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Abstract—Formation flying of satellites describes a mission in
which a set of satellites arrange their position with respect to
one another. In this paper, satellite formation flying guidance
and control algorithms are investigated in terms of required
velocity increment ∆v, and tracking error for a Chief/Deputy
satellite system. Different control methods covering continuous
and impulsive laws are implemented and tested for Low Earth
Orbit (LEO). Sliding Mode, Feedback Linearization and Model
Predictive Controllers are compared to an Impulsive Feedback
Law which tracks the mean orbital element differences. Sliding
Mode and Feedback Linearization controllers use the same dy-
namic model which includes Earth Oblateness perturbations. On
the other hand, Model Predictive Control with Multi-Objective
Cost Function is based on the Clohessy–Wiltshire equations,
which do not account for any perturbation and do not cover
the eccentricity of the orbit. The comparison was done for
two different missions both including Earth Oblateness effects
only. A relative orbit mission, which was based on the Prisma
Satellite Mission and a rendezvous mission, was implemented.
The reference trajectory for the controllers was generated with
Yamanaka and Ankersen’s state transition matrix, while a
separate method was used for the Impulsive Law. In both of the
missions, it was observed that the implemented Impulsive Law
outperformed in terms of ∆v, 1.2 to 3.5 times smaller than the
continuous control approaches, while the continuous controllers
had a smaller tracking error, 2 to 8.3 times less, both in terms
of root mean square error and maximum error in the steady
state. Finally, this study shows that the tracking error and ∆v
has inversely proportional relationship.

Index Terms—Aerospace, Chief, Control, Deputy, Feedback
Linearization, Follower, Formation Flight, Fuel Consumption,
Guidance, Leader, Model Predictive Control, Relative Orbit,
Rendezvous, Sliding Mode.

Abstract—Sammanfattning - Formationsflygning av satelliter
innebär att en grupp satelliter flyger tillsammans och anpassar
sina relativa lägen i förhållande till varandra. I detta examensar-
bete studerades regleralgoritmer för formationsflygande satelliter
med fokus på bränsleförbrukning och positionsavvikelse genom
”Chief & Deputy”-metoden. Olika reglermetoder har studerats,
t.ex. Sliding Mode- och Feedback Linearization-reglering för
formationsflygningsfall i låg jordbana med J2-störning samt en
Model Predictive-reglering för fall med relativ rörelse baserad
på Clohessy-Wiltshire-ekvationerna. Vidare studerades en regler-
metod baserad på impulsframdrivning. De fyra reglermetoderna
implementerades på två olika rymduppdrag. Först ett uppdrag
baserat på Prisma-satelliterna för två satelliter i relativ omlopps-
bana och sedan ett Rendezvous-uppdrag. Referensbanan för alla
reglermetoder, utom för implusmetoden, har tagits fram med
hjälp av Yamanakas och Ankersens tillståndsmatris. Resultaten
visar att den implementerade impulsmetoden presterar bättre
med avseende på bränsleförbrukning, medan de kontinuerliga
reglermetoderna producerade mindre relativ positionsavvikelse,
både med avseende på kvadratiskt medelvärde och maximalt
värde.

I. INTRODUCTION

FORMATION flying has been identified as critical technol-
ogy for the 21st century by NASA, for astrophysical and

Earth science missions. Formation flying missions of satellites
involves the autonomous cooperation of satellites with each
other to maintain the desired formation, an example can be
seen in Fig. 1, which depicts the Mango and Tango satellite,
[1]. The main satellite, Mango, is the one with solar panels
wide open and it arranges its position with respect to the other
satellite, Target, or simply Tango. In this paper a Deputy/Chief
or Follower/Leader approach will be used. The Deputy is the
main satellite, which arranges its own position with respect
to the Chief. Which if referenced to Fig. 1 makes Mango the
Deputy, and Tango the Chief.

A paradigm shift is emerging in spacecraft engineering from
single and large multi-functional satellites towards cooperating
groups of small satellites, forming a constellation, cluster or
formation. This will enable innovative approaches in areas like
Earth observation, scientific exploration or telecommunication.
One of the advantages of such a system design is that if one
of the satellites is lost due to a malfunction or environmental
conditions, then the rest of the satellites can cover the mission
of the lost satellite. In addition to that, the lost satellites, if
required and without pausing the mission, can be replaced,
depending on the importance of the lost satellite. Replacing
a lost satellite is a simpler solution than repairing a subsys-
tem of a big satellite. Furthermore, the physical size limits
from having one single body can be avoided by allocating
the mission into numerous smaller bodies. This shift from
single large multi functional satellites to many small body
satellites can be seen from the European Space Agency’s
(ESA) Proba-3 mission set to launch in 2022. Which is a
sun chronograph mission in a Highly Elliptical Orbit (HEO),
which utilises smaller body satellites to achieve an accuracy
that would not have been possible with a single satellite
mission [2]. In addition to this, combination of the TanDEM–
x and TerraSAR–x missions is utilising a two satellite system
with Synthetic Aperture Radar in order to capture the digital
elevation of Earth and is completing the scientific mission
better than if it was a single satellite. [3]. However, the mission
becomes more complex when using formation flying because
the mechanics in space are very different to the mechanics
of everyday life. If a vehicle is desired to go faster in any
direction, it would use its boosters in that direction in ”Earth
Physics”. For example, a jet aircraft would simply increase
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Fig. 1. An Example of Formation Flying Satellite, from Prisma Mission,
taken from [1]

the thrust generated by its engine in the direction of flight,
increasing the velocity of the aircraft. However, in space this
story changes a little. If a satellite is required to go faster, then
the best method is to first slow it down. This will lead to a
decrease in its altitude and semi major axis, and in return the
orbital period will decrease. The orbital period is proportional
to the semi-major axis’, which means it will make an orbit
faster than before. A specific and an interesting case would
be rendezvous mechanics. More specifically, lets assume two
identical satellites having almost identical orbits with a true
anomaly difference only, i.e. they only have in-plane distance
differences, one leads the other one, and assume both of the
orbits are circular. For this scenario let the trailing satellite
be called Deputy, and the other satellite called Chief. Chief
has no control application, hence, the Deputy must close the
difference itself. If daily life logic is applied, to close the
distance, the Deputy satellite would apply tangential thrust
towards the Chief. However, the effect of it is limited. Initially,
the tangential thrust will allow the Deputy Satellite to close
the gap, however, in the long run this will cause the Deputy
satellite to gain altitude, and to lose velocity. Furthermore,
the period of the Deputy will be increased which will cause
it to fall further behind. In other words, the overall effect is
that the applied thrust will increase the semi-major axis of
the orbit, causing the deputy to fall even more behind of the
chief in the long run, even though the gap was closed initially.
This illustrates that taking an everyday approach to Formation
Flying does not necessarily work. Furthermore, keeping the
relative motion bounded is another problem in Formation
Flying because of the differences in orbit parameters, such
as semi major axis, and perturbations. Numerical simulations
show that if two satellites have 1 meter difference in altitude,
this will cause approximately 150 meter tangential difference
in 1 day for a satellite in circular orbit at 400 km altitude
without any perturbation. Furthermore, if satellites are both in
sun synchronous orbits with 1 degree of inclination difference
at an altitude of 600 km, it will take 8 days to have 1 degrees
of right ascension of the ascending node (RAAN) difference,
11 days for 1 degree of argument of periapsis difference and

18 days to have 1 degree of mean anomaly difference due
to J2 perturbation only. That means, if the relative position
is not controlled, it will most definitely diverge. To solve
that non-intuitive relative position arrangement the formation
flying problem must be handled carefully, such as designing
controllers for that purpose.

Alongside this, space debris is becoming a hazardous prob-
lem due to the risk of collisions occurring in between the
debris itself. Recent research shows that even if launches
into Low Earth Orbit (LEO), an orbit with altitude ranging
from 200–300 km to 1600 km [4] and the most densely
Debris populated area [5] is stopped, the mutual collisions in
between debris will worsen the situation [5]. In other words,
the particles or debris in LEO can damage the satellites due to
increase in collision risks. For that purpose, the importance of
formation flying with debris, or the importance of rendezvous
with it in order to remove debris is a vital issue.

The Deputy must follow the Chief as planned with high
accuracy, in order to achieve scientific or economic gains. In
addition, it is necessary to actively reduce the number of debris
and prevent collisions from getting out of control. Therefore,
in this study, the effects of different relative position control
methods on fuel consumption and tracking performance was
investigated.

A. Brief History

Multi-satellite missions can be divided into two categories,
Formation Flying and Constellations. The distinction is that
in Formation Flying missions the satellites should arrange
their position with respect to each or one satellite. Forma-
tion flying missions can be tracked since the beginning of
21st century. As these kinds of missions are relatively new,
nearly 10 out of 25 is focused on mission Type 1, which is
technology demonstration, and can be seen in Tab. I. The
second most common type of mission is Type 2 which is
Earth Observation or Earth Science missions. Type 3 is the
least common one, which focuses on Astrophysics or other
planetary missions. Afternoon Train is a formation flying
mission in sun-synchronous orbit at an altitude of 705 km,
where the main mission is observation of Earth. The satellites
in this constellation follows the same “track” [10]. In the
Gravity Recovery and Climate Experiment, named GRACE,
a formation flying mission in LEO in which the satellites
observe the anomalies of Earths gravity field since their launch
at 2002 until 2017 [33]. Cluster II, is a formation flying
mission in HEO, where the satellites form a tetrahedral, and
study the magnetosphere of the Earth [34]. The Tab I generally
focuses on non-CubeSat type of missions, for CubeSat specific
missions, the reader is referred to [35], which covers 39
different small satellite missions, mostly CubeSat, which are
either formation flying or constellation missions.

B. Mission Requirements

This part covers the orbit properties, initial conditions of
the satellites and the relative orbit requirements.

In 2019, 61 launches were aimed at LEO. 36 launches
were aimed at higher altitude orbits such as Geosynchronous
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TABLE I
PREVIOUS MISSIONS

Operational Missions
Mission Satellite Launch Altitude Mass Mission Mission
Name Number Year [kg] Status Type
Cluster II [6] 4 2000 19 000 km × 119 000 km 1,180 Still Operational 2
SNAP-1 [7], [8] 1+1 2000 700 km LEO 6.5 Still Operational 1
GRACE [9] 2 2002 500 km LEO 487 Deactivated 3
A-train [10] 4 2002 705 km LEO 120–2,934 Partial Deactivation 2
Essaim [11] 4 2004 640 km LEO 120 Deactivated 2010 1
XSS-11 [12] 1+1 2005 840 km LEO 100 Deactivated 2013 1
Orbital Express [13] 2 2007 490 km LEO 224–1,090 Deactivated 2007 1
FASTRAC [14] 2 2010 640 km LEO 27 Deactivated 1
TDX [15] 2 2010 515 km LEO 1,340 Still Operational 2
Swarm [16] 3 2013 460 km to 530 km LEO 240 Still Operational 2
MMS [17] 4 2015 2,550 km × 152,900 km 1,360 Still Operational 2
Lone Star-2 [18] 2 2016 400 km LEO 4.2–54.9 Mission Failure 1
GRACE FO [19] 2 2018 490 km LEO 600 Still Operational 2
DSLWP [20] 2 2018 200 km × 9,000 km Lunar Orbit 47 Deactive 2
Proba-3 [21] 2 2022 600 km × 60,530 km 220–340 Not Operational 1

Cancelled Missions
TechSAT21 [22] 3 N/A 550 km 100 Cancelled 2
Orion/Emerald [23] 3 N/A LEO 15–35 Cancelled 1
FUEGO [24] 12 N/A 700 km N/A Cancelled 2
MAGNAS [25] 28 N/A 450 to 550 km 0.5–210 Cancelled 2
ION-F [26], [27] 3 N/A 370 km 10–15 Cancelled 1
MAX [28] 2 N/A 44,000 km × 253,000 km 570–850 Cancelled 3
XEUS [29] 2 N/A L2 Lagragian Point 1,500–2,000 Cancelled 3
APIES [30] 19 N/A Astroid Belts 45 Cancelled 3
Gemini [31] 2 N/A 500-700 km 80–100 kg Cancelled 1
Darwin [32] 5 N/A L2 Lagragian Point N/A Cancelled 3

Equatorial Orbit (GEO) [36]. Similarly, since 2014 the number
of launches to LEO was higher than that to higher altitudes,
which makes LEO a highly popular [37]–[41]. With this in
mind the orbit of the satellite under investigation in this work
is chosen to match that of the Prisma satellite’s orbit, which
is a LEO orbit with an approximate altitude of 700 km [42].

The relative orbit that was chosen is based on [42], [43]. In
both of the references, the relative orbit in terms of orbital
element differences are given for the Prisma Mission. The
relative orbit for this study was given in Fig. 2. In this study, a
perfect ellipse that has its semi-minor axis lying on the z axis,
and semi-major axis lying on x axis was chosen. However, in
the Prisma mission, the semi-minor axis of the relative orbit
in x-z plane is not located on z axis.

The x axis denotes the radial direction, y axis denotes the
tangential direction, and the z axis denotes the out of plane
direction. As can be seen the in-plane relative orbit is an ellipse
with a semi-major axis of 1 km, with a semi-minor axis of
500 m. The out of plane relative orbit is an ellipse with a
semi-major axis of 500 m and a semi-minor axis of 300 m.

A rendezvous scenario to test the capabilities of the con-
trollers was also selected to show that the designed controllers
can be used in order to rendezvous with debris.

C. Vehicle

The planned vehicle that is to be used is the Swedish Space
Corporation’s Prisma Satellite system. Prisma consists of 2
vehicles, namely MAIN and TARGET. As the name suggests,
the TARGET will be the vehicle which MAIN will arrange
its position according to. However, it must be noted that both
of the vehicles in this thesis will be identical with the MAIN

Fig. 2. The relative orbit description of the Mission based on [42], [43]

vehicle. In other words, the Deputy and Chief will be the
same as MAIN. The required specifications for the simulation
purposes are shared in Tab. II.

TABLE II
FEATURES OF THE VEHICLES

Dry Fuel Isp Thrust Drag Drag
Mass [kg] Mass[kg] [s] [N] Coeff Area

Prisma [44] 143.4 11 236.8 1 2.5 1.3
C. Gas [45] 143.4 11 70 0.04 2.5 1.3

The first row of Tab. II is suitable for high-thrust appli-
cations, or impulsive controlling methods. To check the low
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thrust applications, a cold gas system similar to that used in the
GRACE mission was implemented with the same fuel levels
as the High Thrust system and is described in the second row
of Tab. II.

While the fuel mass and the structural masses for the low
thrust, i.e. cold gas and high thrust cases are the same, since,
the Isp, specific impulse, of the cold gas system was lower
than that of Hydrazine system, that might require more fuel
than that of Prisma. This could lead to errors in the analysis
if the fuel consumption in terms of mass was compared. To
solve that issue, the comparison was based on ∆v, where ∆v
denotes the change in velocity consumption of the systems.

D. Scope of Thesis

In this thesis the effect of various control schemes on
the fuel consumption was investigated. For that reason, the
positions of each satellite was known to each other perfectly
and ideally, i.e. there is no sensor noise, or an estimation
algorithm. Furthermore, thrust misalignment or similar effects
were ignored. The system is considered to work in a perfect
manner. In addition, the system was taken as a point mass, and
it was assumed that the attitude control system can arrange the
satellite into the desired attitude to achieve the required thrust
command produced by the formation keeping controller.

This thesis focused on the initial establishment of the
relative orbit. In other words, there are scenarios where there
will be error in the beginning, and the controller tries to
establish the desired relative position.

In this study, only the perturbations due to the oblateness
of Earth were included. For this purpose, GRACE Gravity
Model 03, the GGM03S, was used. The reason behind that
in the altitude investigated (approximately 700 km) the most
dominant perturbation is due to Earth oblateness effects [46].
The second most dominant perturbation is drag force, due
to the atmosphere was ignored [46]. Reference [47] states
that if the designs of each satellite is similar in terms of
aerodynamics, the decay rate of both of the orbits will be
similar.

E. Thesis Structure

The thesis consists of Section II Background, where the
relevant background knowledge will be explained, Section III
Method, the method of the analysis and related research will
be explained, and followed by Section IV Results, Section V
Discussion and Section VI Conclusion with Section VII Future
Work.

II. BACKGROUND

A. Essentials of Astrodynamics

Primary Mass: Generally, in multi-object systems, which
is gravitationally bound, main physical body is called primary.

Periapsis: The closest point to the primary on the orbit
of the gravitating mass is called Periapsis.

Vernal Equinox: The date when the time lengths of day

and night are almost equal and the sun passes through
celestial equator of earth and moves toward north. Vernal
Equinox is the time when the spring starts and it is used for
inertial calculations and measurements.

Orbital Plane: The orbital plane of a gravitating mass
is the geometric plane which covers the orbit of that mass.

B. Coordinate Frames

1) ECI: This frame is called Earth-Centered Inertial Frame.
Origin of this frame is located at the center of the Earth.
The x̂ axis points toward the Vernal Equinox, ẑ is normal
to the fundamental plane and points toward the geographic
north pole, and ŷ completes the right hand rule. This frame
will be denoted as I.

2) LVLH: The Local Vertical Local Horizontal Frame, is
centered at the spacecraft. The unit vector x̂ is pointing
radially outwards from the Earth. The ẑ axis is perpendicular
to the orbital plane, and the ŷ axis completes the right hand
rule. This frame, overlaps with the Hill frame, and if the origin
of this frame is located at Chief, will be denoted as C, if on
Deputy, then will be denoted as D.

3) DCM: Direction Cosine Matrix (DCM) is a matrix that
transforms the vector written in one frame to another frame.
Defining the unit vector set c and n, where they are orthogonal
and right handed, shared in Eq. (1).

c =

c1

c2

c3

 n =

n1

n2

n3

 (1)

where c and n are 3 by 3 matrices. They are both resolved in
the ECI frame. c is the unit vectors of the Chief LVLH frame
resolved in ECI and n is the unit vectors of the ECI resolved
in ECI frame. Defining The αij as the angle from nj to ci
where i and j represents the axes, and vC is a vector resolved
in Chief LVLH frame and vI is the same vector resolved in
ECI frame, then the transformation can be expressed as shared
in Eq. (2)

vC = CCIv
I (2)

and CCI(i, j) = cos(αij) [47].

C. Vector Notation

The position vectors was shown as rI
CI, which means, the

position of Chief frame, which is denoted as C, with respect
to the ECI, I, resolved in the ECI frame. So superscripts show
the frame which the vector was resolved, subscripts show the
direction of the vector. Direction Cosine Matrix (DCM), from
ECI to Chief’s LVLH is CCI.

The derivative notation is dI(.)/dt, which means, the time
derivative of a vector with respect to the ECI frame.

D. Orbital Elements

1) Classical Orbital Elements: The classical orbital ele-
ment set, also known as Keplerian Elements, is consisting
of six elements which describes the absolute motion of an
satellite around a primary. It consists of a, semi-major axis, e,
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Fig. 3. Graphical illustration of orbital elements

eccentricity, i, inclination, Ω, right ascension of the ascending
node, ω argument of periapsis and, M mean anomaly. The
orbital elements, except, M can be seen in Fig. 3.

