyurl.com/yxv9cgpj
https://doi.org/10.1145/2934872.2934887
https://doi.org/10.1145/319151.319166
https://doi.org/10.1145/319151.319166
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1109/tc.2020.2982888
https://doi.org/10.1109/COMST.2019.2943690
https://doi.org/10.1109/COMST.2019.2943690
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://doi.org/10.1109/CGO.2017.7863743
https://doi.org/10.1109/CGO.2017.7863743
https://stackoverflow.com/questions/118068/why-doesnt-gcc-optimize-structs
https://stackoverflow.com/questions/118068/why-doesnt-gcc-optimize-structs
https://tinyurl.com/yxncnqk8
https://stackoverflow.com/questions/38244689/struct-reordering-by-compiler
https://stackoverflow.com/questions/38244689/struct-reordering-by-compiler
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://doi.org/10.1109/NFV-SDN.2015.7387411
https://doi.org/10.1145/3230543.3230573
https://doi.org/10.1145/3230543.3230573

PacketMill: Toward Per-Core 100-Gbps Networking ASPLOS ’21, April 19–23, 2021, Virtual, USA

In 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15). USENIX Association, Oakland, CA, 117–130. https://www.usenix.
org/conference/nsdi15/technical-sessions/presentation/pfaff

[80] Solal Pirelli and George Candea. 2020. A Simpler and Faster NIC Driver Model
for Network Functions. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 225–241. https://www.
usenix.org/conference/osdi20/presentation/pirelli

[81] Sekhar Reddy. 2014. What is SKB in Linux kernel? What are SKB
operations? Memory Representation of SKB? How to send packet out using
skb operations? http://amsekharkernel.blogspot.com/2014/08/what-is-skb-in-
linux-kernel-what-are.html.

[82] The Rust Language Reference. 2008. Struct Types. https://github.com/rust-
lang/reference/blob/master/src/types/struct.md, accessed 2020-06-15.

[83] Luigi Rizzo. 2012. netmap: A Novel Framework for Fast Packet I/O. In 2012
USENIX Annual Technical Conference (USENIX ATC 12). USENIX Association,
Boston, MA, 101–112. https://www.usenix.org/conference/atc12/technical-
sessions/presentation/rizzo

[84] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Jubi
Taneja, and John Regehr. 2017. Souper: A Synthesizing Superoptimizer. CoRR
abs/1711.04422 (2017). arXiv:1711.04422 http://arxiv.org/abs/1711.04422

[85] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and Guangyu Shi.
2012. Design and Implementation of a Consolidated Middlebox Architecture. In
Presented as part of the 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12). USENIX, San Jose, CA, 323–336. https://www.
usenix.org/conference/nsdi12/technical-sessions/presentation/sekar

[86] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. 2017. NFP:
Enabling Network Function Parallelism in NFV. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (Los Angeles, CA,
USA) (SIGCOMM ’17). Association for Computing Machinery, New York, NY,
USA, 43–56. https://doi.org/10.1145/3098822.3098826

[87] W. Sun and R. Ricci. 2013. Fast and flexible: Parallel packet processing with
GPUs and click. In Architectures for Networking and Communications Systems.
25–35. https://doi.org/10.1109/ANCS.2013.6665173

[88] Vaibhav Sundriyal, Masha Sosonkina, Bryce M. Westheimer, and Mark Gordon.
2018. Comparisons of Core and Uncore Frequency Scaling Modes in Quantum
Chemistry Application GAMESS. In Proceedings of the High Performance
Computing Symposium (Baltimore, Maryland) (HPC ’18). Society for Computer
Simulation International, San Diego, CA, USA, Article 13, 11 pages.

