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Abstract

With the advent of hybrids and electric vehicles, the need for lightweight and high-
performance materials is growing. Sheet molding compound (SMC) is a composite
made of short and randomized fibers that offers a substantial weight reduction and
good mechanical properties while meeting the demand for large volume production.
This thesis aims to develop a constitutive FE model of the SMC used in the body
in black of an autonomous vehicle.

To extract its properties, several physical tests were performed on specimens made
of the above-mentioned material. Both the tensile and three point bending tests
results show that the material is not homogeneous and that its properties vary for
different directions. The damping ratio extracted from the vibration test is much
lower than in conventional structural materials like aluminum and steel.

In the FE analysis, the material was modeled both as isotropic and orthotropic.
After adjusting the Young’s modulus, the isotropic model shows accurate results
until 1200 Hz. On the other hand, without knowing in which directions the proper-
ties occur, the orthotropic model is very limited.

In conclusion, even though the properties were tailored specifically for the spec-
imen, the model might not correctly represent the material’s behavior, being its
properties not the same for different components. Therefore, it is more reasonable
to use average data instead.
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Abstract

Tack vare en ökad efterfr̊agan av hybrid och eldrivna fordon, kommer ett större
behov av lättvikts-och högpresterande material. Sheet Molding Compound (SMC)
är en komposit av korta, randomiserade fibrer som ger en väsentlig viktreduktion,
liksom goda mekaniska egenskaper, samtidigt som det möter kraven fr̊an högvolyms
produktioner. Målet med detta examensarbete är att utveckla en FE-modell för det
SMC material som används för chassit p̊a ett självkörande, eldrivet fordon.

För att ta reda p̊a dess egenskaper, har flera fysiska tester utförts p̊a prover gjort av
ovannämnda material. B̊ade dragprov och böjprov visar att materialet inte är homo-
gent och att materialets egenskaper varierar i olika riktningar. Dämpningsfaktorn
som är extraherad fr̊an vibrationstesterna är mycket lägre än för konventionella ma-
terial, s̊a som aluminium och st̊al.

I FE-analysen, var materialet modellerat som b̊ade isotropt och ortotropt. Efter
att ha justerat E-modulen, visade den isotropa modellen mer korrekta resultat, upp
till 1200 Hz. Dock är den ortotropa modellen väldigt begränsad, eftersom riktning-
arna för de olika egenskaperna är okända.

Som slutsats, även om egenskaperna var justerade specifikt för detta prov, kan det
hända att modellen inte representerar materialets beteende korrekt, eftersom egen-
skaperna inte kommer vara samma för alla komponenter. Därför är det mer rimligt
att använda genomsnittliga data istället.
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Chapter 1

Introduction

1.1 Background

Composites are increasingly drawing attention due to the high demand for lightweight
and high-performance materials. It is expected, in fact, a market size growth of 45%
between 2019 and 2024 [1]. What makes composites unique is the combination of
fibers that mainly carry the load and a matrix that bonds and protects them. This
synergy provides not only high strength and stiffness but also a drastic reduction
in weight compared to conventional structural materials. Moreover, thanks to their
versatility, composites are used in several fields. For example, the automotive sec-
tor, due to EU emissions regulations and thus the need for fuel-efficient vehicles,
can hugely benefit from these materials. Starting from 1 January 2020, due to the
Regulation (EU) 2019/631, the average emissions of new passenger cars are set to 95
g CO2/km [2] [3]. Therefore, car manufacturers are starting to find a replacement
for steel, and the adoption of composites and sheet molding compound (SMC), par-
ticularly for hybrids and electric vehicles, is growing. SMC is cheaper than prepregs,
and in conjunction with the compression molding process, it is possible to have a
large volume production. The produced parts offer a good surface finish and high
corrosion resistance. However, the adoption of composites in the automotive indus-
try is still low. This is due to, not only the costs associated with the raw materials
and the manufacturing process but also a lesser experience than with conventional
materials like steel.

1.2 Problem Formulation

Composites are starting to be used not only as semi-structural components but also
as structural ones. In this study, SMC with short and randomized fibers used in the
frame of a self-autonomous car will be analyzed. The inhomogeneity of this material,
caused by the randomness of fibers, makes it difficult to accurately model it in a
finite element (FE) analysis. As a consequence, the results from such simulations do
not agree with the ones obtained through physical testing performed on the body
in black (BIB) of the car.
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Chapter 1. Introduction

1.3 Objective

The goal of this work is to determine the properties of the SMC and develop a model
able to simulate the behavior of the material successfully. In theory, this material
is isotropic, but physical tests show that this is not the case.
This study involves:

- Studying the data already available of the material and evaluating if other
physical tests are necessary

- Choosing the best method to cut the available material into specimens

- Measuring the damping ratio through a vibration test

- Modeling the material in a FE analysis

1.4 Thesis Structure

With the aim of providing all the tools to understand fully and critically assess the
work, a theoretical framework is present in Chapter 2. Chapters 3 to 5 cover all the
physical tests needed to extract the material properties that will be used in the FE
analysis present in chapter 6.
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Chapter 2

Theoretical Background

2.1 Sheet Molding Compound - SMC

Unlike prepregs, which are preimpregnated reinforcements containing oriented and
continuous fibers, molding compounds mainly employ short and randomized fibers.
This characteristic allows for a more effortless flow of the material thanks to a lesser
restrainment of the fibers [4]. This is why such materials are usually combined with
a compression molding process that will be described in more detail in the next
section.
The main thermoset-based molding compounds are: BMC and SMC. In bulk mold-
ing compound (BMC) the resin and the fibers are mixed to form a dough while in
sheet molding compound (SMC), as the name suggests, the final material is manu-
factured in sheets. The following study is focused on the latter.

Figure 2.1: Schematic of manufacturing of SMC [4]

The manufacturing process of SMC is schematically shown in Fig. 2.1. The
process starts with the resin being deposited onto a polyethylene film. Continuous
fibers are then chopped and randomly deposited on it. A second film carrying
the resin joins the first one and the two layers are brought together and squeezed
between compaction rolls so that the fibers can impregnate the resin [5]. The final
sheet is then aged at around 20 ◦C - 30 ◦C for almost a week in order to increase the
viscosity and thus to prevent the resin from draining out during the compression
molding process.

13



Chapter 2. Theoretical Background

2.1.1 Compression Molding Process

Once the sheets are ready to be used, they are employed in a compression molding
process to get the final properties and acquire the desired shape. They are first cut
with the correct size and arranged in a stack placed on the lower mold half, see Fig.
2.2. Depending on the procedure, the polyethylene film is removed either before or
after cutting. At this point, the mold is closed and heated in order to ensure the
crosslinking of the resin. Depending on the final desired properties, the surface of
the stack varies. If the surface is much smaller than the mold’s surface, a higher flow
of the material is allowed, which promotes a good surface finish. On the contrary,
to have higher mechanical properties, the surface of the stack should be bigger.

Figure 2.2: Schematic of compression molding [4]

2.2 Harmonically Excited Vibration

In order to properly model the specimen, several material properties have to be
specified. Since the performed analysis is dynamic, an additional parameter is of
vital importance: the damping ratio ζ. In nature, every oscillation, due to the action
of dissipation forces, is bound to decay over time. Therefore, the damping ratio can
be defined as the parameter that describes how the decay is going to happen. Herein,
a harmonically excited vibration system with viscous damping is analyzed.

2.2.1 Response of a Damped System

A single degree of freedom system with viscous damping is shown in Fig. 2.3.
If it is assumed that an harmonic force F (t) is applied, the equation of motion

becomes:

mẍ+ cẋ+ kx = F (t) (2.1)

14



Chapter 2. Theoretical Background

Figure 2.3: Single degree of freedom system with viscous damper [6]

where m is the mass, c the damping constant, and k the spring constant. The
solution of Eq. 2.1, x(t), is given by the sum of an homogeneous solution xh(t) and
a particular solution xp(t). The homogeneous solution is given by assuming that
no external forces are applied (F (t) = 0) and thus by reducing Eq. 2.1 to a free
vibrational system. This part of the solution is also called transient because it is
the one whose amplitude decays over time [6].