œ = {a, e, ω,Ω, i,M}

For the unperturbed motion, all the elements except the
mean anomaly is constant. The mean anomaly can be thought
as the angle in between the periapsis and the location of the
satellite if the orbit was circular. For the unperturbed motion,
the mean anomaly changes with mean motion, n =

√
µ/a3,

where µ is the standard gravitational constant of Earth.
Furthermore, there is true anomaly, which is an angle that

locates the satellite in the orbit from the periapsis. In other
words, it is the angle in between the vector pointing the
satellite and periapsis as seen from the main focus of the
ellipse. It is shown in Fig. 3 and denoted by f .

The last anomaly that will be covered is eccentric anomaly,
E, taken from [48], which is the angle between the perifocal
unit vector and the radius of a bounding circle at a point
normal to the line of apsides at a given true anomaly.

The Keplerian equation, which creates the relation between
the mean anomaly and eccentric anomaly is

M = E − e sinE (3)

Equation (3), has no closed-form solution for E when M is
given. In this paper, Newton–Raphson iteration methods are
used to transform anomalies, which can be found in [49]. The
relation in between the true anomaly and the eccentric anomaly
is

cos f =
cosE − e

1− e cosE
(4)

The semi-latus rectum, p of the orbit, the magnitude of the
position vector from the center of the Earth r at epoch time,
period of the orbit and the magnitude of the angular moment
of the vehicle h, in terms of orbital elements or in terms of
each other are

p =a(1− e2) (5)

r =
p

1 + e cos f
(6)

T =2π

√
a3

µ
(7)

h =
√
pµ (8)

2) Differential Orbital Elements: The relative motion can
both be described by Cartesian Coordinate system and orbital
elements. In order to obtain the relative orbit with Cartesian
Coordinate System, the differential equations for the relative
motion should be solved. Of course there exist analytical solu-
tions for the differential equations under certain assumptions,
i.e. for Clohessy–Wiltshire equations shared in Eq. (46), the
Chief orbit must be circular, however, they are not convenient
to determine the instantaneous geometry of the relative orbit.
Hence, for any of the orbital element sets, the differential orbit
elements were obtained as,

δœ = œd −œc (9)

where sub-index d denotes the Deputy and c denotes the Chief,
and œ denotes the orbital elements. Given δœ and œc one
can find the position of the deputy by using Eq. (9).

3) Mean Orbit Elements: Under the influence of pertur-
bations, the motion in orbital plane is divided into three,
Long Periodic Motion, Short Periodic Motion and Secular
Motion. The secular motion in general tends to increase with
time while other motions are “relatively” bounded. The mean
orbital elements covers the secular drift dynamics rather than
periodic motions. Let œ(t) be a classical orbital element set,
the osculating orbital element set is the time-dependent orbital
element set, which corresponds to the Keplerian orbit which
the body would follow if at time t the perturbations were
cancelled [48]. The general relation can be expressed as shared
in Eq. (10).

œ̇osc(t) = œ̄(t) + ∆œ(t) (10)

where œ̄ denotes the mean orbital elements, and the ∆œ(t)
corresponds to the changes in the orbital elements due to
perturbations, and can be divided into long periodic and short
periodic while the secular drift and the mean motion terms are
handled in mean orbital elements.

The mean orbital element is introduced by Kozai [50], in
1959, to research the effect of the perturbation, specifically the
effect of the gravity perturbations, on mean orbital elements.
Furthermore, Brouwer [51], worked on mean Delaunay Vari-
ables and created a transformation to corresponding osculating
elements . Then, Walter [52] offered an iterative solution from
osculating orbital elements to mean orbital elements with using
Brouwer Theory. Lydane, also worked on Brouwer’s work to
cover small inclinations and eccentricities [53].

E. Coordinate Transformations

1) ECI to LVLH: Let ûx,ûy ,ûz denote the unit vectors of
the LVLH frame, resolved in ECI. Let C denote the Chief, then
the unit vectors, by the definition of Hill frame, are shared in
equation set shared in (11).

ûI
x =

rI
CI

||rI
CI||

(11a)

ûI
z =

rI
CI × vI

CI

||rI
CI × vI

CI||
(11b)

ûI
y = ûI

z × û
I
x (11c)
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The DCM from ECI to Chief’s LVLH is

CCI =
[
ûI
x, û

I
y, û

I
z

]T
(12)

The position transformation from ECI to LVLH frame is by
application of the DCM as shown in the Eq. (13).

rC
DC = CCIr

I
DC (13)

Since the LVLH frame is a rotating frame, unlike ECI,
velocity term requires the Transport Theorem as shown in Eq.
(14)

vC
DC = CCIv

I
DC + rC

DC × ωC
CI (14)

where ωC
CI is the angular velocity of the LVLH frame

of Chief with respect to ECI frame, and equal to ωC
CI =

[0, 0, h/||rCI||2]T.
The opposite transformation is given in Eq. (15).

rI
DC = C−1

CI r
C
DC (15a)

vI
DC = C−1

CI (vC
DC − rCDC × ωC

CI) (15b)

2) Mean and Osculating Orbital Element Transformation:
Brouwer created his theory in order to transfer from mean
Delaunay variables to corresponding osculating elements. He
divides the Hamiltonian into two parts, H0 as the nominal
Hamiltonian which covers the two body motion, and H1 as
the perturbed Hamiltonian, which covers the motion under per-
turbations. Brouwer was able to calculate those Hamiltonians
which led to the calculation of the transformation from mean to
osculating Delaunay orbital element set. For more information
about Brouwer’s theory reader can take a detailed look at [48],
[51], [53].

In this paper, a first-order truncated infinite power series
approximation of the Brouwer’s and Lydane’s theory offered
by [47] was applied. Since it is a first-order truncated ap-
proximation, the same transformation can be used for either
transforming from mean to osculating orbital elements or vice
a versa with a sign change. Furthermore, this approximate
change is expected to have error in the order of J2. However,
it was easy to implement and it does not include numerically
heavy calculations. In addition to that, Schaub and Junkins
[47], states that, if this transformation is used both for the
Deputy and the Chief, then the error introduced is similar for
both of them, and this does not cause issues for the control.
The details of this method is shared in Appendix B.

3) Classical Orbital Elements to ECI: Classical Orbital
elements are used to calculate the corresponding position and
velocity of the satellite with respect to the Inertial frame
resolved in inertial frame, which can be found in Appendix
A, Section A

4) ECI to Classical Orbital Elements: The Classical orbital
element transformation is shared in Appendix A, Section
B. The velocity and position of a satellite with respect to
ECI resolved in ECI is turned into corresponding Osculating
Classical Orbital Elements.

F. Discretization of a Linear System

In Model Predictive Control (MPC), which was explained in
next chapters, a discrete type of system is more desirable since
a control law created by MPC based on continuous systems
is generally more complex, and numerically more intense to
solve.

A linear time varying continuous system is given as

ẋ(t) = A(t)x(t) +B(t)u(t) (16)

The solution to that equation is in the form of Eq. (17)

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B(τ)dτ (17)

where Φ(t, t0) is a State Transition Matrix (STM). The STM
can be expressed in terms of continuous system’s A matrix,

Φ(t, t0) = eA(t−t0) (18)

For linear systems, exponential of a matrix can be calculated
with inverse Laplace Transformation

eAt = L−1{(sI −A)−1} (19)

G. Regulation and Tracking

The regulation problem and tracking problem are similar in
nature. Simply, the difference is that, in the regulation problem
a single point in a manifold is tracked, and in the tracking
problem, the system tracks a trajectory, rather than a point
[54].

The system given is

ẋ1 = x2 (20)
ẋ2 = f(x1, x2) + u (21)

If u is designed such that, the origin is stable, then this
problem tries to track the origin constantly and hence it is a
regulation problem.

Defining xr(t), as the trajectory to be followed, and creating
a new variable set which covers the error dynamics

e1 = x1 − xr
e2 = x2 − ẋr (22)

where ẍr = f ′(xr), then

ė1 = e2

ė2 = f(x1, x2) + u− f ′(xr) (23)

With the system in Eq. (23), the tracking problem is turned into
a regulation problem, because if the origin is an asymptotically
stable equilibrium then x(t) = xr(t) holds when t → ∞.
Furthermore, in this paper, e1 is taken as a vector and namely,
the position tracking error, and e2 is also taken as a vector
and it is the velocity error, which can be seen in Eq. (64).
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H. Equation for Relative Motion

The equations for relative motion for the tracking problem is
important since, those equations can be used in both creating
a reference trajectory, and can be used as the plant for the
calculation of the control actuation. The literature survey
showed that, the equation for relative motion can be non-linear,
which covers the whole dynamics, and can be linear with
some assumptions. The non-linear equations governing the
dynamics and perturbations in the Hill frame are shown in Eq.
(44). However, the complexity of non-linear equations does
not attract designers. The linearized equation work started as
early as 1960. Clohessy–Wiltshire (CW) worked on “Terminal
Guidance System for Satellite Rendezvous” and they derived
linear equations for relative motion for a circular reference
orbit for a rotating coordinate system, also known as Hill’s
equations. One of the issues with CW equations is that, it
is only applicable to circular or small eccentricity reference
orbits [47], [48]. To solve that issue, Melton worked with time
as the independent variable, and created a State Transition
Matrix (STM). However, his solution is practical for values of
eccentricity of 0 to 0.3 [55]. Schweighart and Sedwick worked
on CW equations and came up with new linear differential
equation set that covers the J2 effects [56]. Tschauner and
Hempel (TH), on the other side, worked with equations that
took true anomaly as independent variable, and derived an
equation set that is similar to CW equations for the elliptical
orbits [48]. Lawden solved the TH equations, interestingly
earlier then they have been found, for fuel optimal rocket
trajectory [48]. Carter, found out that Lawden’s equations
were singular when true anomaly, f is multiples of π, and
solved that issue, but, he introduced another singularity for
circular orbits. Later, Carter published another solution, which
gets rid of that singularity, but the solution that was offered
was hard to implement which caused it to be little use for
engineering [48], [57]. Yamanaka and Ankersen again worked
on TH equations, and solved this singularity issue with a really
compact solution [58], nevertheless, their solution is singular
when the eccentricity is equal to one, but this is typically
not a major problem. Furthermore, some thought that the
Cartesian Coordinate approach for description of the relative
orbit makes it harder to interpret the relative orbit. So Schaub
introduced the Differential Orbital Elements, an arithmetic
difference of Deputy and Chief orbital elements, to describe
the relative motion [59]. Furthermore, Schaub and Alfriend
introduced J2 invariant relative orbits, where the Deputy and
Chief Orbital Elements have the same rate of change under
the J2 perturbations [60]. Gim and Alfriend created the Non-
Singular Orbital Element Differences and created an STM to
propagate it in time which also covers J2 perturbations with
eccentricity [61].

Since it covers eccentricities that was the interest of this
study with an easy to implement approach, the Yamanaka
and Ankersen STM (YASTM) approach found suitable for
the reference trajectory design for the Continuous Controllers.
For High Thrust implementations, the method suggested by
Schaub [59], where the difference in Classical Mean Orbital
Elements are tracked, was used.

I. Numerical Optimization

Since different control approaches were compared in this
paper, the controllers that had the best performance were
required to be found. The best can be defined depending on
the user, such as a controller that leads to least error, with high
fuel consumption might be chosen as the best in land vehicle
applications where fuel is suppliable to the system and small
tracking error is desired.

The problem at hand, optimizing the controller parameters
based on the total fuel consumption and tracking error, is a
multidimensional non-linear problem that is not easy to solve
by any algebraic means, hence, heuristic solvers were required
for the problem. A heuristic solver is designed to solve
problems faster than universal solvers or solve the problems
that are non-solvable by the universal solver. The side effect
of such design is that the some order of accuracy is lost.

Heuristic Optimizers can be divided into categories de-
pending on different parameters. A general approach is to
classify according to the rule they depend on. If a solver
implements multiple iterations in order to find the solution,
it is called iterative optimization. A method works with a
set of solutions and tries to improve the solutions at hand, it
is a Population Based Optimization. If a method implements
a probabilistic theory, then it is a probabilistic optimization.
Another parameter can be the innate phenomenon that the
algorithm imitates. This specification mainly has two different
branches, Evolutionary Algorithms, which imitates the survival
of the fittest, and Swarm Intelligence Based Algorithms,
which imitates the group behavior of a colony [62]. A very
well known, and proven algorithm in Evolutionary Algorithm
is called Genetic Algorithm (GA), which imitates Darwin’s
theory. The easiness of implementation to different cases and
its global perspective made it famous [63]. On the other
hand, in swarm based algorithms, there are two different
options that are well known and widely used, Particle Swarm
Optimization (PSO) and Artificial Bee Colony (ABC). PSO is
based on the behavior of the fish schooling or bird flocking.
The PSO, compared to other methods, specifically GA, is a
faster and numerically cheaper method [64]. Likewise, ABC
is a Swarm Intelligence based algorithm, which imitates the
foraging behaviour of a bee colony. The main aim of this
approach is to find the best location of the food, the possible
solutions to the problem, depending on the food quality, or
corresponding objective value [62]. According to [62], [65],
the ABC is as accurate as the GA and PSO methods, and
outperforms them. Similarly, [66] states that, for a specific
problem it outperforms the GA in terms of convergence speed,
with a similar accuracy. Further research shows that ABC’s
accuracy is better than the PSO, however time of convergence
of PSO is better than that of ABC [67]. Considering these
results, it was noticed that every optimization algorithm has
their pros and cons depending on the problem. Nevertheless,
the ABC algorithm was chosen due to its moderate time of
convergence and high accuracy compared to the other methods
at hand.
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J. Controllers

The controller framework in Formation Flying can be
divided into three, Multi Input Multi Output (MIMO),
Leader/Follower or Chief/Deputy and Virtual Structure.

In the MIMO approach, the whole constellation of satellites
and governing dynamics are treated as a single plant with mul-
tiple outputs and multiple inputs, and state space representation
of this system is controlled [68].

In Virtual Structure approach, each satellite of the constel-
lation is taken as rigid bodies that are part of a bigger virtual
rigid body. The motion of the rigid body, and corresponding
positions of the satellites are generated to create the reference
trajectory. Then the controllers are designed as such that each
satellite will track the reference [68].

In Leader/Follower, or Chief/Deputy approach, the forma-
tion flying problem of a constellation is approached with a
hierarchical arrangement such that the problem is reduced
into individual basis. The Chief, it can be a virtual satellite,
has the reference orbit to which the Deputy should arrange
itself accordingly. This approach is the most widely studied
approach in the formation flying of satellites [68], and hence
was implemented in this study. It must be noted that, from
now on, all the control structures that was covered in this
paper were based on Chief/Deputy approaches.

Controllers for the formation flight covering the
Deputy/Chief structure can be divided further into three:
the Continuous Control Laws, Discrete Control Laws and
Impulsive Control Laws. The Continuous Control Laws
work throughout the orbit, and the control is active whether
best performance is achieved or not. On the other hand, the
discrete control laws, is discritized, and does not calculate
the control continuously. Depending on the discritization
time, the control is calculated, and applied along that time.
Similarly, impulsive laws does not work always, however,
generally they work at the best possible time, with a high
amount of thrust to optimize the fuel consumption.

In literature there were a lot of different cases of control
approaches. The survey of the control laws can be found in
[68] and summarized as:

• Reference [69] used the feedback linearized control law
for deep space missions

• Reference [70] uses the feedback linearization with in-
equalities of matrices to achieve robustness

• Reference [71] combines model predictive control with
feedback linearization for both orbit and attitude keeping

• Reference [72] uses the proportional and derivative (PD)
feedback law and compares them with fuel optimal
control law.

• References [73], [74] and [75] used modified model
predictive control to control the formation flying.

• Reference [76] applies a sliding mode control approach
to a low thrust satellite constellation

• References [77], [78] uses a discrete time Linear
Quadratic (LQ) approach to control the relative position

• Reference [79] uses discritized LQ Regulator (LQR) to
formation flying problem without radial thrust

• Reference [80] implemented an Impulsive Control Ap-
proach based on Gauss Variational Equations (GVE),
shared in Eq. (26) to (31), by minimizing a cost function
based on the required velocity

• Reference [81] used the Mean Orbital Element dif-
ferences as reference trajectory and implemented an
optimal/sub-optimal impulsive control law based on GVE

• Reference [82] focused on angular momentum and energy
of the orbit to establish a relative orbit, and created an
impulsive control law

Feedback Linearization’s main aim is to linearize the system’s
dynamics by using the feedback law. This type of controller
allows designer to estimate the behaviour, track the results and
use the linear control theory to design controllers. However,
this control requires the system to be modelled exactly, since
it cancels the non-linearities of it. Comparing PD approach,
feedback linearization handles the non-linearities better, and
allows one to create global stabilized systems.

MPC, often called as receding horizon control, includes
the minimization of a cost function with free variable as the
control actuation along the specified number of time steps. In
more details, the linear system is discretized with a specified
time, and the states for the specified horizon is generated.
In the cost function both the states and the control has its
corresponding weights.

The MPC has several benefits for the control problem.
First of all, it allows user to specify constraints, for exam-
ple the thrust limits of the system. Furthermore, comparing
with prearranged trajectories that are found again by optimal
methods, the MPC can handle uncertainties better, since it
is embedded to the on-board controller of the satellite, and
works actively throughout the mission. Moreover, the MPC
is re-configurable, which means the tuning parameters can
be changed online depending on the mission requirements.
However, there are disadvantages of it. The major one is that,
it requires computational power, depending on the horizon of
the prediction and constraints. Due to recent improvements
on technology, and reformulation of the problem, it is still
applicable to satellites of small size as main controller [83],
[84].

On the other hand, the Linear Quadratic Regulator, is also
an optimization based control algorithm, however, the system
is linearized over a cost function for the infinite horizon
optimization. In this approach, the system constraints are not
handled, and this control approach results in a locally stable
system due to linearization.

The Sliding Mode Control scheme is a very well known
control method. A sliding manifold, which does not depend
on the system uncertainties is designed, and the trajectory of
the states are tried to converge to that manifold. The manifold
is designed such that it will drive the system dynamics to
the desired equilibrium point. The main advantage of the
Sliding Mode Control is that it can overcome the model
uncertainties, however, generally speaking, this comes with
a cost of excessive fuel burn.

In impulsive control, in general, the aim is to reduce the
number of impulses since the efficiency of the high thrust
boosters are limited. A common approach is the use of GVE,
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to calculate the best possible time to apply impulses, based on
optimization or analytical solutions.

It is noticed that, most of the papers in the literature
focuses on one of the above methods and does not compare
the performances of each controller with other controllers.
In order to lead designers to a better decision for controller
design, this study was focused on implementation of different
control methods and comparison of them. The reduction in
fuel consumption in formation flying missions, which effects
the society economically and ecologically, will lead to greener
tomorrows.

