
PacketMill: Toward per-core 100-Gbps Networking
Extended Abstract

Alireza Farshin1, Tom Barbette1, Amir Roozbeh1,2, Gerald Q. Maguire Jr.1, and Dejan Kostić1

1KTH Royal Institute of Technology, 2Ericsson Research

We present PacketMill, a system for optimizing software
packet processing, which (i) introduces a new model to
efficiently manage packet metadata and (ii) employs code-
optimization techniques to better utilize commodity hardware.
PacketMill grinds the whole packet processing stack, from the
high-level network function configuration file to the low-level
userspace network (specifically DPDK) drivers, to mitigate
inefficiencies and produce a customized binary for a given
network function. Our evaluation results show that PacketMill
increases throughput (up to 36.4 Gbps – 70%) & reduces
latency (up to 101 µs – 28%) and enables nontrivial packet
processing (e.g., router) at ≈100 Gbps, when new packets
arrive > 10× faster than main memory access times, while
using only one processing core.

1. Motivation

Networking has shifted from inflexible, proprietary, and spe-
cialized hardware toward Software-defined Networking (SDN)
and Network Functions Virtualization (NFV). Today many
network appliances are realized using commodity hardware
and the network functions are increasingly software-driven.
The flexibility and programmability of such platforms has led
to many software networking solutions (such as Open vSwitch
(OVS) [17], Click-based frameworks [16, 1, 9], BESS [11, 10],
and Vector Packet Processing (VPP) [8]). Unfortunately, the
introduction of multi-hundred-gigabit network equipment and
dramatic increases in telecommunication network bandwidth
strain the performance of commodity hardware [14], due to
the demise of Moore’s law and Dennard scaling putting a
cap on commodity hardware’s performance [5]. Realizing
100-Gbps networking is extremely challenging, as the time
budget for processing small packets, i.e., 6.72 ns to process a
64-B packet before receiving the next one makes nanosecond
level savings count. Consequently, software needs to operate
in the L1 & L2 caches – minimizing even Last Level Cache
(LLC) accesses [19, 6, 7, 18].

While many have tried to introduce in-network processing
via hardware (e.g., P4 architecture [2] and modern/pro-
grammable Network Interface Card (NIC)) to address the
performance limitations [21]; today, many network functions
are deployed on commodity hardware, via unspecialized
modular software with software-based packet processing
by, for example, Ericsson, Cisco, and Intel [4, 13, 20].
Unfortunately, the software-driven networking solutions come
at the price of lower performance due to (i) code inefficiency,

mainly coming from generality and modularity of networking
frameworks, and (ii) poor metadata management.

Our objective is to produce an optimized binary while
maintaining high-level modularity and flexibility, as opposed
to relying on handwritten assembly code [15]. This paper
shows that efficient metadata management (i.e., specialization
of Data Plane Development Kit (DPDK)’s buffers) and
employing code optimizations (to minimize unnecessary
memory accesses, improve cache locality, etc.) facilitates
realizing our goal of software-based packet processing at
100 Gbps on commodity hardware.

2. Limitations of the State of the Art

We employ two techniques to optimize the performance
of software-based packet processing: (i) efficient metadata
management and (ii) code-optimization techniques. To the
best of our knowledge, the former has not explicitly been
examined/optimized before. Examining this unexplored
territory enables a single core to forward packets >100 Gbps.
The latter has been partially tackled by a similar approach
to improve performance via code optimizations: 1 The
most relevant is the work of Kohler et al. [12] who proposed
an optimization toolkit for the Click modular router [16] to
reduce inefficiencies of a Network Function (NF) based on
its input configuration. This work motivated us to further
mitigate code inefficiencies in software packet processing
frameworks to exploit the availability of: (i) multi-hundred-
Gbps network interfaces and (ii) programming language (PL)
tools (e.g., LLVM toolchain). To do so, we resurrected
their tool, called click-devirtualize, and extended it
with new optimizations. Additionally, we use LLVM’s
optimization passes to apply intermediate representation
(IR)-code modifications. 2 Bangwen et al. [3] used
classic compiler optimization techniques in combination with
symbolic execution to filter out infeasible paths of specialized
networking software (e.g., snort). Their main focus was
protocol mismatches (occurring between the development
and deployment phases). While some of our techniques
are similar, we focus on mitigating inefficiencies induced by
modularity in general-purpose packet processing frameworks
versus eliminating redundant logic.

3. Key Insights

Our main insight is that efficient packet processing at
100-Gbps calls for holistic system optimization, specifically

milling the entire software stack to squeeze every bit of
performance from the hardware. We are the first to (i)
empirically examine/optimize metadata management models
for packet processing and (ii) advocate low-level optimizations
to process packets at near-100-Gbps rates with a single
core. Our techniques are geared toward making sure that
the software can run in the fastest (L1/L2) caches.