Homogeneous Solution

By taking the Laplace transform, Eq. 2.1 becomes:

(ms2 + cs+ k)X(s) = F (s) (2.2)

and rearranging its terms leads to the transfer function H(s) that is defined as
the ratio between the output and the input signal in the Laplace domain:

H(s) =
X(s)

F (s)
=

1/m

s2 + sc/m+ k/m
(2.3)

The roots of the denominator of the transfer function are called poles and, as
it will be seen later, give information about the damping ratio and the resonant
frequency of the system [7]. The poles also represent the homogeneous solution of a
mechanical system. In the general case of Eq. 2.3 they are:

s1,2 = − c

2m
±

√(
c

2m

)2

− k

m
(2.4)

The damping constant c that makes the argument in Eq. 2.4 be equal to zero is
denoted as the critical damping constant cc and is equal to:

cc = 2m

√
k

m
= 2
√
km = 2mωn (2.5)
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Chapter 2. Theoretical Background

where ωn is the natural frequency of the system.
At this point, it is possible to define the damping ratio as:

ζ =
c

cc
(2.6)

Using the theorem of partial fraction expansion it is possible to rewrite Eq. 2.3
into a sum of polynomials:

H(s) =
C1

s− s1
+

C2

s− s2
(2.7)

and by transforming the last expression back in time domain the homogeneous
solution is given:

h(t) = xh(t) = C1e
s1t + C2e

s2t

= C1e

(
−ζ+
√
ζ2−1

)
ωnt

+ C2e

(
−ζ−
√
ζ2−1

)
ωnt

(2.8)

It can be seen that depending on the value of ζ, the behavior of the solution
changes. If ζ = 1, the system is critically damped, and therefore it will go back to
its equilibrium position without crossing it. If ζ > 1, the system is overdamped.
This case is the same as the previous one, except that it will take more time to
reach its equilibrium position. If ζ < 1, the system is underdamped and it returns
to equilibrium faster but overshoots and crosses the equilibrium position one or more
times.
Since the underdamped system is the expected behavior of the SMC, it is analyzed
in more detail. In this case, the square roots of Eq. 2.8 become negative and the
solution, through the use of the Euler’s formula and mathematical manipulation,
must be rewritten differently:

xh(t) = Xhe
−ζωntcos

(√
1− ζ2ωnt− φh

)
(2.9)

At this point, to evaluate the constants Xh and φh the knowledge of the initial
conditions is used:

x(t = 0) = x0

ẋ(t = 0) = ẋ0
(2.10)

Through the use of Eq. 2.10 and mathematical manipulation it is finally possible
to express the final solution as:

xh(t) = e−ζωnt

{
x0cos

√
1− ζ2ωnt+

ẋ0 + ζωnx0√
1− ζ2ωn

sin
√

1− ζ2ωnt

}
(2.11)

As it is possible to see from the exponential term, this part of the solution reaches
zero over time.
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Particular Solution

It is assumed for the particular solution of Eq. 2.1 to have the following form:

xp(t) = Xpcos(ωt− φp) (2.12)

By simply substituting Eq. 2.12 in the equation of motion and through trigono-
metric relations it is possible to evaluate the constants:

Xp =
F0√

(k −mω2)2 + c2ω2
(2.13)

φp = tan−1
(

cω

k −mω2

)
(2.14)

2.2.2 Frequency Response Function

Before exploring the main possible methods used to extract the damping ratio, the
concept of frequency response function (FRF) needs to be introduced. The reason is
that, unlike the transfer function that is not a physical entity, the frequency response
function H(f) can be measured in the lab and has several physical implications. Its
definition is the ratio between the output and the input in the frequency domain
and can be obtained by using the Fourier transform on Eq. 2.1:

H(f) =
X(f)

F (f)
=

1/k

1− (f/fn)2 + j2ζ(f/fn)
(2.15)

The magnitude of Eq. 2.15, whose expression is:

∣∣H(f)
∣∣ =

1/k√(
1−

(
f
fn

)2)2

+
(

2ζ f
fn

)2 (2.16)

represents the ratio between the amplitude of the output and the input. An
example, taken from one of the measurements taken in this study, is plotted versus
the frequency in the Bode plot in Fig. 2.4. The frequency at which a local maximum
occurs corresponds to one of the resonant frequencies of the system.
The phase of Eq. 2.15 whose expression is:

∠H(f) = − arctan

 2ζ f
fn

1−
(
f
fn

)2
 (2.17)

represents instead the phase difference between the output and the input [7]. It
can be seen that as soon as the frequency gets closer to the natural frequency of the
system, the phase becomes 90◦. Physically this means that the response is out of
phase compared to the input signal.
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Figure 2.4: Frequency response magnitude and phase

2.2.3 Damping Ratio Estimation Methods

Prony’s Method

As mentioned in previous sections the poles of the transfer function contain impor-
tant information such as resonance frequency and damping ratio. In fact, knowing
the system pole sn the following relations hold [8]:

fn =

∣∣Im(sn)
∣∣

2π
(2.18)

ζn =

∣∣Re(sn)
∣∣

|sn|
(2.19)

The problem is that, even if the measured frequency response function is trans-
formed in the transfer function using the Laplace transform, the denominator is
not directly accessible. For this reason, the goal of the Prony’s method is to create
a digital filter whose response function H(z) approximates the measured transfer
function Ĥ(z) as close as possible. In mathematical terms this can be expressed as:

r(z) = H(z)− Ĥ(z) =
b0 + ...+ bq−1 · z−q+1 + bq · z−q

1 + ...+ ap−1 · z−p+1 + ap · z−p
− Ĥ(z) (2.20)

where r(z) is the residual that needs to be as small as possible. From Eq. 2.20
it can be noticed that the transfer functions are in the z-domain. The reason why
the Z transform has been employed is that the acquired signal is sampled at discrete
times. The Z transform is the discrete version of the Laplace transform. In other
words, instead of transforming a continuous variable like time it converts a discrete-
time signal and in the same way, it is used to simplify the analysis. In mathematical
terms, the Z transform is defined as:

18



Chapter 2. Theoretical Background

X(z) = Z{x[n]} =
∞∑
n=0

x[n]z−n (2.21)

After determining the optimum filter coefficients {ap} and {bq} of Eq. 2.20
through a process known as digital filter synthesis, H(z) is obtained. From it,
thanks to Eq. 2.18 and 2.19 the natural frequencies and the damping ratios can be
found.

3dB Method

The 3dB method is another approach used to calculate the damping ratio from the
frequency response of the material.
For ζ ≤ 1/

√
2, it is found that the magnitude of the frequency response function,

shown in Eq. 2.16, reaches its peak when:

fmax = fn
√

1− 2ζ2 (2.22)

and it is equal to:

∣∣H(fmax)
∣∣ =

1/k

2ζ
√

1− ζ2
(2.23)

If it is assumed that ζ is really small Eq. 2.22 reduces to fmax ' fn. In this
situation, the resonance condition is reached and the magnitude takes the value:

k
∣∣H(fmax)

∣∣ ' 1

2ζ
' Q (2.24)

where Q is also called the quality factor [7]. In Fig. 2.5 the plot of the magnitude
versus the frequency for a small damping ratio is shown.