[89] Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker, and George Porter.
2018. Dark Packets and the End of Network Scaling. In Proceedings of the 2018
Symposium on Architectures for Networking and Communications Systems (Ithaca,
New York) (ANCS ’18). ACM, New York, NY, USA, 1–14. https://doi.org/10.
1145/3230718.3230727

[90] Shelby Thomas, Geoffrey M. Voelker, and George Porter. 2018. CacheCloud:
Towards Speed-of-light Datacenter Communication. In 10th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 18). USENIX Association, Boston,
MA. https://www.usenix.org/conference/hotcloud18/presentation/thomas

[91] Georgii Tkachuk, Maciek Konstantynowicz, and Shrikant M. Shah. 2019.
Benchmarking Software Data Planes - Intel Xeon Skylake vs. Broadwell. Technical
Report. Cisco, Intel Corporation, FD.io. https://www.lfnetworking.org/wp-
content/uploads/sites/55/2019/03/benchmarking_sw_data_planes_skx_bdx_
mar07_2019.pdf https://www.lfnetworking.org/wp-content/uploads/sites/55/
2019/03/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf, accessed
2020-07-24.

[92] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé, and Noa
Zilberman. 2019. The Case For In-Network Computing On Demand. In
Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden, Germany)
(EuroSys ’19). ACM, New York, NY, USA, Article 21, 16 pages. https://doi.
org/10.1145/3302424.3303979

[93] Tom Barbette. 2020. Network Performance Framework (NPF). https://github.
com/tbarbette/npf, accessed 2020-07-24.

[94] Amin Tootoonchian, Aurojit Panda, Chang Lan,MelvinWalls, KaterinaArgyraki,
Sylvia Ratnasamy, and Scott Shenker. 2018. ResQ: Enabling SLOs in Network
Function Virtualization. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). USENIX Association, Renton, WA, 283–
297. https://www.usenix.org/conference/nsdi18/presentation/tootoonchian

[95] M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi. 2017. Traffic
Analysis with Off-the-Shelf Hardware: Challenges and Lessons Learned. IEEE
Communications Magazine 55, 3 (2017), 163–169. https://doi.org/10.1109/MCOM.
2017.1600756CM

[96] Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, and Sotiris
Ioannidis. 2014. GASPP: A GPU-Accelerated Stateful Packet Processing
Framework. In 2014 USENIX Annual Technical Conference (USENIX ATC 14).
USENIX Association, Philadelphia, PA, 321–332. https://www.usenix.org/
conference/atc14/technical-sessions/presentation/vasiliadis

[97] James M. Westall. 2011. Management of sk_buffs. https://people.cs.clemson.
edu/~westall/853/notes/skbuff.pdf.

[98] Xiaodong Yi, Jingpu Duan, and Chuan Wu. 2017. GPUNFV: A GPU-Accelerated
NFV System. In Proceedings of the First Asia-Pacific Workshop on Networking
(Hong Kong, China) (APNet’17). Association for Computing Machinery, New
York, NY, USA, 85–91. https://doi.org/10.1145/3106989.3106990

[99] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis Pedrosa,
Katerina Argyraki, and George Candea. 2019. Verifying Software Network
Functions with No Verification Expertise. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP
’19). Association for Computing Machinery, New York, NY, USA, 275–290.
https://doi.org/10.1145/3341301.3359647

[100] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina Argyraki, and George
Candea. 2017. A Formally Verified NAT. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication (Los Angeles, CA, USA)
(SIGCOMM ’17). Association for Computing Machinery, New York, NY, USA,
141–154. https://doi.org/10.1145/3098822.3098833

[101] Kai Zhang, Bingsheng He, Jiayu Hu, ZekeWang, Bei Hua, Jiayi Meng, and Lishan
Yang. 2018. G-NET: Effective GPU Sharing in NFV Systems. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18). USENIX
Association, Renton, WA, 187–200. https://www.usenix.org/conference/nsdi18/
presentation/zhang-kai

[102] Tianzhu Zhang, Leonardo Linguaglossa, Massimo Gallo, Paolo Giaccone, Luigi
Iannone, and James Roberts. 2019. Comparing the Performance of State-of-
the-Art Software Switches for NFV. In Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies (Orlando,
Florida) (CoNEXT ’19). Association for Computing Machinery, New York, NY,
USA, 68–81. https://doi.org/10.1145/3359989.3365415

[103] Yang Zhang, Bilal Anwer, Vijay Gopalakrishnan, Bo Han, Joshua Reich, Aman
Shaikh, and Zhi-Li Zhang. 2017. ParaBox: Exploiting Parallelism for Virtual
Network Functions in Service Chaining. In Proceedings of the Symposium on
SDN Research (Santa Clara, CA, USA) (SOSR ’17). Association for Computing
Machinery, New York, NY, USA, 143–149. https://doi.org/10.1145/3050220.
3050236