4. Main Artifacts

We design, build, and evaluate a system, called PacketMill, to
optimize the performance of a popular modular framework
used for composing complex network functions on top of
commodity hardware. We propose a new metadata man-
agement model, called X-Change, that realizes customized
buffers when using DPDK, rather than relying on the
generic rte_mbuf structure. Additionally, we propose a
set of common & uncommon code optimizations to (i) the
source code and (ii) the IR code while employing link-
time optimization (LTO) techniques. PacketMill exploits
the information defining a NF to mitigate virtual calls,
improve constant propagation & constant folding, and reorder
commonly used data structures in modular packet processing.
Implementation. PacketMill is composed of three main
components:
1. X-Change: developed as an Application Programming

Interface (API) within DPDK,
2. source-code modifications: implemented on top of a

resurrected & modified click-devirtualize, and
3. IR-based modifications: implemented as LLVM optimiza-

tion passes applied to the complete program’s IR bitcode
as extracted from LTO.

Evaluation. We apply PacketMill to DPDK-based
FastClick [1], where we composed five different NFs: a
simple forwarder, a router, a Intrusion Detection System
(IDS) followed by a router, a Network Address Translation
(NAT), and a synthetic memory- & compute-intensive NF.
We evaluate our proposed metadata management model
(X-Change) and compare it with two common de facto
techniques (i.e., copying & overlaying) used in other packet
processing frameworks (i.e., BESS & VPP) re-implemented
in FastClick. Additionally, we use a real campus trace to
demonstrate the effectiveness of PacketMill to improve
per-core packet processing at 100 Gbps. Although we focus
on optimizing a specific framework (i.e., FastClick), our
results and techniques should be useful in other performance-
sensitive contexts (all of those concerned with nanosecond-
and microsecond-level improvements). The paper (§4)
discusses the benefits of PacketMill when NFs are running at
different scenarios (e.g., various frequencies & #cores).

5. Key Results and Contributions

Our results demonstrate that PacketMill improves both
microarchitectural metrics (i.e., reducing cache misses)
and application-level metrics (i.e., decreasing latency and

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

9
9

th
 P

e
rc

e
n

til
e

 L
a
te

n
cy

 (
µ

s
)

Throughput (Gbps)

Vanilla
PacketMill

Figure 1: PacketMill improves per-core packet processing.
Overlapped markers show that the performance can be
capped despite increasing the offered load.

increasing network throughput) when running at 100 Gbps.
Figure 1 demonstrates that PacketMill improves the packet
processing at 100 Gbps when a router running in a single core
is forwarding packets. More specifically, our proposal shifts
the knee of the tail latency vs. throughput curve, to achieve
lower latency even when the load is higher.
Contributions. In this paper, we:
• Highlight the importance of metadata management in packet

processing and propose a new model, called X-Change, to
mitigate inefficiencies,

• Design & implement PacketMill to optimize the perfor-
mance of packet processing frameworks via low-level
optimization,

• Demonstrate the importance of employing code opti-
mization & efficient metadata management to operate at
>100 Gbps rates.

• Extend DPDK’s build system to employ LTO via Clang and
produce LLVM IR bitcode,

• Additionally, we plan to release our source code and the
scripts used with the Network Performance Framework
(NPF) tool to facilitate others reproducing our results.

6. Why ASPLOS
This paper advocates the importance of employing low-level
optimization techniques to make it possible to process packets
at 100 Gbps. To do so, our paper combines two main research
areas, i.e., off-chip networking and compiler techniques &
optimizations. More specifically, we mechanically produce
a specialized binary from general-purpose software packet
processing frameworks. We believe ASPLOS is a perfect
venue for our paper, as we exploit the synergy of two system
areas, as encouraged by the ASPLOS CFP.

7. Citation for Most Influential Paper Award
This paper was the first work emphasizing full software
stack optimization for multi-hundred-gigabit networking. It
illustrated that per-core 100-Gbps networking requires the
software to operate in the high-level cache memories (i.e.,
L1 & L2 caches). This was done by meticulously managing
metadata and carefully optimizing the binary of networking
applications.

2

References
[1] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast Userspace

Packet Processing. In Proceedings of the Eleventh ACM/IEEE
Symposium on Architectures for Networking and Communications
Systems, ANCS ’15, pages 5–16, Washington, DC, USA, 2015. IEEE
Computer Society.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat,
George Varghese, and David Walker. P4: Programming Protocol-
Independent Packet Processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, July 2014.

[3] Bangwen Deng, Wenfei Wu, and Linhai Song. Redundant Logic
Elimination in Network Functions. In Proceedings of the Symposium
on SDN Research, SOSR ’20, page 34–40, New York, NY, USA, 2020.
Association for Computing Machinery.

[4] Ericsson. Supercharging the Evolved Packet Gateway.
Technical report, Ericsson, June 2017. https://www.
ericsson.com/assets/local/digital-services/doc/
Supercharging-the-Evolved-Packet-Gateway.pdf, accessed
2020-07-24.