Figure 2.5: Half-power points [6]
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Chapter 2. Theoretical Background

f1 and f2 in Fig. 2.5 are called half power points and represent the points whose
magnitude is 1/

√
2 times, or −3dB, the magnitude at resonance. Through f1 and

f2 it is possible to establish a relationship with the damping ratio. In particular, by
making Eq. 2.16 equal to the magnitude at the half power points:

1/k√(
1−

(
f
fn

)2)2

+
(

2ζ f
fn

)2 =
Q/k√

2
=

1/k

2
√

2ζ
(2.25)

and using the fact that:

f1 + f2
2

= fn (2.26)

the following relation with the damping ratio can be found:

Q ' 1

2ζ
' fn
f2 − f1

(2.27)

Logarithmic Decrement

The logarithmic decrement is defined as the natural logarithmic of the ratio of any
two successive amplitudes. It is a powerful tool because, by measuring this value
experimentally it is possible to get the damping ratio in a free vibration system.
Therefore, using Eq. 2.9 and knowing that t2 = t1 + τd where τd = 2π/ωd, the ratio
of any two successive amplitudes is defined as:

x1
x2

=
e−ζωnt1

e−ζωn(t1+τd)
= eζωnτd (2.28)

So, the logarithmic decrement can be mathematically defined as:

δ = ln
x1
x2

= ζωnτd =
2πζ√
1− ζ2

(2.29)

and for damping ratios smaller than 0.3 the following is a good approximation
of Eq. 2.29:

δ ' 2πζ (2.30)

2.3 Love’s Shell Theory

2.3.1 Terminology

Having a good background of the shell theory is essential to have a proper un-
derstanding of the meshing process. Therefore, herein some terminology will be
presented.
By definition a membrane is a flat sheet of material, so thin that is only able to
carry in-plane forces. Since it does not have any flexural rigidity or shear stiffness,
it cannot bend [9]. From a FEM perspective, a membrane has 3 DOFs per node,
two of which are in plane translation and one out of plane rotation (Ux, Uy, θz) [10].
A plate, on the other hand, is thick enough to withstand both bending moments
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and transverse forces [11]. Only out of plane deformations are allowed. This means
that a plate has 3 DOFs per node, two of which are in plane rotations and one out
of plane translation (θx, θy, Uz).
Finally, a shell can be regarded as the combination between a membrane and a
plate. For this reason, it has six DOFs three of which are translational and three
rotational (Ux, Uy, Uz, θx, θy, θz). Nevertheless, as in the plate, the stress components
perpendicular to the shell are zero.

2.3.2 Assumptions

The theory of shells was developed by Love, who based the model on the assump-
tions proposed by Kirchhoff for plates. Exploring the theory in detail would be too
extensive and it is outside the scope of this thesis. However, since the elements that
will be used in the FEM analysis are based on this theory, it is constructive to at
least present its assumptions [9] [12] [13]:

1. The thickness of the shell is much smaller compared to the radii of curvatures

2. Displacements and strains are small

3. Straight lines lying initially normal to the middle surface remain straight and
normal after the deformation

4. Stresses normal to the middle surface can be disregarded
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Tensile Test

3.1 Material Description

The material under study, whose product name is STR120N131, is a chopped carbon
fiber reinforced sheet molding compound (SMC) produced by Mitsubishi Chemical
Corporation. Such material is made of carbon fibers of the type TR50S and epoxy
acrylate resin. The SMC and fibers’ properties were provided by Mitsubishi and are
summarised in Table 3.1 and 3.2. The properties of the resin were not available, but
an approximation was taken, see Table 3.3.

Table 3.1: Sheet molding compound properties

Material ρ [g/cm3] Et [GPa]1 σt [MPa] Ef [GPa]2 σf [MPa] vf [% w/w]

SMC 1.46 29 171 27 376 53

1 Tensile properties 2 Flexural properties

Table 3.2: Carbon fibers properties

Material ρ [g/cm3] d [µm] E [GPa] σ [GPa] Lf [mm]

Fiber 1.82 7 235 4.90 25.4

Table 3.3: Polymer properties [14]

Material ρ [g/cm3] E [GPa] σ [MPa] Tg [◦C]

Resin 1.26 2.41 67.3 117

Six plates made of the material mentioned above were extracted from the body
in black (BIB) of the vehicle and were provided by AFRY to conduct the study,
see Fig. 3.1. Different tests, including the tensile and three-point bending tests,
had been previously performed and the results were already available. The reason
for performing these tests, despite the manufacturer provided the properties of the
material, was to validate the data in a more realistic environment and to extract
information that the product data-sheet alone could not provide. The test procedure
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used to get the available results was examined and presented in the following chapters
to create a correct and genuine model.
On the other hand, no vibration tests were performed. Therefore, a good part of
the work was devoted to design the experiment in order to estimate the damping
ratio of the material.

Figure 3.1: SMC component

3.2 Test Procedure

In theory, due to the randomness of the fibers, the material is expected to be
isotropic. The goal of the tensile tests was to verify if this was the case and, oth-
erwise, to analyze the anisotropy of the material. For this reason, several tensile
tests were performed, according to the ASTM D3039 standard [15]. This kind of
test is used to determine the in-plane properties of fiber-reinforced polymers. For
random-discontinuous fibers it is recommended to test specimens with dimensions
250 x 25 x 2.5 mm.
Two different sets of specimens were studied. The first, denoted as ”SET 1”, is
made of specimens cut from a flat plate manufactured specifically for this test. Un-
fortunately, since the specimens were not labeled, it was impossible to distinguish
the ones cut with 0◦ or 90◦ angle. The second set denoted ”SET 2”, is made of spec-
imens cut with different orientations directly from components of the BIB. Table 3.4
summarises the different samples tested. The specimens were cut with a band saw
with a diamond-coated blade. After cutting, the edges were ground and polished.
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Table 3.4: Specimens dimensions - Tensile test

SET Specimen geometry Number of specimens tested

SET 1
3 x 25 x 250 mm
3 x 50 x 250 mm
3 x 75 x 220 mm

16
12
12

SET 2

6 x 25 x 250 mm - 0◦

6 x 25 x 250 mm - 90◦

4 x 25 x 250 mm - 0◦

4 x 25 x 250 mm - 90◦

3
3
3
3

In every test, the equipment consisted of a machine, the Shimadzu AG-X 100kN,
and an extensometer, the MFA 25, see Fig. 3.2. The value of Young’s modulus
was obtained from the data of the extensometer. When measuring to failure, the
extensometer was removed, since a sudden extension of the material could have
destroyed it.
For this reason, the value of the ultimate tensile strain was based on the displacement
of the heads of the tensile machine. Unfortunately, due to extensions in the tabs
and grips, the displacement of the tensile machine heads was much larger than the
real displacement of the specimen, leading to high strain measurements. Therefore,
the strain from the displacement of the heads was plotted as a function of the strain
from the extensometer. This relationship was used to adjust the data and get a
more accurate value for the true failure strain of the specimen.
It must be pointed out that, despite the expedient taken to adjust the failure data,
only the data relative to the small strains were of interest. This is because, during the
vibration test performed on the BIB, the displacements were really small. Therefore,
the Young’s modulus was extracted for strain ranges of 0.1 - 0.3% and 0.01 - 0.05%.

3.3 Test Results

As already clarified in the previous section, a large number of samples was tested
in order to extract the Young’s modulus of the material. For this reason, in this
section, the main findings will be reported. For detailed information about each
test, the reader is suggested to refer to Appendix A.

3.3.1 SET 1

Figs. 3.3 to 3.5 display the stress-strain curves of the specimens with width 25,
50 and 75 mm respectively. In particular, in Fig. 3.3 all the different measuring
methods are shown. As already pointed out, the curves measured with the heads
of the tensile machine show high strains. Moreover, they are inaccurate compared
to the data measured with the extensometer. The failure strains obtained from the
adjusted curves are not totally correct. Nevertheless, these values are much closer
to reality than if they had not been adjusted.
Since only the small strain were of interest, only the curves measured with the
extensometer are shown in Fig. 3.4 and 3.5. Analyzing the latter, a considerable
difference in slope, and hence in Young’s modulus can be noticed between each
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Figure 3.2: Tensile testing machine

specimen. It is important to keep in mind that this set of tests consists of specimens
cut both with 0◦ and 90◦ angles. Therefore, it can be concluded that either each
specimen is discordant, maybe because of a different microstructure, or that a degree
of anisotropy is present. Table 3.5 shows the average Young’s modulus, obtained
through a simple arithmetic mean, for each specimen geometry. However, since the
number of specimens tested is different for each specimen geometry as shown in
Table 3.4, a weighted arithmetic mean was made to calculate the total average.