K. Lyapunov Stability

Lyapunov found in 1892 that if a continuously differen-
tiable, positive definite function V (x) has its derivative as
negative semi definite function, then the equilibrium point is
stable. If the derivative is negative definite, then the equilib-
rium point is asymptotically stable.

Theorem II.1. Given that V (0) = 0 and V (x) > 0 ∀x 6= 0,
then x = 0 equilibrium point is stable if
• V̇ (x) ≤ 0 ∀x 6= 0
• V̇ (0) = 0

and asymptotically stable if the inequality of V̇ (x) is strict.
Furthermore, the equilibrium point x = 0 is globally asymp-
totically stable if the V (x) → ∞ as ||x|| → ∞.

The proof of the theorem can be found in [54]. If the
derivative of the Lyapunov function is negative-semi definite,
then the Lyapunov’s Direct Method concludes that, the equi-
librium is stable. A theorem from [47], states that, there is still
possibility of the system being asymptotically stable.

Theorem II.2. Define Ω = {x|V̇ (x) = 0}
• if the first non zero derivative of the V (x) is odd and

negative definite under subset of Ω, then the system is
Asymptotically stable.

The proof of the theorem can be found in [47].

III. METHOD

A. Absolute Equations of Motion

1) Non-linear Equation of Motion with J2 Perturbation: In
space, vehicles are moving under Newton’s law of universal
gravitation combined with perturbations. The mathematical
expression of this was demonstrated at Eq. (24) [47].

d2
I rCI

d t2
= f(rCI)

d2
I rDI

d t2
= f(rDI) + uI (24)

where uI is the control applied to the deputy expressed in
inertial frame, and f is a nonlinear function which covers
gravitational acceleration with J2 perturbation.

f(r) = − µ
r3

r − J2
3

2

(req

r

)2

 5x
(
z
r

)2 − x
5y
(
z
r

)2 − y
5z
(
z
r

)2 − 3z


 (25)

where µ is Standard gravitational parameter of Earth, and
req is the equatorial radius of Earth. Notice that, in this
formulation r = [x, y, z]T is position of the satellite with
respect to ECI frame resolved in ECI frame.

2) Gauss Variational Equations: Gauss’ Variational Equa-
tions were used to describe the time rate of change of orbital
elements under the presence of perturbations or control inputs.
The derivation of it can be found in [48].

da

dt
=2

dra
2e sin f

h
+ 2

dθa
2p

hr
(26)

de

dt
=
drp sin f

h
+
dθ[(p+ r) cos f + re]

h
(27)

di

dt
=
dhr cos(f + ω)

h
(28)

dΩ

dt
=
dhr sin(f + ω)

h sin i
(29)

dω

dt
=
drp

he
+
dθ(p+ r)

he
− dhr sin(f + ω)

h sin i
(30)

dM

dt
=n+ dr

(−2e+ cos f + e cos2 f)(1− e2)

e(1 + e cos f)na

+dθ
(e2 − 1)(e cos f + 2) sin f

e(1 + e cos f)na
(31)

where d = [dr, dθ, dh]T is the acceleration resolved in LVLH
frame, r corresponds to radial, θ corresponds to tangential, h
corresponds to the angular momentum direction.

3) Effect of J2 on Mean Orbital Elements: To investigate
the effect of the J2 on Orbital Elements, a similar approach
to Gauss’ Variational Equations was done. The details of the
derivation can be found in [47], [48].

dā

dt
= 0 (32)

dē

dt
= 0 (33)

dī

dt
= 0 (34)

dΩ̄

dt
= −3

2
J2

(
Re
p̄

)2

n̄ cos ī (35)

dω̄

dt
=

3

4
J2

(
Re
p̄

)2

n̄(5 cos2 ī− 1) (36)

dM̄0

dt
=

3

4
J2

(
Re
p̄

)2

n̄η̄(3 cos2 ī− 1) (37)

where Re is the Equatorial Radius of Earth, p̄ is the mean
semi-latus rectum, η̄ =

√
1− ē2 and M̄0 is the Mean Anomaly

at Epoch. When the Mean Orbital Element deviations under
J2 effect was observed, it was seen that, if ī, n̄, which depends
on ā, or η̄, which depends on ē, of Deputy is different than
that of Chief, the rate of change of mean orbital elements of
Deputy are different than that of Deputy.

B. Equations of Relative Motion
The equations of relative motion was important to study the

control of the deputy with respect to the chief.
1) Nonlinear Equation of Relative Motion: The equation

of motion of the Chief with respect to the inertial frame is
governed by Eq. (38).

d2
I rCI

dt2
= − µ

||rCI||3
rCI (38)
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where ||.|| is the 2-norm of the “.” variable. Similarly, the
dynamics of the Deputy is governed by

d2
I rDI

dt2
= − µ

||rDI||3
rDI (39)

introducing rDC which is the position vector of the Deputy
with respect to Chief

rDC = rDI − rCI (40)

Subtracting Eq. (39) from Eq. (38) and plugging in Eq. (40)
reveals

d2
I rDC

dt2
= − µ(rCI + rDC)

||rDI + rDC||3
+

µ

||rCI||
rCI (41)

The above derivative, as can be seen, is with respect to
Inertial frame, however, it was more desirable to have the
derivative with respect to LVLH frame of the Chief. Double
Time derivative with respect to a non-inertial frame is

d2
I rDC

dt
=

d2
CrDC

dt2
+ 2ωCI ×

dCrDC

dt
+

dCωCI

dt
× rDC

+ ωCI × ωCI × rDC (42)

where ωCI is the angular velocity of the orbital frame of the
Chief with respect to Inertial frame. To resolve everything in
chief orbital frame, the C frame, the definitions below were
used.

ωC
CI =[0, 0, θ̇]T (43a)

rC
DC =[x, y, z]T (43b)

rC
CI =[0, 0, r0]T (43c)

where θ̇ is the magnitude of the angular velocity of the orbital
frame of Chief, or the rate of change of argument of latitude.
Plugging (43) with Eq. (42) into Eq. (41) reveals the nonlinear
equation of relative motion without any perturbations

ẍ− 2θ̇Cẏ − θ̈Cy − θ̇2
Cx =− µ(rC + x)

[(rC + x)2 + y2 + z2]
3
2

+
µ

r2
C

(44a)

ÿ + 2θ̇Cẋ+ θ̈Cx− θ̇2
Cy =− µy

[(rC + x)2 + y2 + z2]
3
2

(44b)

z̈ =− µz

[(rC + x)2 + y2 + z2]
3
2

(44c)

where, r̈C = rCθ̇
2
C−µ/r2

C and θ̈C = −2ṙCθ̇C/rC. In Eq. (44),
the sub-index C denotes the belonging of Chief. Notice that,
the differential disturbances or the control commands can be
directly added to the above equations if they are resolved in
the Chief’s LVLH frame. Also, the [x, y, z] is the position of
the Deputy with respect to Chief, resolved in Chief’s LVLH
frame. As mentioned earlier, this equation was not used in the
analysis, rather, it was used as a step to calculate Clohessy–
Wiltshire Equations.

2) CW Equations: In the formation flying, the very well
known Clohessy–Wiltshire (CW) equations are used, specifi-
cally for rendezvous. These equations are created by CW in
the 1960s to investigate the rendezvous of spacecraft. Since
they are computationally easy to solve, they are suitable to
use in initial analysis. Furthermore, due to the linear structure
of the equations, they seem suitable to use in optimal control
problem.

The method suggested by [48] was followed, by creating a
Taylor Series expansion of the Right Hand Side of Eq. (44)
about the origin. The first order terms of that Taylor Series
expansion was shared in Eq. (45).

− µ(aC + x)

[(aC + x)2 + y2 + z2]1.5
≈ n2

C(2x− aC) (45a)

− µy

[(aC + x)2 + y2 + z2]1.5
≈ −n2

Cy (45b)

− µz

[(aC + x)2 + y2 + z2]1.5
≈ −n2

Cz (45c)

where nC is the mean motion of the Chief, and equal to√
µ/a3

C. Removing the C subscript, and rearranging revealed
the very well known CW equations

ẍ− 2nẏ − 3n2x = dx (46a)
ÿ + 2nẋ = dy (46b)

z̈ + n2z = dz (46c)

where dx, dy, dz are the differential forces applied to the
satellites expressed in the Hill frame, and n is the mean motion
of the Chief. It is easy to see that, the cross-track motion and
in-plane motion does not depend on each other.

3) TH Equations: A common method to account for the
eccentricity in relative motion is to change the independent
variable in Eq. (44) to True Anomaly, f . To achieve that, a
chain rule shared in Eq. (47) was done, where (.)′ denotes
the derivative of a variable with respect to true anomaly. The
whole transformation is shared in [48], with a normalized
position vector, r̄C

DC = rC
DC/||rI

CI||.

d(.)

dt
= (.)′ḟ (47a)

d2(.)

dt2
= (.)′′ḟ2 + ḟ ḟ ′(.)′ (47b)

The Tschauner–Hempel (TH) equations can be seen as the
eccentricity extension of the CW equations, with true anomaly
being the independent variable, which can be seen in Eq. (48a).
Notice that, there is no perturbation included in TH equations
just like CW equations [48]:

x̄′′ =
3

k
x̄+ 2ȳ′

ȳ′′ = −2x̄′ (48a)
z̄′′ = −z̄′

where k = 1 + e cos f . Similar to the CW equations, out
of plane motion does not depend on in-plane motion.
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4) Yamanaka and Ankersen STM: Yamanaka and Ankersen
(YA) worked on the TH equations, to improve already created
solutions by Lawden and Carter [48]. Their solution is valid for
eccentricities less than 1. On the other hand, YASTM is easy
to implement for numerical purposes, and covers the required
eccentricity for this paper. Furthermore, if the eccentricity is
taken as 0, then the solution offered by YA is the same as
Hill’s solution.

YA used a slightly different coordinate system than Hill,
where ẑ axis points toward Zenith, ŷ axis is normal to the
orbital plane and opposite the angular momentum vector, and
x̂ completes the right handed system. In this paper, this frame
was denoted as Y frame. More over, their solution is valid
for the states that has the transformation in Eq. (49) and the
inverse transformation in Eq. (50)

r̃Y
DC = ρrY

DC (49a)

ṽYDC = −e sin θrY
DC +

(
1/k2ρ

)
vY

DC (49b)
rY

DC = 1/ρr̃Y
DC (50a)

vY
DC = k2(e sin θr̃Y

DC + ρṽY
DC) (50b)

where ρ = 1 + e cos f . The YASTM is consisting of in-
plane STM and out-of-plane STM. The in-plane STM is in
the form of Φ−1

θ0
and Φθ, which can be seen in Eqs. (53) and

(54), respectively. Notice that, the orbital elements in Φ−1
θ0

should correspond to the orbital elements in initial time, t0
and similarly, Φθ should have elements in time t. The overall
STM is shown in Eqs. (51) and (52).

x̃t
z̃t
ṽxt
ṽzt

 = ΦθΦ
−1
θ0


x̃t0
z̃t0
ṽxt0
ṽzt0

 (51)

[
ỹt
ṽyt

]
= Φθ−θ0

[
ỹt0
ṽyt0

]
(52)

The orbital elements in time t can be propagated by assum-
ing Keplerian Orbit, as stated in [58]. The Φ−1

θ0
is

Φ−1
θ0

=
1

1− e2

×


1− e2 3e(s/ρ)(1 + 1/ρ) −es(1 + 1/ρ) −ec+ 2

0 −3(s/ρ)
(
1 + e2/ρ

)
s(1 + 1/ρ) c− 2e

0 −3(c/ρ+ e) c(1 + 1/ρ) + e −s
0 3ρ+ e2 − 1 −ρ2 es


(53)

where s = ρ sin f and c = ρ cos f . Similarly Φθ is

Φθ =


1 −c(1 + 1/ρ) s(1 + 1/ρ) 3ρ2J
0 s c (2− 3esJ)
0 2s 2c− e 3(1− 2esJ)
0 s′ c′ −3e

(
s′J + s/ρ2

)


(54)

where k2 = h/p2 and J = k2 (t− t0). The c′ and s′ are the
derivatives of c and s with respect to f , respectively.

For the out-of-plane motion, there is only one transition,
Eq. (55), and the matrix corresponds to Φθ−θ0 .[

ỹt
ṽyt

]
=

1

ρθ−θ0

[
c s
−s c

]
θ−θ0

[
ỹ0

ṽy0

]
(55)

Since, the Y frame, as explained in the beginning of this
section, is different than the Hill frame of the Chief, a DCM
should be applied after implementing Eq. (49) or (50). The
DCM for Hill frame to Y frame is

CYH = Rx

(
−π

2

)
×Ry(0)×Rz

(π
2

)
(56)

where Rx corresponds to a DCM of rotation only around x
axis, and the same applies to Ry and Rz for y and z axes. .

C. Reference Orbit

The reference orbits that are tracked were created with two
different methods. One was created with YASTM, explained
in Section III-B4. The second method that was covered is the
orbital element differences.

For YASTM, and the Mean orbital element differences, the
main issue was the decision of the initials of each method.
For that purpose, solution of the CW equations with the Hill
frame positions and the corresponding orbital element solution
was used.

1) Reference with YASTM: In this reference method, an
initial point was created as the solution of the CW equations,
Eq. (57), [47]:

x(t) = A0 cos(nt+ α) + xoff (57a)

y(t) = −2A0 sin(nt+ α)− 3

2
ntxoff + yoff (57b)

z(t) = B0 cos(nt+ β) (57c)

where α and β are in-plane and out-of-plane phase angles. A0

and B0 are the amplitudes of the motion along x and z axis,
whereas 2A0 is the amplitude along y axis direction. xoff and
yoff are the offsets along x and y axes. As can be seen, in y(t)
there is a secular drift term due to xoff , which includes time
as a multiplication. In order to have bounded motion, which is
generally the desired case, the xoff was set to 0. This removes
the secular drift term. Similarly, to have a relative trajectory
that has the Chief in the center, the yoff was set to be 0. The
phase angles and the amplitudes are specific to the mission,
and affects the shape. In order to have an elliptic motion in xz
plane, the phase angles should be set with a π/2 difference,
which was also done in this mission. The amplitude for in-
plane motion, A0 for the Relative Orbit Mission for this study
is 500 m, and B0 is 300 m. The corresponding velocity terms
are the derivatives of the Eq. (57), shown in Eq. (58):

ẋ(t) = −A0n sin(nt+ α) (58a)
ẏ(t) = −2A0n cos(nt+ α) (58b)
ż(t) = −B0n sin(nt+ β) (58c)

However, since the orbit was slightly elliptic, the solution of
Hill’s or the CW equations will cause a secular drift due to
their assumption of circular Chief orbit. To cancel that secular
drift, mostly along y axis, the equation suggested by [85] was
used, Eq. (59), to correct the initials. The resultant initials are,
x(0) is 500 m, y(0) and z(0) are 0 m. Similarly, ẋ(0) is 0
m/s, ẏ(0) is −1.0690 m/s and ż(0) is 0.3181 m/s.

ẏ(0)

x(0)
= − n(2 + e)

(1 + e)1/2(1− e)3/2
(59)
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When the initials were created, the rest was using the
YASTM approach described in Section III-B4. Then, the
transformation in Eq. (15) was used to transform the reference
from Chief’s Hill frame to ECI frame, which is the frame of
the sliding mode and feedback linearization controllers.

2) Mean Orbital Element Reference: A similar approach
to the YASTM reference method was applied. This time, the
solution of the CW equations, calculated with orbital elements
were used, Eq. (60). This solution was taken from [47], and
it is true for near circular orbits.

x(f) ≈ δa− a cos fδe (60a)
y(f) ≈ a(δω + δM + cos iδΩ) + 2a sin fδe (60b)

z(f) ≈ a
√
δi2 + sin2 iδΩ2 cos (θ − θz) (60c)

where θz = tan−1 (−δi/(sin iδΩ)) and δ(.) denotes the
orbital element difference. When these solutions were created,
the amplitude and the phase angles of Eq. (57) can be
calculated in terms of orbital elements, Eq. (61):

A0 = −aδe (61a)

B0 = a
√
δi2 + sin2 iδΩ2 (61b)

α = 0 (61c)
β = f − θz (61d)

yoff = a(δω + δM + cos iδΩ) (61e)

A major fact is that, in order to have a bounded relative
motion, δa should be set to 0 [47], [48]. This also holds for
eccentric orbits, hence the secular drift was prevented, and
a bounded orbit was achieved. Similarly, if the Deputy was
desired to have a trajectory which has the Chief as its center
then the yoff should be set to 0, which was the case here.
Equation (61) gave 3 conditions for 6 of the orbital elements.
The bounded relative orbit gave the fourth condition. The fifth
condition was setting the yoff to be zero, however, this left one
degree of freedom. When the yoff equation was investigated, it
was seen that summation of δω and δM was limited. Hence,
to get rid of that one degree of freedom, either δM or δω was
set and the other one was calculated according to the equation
of yoff .

Even though those equations were written for osculating
orbital elements, in literature it was observed that they were
also used for mean orbital elements [42], [43]. When the
reference orbital element differences were calculated with Eq.
(60) and (61), then at each time step the reference orbital
elements were created by Eq. (62).

œdd = œc + δœr (62)

where œr corresponds to the reference orbital element dif-
ferences, and œdd corresponds to the desired deputy orbital
elements. Then the error that should be compensated is:

δœ = œdd −œd (63)

With Eq. (63), the Gaussian Variational equations can be
used, to calculate the required velocity for Deputy to have
the Desired Orbital Elements.

D. Controllers

In this section, the methodology behind the controllers is
explained. The controllers that were compared are, Sliding
Mode Control, due to its robustness, Feedback Linearization,
due to its easy design, MPC, due to its optimality and easiness
of constraint implementation. For the impulsive laws, Schaub
and Alfriend’s method was used as a benchmark control, since
it is a sub-optimal impulsive law [81].

1) System to be Controlled: For Sliding Mode and Feed-
back Linearization, the system that was controlled was the
same system. The dynamics that are covered was described
in Eq. (25). Since this dynamics are not in the error tracking
form, the methodology in Section II-G, and specifically Eq.
(23) were applied. The final system was:

ė1 = e2 (64)

ė2 = f(xd)− f
′
(xr) + u

with f(x) in Eq. (25), xd is equivalent to rI
DI, the position

of Deputy resolved in inertial frame and xr is equivalent
to rI

RI, the reference position in inertial frame. Also, e1 =
[ex, ey, ez]

T and e2 = [ėx, ėy, ėz]
T. In other words, e1 is the

position error in in ECI, and e2 is the velocity error in ECI.
In YASTM [58], it is stated that, the Deputy and the

Chief has the same perturbation accelerations. For that reason,
the f ′(.) was taken as the same as f(.). Of course, the
accelerations are not the same, however, the order of the error
is reduced. Because, if the second derivative of the xr was
taken without perturbation, the system diverged.