[5] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. In 2011 38th
Annual International Symposium on Computer Architecture (ISCA),
pages 365–376, June 2011.

[6] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan
Kostić. Make the Most out of Last Level Cache in Intel Processors. In
Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys ’19,
pages 8:1–8:17, New York, NY, USA, 2019. ACM.

[7] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan
Kostić. Reexamining Direct Cache Access to Optimize I/O Intensive
Applications for Multi-hundred-gigabit Networks. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20), pages 673–689.
USENIX Association, July 2020.

[8] FD.io. Vector Packet Processing - One Terabit Software Router
on Intel Xeon Scalable Processor Family Server. Technical report,
Cisco, Intel Corporation, FD.io, July 2017. https://fd.io/docs/
whitepapers/FDioVPPwhitepaperJuly2017.pdf, accessed 2020-
07-24.

[9] Massimo Gallo and Rafael Laufer. ClickNF: a Modular Stack for
Custom Network Functions. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 745–757, Boston, MA, July
2018. USENIX Association.

[10] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han,
and Sylvia Ratnasamy. Berkeley Extensible Software Switch (BESS),
2015. http://span.cs.berkeley.edu/bess.html, accessed
2020-07-22.

[11] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu
Han, and Sylvia Ratnasamy. SoftNIC: A Software NIC to Augment
Hardware. Technical Report UCB/EECS-2015-155, EECS Department,
University of California, Berkeley, May 2015.

[12] Eddie Kohler, Robert Morris, and Benjie Chen. Programming
Language Optimizations for Modular Router Configurations. In
Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
X, page 251–263, New York, NY, USA, 2002. Association for
Computing Machinery.

[13] Maciek Konstantynowicz, Patrick Lu, and Shrikant M.
Shah. Benchmarking and Analysis of Software Data Planes.
Technical report, Cisco, Intel Corporation, FD.io, Dec 2017.
https://fd.io/wp-content/uploads/sites/34/2018/01/
performance_analysis_sw_data_planes_dec21_2017.pdf,
accessed 2019-07-24.

[14] Niall McDonnell and Gage Eads. Queue Management and Load
Balancing on Intel Architecture, 2020. https://tinyurl.com/
yxv9cgpj, accessed 2020-08-08.

[15] László Molnár, Gergely Pongrácz, Gábor Enyedi, Zoltán Lajos
Kis, Levente Csikor, Ferenc Juhász, Attila Kőrösi, and Gábor
Rétvári. Dataplane Specialization for High-Performance OpenFlow
Software Switching. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, page 539–552, New York, NY, USA,
2016. Association for Computing Machinery.

[16] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek.
The Click Modular Router. In Proceedings of the Seventeenth ACM
Symposium on Operating Systems Principles, SOSP ’99, page 217–231,
New York, NY, USA, 1999. Association for Computing Machinery.

[17] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
Keith Amidon, and Martin Casado. The Design and Implementation

of Open vSwitch. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pages 117–130, Oakland, CA,
May 2015. USENIX Association.

[18] Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker, and George
Porter. Dark Packets and the End of Network Scaling. In
Proceedings of the 2018 Symposium on Architectures for Networking
and Communications Systems, ANCS ’18, pages 1–14, New York, NY,
USA, 2018. ACM.

[19] Shelby Thomas, Geoffrey M. Voelker, and George Porter. CacheCloud:
Towards Speed-of-light Datacenter Communication. In 10th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 18), Boston,
MA, July 2018. USENIX Association.

[20] Georgii Tkachuk, Maciek Konstantynowicz, and Shrikant M. Shah.
Benchmarking Software Data Planes - Intel Xeon Skylake vs.
Broadwell. Technical report, Cisco, Intel Corporation, FD.io, March
2019. https://www.lfnetworking.org/wp-content/uploads/
sites/55/2019/03/benchmarking_sw_data_planes_skx_bdx_
mar07_2019.pdf, accessed 2020-07-24.

[21] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé, and
Noa Zilberman. The Case For In-Network Computing On Demand. In
Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys ’19,
pages 21:1–21:16, New York, NY, USA, 2019. ACM.

3

https://www.ericsson.com/assets/local/digital-services/doc/Supercharging-the-Evolved-Packet-Gateway.pdf
https://www.ericsson.com/assets/local/digital-services/doc/Supercharging-the-Evolved-Packet-Gateway.pdf
https://www.ericsson.com/assets/local/digital-services/doc/Supercharging-the-Evolved-Packet-Gateway.pdf
https://fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf
https://fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf
http://span.cs.berkeley.edu/bess.html
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://tinyurl.com/yxv9cgpj
https://tinyurl.com/yxv9cgpj
https://www.lfnetworking.org/wp-content/uploads/sites/55/2019/03/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf
https://www.lfnetworking.org/wp-content/uploads/sites/55/2019/03/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf
https://www.lfnetworking.org/wp-content/uploads/sites/55/2019/03/benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS
	Citation for Most Influential Paper Award