Table 3.5: Average tensile tests results - SET 1

SET Specimen geometry
Young’s modulus

0.01-0.05%
[GPa]

SET 1
3 x 25 x 250 mm
3 x 50 x 250 mm
3 x 75 x 220 mm

33.5
28.8
33.2

Weighted
average

- 32.0

The difference in Young’s modulus between each specimen geometry is within
reason, knowing the inhomogeneity of the material. Moreover, due to the stress-
strain linear dependency, the modulus is almost the same for different chords.
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Figure 3.3: Stress-strain curve - 3 x 25 x 250 mm

Figure 3.4: Stress-strain curve - 3 x 50 x 250 mm
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Figure 3.5: Stress-strain curve - 3 x 75 x 220 mm

3.3.2 SET 2

Since the orientation of the specimens in SET 2 is known, it is possible to draw
more conclusions about the material’s anisotropy. Figs 3.6 and 3.7 show the stress-
strain curves for two different specimens dimensions, cut from from two different
components of the BIB. It is possible to see a pattern in the results. It appears
from Fig. 3.6 that the specimens oriented in the 90◦ are stiffer than those in the
0◦. Moreover, the average Young’s modulus of all the samples with this geometry
is 31.7 GPa, which is coherent with the results previously found for SET 1. The
stress-strain plot for the second specimen geometry in Fig. 3.7 shows unexpected
results. Not only the difference in Young’s modulus between the two orientations
is not pronounced but mainly, the values are well below the average found in Table
3.5. For this reason, these measurements were discarded and will not be used to
model the material in the finite element analysis.
Two main factors probably cause anisotropy. The first concerns the deposition of
the fibers in the sheet molding compound process. In fact, the fiber orientation
distribution is not equal for all directions [16]. The second has to do with the flow
of the fibers during compression molding. In particular, this effect is accentuated
for complex geometries like the BIB under study.
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Figure 3.6: Stress-strain curve - 6 x 25 x 250 mm

Figure 3.7: Stress-strain curve - 4 x 25 x 250 mm
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Table 3.6: Average tensile tests results - SET 2

SET
Specimen
geometry

Young’s modulus
0◦

[GPa]

Young’s modulus
90◦

[GPa]

Average
[GPa]

SET 2
6 x 25 x 250 mm
4 x 25 x 250 mm

24.4
19.4

39.0
15.9

31.7
17.7

3.3.3 Poisson’s Ratio

Besides the Young’s modulus, the tensile tests also allow the calculation of the
Poisson’s ratio of the material. Unfortunately, only one extensometer was used.
Therefore, only the longitudinal strain was available, making impossible the calcu-
lation of the Poisson’s ratio. However, a theoretical model permits to estimate it.
Eq. 3.1 and 3.2 are empirical and are used to predict the elastic and shear modulus
of composites containing short and randomly oriented fibers [17].

Erandom =
3

8
EL +

5

8
ET (3.1)

Grandom =
1

8
EL +

1

4
ET (3.2)

Using for EL and ET the data obtained from the specimen 6 x 25 x 250 mm in
SET 2 and by simplifying the analysis assuming an isotropic material through Eq.
3.3:

ν =
Erandom
2Grandom

− 1 (3.3)

a value of 0.36 is obtained for the Poisson’s ratio.
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Three Point Bending Test

4.1 Test Procedure

The three point bending test was performed according to the ASTM D790 standard.
This test is used to determine the flexural properties of reinforced plastics [18]. The
specimens used were cut directly from components of the BIB and the orientation
of each was known. The machine used was the Shimadzu AG-X 100kN as well and
no extensometer was employed, see Fig. 4.1. Table 4.1 shows the tested samples
with the relative dimensions.

Table 4.1: Specimens dimensions - Three point bending test

Specimen geometry Number of specimens tested

6/7 x 25 x 120 mm - 0◦

6 x 25 x 120 mm - 90◦
3
3

Figure 4.1: Three point bending testing machine
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4.2 Test Results

It appears from Fig. 4.2 that the specimens oriented in the 90◦ are stiffer than those
in the 0◦ angle. This is in accordance with the results obtained in SET 2 from the
tensile tests. However, since the extensometer was not used, the measured values
might not be as accurate as those obtained in the tensile test. Table 4.2 summarises
the obtained results. In Appendix B, the detailed results for each specimen are
available.

Figure 4.2: Stress-strain curve - 6/7 x 25 x 120 mm

Table 4.2: Average three point bending test results

Specimen
geometry

Flexural modulus
0◦

[GPa]

Flexural modulus
90◦

[GPa]

Average
[GPa]

6/7 x 25 x 120 mm 20.4 30.6 25.5
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Vibration Test

5.1 Specimen Preparation

After analyzing the results from the tensile and three point bending tests, it was de-
cided that no more tests of this kind were needed. For this reason, the six available
plates were used uniquely for the vibration test.
Before testing, the material needed to be cut. It should be recalled that, in order to
obtain meaningful results, the specimens should approximate as much as possible
the behavior of the BIB. Thus, the respective natural frequencies should be consis-
tent with one another.
As a first approximation, it was assumed to model the sample as an isotropic beam.
As it is well known from the Euler-Bernoulli theory, the specimen’s natural frequen-
cies are directly dependent on its geometry and mechanical/physical properties, as
it can be seen from Eq. 5.1:

ωn = (βnl)
2

√
EI

ρAl4
(5.1)

where βn is a factor dependent on the boundary conditions of the beam. There-
fore, knowing the natural frequencies of the BIB and the previously estimated prop-
erties of the material, it is possible to solve Eq. 5.1 for the length l of the specimen.
A side note is that, as long as the beam theory’s assumptions are valid, Eq 5.1
is independent of the beam width. Moreover, since the thickness was a constraint
given by the plate, the length of the specimen was the only parameter to work with
to achieve the desired natural frequency.
Two different boundary conditions were considered: Cantilever and free-free. Ta-
ble 5.1 summarises the properties of the plates together with the potential lengths
obtained from Eq. 5.1.

Table 5.1: Length extraction

h
[mm]

ρ
[g/cm3]

E
[GPa]

f1,BIB
[Hz]

β1,cantileverl β1,free−freel
lCantilever

[mm]
lFree−free

[mm]

6.0 1.46 32.0 56.6 1.875 4.730 285.4 720.0

Even though the length needed to achieve the desired frequency for the free-
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free configuration exceeded the plate’s maximum size, it was decided to test this
arrangement as well. The reason is that the risk with cantilever arrangement was
that the boundary friction damping would be higher than the specimen’s damping,
thus giving unreliable results.
Therefore, by taking into account that part of the material needs to be clamped,
the specimen was cut with dimensions 340 x 70 x 6 mm3.

5.1.1 Cutting Technique

Three different techniques were considered to cut the six available plates: water
jet, laser machining and band saw. The water jet generates a clean cut and does
not alter the physical properties of the material. The major problem with laser
machining was that the high conductivity of the carbon fibers would have generated
a higher heat-affected zone. This would have altered the properties of the matrix.
For this reason, this method was discarded. As already mentioned, the specimens
used for the tensile and three point bending tests were cut using a band saw with
a diamond-coated blade. Since they showed a precise cut and nice finish and would
have been cut directly at KTH, it was decided to use this method also on the new
samples, see Fig. 5.1. After cutting, the surface was sanded.