2) Sliding Mode Control: As mentioned in the Background
Section, in sliding mode, a sliding manifold that does not
depend on the dynamics of the system was generated, and the
system was forced to track that manifold. In order to achieve
that, a sliding manifold was created, S = {e : s(e) = 0}
where s(e) = ae1 + e2 with a > 0 and a is a scalar. On
S it holds that, ae1 = −e2 which means that ė1 = −ae1.
Basically, if the system was kept on s(e), then it will converge
to origin exponentially. Because, e1 will converge to 0, due
to ė1 = −e1 and since on sliding manifold −ae1 = e2, that
means e2 will be 0 as well.

To force the system to slide on the manifold, the general
approach is to create a Lyapunov function based on that sliding
manifold, and arrange the control such that, the Lyapunov
function leads to an asymptotically stable equilibrium point.
The corresponding Lyapunov function and its derivative is
shared in Eq. (66).

V (s) =
1

2
s2 (65)

V̇ (s) = sṡ = s(ae2 + f(xd)− f ′(xr) + u) (66)

where s = s(e). It can be seen that, V (s) is a continuously
differentiable and globally unbounded positive definite func-
tion. The next step was to assure that, the derivative of it is
negative definite. One of the approaches to achieve that was,
to bound the derivative of the Lyapunov function from above,
and force that bound to be negative at all times with the control
input. The upper bound:

V̇ (s) ≤ |s||ae2 + f(xd)− f ′(xr)|+ su (67)
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Then the control input, that forces the derivative to be negative
is:

u = − (|ae2 + f(x1)− f(xr)|+ µ0) sign(s) (68)

where µ0 is a vector of length 3, with all elements greater than
0, and equal to µ0. When the control was plugged back into
the derivative in Eq. (66), the resultant Lyapunov derivative
is:

V̇ (s) ≤ −|s|µ0 (69)

which is negative definite, due to µ0 > 0, so the system
will converge to the sliding manifold, and slide on it to
origin. Furthermore, the a and µ0 was calculated by numerical
optimization methods to reduce the error and corresponding
fuel consumption.

Furthermore, the approach shared can be thought as, at each
of the axes, the same manifold was forced to be followed.
Of course, each of the axis could be separated, however, that
would introduce more parameters to be tuned.

A general problem that was faced with the above method-
ology is that, the sign function leads to chattering due to
disturbances. In other words, when the system slides on the
surface, the disturbances push it out. Even an infinitesimal
push will lead application of the thrust, as a result, the
chattering or induced oscillations will happen. To get rid of
that problem, sign function was modeled as a saturation, sat
function [54]. Then the control was modeled as

u = −µ0sat(s/η) (70)

where η is chosen as 0.1, and function sat is shared in Eq.
(71).

sat(u) =

{
u, if |u| ≤ 1

sign(u), if |u| > 1
(71)

3) Feedback Linearization: The feedback linearization al-
lows one to linearize the non-linear system with the aid of
feedback. The advantage of this is to make the system more
tractable and to make the system linear, where the theory
is relatively well known. The downside is that, this requires
system to be well known, i.e. if the model has errors then there
might happen some stability problems. Furthermore, notice
that, the most dominant disturbance in 700 km altitude was
already modelled in the system.

In Feedback Linearization, it is important to have a system
in the form of Eq. (72), in order to use the feedback to
linearize. If the system is not turnable into such form, then
there is partial feedback linearization to implement such a
controller. However, since the dynamics in Eq. (64) is already
in that form, the feedback linearization can be applied directly
to the system [54].

ż = Az +B [ψ(z) + γ(z)u] (72)

Considering the non-linear system given in Eq. (64). The
controller,

u = f
′
(xr)− f(xd)−K1e1 −K2e2 (73)

turns the system dynamics into

ė1 = ė2 (74)
ė2 = −K1e1 −K2e2 (75)

where K1 and K2 are diagonal matrices with all elements
are k1 and k2, respectively, and, k1 and k2 are strictly positive
and scalar. For this problem, different Lyapunov function was
chosen:

V (e1, e2) =
1

2
eT

1K1e1 +
1

2
eT

2 e2 (76)

V̇ (e1, e2) = eT
1K1ė1 + eT

2K2ė2 (77)

The Lyapunov function in Eq. (76) is a positive definite
function and it is globally unbounded, since K1 matrix is a
positive definite matrix. The open version, where the control
in Eq. (73) was plugged in, of its derivative is in Eq. (78):

V̇ (e1, e2) = −eT
2K2e2 (78)

According to the Lyapunov theory, this is not asymptotically
stabilizing control, the derivative of it is not negative definite.
In other words V̇ (e1, e2) = 0, ∀e1 6= 0 but ∀e2 = 0.
The Lyapunov’s Direct Method concludes only stability of the
equilibrium point, hence, Theorem II.2 shall be used. To start
with, the Ω = {(e1, e2)|V̇ (e) = 0} was calculated.

Ω = {(e1, e2)|e2 = 0} (79)

Then the first step is the calculation of the second derivative
of the Lyapunov function.

V̈ (e) = −ė2
TK2e2 − eT

2K2ė2 (80)

on the subset of Ω, Eq. (80) is equal to zero, since e2 is zero.
The third derivative was shared in Eq. (81).

...
V (e) = −eT

1K
T
1K2K1e1 (81)

On the subset of Ω, the third derivative is the first non-
zero derivative, and it is negative definite, hence the system
is asymptotically stable. Since, the Lyapunov function is
globally unbounded, then it is globally asymptotically stable.
Furthermore, The controller gains, k1 and k2 are chosen again
by numerical optimization.

On the other side, since there was a limit on the level
of thrust, the controller implemented will not be globally
asymptotically stabilizing. Furthermore, due to unmodelled
perturbances, the control will not reach to origin, but expected
to oscillate around it.

4) Model Predictive Control: Model predictive control cov-
ers the future states and inputs and solves the optimal control
problem:

min

N∑
k=0

||xk+1||Q2 + ||uk||R2 (82)

s.t. Lx = b

L
′
x = b

′

where ||xk+1||Q2 is the weighted vector norm.
Furthermore, the states corresponds to, xk+1 =
[x1k+1

, x2k+1
, x3k+1

, x4k+1
, x5k+1

, x6k+1
]T, where the first
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three elements are the positions in the Hill frame, x, y, z
respectively, and the final three elements are the corresponding
velocities in Hill frame. The MPC, if the plant is linear, can
be turned into a linear quadratic program.

minX
1

2
XTHX (83)

s.t. LX = b

L′X ≤ b′

In Eq. (83), X = [xk+1|k...xk+N+1|k,uk|k...uk+N |k] ∈
RN(n+m)×1 and H is the square weight matrix, with dimen-
sion of N(n + m), where n is the dimension of the states,
m is the dimension of the control and N is the horizon of
the MPC. Furthermore, L ∈ RNn×N(n+m) and b ∈ RNn×1.
The dimensions of L′ and corresponding b′ depends on the
constraints chosen by the user. A new notation is introduced
here, which is, xk+1|k. That corresponds to, state at k + 1
that is estimated at kth time, similarly for uk+1|k, the control
input for k + 1 step estimated at kth step. In other words, X
vector is consisting of future states and control.

If the numerical capability of the hardware is limited there
can be two horizons in the MPC, prediction horizon and
control horizon. If the states until the horizon are included
in the cost function without considering the corresponding
control, it is prediction horizon. If control is applied as well,
then it is control horizon. For this study, only the control
horizon was considered, N .

The constraint matrices, L and b are representing the system
dynamics. The system dynamics covered in this MPC is the
discritized version of the Hill or CW equations using the
approach shared in Section II-F.

a) Discretization of CW Equations: In order to apply the
discretization shared in Section II-F, a state space representa-
tion was created, shared in Eq. (84). The main purpose of this
discritization was to turn ẋ(t) = Ax(t)+Bu(t) into discrete
equivalent x[k+ 1] = Adx[k] +Bdu[k], where A and B are
the state space matrices of the continuous system and Ad and
Bd are of the discrete system. To begin with, the state space
representation in continuous time was created using Eq. (46)
which gives Eq. (84).

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0




x1

x2

x3

x4

x5

x6



+


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


uxuy
uz

 (84)

where x1, x2, x3 corresponds to x, y and z positions in Hill
frame, and x4, x5 and x6 corresponds to velocities in the same
axes. The next step was the calculation of the State Transition
Matrix, eA(t−t0), or Ad with Eq. (19), the final form was
shared in Eq. (85).

eAt =
4 − 3c(nt) 0 0

s(nt)
n

2−2c(nt)
n

0

−6nt+ 6s(nt) 1 0
−2+2c(nt)

n
4s(nt)
n

− 3t 0

0 0 c(nt) 0 0
s(nt)
n

3ns(nt) 0 0 c(nt) 2s(nt) 0
−6n+ 6nc(nt) 0 0 −2s(nt) −3 + 4c(nt) 0

0 0 −ns(nt) 0 0 c(nt)


(85)

where c is cosine function and s is the sine function. n is
mean motion and t is the time. The Bd was calculated via
using Eq. (17) which gives Eq. (86).

Bd =

∫ t

t0

eA(t−τ)Bdτ =

2s((nt/2)2)
n2 − 2(s(nt)−nt)

n2 0
2(s(nt)−nt)

n2

8s((nt/2)2)
n2 − 1.5t2 0

0 0 2s((nt/2)2)
n2

s(nt)
n

4s((nt/2)2)
n 0

−4s((nt/2)2)
n

4s(nt)
n − 3t 0

0 0 s(nt)
n


(86)

b) Calculation of Constraints and Weights of MPC: The
MPC has 5 different matrices and weights in total, namely H ,
L, b, L

′
and b

′
. The L and b are due to system dynamics, L

′

and b
′

are due to the system constraints or mission constraints.
The H corresponds to the weights of the problem.

The L and b were obtained by creating the system dynamics
for the whole horizon, which can be seen in (87) to (89).
Notice that, in Eq. (87) the [k + n|k] notation was dropped
since everything was calculated at kth step.

xk+1 = Adxk +Bduk (87)
xk+2 = Adxk+1 +Bduk+1 (88)

...
xk+N+1 = Adxk+N +Bduk+N (89)

Equation (87) can be plugged into Eq. (88), then this appli-
cation can be done for the rest of the equations. The final
form of the dynamical constraint, which reveals the L and b
matrices is:


Axk
A2xk

...
ANxk

 =


In×n 0 . . . 0 −B 0 . . . 0

0 In×n
. . .

... −AB −B 0 0
...

. . . . . .
...

...
. . . . . . 0

0 . . . 0 In×n −AN−1B . . . −AB −B


(90)

×
[
X
]

where Eq. (90) is in the form of b = LX , and In×n denotes
the identity matrix with dimension of n, the dimension of the
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states. Furthermore, L
′

and b
′

were obtained by investigating
the limitations of the system, specifically thrust saturation,
Tmax. All the accelerations at each time step, shall be smaller
than that of Tmax/mk. It must be noted that, while that
acceleration limitation was implemented, the mass was taken
as constant and equal to the first time step mass. The constraint
that was implemented is:

−Tmax/mk ≤


uk

uk+1

...
uk+N−1

 ≤ Tmax/mk (91)

To translate this into linear programming, which can only
take less than or equal to constraint, the left hand side of
the non-equality was multiplied with −1 and implemented.
Furthermore, in [86], it is found that, to enforce stability, a
constraint set that enforces the final state set to be close to the
equilibrium point, namely xr is suggested to be implemented,
and this condition is

|xk+N − xr,k+N | ≤ d (92)

where d is greater than equal to 0. The value of d is chosen
by numerical trial-and-error, and different errors and values
corresponding to different d values are enlisted in the Results
Section.

The linear program in Eq. (83) is suitable for regulation
problems. To account for tracking, the cost function was
changed to, 1

2 (X −Xr)
TH(X −Xr), where Xr denotes

the reference states, with 0 control in Eq. (93).

Xr = [xrk+1
,xrk+2

, ...,xrk+N+1
, 0, ..., 0] (93)

When the terms purely depending on Xr are removed in
the cost function, since they do not depend on minimization
parameters, the new formulation of the cost function is given
in Eq. (94).

J =
1

2
XTHX + fX (94)

where f = −(XT
r (H +HT ))/2.

According to [87], the system should be normalized so that
the cost function is meaningful. If not normalized, then it must
be done in the weight matrix. To normalize the states, the
current reference trajectory at the beginning of the MPC opti-
mization, xrk was used. For positions, norm of the first three
elements of the reference, was used, denoted as ||xr,pk || and
for velocity, the norm of the last three elements of the reference
vector at time k was used, denoted as ||xr,vk ||, in Eq. (95).
The square was added because, the multiplication of the states
vector with the weight matrix was done twice for the each
element. For the Rendezvous mission, the reference consisted
of zeros. For that purpose, the initial reference trajectory for
the Relative Orbit Mission was created and constantly used
to normalize the weight matrix in the Rendezvous mission, so
that the controllers in both of the missions will have similar
performances.

P =

[
I3×3

q
||xr,pk

||2 03×3

03×3 I3×3
q

||xr,vk
||2

]
(95)

The final form of the weight matrix H is

H =

P 0 . . . . . . . . . 0

0
. . . . . .

...
...

. . . P
. . .

...
...

. . . Im×m
r

||umax
k ||2

. . .
...

...
. . . . . . 0

0 . . . . . . . . . 0 Im×m
r

||umax
k ||2


(96)

where q and r are the weights of the control acceleration and
the states.

c) Model Predictive Control Framework: It is noticed
that, a single cost function did not cover the whole domain
of the trajectory, due to performance issues. For that reason,
a Multi Objective Cost Function, with different weights were
adapted. The idea behind that was, if the tracking error was
high, automatically, the effect of it in the cost function was
high as well, which reduces the price of the control effort, and
allows the MPC to choose a higher consumption trajectory.
However, when the error was reduced, this time the control
effort dominated the cost function, and hence, the control
effort was forced to be small, which introduces, relatively high
amplitude steady state oscillations due to perturbations. To
prevent that, a tracking error triggered switching cost function
was applied. The initial weight of the states was set to be q1

and the final weight of the states was q2, similarly, for control,
r1 and r2 were implemented. The tracking error was calculated
as ||xk −xrk ||, and if this value was less than k which is the
switching error, the weight of the r was decreased, and set to
be r2.

In [87], it is stated that, to tune the system, the value for
q should be kept as 1, and the value of r should be smaller
than 1, e.g. 0.1. Basically, the tuning should be done with r1

and r2 rather than q1 and q2. The investigations showed that:
• r2 affects the maximum error proportionally and fuel

consumption inversely proportional in the steady state
hence should be small

• r1 affects the root mean square error proportionally,
and affects the fuel consumption inversely proportional,
should be an average value

• d affects proportionally the root mean square error as
well, with smaller effect compared to r1

• Switching error k, affects the root mean square error with
a small effect compared to r1

The first tuning was done to r2 since it mostly affects the
maximum error in the steady state in a proportional way.
On the other hand, the r1 dominated the root mean square
error since the initial error where r1 was used, was high.
If r1 was chosen small, then there was an increase in the
fuel consumption, with a decrease in root mean square error.
Furthermore, if r1 was chosen big, while r2 kept small, this
time, the fuel consumption around the switching increased,
and hence, the overall consumption went slightly up. For
that reason, after trial-and-error, r1 was kept as 0.05, while
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r2 was kept as 10−5. When r1 and r2 are set, the next
parameter was d. The various values of d did not effect the
final maximum error at all due to disturbances effecting on
the system, however, it effected the root mean square error
and fuel consumption. It is seen that, d proportionally affects
the root mean square error and inverse proportionally fuel
consumption, however, the effect of it, compared to r1 was
small. Concerning different values of d, it was chosen as
2. For the switching error, k, if it was a small value, then
again due to disturbances, the system might never reach it and
switching of the cost function might not happen. Furthermore,
if k was chosen a high value then the switch might occur early
and might cause a better root mean square error with higher
fuel consumption. Again implementing a trial-and-error, it was
found that, k being 10 m suited for the performance purposes.
The various parameters used in MPC are:

• q1 is 1
• q2 is 1
• r1 is 0.05
• r2 is 10−5

• d is 2 m
• k is 10 m

The control horizon for MPC was chosen considering [83],
[84] and [88]. References [83], [84] suggest that 15–30 thrust
application in each orbit is enough for the stability, which
corresponds to 24 control horizon and 33 prediction horizon
with 240 s of discritization time. On the other hand, [88]
suggests that half of the orbit should cover 30 thrust, and
which corresponds to around 90 s of discritization time and
30 as the control horizon. Furthermore, [88] states that the
onboard controllers can solve the optimization problem in 90
s.

When the initial tests were run, it was noticed that, when
half of the orbit was discretized with shorter time, the
performance of the system increased as expected. In other
words, if the total time that was covered by the controller
was kept constant while reducing the discritization time, the
performance was increased. For that reason, a similar approach
to [88] was implemented. The discretization time was set as
50 s and Control Horizon was set as 60 steps.

d) Stability of Model Predictive Control: The Model
Predictive Control is based on solving an optimal control
problem for a finite horizon, and implementing the first control
of the solution at each time step. This approach makes it a non-
linear control, hence to prove the stability, Lyapunov Stability
Framework will be used.

Theorem III.1. J∗(xk) = minu
∑N−1
i=0 ||xk+i||2Q+||u2

k+i||R,
where R and Q weight matrices are positive definite, and 0
is an equilibrium point with u = 0. If the problem is initially
feasible at k = 0, then limk→∞ xk → 0 and limk→∞ uk → 0,
where xk = 0 and uk = 0 is an equilibrium point, ∀k [89]

Proof. At time k, the control structure is ηk =
[uk, uk+1, ..., uk+N−1] and assuming that ηk+1 leads to
equilibrium point of 0 where ηk+1 = [uk+1, ..., 0]. Then the
difference of minimum cost functions at k and k + 1 is,

J?(xk)− J?(xk+1) ≥ 〈xk, Qxk〉+ 〈uk, Ruk〉 (97)

The above equation also holds for k+ 1 to k+N − 1 since it
reached the equilibrium point. From Eq. (97), the cost function
is monotonically non-increasing function. By the definition of
the cost function, which is quadratic and hence always greater
than 0, and hence , bounded from below, that means the J∗(∞)
or J∗∞ is a finite value. Then summing the both sides of the
Eq. (97) from zero to infinity reveals,

∞ ≥ J∗(0)− J∗(∞) ≥
∞∑
k=0

[||xk||2Q + ||uk||2R] (98)

The right hand side of the Eq. (98) is an infinite sum and it
goes to finite value, that means at infinity, the inside of the
sum should reach 0. Since, Q,R > 0, then the only solution
is x→ 0 and u→ 0 as k →∞.

In the above theorem, without losing the generalization, the
equilibrium condition is taken as 0. In the YASTM, if the
eccentricity is 0, then the solution converges to Hill’s solution.
Furthermore, the reference trajectory xr is created by taking
input accelerations as 0, that means x = xr is an equilibrium
point. For that reason, this stability theorem holds for the
Reference Tracking as well. However, in the above theorem
the disturbances were not included. As a result an oscillatory
steady state error is expected due to perturbation effects.