[104] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and Justine
Sherry. 2020. Achieving 100Gbps Intrusion Prevention on a Single Server. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 1083–1100. https://www.usenix.org/conference/osdi20/
presentation/zhao-zhipeng

[105] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore. 2014. NetFPGA
SUME: Toward 100 Gbps as Research Commodity. IEEE Micro 34, 5 (2014), 32–41.
https://doi.org/10.1109/MM.2014.61

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/osdi20/presentation/pirelli
https://www.usenix.org/conference/osdi20/presentation/pirelli
http://amsekharkernel.blogspot.com/2014/08/what-is-skb-in-linux-kernel-what-are.html
http://amsekharkernel.blogspot.com/2014/08/what-is-skb-in-linux-kernel-what-are.html
https://github.com/rust-lang/reference/blob/master/src/types/struct.md
https://github.com/rust-lang/reference/blob/master/src/types/struct.md
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://arxiv.org/abs/1711.04422
http://arxiv.org/abs/1711.04422
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
https://doi.org/10.1145/3098822.3098826
https://doi.org/10.1109/ANCS.2013.6665173
https://doi.org/10.1145/3230718.3230727
https://doi.org/10.1145/3230718.3230727
https://www.usenix.org/conference/hotcloud18/presentation/thomas
https://www.lfnetworking.org/wp-content/uploads/sites/55/2019/03/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf
https://www.lfnetworking.org/wp-content/uploads/sites/55/2019/03/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf
https://www.lfnetworking.org/wp-content/uploads/sites/55/2019/03/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf
https://www.lfnetworking.org/wp-content/uploads/sites/55/2019/03/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf
https://www.lfnetworking.org/wp-content/uploads/sites/55/2019/03/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf
https://doi.org/10.1145/3302424.3303979
https://doi.org/10.1145/3302424.3303979
https://github.com/tbarbette/npf
https://github.com/tbarbette/npf
https://www.usenix.org/conference/nsdi18/presentation/tootoonchian
https://doi.org/10.1109/MCOM.2017.1600756CM
https://doi.org/10.1109/MCOM.2017.1600756CM
https://www.usenix.org/conference/atc14/technical-sessions/presentation/vasiliadis
https://www.usenix.org/conference/atc14/technical-sessions/presentation/vasiliadis
https://people.cs.clemson.edu/~westall/853/notes/skbuff.pdf
https://people.cs.clemson.edu/~westall/853/notes/skbuff.pdf
https://doi.org/10.1145/3106989.3106990
https://doi.org/10.1145/3341301.3359647
https://doi.org/10.1145/3098822.3098833
https://www.usenix.org/conference/nsdi18/presentation/zhang-kai
https://www.usenix.org/conference/nsdi18/presentation/zhang-kai
https://doi.org/10.1145/3359989.3365415
https://doi.org/10.1145/3050220.3050236
https://doi.org/10.1145/3050220.3050236
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://doi.org/10.1109/MM.2014.61

	Abstract
	1 Introduction
	2 Software Packet Processing
	2.1 Code Inefficiency
	2.2 Patched Metadata Management

	3 PacketMill
	3.1 Efficient Metadata Management
	3.2 Optimized Code

	4 Evaluation
	4.1 Do PacketMill's Code Optimizations Improve Packet Processing at 100 Gbps?
	4.2 How Effective is PacketMill's Model (X-Change) Compared to the Existing Metadata Management Models?
	4.3 How does the Workload/Trace Affect PacketMill?
	4.4 How about more Sophisticated Network Functions?
	4.5 Is PacketMill Useful for Multicore Network Functions?
	4.6 How about state-of-the-art Packet Processing Frameworks?

	5 Frequently Asked Questions
	6 Related Works
	7 Conclusion
	Acknowledgments
	A Network Function Configurations
	A.1 Simpler Forwarder
	A.2 Router
	A.3 NAT, IDS, and VLAN
	A.4 WorkPackage

	B Artifact Appendix
	B.1 Abstract
	B.2 Artifact check-list (meta-information)
	B.3 Description
	B.4 Installation & Experiment Workflow
	B.5 Evaluation and Expected Results

	References