Figure 5.1: Cutting process
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The dimensions of the specimens are summarised in Table 5.2.

Table 5.2: Spcimens dimensions - Vibration test

Beam Length [mm] Width [mm] Thickness [mm] Density [g/cm3]

1 340 70 6.2 1.4231

2 340 70 6.2 1.4231

3 340 70 6.2 1.4299

4 340 70 6.1 1.4465

5 340 70 6.2 1.4570

6 340 70 6.1 1.4189

Average 340 70 6.17 1.4331

From now on, beam 4 will be used as a benchmark to compare the results. The
reason is that, as it will be seen in the next section, the measurements of this beam
are the most accurate and prone to give correct results. Therefore, the expected
natural frequencies using the Euler-Bernoulli theory in Table 5.3 are based on it.

Table 5.3: Estimated natural frequencies using the Euler-Bernoulli theory

Natural
frequencies

Free-free
configuration

Cantilever
configuration (290 mm)

f1 255.1 55.1

f2 703.2 345.4

f3 1378.5 967.1

5.2 Test Procedure

Measuring the damping ratio was of vital importance in order to properly model
the behavior of the material. The tests were performed at the Marcus Wallenberg
Laboratory at KTH. Fig. 5.2 and 5.3 show the setups used in order to reproduce
the desired boundary conditions. For the free-free configuration, the specimen was
suspended employing strings while for the cantilever arrangement it was clamped at
one end using a vise.
The frequency response function of the specimens was measured through a hammer
impact test. The test consists of applying an excitation force through a hammer
and measuring the response through an accelerometer placed on the specimen, see
Table 5.4 for the instrumentation used.
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Table 5.4: Instrumentation vibration test

Accelerometer Bruel & Kjaer 4394

Impact hammer Dytran 5800B4

Preamplifier MWL-UNO-02

Data acquisition system Behringer U-PHORIA UMC202 HD

Figure 5.2: Vibration test - Free-free configuration

Figure 5.3: Vibration test - Cantilever configuration
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5.3 Test Results

The provided data consisted of the force and acceleration signal together with a
MATLAB code to calculate the frequency response function and the respective co-
herence, see Fig 5.4. The coherence function indicates the quality of the FRF. It
evaluates the measurement’s reliability. In particular, a value of 1 for a specific fre-
quency means that the measurement is very reliable, the opposite holds for a value
of 0. Therefore, for the resonance frequencies is desirable to have the coherence
as close as possible to 1. For anti-resonance, since the signal is very low and the
influence of the noise becomes more pronounced, it is acceptable to have a value
closer to 0 [19].

Figure 5.4: FRF with coherence of beam 4

Once all the FRFs were obtained, they were all plotted in one graph. Fig. 5.5
and 5.6 show the FRF for the first three modes of the free-free and cantilever con-
figuration respectively. The results for higher frequencies are available in Appendix
C. As it is possible to see, not all the specimens have the same behavior. In partic-
ular, with regards to the natural frequencies, beam 2-4-6 show very similar results.
Beam 5, instead, with the highest value, is the one that differs the most. This last
observation could be explained by the fact that beam 5 also possesses the highest
density. This means a greater amount of fibers leading to both high stiffness and
natural frequency.
As can be seen from Table 5.5 and 5.6 the difference in results between the Prony’s
method and the 3dB method is negligible. Therefore, due to its conceptual simplic-
ity, the 3dB method is the most advisable for such simple geometries.
The vibration test results show a remarkable difference compared to the values
obtained with the Euler-Bernoulli theory. This leads to two possible conclusions.
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Either the theoretical model does not properly describe the behavior of the material
or the tested specimens are not as stiff as those analyzed in the tensile tests. The
results obtained from the tensile tests of the specimen 4 x 25 x 250 mm, discussed in
section 3.3.2, would confirm the latter statement. However, without further tensile
tests on the specimens employed for the vibration test, it is not possible to confirm
neither of the hypotheses.
Furthermore, the damping ratio of the cantilever configuration is more than double
that of the free-free configuration. This observation, already considered prior to the
test, is justified by the fact that the relative motion in the junction between the test
specimen and the cantilever support (the vise) adds too much damping.

Table 5.5: Natural frequencies and damping ratios 1st and 2nd mode - Free Free

1st mode 2nd mode

Prony’s method 3dB method Prony’s method 3dB method

Beam f1 ζ1 f1 ζ1 f2 ζ2 f2 ζ2

1 219.9 0.0049 220.0 0.0050 589.1 0.0037 589.0 0.0037

2 205.3 0.0031 205.4 0.0032 554.0 0.0037 554.0 0.0037

3 227.0 0.0030 227.2 0.0030 610.7 0.0039 610.6 0.0038

4 207.7 0.0041 207.6 0.0041 572.8 0.0036 573.0 0.0035

5 257.1 0.0037 257.2 0.0037 655.4 0.0038 654.6 0.0047

6 208.1 0.0034 208.2 0.0035 571.9 0.0032 572.0 0.0032

Average 220.9 0.0037 220.9 0.0038 592.3 0.0037 592.2 0.0038

St. Dev 19.6 0.0007 19.7 0.0007 36.3 0.0002 36.0 0.0005

Table 5.6: Natural frequencies and damping ratios 1st and 2nd mode - Cantilever
290

1st mode 2nd mode

Prony’s method 3dB method Prony’s method 3dB method

Beam f1 ζ1 f1 ζ1 f2 ζ2 f2 ζ2

1 43.3 0.0087 43.4 0.0087 272.4 0.0058 272.4 0.0059

2 48.0 0.010 48.2 0.010 270.8 0.0092 271.0 0.0092

3 40.2 0.011 40.4 0.012 288.0 0.0075 288.4 0.0076

4 44.2 0.0087 44.4 0.0086 280.4 0.0061 280.4 0.0066

5 50.9 0.011 51.1 0.011 318.8 0.0046 319.0 0.0046

6 45.8 0.0095 46.0 0.0094 268.1 0.0091 268.4 0.0091

Average 45.4 0.0099 45.6 0.010 283.1 0.0071 283.3 0.0072

St. Dev 3.7 0.0011 3.7 0.0014 19.0 0.0019 19.0 0.0018
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Figure 5.5: Frequency response magnitude - Free-free configuration

Figure 5.6: Frequency response magnitude - Cantilever configuration
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FE Analysis

6.1 Initial Remarks

Finally, once the properties of the material were evaluated, it was possible to start
creating a FE analysis model. The model was developed using the preprocessor
ANSA 20.1.0. The analysis was performed with Optistruct 2019.1 as solver and
the results, which will be compared both with the experimental and the theoretical
ones, were post-processed with HyperView 2017.3.
The difficulty in modeling carbon fiber SMC lies in reproducing its inhomogeneity
while keeping the model relatively simple. At first, to accurately model the fibers’
randomness, it was considered to take into account the microstructure and thus
include the fibers in the analysis. The main problem with this approach is that the
computational cost would have been too high, making the analysis infeasible. For
this reason, two simpler models were developed. The first treats the material as
isotropic while the second as orthotropic.
Both the cantilever and the free-free configuration were analyzed. However, in this
chapter, only the latter will be analyzed in detail. For the cantilever’s results, see
Appendix D. The dimensions of the beam for each configuration are summarised in
Table 6.1.