Furthermore, if the cost function is changed at finite time,
and the first optimization problem leads to Xfinal ∈ Ω. If this
Ω is feasible for the new cost function, then the system under
the second MPC with new cost function, will be asymptotically
stable as well.

5) Impulsive Control Law: To compare the performances
of the controllers, an Impulsive Law offered by [81] was used.
It uses the Gauss Variational Equations, Eqs. (26) – (31), to
regulate the tracking error of mean orbital elements at the
best possible point of the orbit. The mean orbital element
rate of change can be calculated based on Gauss’ Variational
Equations

œ̇mean =

[
∂œmean

∂œ

]T
dœ

dt
(99)

where dœ/dt is the Gauss Variational Equations. [81] states
that, the Jacobian ∂œmean/∂œ, is basically an identity matrix
with off diagonal elements being in the order of J2. Hence, it
is stated that, an assumption of that Jacobian being equal to
Identity matrix can be done

œ̇mean ≈ œ̇ = B(œmean)u (100)

where B(œmean) corresponds to the Gauss Variational Equa-
tions with mean orbital elements. Furthermore, when Eq. (100)
is used to calculate the required corrections to get rid of the
tracking errors, the error will be on the order of J2. When the
magnitude of corrections goes to zero, the error introduced by
the unity Jacobian will also go to zero [81].

In this control approach, the mean orbital elements will be
corrected by pairs at the best possible time, [i,Ω], [M,ω] and
[a, e]. The only undesired coupling is between i,Ω and ω.
Notice that in this section, all the orbital elements are mean
orbital elements.
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a) Correction of [i,Ω]: When Gauss Variational Equa-
tions are observed, it is seen that, both i and Ω’s rate of change
depend on the true anomaly and out-of-track acceleration.

δi = (r cos θ)/h∆vh (101)
δΩ = (r sin θ)/(h sin i)∆vh (102)

Then calculating the best possible true anomaly is by dividing
Eq. (102) by Eq. (101). Then doing some algebraic manipula-
tion and taking the arctangent of the result reveals the critical
true anomaly.

θcrit = atan(δΩ sin i/δi) (103)

When Eq. (101) and (102) is squared summed and rooted, the
magnitude of the required ∆vh correction is found.

∆vh = (h/r)
√
δi2 + δΩ2 sin2 i (104)

As mentioned earlier, this correction causes a perturbing effect
on ω. To get rid of this caused error, the magnitude of the drift
will be calculated. To do so, Eq. (102) is manipulated and ∆vh
is calculated in terms of δΩ, and plugged in Eq. (30), shared
in Eq. (105).

δω(∆vh) = − cos i δΩ (105)

This drift will be included in the correction of ω and M .
b) Correction of [ω,M ]: The Ω and M are corrected at

perigee and apogee. They are corrected with radial thrusting.
For the ease of readability, the GVE equations are shared here,
for changing velocity at the Perigee, ∆vrp and Apogee, ∆vra .

δω = (1/he)
[
−p(∆vrp −∆vra)

]
− δΩ cos i (106)

δM = (η/(he))
[
(p− 2rpe)∆vrp − (p+ 2rae)∆vra

]
(107)

Where, rp and ra corresponds to the magnitude of the position
at Perigee and Apogee, respectively. To calculate the magni-
tudes of corresponding ∆vrp and ∆vra , the identities below
are used.

p = a(1− e2) (108a)
ra = a(1 + e) (108b)
rp = a(1− e)h/p = na/η (108c)

When Eq. (108) is combined with Eq. (106) and (107), with
algebraic manipulations, the ∆vra and ∆vrp are calculated.

∆vrp = −(na/4)
{[

(1 + e)2/η
]

(δω + δΩ cos i) + δM
}

(109)

∆vra = −(na/4)
{[

(1− e)2/η
]

(δω + δΩ cos i) + δM
}

(110)

As mentioned earlier, the coupling in Ω and ω is included,
and corrected at apogee and perigee.

c) Correction of [a, e]: a and e are corrected at the
Perigee and Apogee as well, with ∆vθa and ∆vθp . The
corresponding GVE are in Eq. (111) and (112).

δa = (2a2/h)
[
(p/rp)∆vθp + (p/ra)∆vθa

]
(111)

δe = (1/h)
[
(p+ rp + rpe)∆vθp + (−p− ra + rae)∆vθa

]
(112)

Again applying algebraic manipulations reveals the magni-
tudes of the ∆v.

∆vθp = (naη/4) [δa/a+ δe/(1 + e)] (113)
∆vθa = (naη/4) [δa/a− δe/(1− e)] (114)

d) Rocket Equations: In this section, some of the funda-
mentals of Rocket Equations that are used was given. As given
in Tab. II, the level of thrust was known, and the corresponding
specific impulse, Isp. However, the amount of fuel burnt was
not known. To calculate fuel burnt, Eq. (115) was used, which
derived from Newton’s second law by ignoring the perturbing
effects.

Ttot =
dm

d t
Veff (115)

where Veff denotes the “effective” exhaust speed and Veff =
Isp g0. where g0 is the nominal gravitational acceleration and
it is 9.81 m/s

2. Since Ttot, total thrust applied, and Isp are
known, ṁ can be calculated by using Eq. (115).

Eq. (116) is created by assuming air drag is not existing,
and only acceleration is coming from Eq. (115), i.e. thrust is
applied.

m
dV

d t
= −dm

d t
Veff (116)

Separating the variables to corresponding derivatives and in-
tegrating reveals the equation

∆V = −Ispg0ln

(
mf

m0

)
(117)

where mf denotes the final mass after the thrust is applied,
and m0 denotes the initial mass. Since time rate of change of
mass is linear, mf = m0 + ∆t ṁ can be written. Putting that
into Eq. (117) and solving for time change reveals Eq. (118)

∆t =
m0(e

−∆v
Ispg0 − 1)

ṁ
(118)

Equation (118) is useful to calculate the thrusting time for a
given ∆ v.

e) Control Structure: It is stated that, the error through-
out the orbit does not deviate too much, hence, at the beginning
of each orbit, the error is calculated.

œ̄dd = œ̄c + δœ̄r (119)
δœ̄ = œ̄dd − œ̄d (120)

where œ̄dd is the desired Deputy mean orbital elements,
calculated as described in Section III-C2, and δœr is the
reference Differential Orbital Elements. Subscript c denotes
the Chief, subscript r denotes the reference and d denotes
the Deputy. Then, critical Argument of Latitude, θcrit was
calculated by Eq. (103). The required ∆v’s were calculated by
Eqs. (104), (109), (110), (113) and (114). Since the specific
impulse and maximum thrust capabilities of the thrusters were
known, the required time to apply each ∆v was calculated by
Eq. (118).

Since the point of applications are known beforehand, i.e.
θcrit, apogee and perigee, the time of application can be
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calculated. It is known that, the effect of most of the thrusting
scheme depends on sinusoidal functions, due to GVE. To
increase the efficiency, the ideal point of thrust, such as exact
location of perigee or apogee, is held in the middle of the
thrusting time. For example, if the satellite will be at Perigee
at t = 3000 s, and the thrusting time is calculated as ∆t = 20
s, then at time 2990 s the thrusting will start and will end
at 3010 s. To calculate the time that satellite will reach the
desired true anomaly, the Keplerian orbit was assumed, and
the time of thrusting was updated at each 200 s in order to
reduce the error due to perturbations.

E. Reference Feeding
The controller frames were requiring different reference

trajectories resolved in different frames. In details, Sliding
Mode Controller and Feedback Linearization requires refer-
ence position in ECI frame, MPC requires reference positions
in Chief’s LVLH Frame and Impulsive Control requires the
reference orbit in orbital elements differences.

In Feedback Linearization, Sliding Mode and MPC, the ref-
erence position was created by, as mentioned earlier, YASTM,
which was in Hill’s frame, and can be directly feedable to
MPC. To turn it to ECI frame, the transformation, explained
in Section II-E1 was used.

For the Impulsive Control, the reference mean orbital ele-
ment differences were created by Eq. (60), and the approach
in Eq. (120) was implemented to calculate the required cor-
rections.

F. Tuning
In order to have a meaningful comparison, the controller

were tuned, specifically Feedback Linearization Controller and
Sliding Mode Controller. The tuning here was done by the
means of numerical optimization.

The objective value of the numerical optimization was
covering both the tracking error and the fuel consumption.
In order to get rid of the effect of units, the total fuel, was
11 kg and the tracking error, if controller was not tuned
for example, can be orders of km, tracking error and fuel
consumption were normalized. The tracking error is relative
error, normalized with the magnitude of the reference, in Eq.
(121). The fuel consumption, was normalized as well, with the
total fuel onboard.

et(t) =

∣∣∣∣rI
DI(t)− rI

RI(t)

rI
RI(t)

∣∣∣∣ (121)

where et is the normalized relative tracking error and rI
RI is

the reference to be tracked . For the relative fuel consumption,
Eq. (122) was implemented.

cf = 1− mfinal −mstructure

mfuel
(122)

Concerning the fuel consumption and tracking relative error,
the Cost function of the numerical optimization problem was
given in Eq. (123).

min
control params

J =

√∑tf
t0
e2
t (t)

tf − t0
+ r cf (123)

where r is the weight of the fuel consumption. Notice that,
a root mean square (RMS) approach for the relative tracking
error was implemented. The need to add r as a multiplication
constant for cf was due to the fact that, even though both of the
parts in cost function was normalized, the relative error was
slightly bigger. To compensate the order of fuel consumption,
r was set to be 3.5 .

Furthermore, while Tuning, the most dominant perturbation
in the altitude of 700 km, which is J2 perturbation, was
considered in the numerical simulations as shared in Eq. (25).

In addition, in both of the control algorithms that was tuned,
the cold gas thrust system that is shared in Tab. II was used.

1) ABC Algorithm: As mentioned earlier, the ABC algo-
rithm imitates the forging behavior of a bee colony. The
food locations represents possible solutions to the optimization
problem. The bees are the agents that tries and decides the
quality, or fitness of the possible solution. There are three
different bees, employed bees which seeks the neighbour hood
of the solution and tries to find a new and better solution,
onlooker bees which choose a food source depending on its
quality and seeks new and better solution, and scout bees,
which randomly seeks through the region if a food source’s
limit is reached [62]. The ABC algorithm can be summarized
as:

• Initialize the food sources
• Evaluate the quality of the food source
• Repeat

- Employed bees work on their food sources
- Onlooker bees work on specific food source
- Scout bees seeks new food sources
- Memorize the best solution

• Repeat until the Maximum Cycle is reached

In the Employed bee phase, the bees search a new solution,
vi in the neighbourhood of the food location, xi, and checks
the quality of the new solution with the current solution. If the
new solution is better, then they memorize the new solution’s
location. The new solutions are generated by random function

vij = xij + φij(xij − xkj) (124)

where subscript k is element of the the size of the employed
bees, and j is element of the dimension of the problem. The k
should be different than the current index i. Furthermore φij
is a random number in between [−1, 1]. When the Employed
bees searched through the food locations, the Onlooker bees
start their search. They choose a food location depending on its
fitness value calculated as in Eq. (125). When the food location
is decided, Onlooker bees do the same search as shared in Eq.
(124).

pi =
fiti∑SN
n=1 fitn

(125)

where SN denotes the size of the onlooker bees or the
Employed bees, since they are equal. If the both Onlooker
bees or the Employed bees cannot improve the solution at
hand until a specified limit, then the food source is depleted,
and it is removed from the memories of the bees. Then the
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Employed bee of the food source becomes a Scout bee, and
Scout bees seek new food locations based on Eq. (126).

xji = xjmin + rand[0, 1](xjmax − x
j
min) (126)

where xjmin and xjmax denotes the lower and upper bounds of
the parameter of j [62].

2) Parameters of ABC: The parameters to be set in ABC
are that, Limit, Maximum Cycle, Size of The Colony and the
initialization range of the parameters. It is stated in [90], that
the ABC algorithm is robust with respect to the colony size,
hence it does not require fine tuning with the colony size. In
other words, colony size can be a free variable, hence it was
set as 50. The dimension of the problem for the both of the
controller tuning cases was 2, k1 and k2 for the Feedback
Linearization and a and µ0 for the Sliding Mode Controller.
It is stated that, the limit for each parameter should be set
dimension of the problem times the colony size, hence it was
set to be 100.

For the initialization of parameters, it is said that, if the
global minimum is in the middle of the range, then the
optimization algorithms does locate it easily. However, for the
ABC algorithm, [90], since there are Scout bees that seeks the
entire region, the ABC algorithm is less sensitive to initial-
ization problems compared to other algorithms. Furthermore,
while specifying the initial range, the trial-and-error method
is used. It is noticed that, if the gains are approximately 10−2,
they reveal better fuel consumption with slightly higher error
than gains around order of 100. Hence the range is set to be
0.1 to 10−8 for Feedback Linearization, 1 to 10−8 for Sliding
Mode Controller.

The maximum cycle number in [90] is 104. However, due
to numerical intensity of the problem at hand, the maximum
cycle number was taken as 103. Furthermore, the convergence
of the minimization problem, by investigating the history of
the objective value of the solutions, was observed in order to
conclude that the minimization is converged to a value.

In the initialization phase of the ABC, algorithm randomly
generates the food source location. To speed up the process, a
gain set, or food location, found by trial-and-error was added
to the food sources.

G. Test Scenarios

In order to compare the performances of the controllers,
different scenarios was applied. The Mango Satellite’s orbital
elements are 7,078,137 m of semi-major axis, 0.00547 of
eccentricity, 198.98 degree of argument of perigee, 23.1 degree
of right ascension of the ascending node, 98.2 degrees of
inclination. The mean anomaly was set to be 0.

The covered mission is similar to that of the Prisma Satel-
lite’s mission shared in reference [42]. This mission has ∆a
of 0 m, ∆e as 0.7064 ×10−4, ∆ω of 0.0199 ×10−4 deg, ∆Ω
of 0.1393 ×10−4, ∆i of 0.4008 ×10−4 deg and ∆M of 0
deg as it is reference mean orbital element difference.

When the Gauss Variational Equations based on mean
orbital elements and J2 perturbations are investigated, it was
found that, if orbital elements of Deputy a, e, i were different
than that of Chief, then J2 perturbances effect were different

which causes a drift in the relative position. As a result, the test
scenarios was based on differences in those orbital elements
as errors. The initial errors for the test scenarios are shared in
Tab. III.

TABLE III
TEST SCENARIO ERRORS IN TERMS OF ORBITAL ELEMENT DIFFERENCES

Errors 1 2 3 4
δa [m] 100 0 0 100
δe [–] 0 0.00001 0 0.00001
δω [deg] 0 0 0 0
δΩ [deg] 0 0 0 0
δi [deg] 0 0 0.001 0.001

δM [deg] 0 0 0 0.001

Relative Orbit mission can be seen in Fig. 2. In X-Y plane,
it is an ellipse with semi-major axis of 1 km with semi-minor
axis of 500 m, in X-Z plane semi major axis of 500 meters
and semi-minor axis of 300 m.

IV. RESULTS

In this section, various control approaches shared in Method
was tested with the initial conditions in Section III-G. The
numerical solvers for simulations involving Sliding Mode and
Feedback Linearization was an adaptive Runge–Kutta (4,5)
method. On the other hand, since Impulsive Law, and MPC
requires the time to be known to apply thrust, Runge–Kutta 4
with step size of 1 s was implemented. In all the control laws
except Impulsive Control Law offered by Schaub and Alfriend
[81], the cold gas system was used.

As mentioned earlier, the numerical simulations, except
optimization, and investigation of effects of the gains, the
results are obtained by using the GRACE Gravity Model 03,
which includes the oblateness effect of the Earth. This is
achieved by using HPOP for Matlab created by Mahooti [91].

Most of the comparison in the results were done for
∆v, which presents how much fuel is consumed, Root
Mean Square Error (RMSE) which shows the averaged error
throughout the simulation. Additionally, it shows also the
performance of the tracking error. If a controller converges
to the reference fast, then the RMSE of this scenario is small.
The last parameter that was used is, maximum error in the
steady state. Since there exist perturbations, it is expected to
have oscillations in the steady state. Furthermore, if precision
is important in a mission, one of the vital parameters would
be maximum error, hence, taken as a performance parameter.

This part starts with the results of the numerical opti-
mization, then continues with the results of the each control
method. Finally, the comparison of each controller was shared.

A. Tuning

The gain tuning for Feedback Linearization and Sliding
Mode Controller was achieved with ABC by only considering
the most dominant effect on 700 km altitude. The maximum
cycle of the ABC was set, as mentioned before, as 103

iterations for both of the controllers. Furthermore, the cold
gas system is implemented for the optimization. The resultant
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controller gains are shared in Tab. IV. For tuning, the Chief is
located to the orbit shared in Section III-G. Furthermore, the
initial errors are corresponding to combination of error case 1
to 3 in Tab. III. The simulations were done for 2 orbit time.

TABLE IV
THE RESULTS OF THE NUMERICAL OPTIMIZATION

Sliding Mode Feedback Lin.
Gains Gains

a 0.001349 k1 0.000003865
µ0 0.2460 k2 0.002887

The convergence history of the numerical optimization is
shown in Fig. 4.

Fig. 4. The Objective Value Histories of the Numerical Optimization

It was seen that, after 200 iterations, the numerical opti-
mization algorithm converged to a value, which corresponds to
the local minimum. Furthermore, the numerical optimization
algorithm was run twice to conclude that it was a local
minimum. Moreover, the initial gains seemed to speed up to
process, since the solutions for the controllers converged to
the real value fast. Additionally, the numerical solvers for the
simulations inside the numerical optimization was chosen as
variable step Runge–Kutta solver (4-5).

B. Feedback Linearization

It was seen that, the gains of the controller plays an
important role on the fuel consumption and error tracking,
as expected. If the gains were set to a high value, then it
was observed that the fuel consumption was high, however,
tracking error was low. The results of the various control gains
are shared in Tab. V. The gains were set such that the damping
ratio of the system was the same in all of the cases. The initial
error for the tests was the combination of the first three error
cases shared in Tab. III, and the analysis were done for a time
of 5 orbits.

TABLE V
VARIOUS GAINS FOR FEEDBACK LINEARIZATION, HOLDING THE

DAMPING RATIO CONSTANT

High Medium Low
k1 k2 k1 k2 k1 k2

Gain Level 0.02 0.57 0.01 0.4 0.0025 0.2
∆v [m/s] 5.52 3.88 2.05
RMSE [m] 22.97 19.65 15.10
Max. Error [m] 0.0083 0.012 0.023

In Tab. V, as the gains were decreased, the fuel consump-
tion, i.e. the ∆v was decreased, from left column to right
column. Correspondingly, the maximum error of the system,
after the system reaches its equilibrium, is increased. On
the other hand, the RMSE is decreased towards lower gains.
The reason behind that is, when the gains are increased, the
system becomes more agile, while, the damping of the system
held constant. In other words, based on a mass-damper-spring
system, the damper of the system is held constant, while the
spring became more stiff. The overall effect is that, the system
cannot damp efficiently, and hence oscillations to the system
is introduced, which increases the RMSE.