Table 6.1: Model dimensions

Configuration Length [mm] Width [mm] Thickness [mm]

Free-free 340 70 6.1

Cantilever 290 70 6.1

Due to its simplicity, the geometry was created directly with ANSA and was
meshed with quadrilateral plate elements (CQUAD4). In order to replicate the
fixed end of the cantilever beam, RBE2 elements were used. RBE2 elements define
a rigid body whose independent degrees of freedom are specified at a single master
node and whose dependent degrees of freedom are specified at an arbitrary number
of slave nodes [20]. In other words, the displacement of slave nodes located at one
end of the beam is totally dependent on an arbitrary master node. This allows to
apply the boundary conditions only to one node, see Fig. 6.1. For the free-free
configuration the parameter ”INREL”, was used. This activates the inertia relief
option that allows the simulation of unconstrained structures.
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Figure 6.1: FE model

6.2 Isotropic Model

The isotropic model is the simplest and most straightforward method to model the
material. As the name suggests, the properties are assumed to be the same inde-
pendently of the orientation.
In order to define the properties of the elements, the shell element property (PSHELL)
was used. This requires a material identification (MID) for the membrane (MID1),
bending (MID2) and transverse shear (MID3) property. Therefore, each of the al-
ready mentioned properties will be defined through a different material card MAT1
that is valid for linear, temperature-independent, isotropic materials.
In general, the MAT1 card will be the same for each property except for the mod-
ulus. In particular, the Young’s modulus and flexural modulus should be used for
MID1 and MID2, respectively. No further data were available to define the prop-
erties of transverse shear (MID3). For this reason, the Young’s modulus was used.
However, being the thickness of the shells very thin, defining a material for MID3
was proved to change the results only slightly.
The damping ratio was assigned in the run file using TABDMP1.

6.2.1 Run 1

In this model, the average Young’s modulus, obtained from SET 1, and average
flexural modulus were used. The used data are summarised in Table 6.2. In order
to be sure that the mesh was fine enough, a mesh sensitivity analysis was performed.
Fig. 6.2 shows how the first natural frequency of the free-free configuration converges
with an increase in the number of elements. The same analysis was performed for
higher natural frequencies. From it, it was determined that 396 is the optimal
number of elements. In terms of size, that means that the shells have an average
length of 7.8 mm, which is in line with the company’s standards.
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Table 6.2: MAT1 - Run 1

EY oung
[GPa]

Eflexural
[GPa]

ν
ρ

[g/cm3]

32.0 25.5 0.36 1.4465

Figure 6.2: Mesh sensitivity analysis

Table 6.3 compares the theoretical, FE and test results. In particular, the results
of the FE analysis are 10% higher than those obtained from the vibration test. The
only parameter that could explain this difference is the flexural modulus, being the
bending modes the most predominant. This means that, as it was touched upon
in section 5.3, the specimens might not be as stiff as those analyzed in the tensile
tests. Therefore, adjusting the flexural modulus might produce improved results.

Table 6.3: Results Run 1

Natural
frequencies

Theoretical
results [Hz]

FE
results [Hz]

Test
results [Hz]

% Diff
FE - test

f1 255.1 228.5 207.6 10.1

f2 703.2 634.1 573.0 10.7
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6.2.2 Run 2

The natural frequencies obtained from the vibration test were used in Eq. 5.1 from
the Euler-Bernoulli theory and the adjusted Young’s modulus was extracted. It
should be remembered that in the Euler-Bernoulli theory, the beam is considered
homogeneous and isotropic, meaning that the Young’s modulus coincides with the
flexural modulus. Therefore, from now on, the extracted value will be used both for
MID1 and MID2. For beam 4 in the free-free configuration, a value of 21.2 GPa was
found. The updated MAT1 card is shown in Table 6.4.

Table 6.4: MAT1 - Run 2

EY oung
[GPa]

Eflexural
[GPa]

ν
ρ

[g/cm3]

21.2 21.2 0.36 1.4465

As Table 6.5 shows, by adjusting the modulus, the results have drastically im-
proved. The first and second natural frequencies differ from the test results of less
than 1%. This is also possible to see from the FRF comparison in Fig. 6.3. How-
ever, the third peak, which corresponds to a torsional mode, is not properly excited.
Different nodes were analyzed in the FE model in order to capture this peak better.
Nevertheless, the small improvements, achieved by analyzing nodes with a high ex-
pected amplitude, were hardly visible. Therefore, it was deduced that this limitation
was due to the simplicity of the model.

Figure 6.3: FRF comparison - Run 2
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Table 6.5: Results Run 2

Natural
frequencies

Theoretical
results [Hz]

FE
results [Hz]

Test
results [Hz]

% Diff
FE - test

f1 207.7 208.3 207.6 0.34

f2 572.4 577.9 573.0 0.86

f3 - 588.1 646.8 9.1

f4 1122.0 1140.7 1202.2 5.1

6.2.3 Run 3

Until now, the data of the damping ratio were defined directly in the run file using
TABDMP1. In this way, the whole model is subjected to the prescribed damping
ratio. However, in a situation in which the model is made of different materials,
it is more suitable to define the respective values individually. This was not done
before because the MAT1 card allows the input of only one value, valid for the whole
frequency range of interest. However, the damping ratio is frequency-dependent and
inputting only one value would have limited the analysis. The use of the MATF1
card solved this problem. This material card works more like an extension of MAT1,
allowing the definition of all the properties at varying frequencies. As expected, the
results were the same as those obtained in Run 2.
The Young’s modulus extracted in the previous section from the Euler-Bernoulli
theory was valid for the first natural frequency. The same process can be performed
for higher frequencies as shown in Table 6.6. The Young’s modulus for the third nat-
ural frequency could not be adjusted because the Euler-Bernoulli formula is limited
to bending modes.

Table 6.6: Frequency-dependent Young’s modulus

Natural
frequencies

Young’s
modulus

[GPa]

f1 21.2

f2 21.2

f3 -

f4 24.3

As it is possible to see, the Young’s modulus varies with frequency. Moreover,
the Young’s modulus for the first and second natural frequencies is the same. This
explains why, in the previous analysis, either peaks corresponded with those from the
test. To further increase the precision of the FE model, this frequency dependency
was implemented in MATF1 as well, leading to the results shown in Fig. 6.4. An
improvement in the frequency range between 1200 and 1400 Hz is visibly present.
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Figure 6.4: FRF comparison - Run 3

Table 6.7: Results Run 3

Natural
frequencies

Theoretical
results [Hz]

FE
results [Hz]

Test
results [Hz]

% Diff
FE - test

f1 207.7 208.3 207.6 0.34

f2 572.4 577.9 573.0 0.86

f3 - 590.0 646.8 8.8

f4 1201.3 1219.0 1202.2 1.4

6.3 Orthotropic Model

From the tensile and three point bending tests, it was observed that the material
is not isotropic. Therefore, the next step was to model the dependency of the
properties with the orientation. However, this process was found more tedious than
expected. It was not unequivocal whether the specimens used in the vibration test
have the properties found in Tables 3.6 and 4.2 in the same directions. In the
following analysis, by bearing in mind the relative limitations, this assumption will
be made.
The shell element property, together with the relative material identifications, is
used in the same fashion as for the isotropic model. However, in the orthotropic
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model, the MAT8 card, valid for temperature-independent orthotropic materials, is
used.

6.3.1 Run 4

MAT8 requires the input of the longitudinal and the lateral modulus that is E1 and
E2, respectively. They are applied by the software with reference to the material
coordinate system of the element, that by default, corresponds to its coordinate
system. Therefore, each element’s property had to be modified so that their material
coordinate system and the global one coincided.
The used material properties, shown in Table 6.8, come from the tensile and three
point bending tests of the specimens with different orientations.

Table 6.8: MAT8 - Run 4

E1,Y oung

[GPa]
E2,Y oung

[GPa]
E1,F lexural

[GPa]
E2,F lexural

[GPa]
ν

ρ
[g/cm3]

39.0 24.4 30.6 20.4 0.36 1.4465

Table 6.9 shows that the FE results are more than 20% higher than those of the
tests. The Euler-Bernoulli formula could not be used because the relative theory is
valid only for beams that, by definition, do not allow for out of plane dimensions.
Moreover, a simple theoretical model that could predict an orthotropic beam’s nat-
ural frequency was not found. Therefore, it was impossible to adjust the Young’s
modulus to get more accurate results. In addition, the shape of the FRF shown in
Fig. 6.5, does not differ much from that obtained in the isotropic model.

Table 6.9: Results Run 4

Natural
frequencies

FE
results [Hz]

Test
results [Hz]

% Diff
FE - test

f1 250.4 207.6 20.6

f2 695.5 573.0 21.4

f3 732.2 646.8 13.2

f4 1374.5 1202.2 14.3
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Figure 6.5: FRF comparison - Run 4
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Conclusion

With the aim of creating a proper FE model for the SMC, all the necessary tests
have been performed. The tensile and three point bending tests show the inhomo-
geneity of the material and dependency of its properties for different orientations.
Furthermore, from the vibration test, it was found that the specimen’s boundary
conditions influence the value of the damping ratio. The difference between the
Prony’s method and the 3dB method is negligible.

Two different models were tested in the FE analysis. By adjusting the flexural
modulus, the isotropic model shows a good correlation with the test results. On
the other hand, the orthotropic model is quite limited. Unless it is well known in
which directions the properties occur, it is not possible to use this model for different
components.

Until now, the properties of the model have been tailored specifically for the spec-
imen under study. It was believed that the same material model could be used for
the body in black. However, throughout the study, this concept was questioned and
it became clear that a separate discussion specifically about the BIB was necessary.
Herein some considerations in this regard are made.
Due to its inhomogeneity, the best strategy to model the properties of the SMC is
to use, when possible, large sets of data. However, to match the test results, a much
lower value of the Young’s modulus, compared to the average obtained in Table 3.5,
had to be used for the specimen. Therefore, although the created isotropic model
works fine for the analyzed specimen, it might not correctly represent the behavior
of the entire BIB. For this reason, it is more reasonable for such a complex structure
to use average data instead.
Finally, some suggestions on how to model the material in the BIB are here pre-
sented:

• The material should be treated as isotropic. Therefore, MAT1 should be used.

• MID1 and MID3 should employ the same material card with the Young’s mod-
ulus extracted in Table 3.5. MID2, instead, should be referred to a different
material card which uses the average flexural modulus found in Table 4.2.

• The average damping ratio of the free-free configuration should be used. If
possible, it should be implemented directly in the material card. For higher
frequencies, unless the computational cost gets too high, MATF1 is advised.
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Appendix A

Tensile Tests Results

Table A.1: SET 1 - 3 x 25 x 250 mm

Test information

Test: Tensile test Test temperature: 23 ◦C

Material:
Carbon fiber SMC

Test equipment:
Machine: Shimadzu AG-X 100kN
Extensometer: MFA 25

Standard: ASTM D3039 Test speed: 2 mm/min

Specimen dimensions: 3 x 25 x 250 mm Distance between grips: 120 mm

Number of specimens: 16
Basis for modulus calculation:
0.1-0.3% - 0.01-0.05% chord

Test results

Specimen
Thickness

[mm]
Width
[mm]

Tensile
modulus
0.1-0.3%

[GPa]

Tensile
modulus

0.01-0.05%
[GPa]

Stress at
break
[MPa]

Strain at
break
[%]

Failure
mode

1 3.0 24.9 38.1 39.2 71 0.54 LWB
2 3.0 24.9 29.1 33.6 82 0.26 LWB
3 3.0 24.3 21.5 19.7 169 0.57 LGM
4 3.1 24.7 34.6 34.0 243 0.74 LGM
5 3.2 24.6 37.7 37.1 204 0.6 LAT
6 3.0 25.1 38.5 39.0 209 0.55 AGM
7 3.0 24.5 34.2 36.4 150 0.42 LGM
8 3.0 24.7 30.1 32.2 168 0.56 AWB
9 3.0 24.9 30.2 27.2 165 0.52 LGM
10 3.1 24.3 30.9 32.4 169 0.53 LAT
11 3.1 24.6 28.2 24.3 101 0.31 AGT
12 3.2 25.3 34.3 32.8 154 0.44 AGM
13 3.1 24.3 29.9 31.9 172 0.52 LAT
14 3.1 24.9 41.6 45.3 181 0.47 LGM
15 3.1 25.2 34.2 35.2 181 0.49 LGB
16 3.1 24.6 34.6 36.1 206 0.61 LGM

Average: - - 33.0 33.5 170 0.51 -
St. dev. - - 4.9 6.1 39 0.11 -
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Table A.2: SET 1 - 3 x 50 x 250 mm

Test information

Test: Tensile test Test temperature: 23 ◦C

Material:
Carbon fiber SMC

Test equipment:
Machine: Shimadzu AG-X 100kN
Extensometer: MFA 25

Standard: ASTM D3039 Test speed: 2 mm/min

Specimen dimensions: 3 x 50 x 250 mm Distance between grips: 120 mm

Number of specimens: 12
Basis for modulus calculation:
0.1-0.3% - 0.01-0.05% chord

Test results

Specimen
Thickness

[mm]
Width
[mm]

Tensile
modulus
0.1-0.3%

[GPa]

Tensile
modulus

0.01-0.05%
[GPa]

Stress at
break
[MPa]

Strain at
break
[%]

Failure
mode

1 3.1 49.4 34.2 31.8 146 0.45 LAT

2 3.1 49.8 25.8 23.1 155 0.5 LGT

3 3.1 50.0 32.3 28.2 171 0.53 LWB

4 3.1 50.0 29.2 24.6 160 0.49 LGM

5 3.0 50.2 35.4 34.4 183 0.58 AWT

6 3.1 49.9 40.3 41.2 160 0.52 AGM

7 3.1 49.8 25.3 20.7 160 0.49 LAT

8 3.0 50.1 28.1 25.0 155 0.48 LGM

9 3.0 50.0 31.4 32.3 132 0.41 LAT

10 3.0 50.0 28.5 24.7 137 0.42 AGM

11 3.0 49.8 32.7 28.4 155 0.47 AWB

12 3.0 50.2 26.8 30.7 82 0.30 LAT

Average: - - 30.8 28.8 150 0.47 -

St. dev. - - 4.4 5.7 25 0.07 -
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Table A.3: SET 1 - 3 x 75 x 220 mm

Test information

Test: Tensile test Test temperature: 23 ◦C

Material:
Carbon fiber SMC

Test equipment:
Machine: EDC
Extensometer: MFA 25

Standard: ASTM D3039 Test speed: 2 mm/min

Specimen dimensions: 3 x 75 x 220 mm Distance between grips: 120 mm

Number of specimens: 12
Basis for modulus calculation:
0.01-0.05% - chord

Test results

Specimen
Thickness

[mm]
Width
[mm]

Tensile
modulus

0.01-0.05%
[GPa]

Stress at
break
[MPa]

Strain at
break
[%]

Failure
mode

1 3.0 75.1 24.0 148 0.51 LGM

2 3.0 74.7 36.0 155 0.35 AAB

3 3.1 74.8 34.3 189 0.51 LAT

4 3.0 74.6 40.4 185 0.44 AAT

5 3.0 74.8 39.0 161 0.41 AAT

6 3.0 75.1 40.5 166 0.39 AGM

7 3.0 74.4 27.6 167 0.59 AAT

8 3.1 74.6 24.4 185 0.72 LGM

9 3.0 75.2 40.9 126 0.29 LAT

10 3.1 75.3 24.3 108 0.40 LGM

11 3.0 74.4 36.2 179 0.47 LGM

12 3.1 74.8 30.6 194 0.61 AGM

Average: - - 33.2 164 0.47 -

St. dev. - - 6.7 26 0.12 -
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Table A.4: SET 2 - 6 x 25 x 250 mm