C. Sliding Mode Control

A similar gain analysis for the Sliding Mode was done in
this part. Notice that the investigation here was done for 5
orbits. In Sliding Mode Control, the created manifold s(e),
governs the dynamics. For that reason it is noticed that a
dominates the performance. If a was chosen to be large,
then the system was forced to converge to the origin rapidly.
This means that the possibility of reaching the saturation
limit of the thrusting capability and therefore making the
system unstable, or introducing oscillations since, the system
dynamics became faster, was increased. If a was chosen small,
it is noticed that the system spent slightly more fuel. In other
words, it was thought that system travels unnecessary routes
and spent fuel while doing so. On the other hand, µ0 forces
system to converge to the sliding manifold, and dominate the
perturbances. If µ0 was chosen small, i.e. on the order of 10−3,
then system might have problems to converge to the sliding
manifold. This was believed to be due to the fact that, the
upper bound in Lyapunov derivative was set to be strict.

The investigation of the gains were done in 3 steps while
using the initial error as the combination of the first three error
cases shared in Tab III. First, the optimal a was used and µ0

was varied, which can be seen in Tab. VI.

TABLE VI
VARIOUS GAINS FOR SLIDING MODE, USING OPTIMAL SLIDING

MANIFOLD, a = 0.0013

High Medium Low Very Low
µ0 0.5 0.1 0.05 0.001
∆v [m/s] 0.58 0.57 0.54 21
RMSE [m] 13.59 13.43 13.55 69142
Max. Error [m] 0.15 0.22 0.38 164481

As can be seen in Tab. VI, the increase in the µ0, resulted
in higher fuel consumption or ∆v, however, the maximum
error in the steady state region was smaller. Furthermore, the
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system followed the same sliding manifold in a good fashion,
hence, the RMSE did not change too much. The Very Low
case showed that the system diverged, or an unstable system,
therefore, it was not considered for the above comments.
Briefly, when optimal sliding manifold was used, µ0 affected
the maximum error inversely proportional, and fuel consump-
tion proportionally.

For the second investigation, a faster converging system, i.e.
a sliding manifold with higher a was investigated, which can
be seen in Tab. VII.

TABLE VII
VARIOUS GAINS FOR SLIDING MODE, USING BIG COEFFICIENT SLIDING

MANIFOLD, a = 0.013

High Medium Low Very Low
µ0 0.5 0.1 0.05 0.001
∆v [m/s] 2.11 2.17 2.21 22
RMSE [m] 15.31 15.35 15.42 104459
Max. Error [m] 0.014 0.037 0.086 256247

When Tab. VI and Tab. VII were compared, it was noticed
that the maximum errors of higher a were lower, however
the corresponding fuel consumption was higher. For non-
optimal and larger coefficient sliding manifold, increase in µ0

corresponded to a decrease in the fuel consumption, maximum
error and the RMSE. The reason behind that was, decrease in
µ0 introduced oscillations, which required further fuel con-
sumption as well. This was the believed to be the reason, why
increase in a increased the RMSE. However, on the optimal
sliding manifold case, it was noticed that the decrease in µ0

did not cause any oscillations, hence the fuel consumption did
not increase.

For the third investigation, a slower manifold was chosen.

TABLE VIII
VARIOUS GAINS FOR SLIDING MODE, USING SMALL COEFFICIENT

SLIDING MANIFOLD, a = 0.0003

High Medium Low Very Low
µ0 0.5 0.1 0.05 0.001
∆v [m/s] 0.84 0.82 0.84 16
RMSE [m] 21.96 21.27 22.10 17912
Max. Error [m] 0.30 0.39 0.50 44991

As mentioned earlier, gain a dominates the dynamics, since
the observations for the previous investigations could not be
made for the VIII, except, the maximum error decreasing with
an increase in µ0. Furthermore, it was observed that, RMSE
was increased with a decrease in a, comparing Tab. VI and
VIII, since the dynamics of the system was forced to be slower.

D. Model Predictive Control
In this section, the effects of various parameters in MPC

was shown based on ∆v, RMSE and the maximum error in
the steady state. The analysis was done for 5 orbits, with the
combination of the first three error cases in Tab. III. Initially,
the performance of a single cost function was shown, by
varying the weight of the input. Then, the effect of d, the
final state condition, and k, switching error, (which can be
seen in Section III-D4c), was investigated. Finally, the effect
of r1 and r2 was shown.

When the input weight was decreased for single cost
function application, as can be seen in Tab. IX, the RMSE
and maximum error were decreased, with an increase in fuel
consumption. It was decided that, if the maximum error is
desired to be low, with a lower fuel consumption, then the
combination of a high and low input weights with separate
cost functions for different region of trajectory was desired.
In details, when the error is high, r will be high, and when
the error is small, then r will be small as well, which will be
acquired with a switching cost function system.

TABLE IX
RESULTS OF DIFFERENT INPUT WEIGHTS FOR MPC FOR SINGLE COST

FUNCTION, FOR d = 2

High Medium Low Very Low
r 1 0.01 0.0001 0.00001

∆v [m/s] 0.48 0.54 0.58 0.59
RMSE [m] 30.31 15.24 14.11 14.06

Max. Error [m] 6.57 1.34 0.34 0.30

The next step was, to show the effect of k, the switching
error, and d. To achieve that, two combination of the r1 and
r2 were compared, for different values of the d and k.

TABLE X
THE RESULTS OF VARIOUS k VALUES, FOR
r1 = 0.05, r2 = 5 · 10−5 AND d = 2

Very Low Low Medium High
k 1 5 10 15

∆v [m/s] 0.50 0.50 0.50 0.51
RMSE [m] 17.44 17.39 17.41 17.45

Max. Error [m] 0.32 0.32 0.33 0.32

TABLE XI
THE RESULTS OF VARIOUS k VALUES, FOR

r1 = 1, r2 = 1 · 10−5 AND d = 2

Very Low Low Medium High
k 1 5 10 15

∆v [m/s] 0.48 0.47 0.47 0.47
RMSE [m] 30.31 28.86 28.86 28.88

Max. Error [m] 6.57 0.30 0.30 0.30

As can be deduced from the Tab. X and XI, it was seen
that, the k, switching error, had limited effect, compared to
r. Because, from very low to high value, the RMSE and fuel
consumption changed slightly. In addition to that, when the
Tab. XI’s first column was observed, the maximum error was
different than the other cases, which was dominated by r2

which was set to be the same for all. The reason behind
that was, the cost function never switched. So it was easy
to see that, if k is set to a small value, then switch might not
happen. Briefly, the k has a limited effect on fuel consumption,
RMSE and quite negligible effect on maximum error. If k is
chosen small, then the system may never switch inbetween
cost functions.
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TABLE XII
THE RESULT OF VARIOUS d, FOR
r1 = 1, r2 = 1 · 10−5 AND k = 10

Off Low Medium High
d 0 0.1 1 2

∆v [m/s] 0.48 0.47 0.47 0.47
RMSE [m] 30.71 28.72 28.79 28.86

Max. Error [m] 0.28 0.30 0.30 0.30

The Tab XII corresponds to a High r1 case. Notice that,
if the condition related to d was not implemented, corre-
sponds to the Off column, the performance of the system
degraded, i.e the RMSE and fuel consumption increased. The
decrease in d corresponded to smaller RMSE, and higher fuel
consumption. However, once implemented the effect of the
constraint becomes limited, for example, from Medium to
High, or Low to Medium cases, the changes in both RMSE
and fuel consumption were small.

TABLE XIII
THE RESULT OF VARIOUS d, FOR

r1 = 0.05, r2 = 5 · 10−5 AND k = 10

Off Low Medium High
d 0 0.1 1 2

∆v [m/s] 0.51 0.50 0.50 0.50
RMSE [m] 17.24 17.39 17.41 17.41

Max. Error [m] 0.31 0.32 0.32 0.32

Similarly, Tab. XIII corresponds to small RMSE scenario
with small r1. In this scenario, again the implementation of
d decreased the fuel consumption, with a slight increase in
RMSE. Change in d, similar to k, in both cases, did not effect
the performance significantly.

TABLE XIV
THE COMPARISON OF DIFFERENT VALUES OF r2 , FOR r1 = 1 d = 2,

k = 10

High Medium Low Very Low
r2 0.5 0.01 0 .005 1 · 10−5

∆v [m/s] 0.48 0.48 0.48 0.47
RMSE [m] 29.95 28.88 28.86 28 .86

Max. Error [m] 5.25 1.34 0.41 0.30

To investigate the effect of switching cost function method-
ology, Tab. XIV was created, and was compared with Tab. IX.
As can be seen, all the ∆v and RMSE of the Tab XIV were
close to High case of Tab. IX. The reason behind that was,
the most of the fuel consumption and RMSE were due to the
initial error which was covered by the cost function with r1.
Additionally, r2 dominates the steady state error. As a result,
it was obvious that, the switching cost function methodology,
without increasing the fuel consumption too much, decreased
the maximum error. On the other hand, different values of
r1 for a constant r2 were shared in Tab. XV. The fuel
consumption decreased with an increase in RMSE, when r1

was increased. However, it was noticed that, the switching
may also increase the fuel consumption, which can be seen
in the High column of Tab. XV. From, Medium to High,
even though the RMSE was increased, the fuel consumption
stayed constant. It was observed that, at High case, the second

cost function spent more fuel than the other cases so that the
maximum error could be small like others. In addition, as
mentioned earlier, the maximum error in steady state did not
change when r2 held constant.

TABLE XV
THE COMPARISON OF DIFFERENT VALUES OF r1 FOR r2 = 1 · 10−5 ,

d = 2, k = 10

High Medium Low Very Low
r1 5 0.5 0.01 0.0001

∆v [m/s] 0.48 0.48 0.52 0.58
RMSE [m] 40.20 25.22 15.24 14.11

Max. Error [m] 0.30 0.30 0.30 0.30

Briefly, it was observed that, the d and k has limited effects
compared to r1 and r2. Generally, r1 dominated the RMSE
and fuel consumption while r2 dominated the maximum error
in steady state.

E. Impulsive Control Law
The Impulsive Law offered by Schaub and Alfriend [81] was

implemented, and in this part, it was compared with the results
shared in [81], to show that the controller was implemented
correctly. The orbit used in [81] corresponds to an orbit with
7555 km of semi-major axis, 0.05 of eccentricity, 48 degrees
of argument of perigee, 20 degrees of right ascension of the
ascending node, 10 degrees of inclination with 120 degrees
of initial mean anomaly which are mean orbital elements.
The initial errors of 100 m in mean semi-major axis, 0.05
degrees of error in mean inclination, and −0.01 degrees of
error in mean right ascension of the ascending node was used.
There were two comparison cases, one implementation with
no thrusting limit, i.e. all the control commands in terms of
∆v can be applied directly, and with thrusting limit, i.e. thrust
saturation at 1 N. As can be seen from Tab XVI, both of the
implementations of [81], were able to converge to the reference
in 4 orbit. However, the total ∆v consumption stated in [81]
is 6.46 [m/s] for the same problem. The total ∆v consumption
for the case without thrusting limitation was 4.9% higher and
with thrusting limitation was 5.4% higher. This means, the
implementation was not perfect, however, it is believed that,
this is inevitable. Because, most definitely, the reference and
implementation used different methods at some parts of the
application, which caused the error.

TABLE XVI
FINAL ORBITAL ELEMENT ERROR AND VELOCITY CHANGE FOR 4

ORBITS

Orbital Elem. Error With Thrust Limit Without Thrust Limit
δa [m] -5.922 ×10−5 1.3026×10−3

δe -1.378×10−10 -2.0445×10−7

δω [rad] -1.505×10−6 -7.4293×10−6

δΩ [rad] 1.888×10−7 2.9388×10−7

δi [rad] -7.356×10−9 -2.1437×10−7

δM [rad] 1.378×10−6 4.7059×10−6

∆v [m/s] 6.7684 6.8014

F. Relative Orbit Mission
In this part, the performances of each controller was ob-

tained for the Prisma mission like relative orbit mission.
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Orbital elements of the Chief satellite was shared with different
error cases in Section III-G and compared, an example result
can be seen in Figs. 5 and 6. The comparison was based on
∆v, RMSE, maximum error in the steady state, and settling
time. In this study, settling time is used as the time it takes
for controller to clear 90% of the initial error.

Fig. 5. Relative Orbit Mission, with Initial Error Case 4, with Respect to
LVLH Frame of Chief x and y axis

Fig. 6. Relative Orbit Mission, with Initial Error Case 4, with Respect to
LVLH Frame of Chief x and z axis

The impulsive control law was used as a benchmarking
method. However, since it uses a different type of reference
method, i.e. mean orbital element difference, it required further
effort to calculate the reference error. In order to compare
the tracking error of the Impulsive Control Law with others,
a reference was created by the same means as the other
controllers, which introduced some numerical errors.

It was observed that, in all the cases, the Impulsive Law,
in terms of ∆v outperformed the designed controllers, near 2
to 3.5 times less ∆v usage. On the other hand, RMSE wise,

Fig. 7. The Tracking Errors in LVLH Frame of Chief for Relative Orbit
Mission Case 1

it gave approximately 3 to 5 times higher errors. The Sliding
Mode Controller had the largest ∆v for all the cases, with
lowest RMSE (for three cases out of four), and minimum error
in steady state. Its settling time was the second best among
all the controllers after Feedback Linearization.

The Feedback Linearization controller, had the smallest ∆v
for two cases out of four among the designed controllers and
had the second lowest RMSE, for three out of four cases.
Its maximum error in the steady state region was the second
lowest among all controllers.

The MPC, on the other hand, had the least ∆v for two
cases out of four compared to designed controllers. However,
it produced the highest RMSE and maximum error for all the
cases, but still better than the Impulsive Law. Its settling time
was the third among all the other controllers. The details of
each controller can be found in below subsections for Relative
Orbit Mission.

1) Case 1: This case consists of an initial error in the semi-
major axis of the Deputy. This scenario was chosen because
the difference in semi-major axis causes the two satellites
having different periods, and having different J2 effects.

As can be seen, from Fig. 7, all the controllers except
Impulsive Control Law, converged to the reference trajectory
in almost half an orbit.

TABLE XVII
THE COMPARISON OF THE VARIOUS CONTROLLER PERFORMANCES FOR

RELATIVE ORBIT MISSION CASE 1 FOR 5 ORBITS

∆v RMSE Max Error Settling Time
[m/s] [m] [m] [s]

Sliding Mode 0.69 17.94 0.23 2248
Feedb. Linear. 0.57 17.44 0.57 1760

MPC 0.59 21.95 0.84 3825
Impulsive 0.20 109.47 27.95 8837
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Again from Fig. 7, all the controllers had change in y
axis even though initially it was zero. This was due to the
initial error in x axis, or error in semi-major axis. This causes
satellites to have different periods, hence, one falls behind
of the other. Furthermore, the Feedback Linearization was the
fastest controller to close the error, which can be both deduced
from Tab. XVII and Fig 7. When Tab. XVII was investigated,
it was seen that, Sliding Mode had the highest ∆v, which is
3.5 times higher than that of the Impulsive Law, and had the
second lowest RMSE, which is 6.1 times lower than that of the
Impulsive Law. The MPC had the second highest ∆v, which is
approximately 3 times higher than that of the Impulsive Law,
with the highest RMSE among designed controllers, 5 times
lower than that of the Impulsive Law. The lowest ∆v belonged
to Feedback linearization, which is 2.9 times higher than that
of the Impulsive Law, with the lowest RMSE, 6.3 times lower
than that of Impulsive Law.

2) Case 2: This case consists of an initial error in the
eccentricity. The eccentricity, again, causes different drift rates
in orbits of chief and deputy, due to J2 effect.

Fig. 8. The Tracking Errors in LVLH Frame of Chief for Relative Orbit
Mission Case 2

As can be seen in Fig. 8 the designed controllers, were able
to converge to the reference trajectory in half an orbit except
Impulsive Control. The difference in x axis, again caused
drift in y axis for all the controllers. When Tab. XVIII and
Fig. 8 were investigated, it was seen that, the error due to
eccentricity introduced a change in x axis of the LVLH frame,
approximately 0.6 times that of Case 1. As expected, almost all
the control effort, with RMSE was decreased, approximately
0.5 to 0.7 times.

From Tab. XVIII, The Sliding Mode consumed the highest
amount of ∆v among all the controllers, and also, has the
smallest RMSE with smallest maximum error. Compared to

the Impulsive Control law, it consumed approximately 3.4
times higher ∆v, however, the RMSE of it is only 8.3 times
lower than that of the Impulsive Law. The second highest fuel
consumption is obtained with Feedback Linearization. The ∆v
of it is approximately 2.9 times higher, however, its RMSE is
7.8 times lower than that of the Impulsive Law. The MPC,
on the other hand, has the lowest ∆v consumption among
the designed controllers, where it has 2.8 times higher ∆v
consumption, with 5.9 times lower RMSE than that of the
Impulsive Law.

On the other hand, all the controllers, have outperformed
the Impulsive control law in terms of maximum error in the
steady state, and settling time.

TABLE XVIII
THE COMPARISON OF THE VARIOUS CONTROLLER PERFORMANCES FOR

RELATIVE ORBIT MISSION CASE 2 FOR 5 ORBITS

∆v RMSE Max Error Settling Time
[m/s] [m] [m] [s]

Sliding Mode 0.47 9.44 0.23 1844
Feedb. Linear. 0.40 9.96 0.57 1559

MPC 0.39 13.20 0.84 3093
Impulsive 0.14 78.14 29.13 8855

3) Case 3: In this case, the initial error in inclination, i,
was investigated. The initial error in inclination was set to
0.001 degrees.

Fig. 9. The Tracking Errors in LVLH Frame of Chief for Relative Orbit
Mission Case 3

As can be seen in Fig. 9, all the controllers were able to
reduce the 50 m of z difference caused by the inclination
difference in half of an orbit except the Impulsive Law. It
took almost 1 orbit to reduce the z error.

From Tab. XIX, Sliding Mode controller had the highest
∆v consumption and with the lowest RMSE and maximum
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error. However, its settling time was slightly higher than
Feedback Linearization. Its ∆v was 3.1 times higher than that
of Impulsive Control Law, and its RMSE was 4.2 times lower
than that of the Impulsive Law. On the contrary, MPC this
time had the second highest ∆v with highest maximum error.
Its settling time was the highest in the designed controllers.
Its ∆v was 3 times higher, and its RMSE was 3.1 times
lower than those of the Impulsive Control Law. Feedback
Linearization, had the lowest ∆v, with medium RMSE and
medium maximum error in steady state. Its settling time was
the best. Additionally, its ∆v was 2.3 higher and RMSE was
3.9 times lower than those of the Impulsive Control Law.

TABLE XIX
THE COMPARISON OF THE VARIOUS CONTROLLER PERFORMANCES FOR

RELATIVE ORBIT MISSION CASE 3 FOR 5 ORBITS

∆v RMSE Max Error Settling Time
[m/s] [m] [m] [s]

Sliding Mode 0.46 10.03 0.23 2382
Feedb. Linear. 0.35 10.76 0.57 1891

MPC 0.45 13.50 0.84 3226
Impulsive 0.15 41.64 125.83 5623

4) Case 4: In this case, the combination of all the scenarios
was implemented with an additional mean anomaly error.

Fig. 10. The Tracking Errors in LVLH Frame of Chief for Relative Orbit
Mission Case 4

From the Fig. 10 all the designed controllers were able to
converge to the reference trajectory almost in half of an orbit
except the Impulsive Law. The Impulsive control was able to
get rid of the error in z axis in almost one orbit. The error in
y axis, introduced due to error in x axis, was not able to be
cancelled until the next orbit.

TABLE XX
THE COMPARISON OF THE VARIOUS CONTROLLER PERFORMANCES FOR

RELATIVE ORBIT MISSION CASE 4 FOR 5 ORBITS

∆v RMSE Max Error Settling Time
[m/s] [m] [m] [s]

Sliding Mode 0.77 20.62 0.23 2018
Feedb. Linear. 0.56 21.08 0.57 1634

MPC 0.52 24.96 0.84 2886
Impulsive 0.31 55.31 28.42 8056

The results of the Error Case 4 was shared in Tab. XX. The
lowest ∆v belongs to MPC, with the highest RMSE, maximum
error, and settling time. Compared to the Impulsive Law, it had
1.7 times higher ∆v consumption with 2.2 times less RMSE
than those of the Impulsive Law. The second lowest ∆v,
which was 1.8 times higher than that of the Impulsive Law,
corresponded to Feedback Linearization, with the second best
RMSE, which was 2.6 times lower than that of the Impulsive
Law. Additionally, its settling time was the lowest among
designed controllers. The Sliding Mode had the highest ∆v
among the designed controllers, which is 2.5 times higher than
that of the Impulsive Law, and the best RMSE, which is 2.7
times lower than that of the Impulsive Law.

G. Rendezvous Mission

In this part, the performances of each controller for the
rendezvous mission was shared for the same error scenarios for
the same orbit. This time, the transformation from mean orbital
element difference to LVLH frame relative orbit was easier to
obtain, basically, consisting of zeros. Hence, the comparison
here is valid for all the controllers in the list.

1) Case 1: All the controllers, except the Impulsive Control
Law, reached the reference trajectory perfectly. From Tab.
XXI, the highest ∆v usage again, was on Sliding Mode
Controller, with the second smallest RMSE. Its ∆v was 2.6
times higher, however, the RMSE of it was 6.6 times lower
than those of the benchmark method. The second highest fuel
consumption was for Feedback Linearization Controller, which
was approximately 2.2 times higher than that of the Impulsive
Control Law. The RMSE of the Feedback Linearization law
on the other hand, was the best among all the controllers and it
was 6.7 times lower than that of the Impulsive Law. The MPC
had the best ∆v consumption, 1.9 times higher than that of the
Impulsive Law with the highest RMSE, which was 6.1 times
lower than that of the Impulsive Law, among the designed
controllers. As can be seen, the settling time and RMSE had
the exact same ranking.

When the Fig. 11, all the designed controllers was able to
get rid of the error in near half of orbit.

TABLE XXI
THE COMPARISON OF THE VARIOUS CONTROLLER PERFORMANCES FOR

RENDEZVOUS SCENARIO ERROR CASE 1 FOR 5 ORBITS

∆v RMSE Max Error Settling Time
[m/s] [m] [m] [s]

Sliding Mode 0.50 16.61 0 2139
Feedb. Linear. 0.42 16.36 0 1692

MPC 0.37 17.94 0 2170
Impulsive 0.19 109.94 0.91 8783
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Fig. 11. The Tracking Errors in LVLH Frame of Chief for Rendezvous
Mission with Error Case 1

2) Case 2: In this case, an initial eccentricity error was
considered, which corresponded to an initial x axis error in
the LVLH frame. When two satellites were at the same exact

TABLE XXII
THE COMPARISON OF THE VARIOUS CONTROLLER PERFORMANCES FOR

RENDEZVOUS SCENARIO ERROR CASE 2 FOR 5 ORBITS

∆v RMSE Max Error Settling Time
[m/s] [m] [m] [s]

Sliding Mode 0.33 10.13 0 1910
Feedb. Linear. 0.29 10.57 0 1579

MPC 0.25 12.43 0 2110
Impulsive 0.13 75.86 0.52 8769

position, the effect of J2 was the same, hence, there was no
final oscillation in the response, which leads to no final error.
From Tab. XVIII, the highest ∆v consumption was on Sliding
Mode, with approximately 2.5 times higher than that of the
Impulsive Controller. Whereas, the RMSE was the best among
the designed controllers which corresponded to 7.5 times lower
than that of the Impulsive Control. The Feedback Linearization
had the second highest ∆v, 2.2 times higher and the RMSE of
it was 7.2 times lower than those of the Impulsive Control. The
MPC, this time had the lowest fuel consumption among the
designed controllers, approximately 1.9 times higher than that
of the Impulsive Law. The corresponding RMSE was 6.1 times
lower than that of the Impulsive Law. For the convergence
time, the trend as follow, the shortest time was obtained with
Feedback Linearization, then Sliding Mode, and finally MPC.

As can be seen in Fig 12, designed controllers were able to
converge to the reference in less than half of an orbit, whereas
the Impulsive Law converged to reference in nearly 1.5 orbits.

Fig. 12. The Tracking Errors in LVLH Frame of Chief for Rendezvous
Mission with Error Case 2

3) Case 3: In this case, the effect of initial error in
inclination was investigated. Again, all the designed controllers
had 0 final error. As can be seen from Tab. XXIII, the same
ranking occurred as of error case 2 for all the parameters. The
minimum fuel consumption was achieved with MPC, which
was 1.4 times higher than that of the Impulsive Law, with
2.3 times smaller RMSE. The Feedback Linearization had the
second lowest ∆v, which was 1.5 times higher than that of the
Impulsive Law, and the RMSE was 2.7 times lower than that
of the Impulsive Law. The Sliding Mode had the highest ∆v,
1.9 times higher than that of the Impulsive Law and lowest
RMSE, 2.8 times lower than that of the Impulsive Law. The
settling time trend was observed here as well.

TABLE XXIII
THE COMPARISON OF THE VARIOUS CONTROLLER PERFORMANCES FOR

RENDEZVOUS SCENARIO ERROR CASE 3 FOR 5 ORBITS

∆v RMSE Max Error Settling Time
[m/s] [m] [m] [s]

Sliding Mode 0.27 10.01 0 2356
Feedb. Linear. 0.21 10.74 0 1893

MPC 0.20 11.98 0 2227
Impulsive 0.14 27.58 5.90 2624

From Fig. 13, all the controllers got rid of the initial error in
z axis caused by inclination difference in approximately half
an orbit. Furthermore, it was noticed that, the Impulsive Law,
had a slightly different starting error along x axis. This was
due to the fact that the two methods had different initialization
procedure. However, this error was quite small, hence the ∆v
due to this error was ignored.

4) Case 4: In this case, the combination of all the previous
error cases with additional mean anomaly error was investi-
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Fig. 13. The Tracking Errors in LVLH Frame of Chief for Rendezvous
Mission with Error Case 3

gated.
As can be seen from the Tab. XXIV. The settling time

trend was followed. Furthermore, the ∆v consumption trend
for rendezvous missions was also obeyed. The Sliding Mode
had the highest ∆v, which was approximately 2 times higher
than that of the Impulsive Law, and the lowest RMSE, which
was 2.3 times lower than that of the Impulsive Law. The
Feedback Linearization’s ∆v was 1.5 times higher than that
of the Impulsive Law and its RMSE was 2.2 times lower than
that of the of Impulsive Law. The smallest ∆v corresponded
to MPC, which was 1.2 times higher than that of the Impulsive
Law. However, its RMSE was 2 times lower than that of the
benchmark method. In Fig. 14, it is seen that, all the controllers

TABLE XXIV
THE COMPARISON OF THE VARIOUS CONTROLLER PERFORMANCES FOR

RENDEZVOUS SCENARIO ERROR CASE 4 FOR 5 ORBITS

∆v RMSE Max Error Settling Time
[m/s] [m] [m] [s]

Sliding Mode 0.61 20.60 0 2010
Feedb. Linear. 0.45 21.06 0 1639

MPC 0.36 22.99 0 1983
Impulsive 0.30 46.43 5.05 8098

follow the same trend.

V. DISCUSSION

The complicated nature of satellite formation flying was
tried to be simplified by implementing and comparing different
types of controllers with different types of approaches, namely
Sliding Mode, Feedback Linearization, MPC and an Impulsive
Control, in terms of ∆v usage and tracking error for two
different missions, a Relative Orbit Mission and Rendezvous

Fig. 14. The Tracking Errors in LVLH Frame of Chief for Rendezvous
Mission with Error Case 4

Mission. Each controller, except Impulsive Control, was inves-
tigated, by changing different parameters and then compared
with each other through different missions and error cases.

It was noticed that, the Impulsive Law had the lowest ∆v
for all the tests. The reason behind that was believed to be to
the fact that, it depends on calculation of the best possible
time to correct the error, which increases the efficiency.
Even though, similar approach was implemented in MPC,
the model was assuming circular orbit with no perturbations
affecting the system, hence the fuel consumption was high.
On the other hand, Sliding Mode and Feedback Linearization
controllers were even though numerically optimized for a cost
function, they did not have such an application, thus, their fuel
consumption was also high.

To achieve a comparison, a numerical optimization algo-
rithm was adapted for Sliding Mode and Feedback Lineariza-
tion Controllers. It was seen that, in the literature, some of
the optimization with ABC was done with 6000 to 10000
maximum cycles [90], [92], however, in some examples 1000
maximum cycles was also used [62], [65]. In order to assure
that the local minimum was found for the controller gains,
the same numerical optimization problem was solved twice.
In the end both of the solutions gave approximately the same
gain set. As a result, the gains of those two controllers were
assumed to be the local minimum.

Even though the same numerical optimizations were applied
to Sliding Mode and Feedback Linearization, their ∆v usage
and corresponding tracking error in terms of RMSE were
different. The reason behind that was believed to be due to
the different nature of the controllers. For the optimization of
the cost function, the Sliding Mode Controller seemed to focus
on errors rather than fuel, whereas, the Feedback Linearization
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did the other way around.
Throughout the investigations, concerning both examining

the control parameters, and observing the comparisons of
controllers with each other, it was seen that the error produced
was inversely proportional with the ∆v. In other words, if
tracking error was desired to be small or tried to be cancelled
as soon as possible, then the fuel consumption will be high.
For example, Impulsive Law offered by Schaub and Alfriend
applies thrusts only three times throughout the orbit. Hence,
its RMSE is higher with lower ∆v usage.

In the Relative Orbit Mission with different error cases,
the Sliding Mode Controller had the highest ∆v, 2.5 to 3.5
times higher than that of the Impulsive Law, with lowest
tracking error and steady state error. Its RMSE was 2.7 to
8.3 times lower than that of the Impulsive Law. The Feedback
Linearization used 1.8 to 2.9 times higher ∆v than that of the
Impulsive Law for the same missions, and produced slightly
higher errors compared to Sliding Mode, 2.6 to 7.8 times lower
RMSE than that of the Impulsive Law. MPC, consumed similar
amounts of ∆v with Feedback Linearization, 1.7 to 3 times
higher than that of the Impulsive Law and produced the highest
RMSE compared to other methods, 2.2 to 5.9 times lower
RMSE than that of the Impulsive Law.

The difficulty of having a relative orbit was that, as known,
the gravity perturbations effect satellites differently throughout
the mission. In rendezvous missions, even though the initial
effect of the gravity perturbations were different, the finals
were similar since the position difference is zero. As a result,
the ranking of the controllers were almost the same for the
different error cases for rendezvous mission. Furthermore,
since the continuous controllers always tries to cancel the
errors introduced by perturbations in the Relative Orbit Mis-
sion, the ∆v of the rendezvous mission for the same error
cases were lower, because when the rendezvous happens,
the perturbation effects diminishes for the relative position.
However, the RMSE of both of the mission was on the same
order. This was because, controllers followed similar paths.

In Rendezvous mission, in terms of ∆v, the Impulsive Law,
again outperformed all the designed controllers. It was noticed
that, on the contrary to the Relative Orbit Mission, MPC
consumed the least amount of fuel with the highest RMSE,
compared to designed controllers, for all the error cases. The
∆v, of MPC was 1.2 to 1.9 times higher than that of the
Impulsive Law. Whereas, the RMSE of MPC was 2 to 6.1
times lower than that of the Impulsive Law. The second highest
∆v consumption was for Feedback Linearization, with the
second highest RMSE. The ∆v of it was 1.5 to 2.2 times
higher than that of the Impulsive Law, and produced 2.2 to
7.2 times smaller RMSE. The Sliding Mode, again consumed
the highest ∆v, 2 to 2.6 times higher than that of the Impulsive
Law, and its RMSE was 2.3 to 7.5 times smaller.

As expected, the Sliding Mode Controller consumed the
highest amount of ∆v with the smallest amount of RMSE for
all the missions. As mentioned earlier, the robustness of the
Sliding Mode comes with the cost of fuel. The MPC with the
CW equations had variable performance for the Relative Orbit
Mission, however, its ∆v for the rendezvous mission was quite
close to that of the Impulsive Law. Briefly, the optimization

Fig. 15. Error of mean semi-major Axis, eccentricity and argument of
periapsis for Relative Orbit Mission with initial error Case 4

problem solved in MPC allows it to have close performance
to the benchmark method. The Feedback Linearization, which
lacks both the robustness and optimization features, was in the
middle of those designed controllers.

It is noticed that the performance of the MPC with the CW
model was improved in the Rendezvous mission. This was
believed to be due to the fact that, the error of the model
reduces with the decrease in formation distance [93]. As a
result, the model becomes closer to reality, of course not
exactly due to perturbances. Hence, the ∆v was reduced more
than for the other methods.

In the comparison for Relative Orbit Mission, the tracking
error calculations of the Impulsive Law was obtained with a
reference created with approximation. In this approximation,
initial error was on the order of centimeters, however, after
5 orbits, the error was on the order of 20 meters, with an
increasing trend. That means, the RMSE and maximum errors
shared in Section IV-F has errors near in the order of tens
of meters. However, in terms of mean orbital elements, the
tracking error was quite low. Tracking error in terms of mean
orbital elements was shared in Fig. 15 and 16 for Relative
Orbit Mission error Case 4. This situation does not change
the fact that, the Impulsive Law produces high amount of error.
Because, in the Rendezvous mission, the Impulsive Law still
had the highest RMSE among all the controllers.

Furthermore, the Low Thrust System implemented is a cold
gas system, with a smaller specific impulse, near 3.5 times
smaller than that of a hydrazine system. Which means that,
2 to 4 times higher ∆v would mean 7 to 12 times higher
fuel consumption. If an electrical thrusting system, with high
specific impulse was adapted, then there is a possibility that
the two systems, the low thrust and high thrust systems, would
have similar levels of fuel consumption. However, it is out of
scope of this thesis. In order to protect the environment while
reducing fuel consumption, electrical propulsion systems with
high specific impulse are thought to be beneficial.
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Fig. 16. Error of right ascension of the ascending node, inclination and mean
anomaly for Relative Orbit Mission with initial error Case 4

VI. CONCLUSION

The complexity of the arrangement of the relative motion
of the two identical satellites was tried to be reduced while
investigating the ∆v cost and tracking error of different control
approaches.

This study shows how to apply different reference trajectory
methods and different dynamical models to use for control
of relative motion. The transformation of this reference tra-
jectory to different Frames of Reference was implemented,
and tracked with a continuous control approaches. A similar
reference trajectory was created in terms of Mean Orbital
Elements and tracked with an Impulsive Law offered by
Schaub and Alfriend [81].

A slight difference in reference trajectories was observed
between continuous control and impulsive laws for the relative
orbit mission due to numerical operations. This introduced
approximately 10 m of error for both root mean square error
and maximum error in steady state. However, the same error
was not observed for rendezvous mission. As a result, the
reader should be careful while considering the tracking error
of the impulsive law in the relative orbit mission.

The study showed that, there exists an inversely proportional
relationship in between ∆v and tracking error, as expected.
The Impulsive law had the highest tracking error, both in terms
of root mean square error and maximum error in the steady
state, but, the smallest ∆v. Similarly, Sliding Mode Controller
had the highest ∆v for all the test scenarios, and produced the
smallest tracking error.

It was noticed that Model Predictive Control, working with
Clohessy–Wiltshire equations, had ∆v levels similar to the
Impulsive law in the rendezvous mission. However, it had one
of the highest ∆v in the relative orbit mission. This showed
that the Clohessy-Wiltshire equations should be approached
with care while using them for formation flying missions
where the perturbation effects are not negligible.

The LEO is a frequently used orbit for commercial and
scientific satellites. LEO is becoming more and more popu-
lated with debris due to the collision happening in between
them. This means, removal of debris from space is becoming
more vital for the space missions. A rendezvous mission was
investigated. It was shown that, both impulsive controllers
and continuous controllers were able to diminish the relative
position error.

More efficiency-oriented operation of impulsive law ap-
proaches allowed these types of controllers to be used in
satellite formation flying. However, it is noticed that, it comes
with the cost of tracking error. If low error rates are desired, the
follow-up satellite system should be controlled continuously at
each point in the orbit. But, it has been found that this type
of control will also relatively increase the fuel consumption
of the tracking satellite.

Management of energy is a fundamental ground for human
welfare, economic development and poverty reduction and
global demand for limited and constantly decreasing energy
resources is growing rapidly day by day. Nevertheless, it
should be remembered that energy systems also have important
environmental effects such as causing environmental hazards
and pollution. Considering that, if the mission can tolerate
tracking errors, then the impulsive laws would offer better
solutions in terms of economical end environmental causes, i.e.
longer lifetime. If the mission demands high tracking accuracy,
then a highly efficient electrical propulsion systems might be
used to compensate for higher ∆v requirements.

VII. FUTURE WORK

In this study it was seen that the ∆v spent for a rendezvous
mission was lower than that of the relative orbit mission for all
the controllers, even though the initial errors were the same.
However, the ∆v of the MPC was reduced more than other
controllers. This is thought to be related to the model used in
MPC, which does not account for perturbations. Hence, this
shows that due to model assumptions, the MPC performed
badly when the perturbations were present. To improve the
MPC, a model that is offered by [56] which covers J2 effects
can be implemented and compared with the MPC at hand.

It is known that Feedback Linearization control is vulnerable
to model noise and uncertainties [94], [95]. The performances
shared here for Feedback Linearization might not be reachable
due to possible noise in the system. So, it might be beneficial
to investigate the controller performances under noise, or thrust
misalignment.

Additionally, in this study, the positions of each satellite
was known with 100% accuracy. In reality, it is known that
there are estimation algorithms to predict the position of the
satellite through sensor measurements which include errors.
Future work might involve the controller performances with
an observer, or it might focus on that algorithm directly.