Test information

Test: Tensile test Test temperature: 23 ◦C

Material:
Carbon fiber SMC

Test equipment:
Machine: Shimadzu AG-X 100kN
Extensometer: MFA 25

Standard: ASTM D3039 Test speed: 2 mm/min

Specimen dimensions:
6 x 25 x 250 mm - 0◦ - 90◦

Distance between grips: 150 mm

Number of specimens: 3 + 3
Basis for modulus calculation:
0.1-0.3% - 0.01-0.05% chord

Test results - 0◦

Specimen
Thickness

[mm]
Width
[mm]

Tensile
modulus
0.1-0.3%

[GPa]

Tensile
modulus

0.01-0.05%
[GPa]

Stress at
break
[MPa]

Strain at
break
[%]

Failure
mode

1 6.1 25.1 29.2 28.9 123 0.43 LWT

2 6.1 24.9 24.8 22.3 118 0.42 LGM

3 6.0 25.0 23.5 21.9 145 0.49 LGM

Average: - - 25.8 24.4 129 0.45 -

St. dev. - - 3.0 3.9 14 0.04 -

Test results - 90◦

Specimen
Thickness

[mm]
Width
[mm]

Tensile
modulus
0.1-0.3%

[GPa]

Tensile
modulus

0.01-0.05%
[GPa]

Stress at
break
[MPa]

Strain at
break
[%]

Failure
mode

1 6.0 25.0 44.1 45.6 184 0.44 AWB

2 6.0 25.0 40.9 46.3 156 0.38 AGT

3 6.0 25.1 27.4 25.1 129 0.33 AGM

Average: - - 37.5 39.0 157 0.38 -

St. dev. - - 8.9 12.1 28 0.06 -
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Table A.5: SET 2 - 4 x 25 x 250 mm

Test information

Test: Tensile test Test temperature: 23 ◦C

Material:
Carbon fiber SMC

Test equipment:
Machine: Shimadzu AG-X 100kN
Extensometer: MFA 25

Standard: ASTM D3039 Test speed: 2 mm/min

Specimen dimensions:
4 x 25 x 250 mm - 0◦ - 90◦

Distance between grips: 150 mm

Number of specimens: 3 + 3
Basis for modulus calculation:
0.1-0.3% - 0.01-0.05% chord

Test results - 0◦

Specimen
Thickness

[mm]
Width
[mm]

Tensile
modulus
0.1-0.3%

[GPa]

Tensile
modulus

0.01-0.05%
[GPa]

Stress at
break
[MPa]

Strain at
break
[%]

Failure
mode

1 4.2 24.2 17.1 20.3 75 0.50 LGM

2 4.2 24.8 18.8 18.6 83 0.51 LWT

3 4.2 24.9 17.9 19.3 76 0.46 LGM

Average: - - 17.9 19.4 78 0.49 -

St. dev. - - 0.9 0.9 4 0.03 -

Test results - 90◦

Specimen
Thickness

[mm]
Width
[mm]

Tensile
modulus
0.1-0.3%

[GPa]

Tensile
modulus

0.01-0.05%
[GPa]

Stress at
break
[MPa]

Strain at
break
[%]

Failure
mode

1 4.2 25.0 19.7 20.1 50 0.25 LGB

2 4.2 25.0 12.6 14.3 52 0.35 LGM

3 4.2 25.2 12.4 13.3 52 0.42 LGM

Average: - - 14.9 15.9 51 0.34 -

St. dev. - - 4.2 3.7 1 0.09 -
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Three Point Bending Test Results

Table B.1: SET 2 - 4 x 25 x 250 mm

Test information

Test: Three point bending Test temperature: 23 ◦C

Material:
Carbon fiber SMC

Test equipment:
Machine: Shimadzu AG-X 100kN

Standard: ASTM D790 Test speed: 2 mm/min

Specimen dimensions:
6/7 x 25 x 120 mm - 0◦ - 90◦

Outer span: 96/112 mm

Number of specimens: 3 + 3
Basis for modulus calculation:
0.05-0.25% chord

Test results - 0◦

Specimen
Thickness

[mm]
Width
[mm]

Flexural
modulus

0.05-0.25%
[GPa]

Flexural
modulus

0.01-0.05%
[GPa]

Flexural
strength
[MPa]

Strain at
break
[%]

1 6.1 25.2 21.8 19.1 288 1.6

2 7.0 25.0 23.6 21.8 245 1.2

3 7.0 25.1 21.5 20.2 224 1.2

Average: - - 22.3 20.4 253 1.3

St. dev. - - 1.1 1.4 33 0.2
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Test results - 90◦

Specimen
Thickness

[mm]
Width
[mm]

Flexural
modulus

0.05-0.25%
[GPa]

Flexural
modulus

0.01-0.05%
[GPa]

Flexural
strength
[MPa]

Strain at
break
[%]

1 6.0 25.2 26.5 19.1 309 1.2

2 6.0 25.1 35.4 26.9 389 1.3

3 6.0 25.0 52.7 45.7 628 1.3

Average: - - 38.2 30.6 442 1.3

St. dev. - - 13.3 13.6 166 0.06

56



Appendix C

Vibration Test Results

Table C.1: Natural frequencies and damping ratios - Free Free

3rd mode 4th mode

Prony’s method 3dB method Prony’s method 3dB method

Beam f3 ζ3 f3 ζ3 f4 ζ4 f4 ζ4

1 659.6 0.0032 660.0 0.0032 1124.2 0.0050 1124.2 0.0052

2 643.0 0.0038 643.0 0.0038 1134.2 0.0033 1134.8 0.0033

3 624.8 0.0040 625.4 0.0041 1184.8 0.0040 1185.4 0.0040

4 646.0 0.0046 646.8 0.0049 1202.4 0.0032 1202.2 0.0032

5 705.7 0.0028 706.0 0.0029 - 1 - - 1 -

6 639.3 0.0039 640.8 0.0076 1116.3 0.0040 1116.8 0.0038

Average 653.1 0.0037 653.7 0.0044 1152.4 0.0039 1152.7 0.0039

St. Dev 28.1 0.0006 27.9 0.0017 38.7 0.0007 38.5 0.0008

1 Peak not visible in the FRF
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Figure C.1: Frequency response magnitude part 2 - Free-free configuration

Table C.2: Natural frequencies and damping ratios - Cantilever 290 mm

3rd mode 4th mode

Prony’s method 3dB method Prony’s method 3dB method

Beam f3 ζ3 f3 ζ3 f4 ζ4 f4 ζ4

1 386.4 0.0046 385.7 0.0035 773.4 0.0041 773.6 0.0043

2 377.4 0.0441 376.1 0.0053 764.6 0.0062 764.9 0.0061

3 370.6 0.0069 369.5 0.0051 852.8 0.0060 852.6 0.0060

4 393.0 0.0291 391.5 0.0037 790.6 0.0046 790.4 0.0046

5 408.0 0.0161 406.8 0.0031 915.4 0.0054 916.1 0.0054

6 391.0 0.0451 389.4 0.0039 739.6 0.0042 739.7 0.0043

Average 387.7 0.024 386.5 0.0041 806.1 0.0051 806.2 0.0051

St. Dev 13.0 0.018 13.0 0.0009 65.7 0.0009 65.8 0.0008

1 Low reliability
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Figure C.2: Frequency response magnitude part 2 - Cantilever configuration
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Appendix D

FE Analysis Results

Figure D.1: FRF comparison cantilever - Run 3

Table D.1: Frequency-dependent Young’s modulus - Cantilever

Natural
frequencies

Young’s
modulus

[GPa]

f1 20.7

f2 21.1

f3 -

f4 21.4
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Table D.2: Results Run 3 - Cantilever

Natural
frequencies

Theoretical
results [Hz]

FE
results [Hz]

Test
results [Hz]

% Diff
FE - test

f1 44.3 45.0 44.2 1.8

f2 280.4 284.0 280.4 1.3

f3 - 357.3 393.0 9.1

f4 790.9 803.0 790.6 1.6
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