In this work, the boosters of the satellite was modeled as a
continuous function that has a saturation limit only. In other
words, it can create all the thrust up until the saturation limit.
However, in general the thrust system does not have such a
capability. To overcome that a Schmidt trigger design can be
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implemented. Even more, this study can be redone with a high
fidelity thrust model.

Furthermore, in this study the effect of the aerodynamics
was ignored due to the altitude and satellites being aerody-
namically identical. In the GRACE mission, which is at 500
km LEO, the satellites have the same shape, however, they
have slightly different ballistic coefficient, 0.14% to 0.32%
difference [33]. This is because of the attitude requirement
of the mission. As a result, a future investigation might
involve the atmospheric effects as perturbations or implement
6 Degree of Freedom model rather than a point mass model
to investigate such effects.
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which reminded me of my home.

APPENDIX A
TRANSFORMATION BETWEEN CLASSICAL ORBITAL

ELEMENTS AND CARTESIAN COORDINATES

A. Cartesian Coordinates to Classical Orbital Elements

The input to the transformation is the Position, r and
Velocity ṙ of the satellite with respect to ECI frame, with
the gravitational constant of the primary, µ. This approach is
taken from [96]. The angular momentum vector is calculated

based on Eq. (127), and calculation of eccentricity vector e is
in Eq. (128).

h = r× ṙ (127)

e =
ṙ× h

µ
− r

‖r‖
(128)

Calculation of vector n which points toward the ascending
node and true anomaly f are in Eq. (129) and (130), respec-
tively.

n = (0, 0, 1)T × h = (−hy, hx, 0)
T (129)

f =

{
arccos 〈e,r〉

‖e‖‖r‖ for 〈r, ṙ〉 ≥ 0

2π − arccos 〈e,r〉‖µ‖r‖ otherwise
(130)

The inclination of the orbit is calculated with the z component
of the angular momentum vector, namely hz , in Eq. (131).

i = arccos
hz
‖h‖

(131)

Calculation of the eccentricity e, which is the magnitude of
the eccentricity vector, and the eccentric anomaly, E in Eq.
(132).

e = ‖e‖ E = 2 arctan

 tan f
2√

1+e
1−e

 (132)

Then the Right Ascension of the Ascending Node, Ω, and the
Argument of Periapsis is calculated in Eq. (133) and (134)

Ω =

{
arccos nx

‖n‖ for ny ≥ 0

2π − arccos nx

‖n for ny < 0
(133)

ω =

{
arccos 〈n,e〉‖n‖‖e‖ for ez ≥ 0

2π − arccos 〈n,e〉‖n‖‖e‖ for ez < 0
(134)

Calculation of the Mean Anomaly is in Eq. (135).

M = E − e sinE (135)

The final orbital element is the Semi-Major Axis, which is in
Eq. (136).

a =
1

2
‖r‖ −

‖ṙ‖2
µ

(136)

B. Classical Orbital Elements to Cartesian Coordinates
This formation takes the classical osculating orbital el-

ements and produces the corresponding ECI position and
velocity of the satellite. The approach is implemented from
[97]. The first step is the calculation of the eccentric anomaly
based on mean anomaly. This can be achieved with Newton–
Raphson Method, shared in Eq. (137).

f(E) = E − e sinE −M (137)

Ej+1 = Ej −
f (Ej)
d

dEj
f (Ej)

= Ej −
Ej − e sinEj −M

1− e cosEj

E0 = M

Then the true anomaly, based on eccentric anomaly is calcu-
lated according to Eq. (138).

f(t) = 2 · arctan 2

(√
1 + e sin

E(t)

2
,
√

1− e cos
E(t)

2

)
(138)
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where arctan2 calculates the correct quadrant of the angle,
seen in Eq. (139).

arctan 2(y, x) =



arctan
(
y
x

)
x > 0

arctan
(
y
x

)
+ π y ≥ 0, x < 0

arctan
(
y
x

)
− π y < 0, x < 0

+π
2 y > 0, x = 0
−π2 y < 0, x = 0
undefined y = 0, x = 0

(139)

The magnitude of the position from the main body to the
satellite is calculated according to the Eq. (140).

rc(t) = a(1− e cosE(t)) (140)

Calculation of the position vector o(t) and velocity vector
ȯ resolved in orbital frame are in Eq. (141) and (142),
respectively.

o(t) =

 ox(t)
oy(t)
oz(t)

 =rc(t)

 cos f(t)
sin f(t)

0

 (141)

ȯ(t) =

 ȯx(t)
ȯy(t)
ȯz(t)

 =

√
µa

rc(t)

 − sinE√
1− e2 cosE

0

 (142)

In order to resolve o(t) and ȯ in ECI, the DCM shared in
Eq. (143) is applied.

CIO = Rz(−Ω)Rx(−i)Rz(−ω) (143)

where Rz denotes a DCM of pure rotation in z.

APPENDIX B
FIRST ORDER TRANSFORMATION BETWEEN OSCULATING

ORBITAL ELEMENTS AND MEAN ORBITAL ELEMENTS

The method described here is the first-order truncated
version of an infinite power series solution of the theories
in [51] and [53], taken from [47]. This truncation means that
with a simple sign change, the method can be used in both
ways. The Classical Orbital Elements are used, the input is œ
and the output is œ

′
. The mapping starts with the definition

of the γ2 as in Eq. (144).

γ2 =
J2

2

(re
a

)2

(144)

which is suitable for the mapping from mean orbital elements
to osculating elements. If the inverse mapping is desired, then
a minus sign should be added to Eq. (144). The definition of
η =
√

1− e2 is used to define γ
′

2, in Eq. (145).

γ′2 =
γ2

η4
(145)

Then the Mean Anomaly is transformed into Eccentric
Anomaly with the use of Keplerian equation, M = E−e sinE.
The solution of this can be obtained with a Newton–Raphson
method, in Eq. (137). Then the true anomaly, f is calculated
with Eq. (146).

f = 2 arctan

(√
1 + e

1− e
tan

(
E

2

))
(146)

The ratio of a/r is calculated with the Eq. (147).

a

r
=

1 + e cos f

η2
(147)

Then the transformed semi-major axis is calculated according
to the Eq. (148).

a′ =a+ aγ2

((
3 cos2 i− 1

)((a
r

)3

− 1

η3

)
+ (148)

3
(
1− cos2 i

) (a
r

)3

cos(2ω + 2f)

)
The intermediate variables for the future calculations are
shared below.

δe1 =
γ′2
8
eη2

(
1− 11 cos2 i− 40

cos4 i

1− 5 cos2 i

)
cos(2ω)

(149)

δe =δe1 +
η2

2

{
γ2

[
3 cos2 i− 1

η6

(
eη +

e

1 + η
+ 3 cos f

+ 3e cos2 f + e2 cos3 f

)
+ 3

1− cos2 i

η6

(
e+ 3 cos f

+ 3e cos2 f + e2 cos3 f

)
cos(2ω + 2f)

]
− γ′2

(
1− cos2 i

)
(3 cos(2ω + f) + cos(2ω + 3f))

}
(150)

δi =− eδe1

η2 tan i
+
γ′2
2

cos i
√

1− cos2 i(3 cos(2ω + 2f)

+ 3e cos(2ω + f) + e cos(2ω + 3f)) (151)
M ′ + ω′ + Ω′ =

M + ω + Ω +
γ′2
8
η3

(
1− 11 cos2 i− 40

cos4 i

1− 5 cos2 i

)
− γ′2

16

(
2 + e2 − 11

(
2 + 3e2

)
cos2 i

− 40
(
2 + 5e2

) cos4 i

1− 5 cos2 i
− 400e2 cos6 i

(1− 5 cos2 i)
2

)
+
γ′2
4

(
−6
(
1− 5 cos2 i

)
(f −M + e sin f)

+
(
3− 5 cos2 i

)
(3 sin(2ω + 2f) + 3e sin(2ω + f)

+ e sin(2ω + 3f))

)
− γ′2

8
e2 cos i

(
11 + 80

cos2 i

1− 5 cos2 i
+ 200

cos4 i

(1− 5 cos2 i)
2

)

− γ′2
2

cos i

(
6(f −M + e sin f)

− 3 sin(2ω + 2f)− 3e sin(2ω + f)− e sin(2ω + 3f)

)
(152)
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(eδM) =
γ′2
8
eη3

(
1− 11 cos2 i− 40

cos4 i

1− 5 cos2 i

)
− γ′2

4
η3
{

2
(
3 cos2 i− 1

)((aη
r

)2
+
a

r
+ 1

)
sin f

+ 3
(
1− cos2 i

) [(
−
(aη
r

)2
− a

r
+ 1

)
sin(2ω + f)

+

((aη
r

)2
+
a

r
+

1

3

)
sin(2ω + 3f)

]}
(153)

δΩ =− γ′2
8
e2 cos i

(
11 + 80

cos2 i

1− 5 cos2 i
+ 200

cos4 i

(1− 5 cos2 i)2

)
− γ′2

2
cos i(6(f −M + e sin f)− 3 sin(2ω + 2f)

− 3e sin(2ω + f)− e sin(2ω + 3f)) (154)

Now the the transformation for the rest of the elements can
be done with an additional definition, in Eq. (155).

d1 = (e+ δe) sinM + (eδM) cosM
d2 = (e+ δe) cosM − (eδM) sinM

(155)

Then the transformed Mean Anomaly is calculated by using
Eq. (156).

M ′ = arctan

(
d1

d2

)
(156)

The transformed eccentricity is calculated according to Eq.
(157).

e′ =
√
d2

1 + d2
2 (157)

For the final orbital elements, a final definition, shared in Eq.
(158) is used.

d3 =
(
sin
(
i
2

)
+ cos

(
i
2

)
δi
2

)
sin Ω + sin

(
i
2

)
δΩ cos Ω

d4 =
(
sin
(
i
2

)
+ cos

(
i
2

)
δi
2

)
cos Ω− sin

(
i
2

)
δΩ sin Ω

(158)
Then the rest of the transformation is from Eq. (159) to (161).

Ω′ = tan−1

(
d3

d4

)
(159)

i′ =2 sin−1(
√
d2

3 + d2
4) (160)

ω′ = (M ′ + ω′ + Ω′)−M ′ − Ω′ (161)
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[25] H. Lübberstedt, D. Koebel, F. Hansen, and P. Brauer, “MAGNAS-
Magnetic Nanoprobe SWARM,” Acta Astronautica, vol. 56, pp. 209–
212, 01 2005, doi : 10.1016/j.actaastro.2004.09.030.

[26] B. Fejer, C. Swenson, and J. Sahr, “The ION-F Satellite Constellation
Science Mission,” in EGS General Assembly Conference Abstracts, ser.
EGS General Assembly Conference Abstracts, Jan. 2002, p. 3316.

[27] C. Swenson and B. Fejer, “The Ionospheric Nanosatellite
Formation, Exploring Space Weather,” 2002. [Online]. Avail-
able: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1944&
context=smallsat

[28] P. Duchon, “Max: Formation flying for nuclear astrophysics,” Experi-
mental Astronomy, vol. 20, pp. 483–495, 12 2005, doi : 10.1007/s10686-
006-9070-1.

[29] M. Bavdaz, D. H. Lumb, and A. J. Peacock, “XEUS mission reference
design,” in UV and Gamma-Ray Space Telescope Systems, G. Hasinger
and M. J. L. Turner, Eds., vol. 5488, International Society for Optics

https://www.researchgate.net/publication/312157380_Preparation_Handover_and_Conduction_of_PRISMA_Mission_Operations_at_GSOC
https://www.researchgate.net/publication/312157380_Preparation_Handover_and_Conduction_of_PRISMA_Mission_Operations_at_GSOC
https://www.researchgate.net/publication/312157380_Preparation_Handover_and_Conduction_of_PRISMA_Mission_Operations_at_GSOC
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1982&context=smallsat
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1982&context=smallsat
https://digitalcommons.usu.edu/smallsat/2000/All2000/6/
https://digitalcommons.usu.edu/smallsat/2000/All2000/6/
https://www.jpl.nasa.gov/news/press_kits/gracelaunch.pdf
https://arc.aiaa.org/doi/pdf/10.2514/6.2012-1266472
https://www.kirtland.af.mil/Portals/52/documents/AFD-111103-035.pdf?ver=2016-06-28-110256-797
https://www.kirtland.af.mil/Portals/52/documents/AFD-111103-035.pdf?ver=2016-06-28-110256-797
https://upload.wikimedia.org/wikipedia/commons/7/78/Orbita_Express_fact_sheet.pdf
https://upload.wikimedia.org/wikipedia/commons/7/78/Orbita_Express_fact_sheet.pdf
https://earth.esa.int/web/eoportal/satellite-missions/f/fastrac
https://earth.esa.int/web/eoportal/satellite-missions/f/fastrac
https://earth.esa.int/web/eoportal/satellite-missions/t/tandem-x
https://earth.esa.int/web/eoportal/satellite-missions/t/tandem-x
https://www.dlr.de/iaa.symp/Portaldata/49/Resources/dokumente/archiv5/0309P_WangXiang.pdf
https://www.dlr.de/iaa.symp/Portaldata/49/Resources/dokumente/archiv5/0309P_WangXiang.pdf
https://www.nasa.gov/sites/default/files/files/MMS_PressKit.pdf
https://www.nasa.gov/sites/default/files/files/MMS_PressKit.pdf
https://apps.fcc.gov/els/GetAtt.html?id=147772&x=
https://apps.fcc.gov/els/GetAtt.html?id=147772&x=
https://www.jpl.nasa.gov/news/press_kits/grace-fo/download/grace-fo_launch_press_kit.pdf
https://www.jpl.nasa.gov/news/press_kits/grace-fo/download/grace-fo_launch_press_kit.pdf
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1944&context=smallsat
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1944&context=smallsat


KTH MASTER THESIS 33

and Photonics. SPIE, 2004, pp. 530 – 538, doi : 10.1117/12.552928.
[Online]. Available: https://doi.org/10.1117/12.552928

[30] P. D’Arrigo and S. Santandrea, “APIES: A mission for the explo-
ration of the main asteroid belt using a swarm of microsatellites,”
Acta Astronautica, vol. 59, no. 8-11, pp. 689–699, 2006, doi :
10.1016/j.actaastro.2005.07.011.

[31] E. Gill, M. Steckling, and P. Butz, “Gemini: A milestone towards
autonomous formation flying,” in ESA Workshop on on-board Autonomy,
vol. 419. Noordwijk: ESTEC, 2001.

[32] A. Leger and T. Herbst, “DARWIN mission proposal to ESA,” 2007.
[Online]. Available: https://arxiv.org/abs/0707.3385

[33] M. Kirschner, O. Montenbruck, and S. Bettadpur, Flight Dynamics
Aspects of The GRACE Formation Flying, Jan 2001. [Online]. Avail-
able: https://www.researchgate.net/publication/224782021 FLIGHT
DYNAMICS ASPECTS OF THE GRACE FORMATION FLYING

[34] C. P. Escoubet, M. Fehringer, and M. Goldstein, “The Cluster
mission,” Annales Geophysicae, vol. 19, p. 1197–1200, 2001,
doi : 10.5194/angeo-19-1197-2001. [Online]. Available: https://www.
researchgate.net/publication/234236368 The Cluster mission

[35] S. Bandyopadhyay, G. P. Subramanian, R. Foust, D. Morgan, S.-
J. Chung, and F. Hadaegh, “A review of impending small satellite
formation flying missions,” 53rd AIAA Aerospace Sciences Meeting,
2015, doi : 10.2514/6.2015-1623.

[36] E. Kyle, “2019 launch vehicle/site statistics,” Dec 2019. [Online].
Available: https://www.spacelaunchreport.com/log2019.html

[37] ——, “2014 launch vehicle/site statistics,” Dec 2014. [Online].
Available: https://www.spacelaunchreport.com/log2014.html

[38] ——, “2015 launch vehicle/site statistics,” Dec 2015. [Online].
Available: https://www.spacelaunchreport.com/log2015.html

[39] ——, “2016 launch vehicle/site statistics,” Dec 2016. [Online].
Available: https://www.spacelaunchreport.com/log2016.html

[40] ——, “2017 launch vehicle/site statistics,” Dec 2017. [Online].
Available: https://www.spacelaunchreport.com/log2017.html

[41] ——, “2018 launch vehicle/site statistics,” Dec 2018. [Online].
Available: https://www.spacelaunchreport.com/log2018.html

[42] S. Damico, E. Gill, and O. Montenbruck, “Relative Orbit Control Design
for the PRISMA Formation Flying Mission,” AIAA Guidance, Naviga-
tion, and Control Conference and Exhibit, 2006, doi : 10.2514/6.2006-
6067.

[43] S. Damico, J.-S. Ardaens, and R. Larsson, “Spaceborne autonomous
formation-flying experiment on the PRISMA mission,” Journal of Guid-
ance, Control, and Dynamics, vol. 35, no. 3, p. 834–850, 2012, doi :
10.2514/1.55638.

[44] S. D. Florio and S. D’Amico, “Optimal autonomous orbit control of
remote sensing spacecraft,” 2009.

[45] J. Mueller, J. Ziemer, R. Hofer, R. Wirz, and T. O’Donnell, “A survey
of micro-thrust propulsion options for microspacecraft and formation
flying missions,” in 5th Annual CubeSat Developers Workshop San Luis
Obispo, CA, 2008.

[46] J. Atchison and M. Peck, “Length scaling in spacecraft dynamics,”
Journal of Guidance, Control, and Dynamics, vol. 34, pp. 231–246,
01 2011, doi : 10.2514/1.49383.

[47] H. Schaub and J. Junkins, Analytical Mechanics of Space Systems,
ser. AIAA education series. American Institute of Aeronautics and
Astronautics, Incorporated, 2014, doi : 10.2514/4.102400.

[48] K. Alfriend, S. R. Vadali, P. Gurfil, J. How, and L. Breger, Spacecraft
formation flying: Dynamics, Control and Navigation. Elsevier, 2009,
vol. 2, doi : 10.1016/C2009-0-17485-8.

[49] D. A. Vallado, Fundamentals of astrodynamics and applications.
Springer Science & Business Media, 2001, vol. 12.

[50] Y. Kozai, “The motion of a close earth satellite,” The Astronomical
Journal, vol. 64, p. 367, 1959, doi : 10.1086/107957.

[51] D. Brouwer, “Solution of the problem of artificial satellite theory without
drag,” Yale Univ. New Haven CT. United States, Tech. Rep., 1959, doi
: 10.1086/107958.

[52] H. G. Walter, “Conversion of osculating orbital elements into mean
elements,” The Astronomical Journal, vol. 72, p. 994, 1967, doi :
10.1086/110374.

[53] R. H. Lyddane, “Small eccentricities or inclinations in the brouwer
theory of the artificial satellite,” The Astronomical Journal, vol. 68, p.
555, 1963, doi : 10.1086/109179.

[54] H. Khalil, Nonlinear Control, Global Edition. Pearson Education
Limited, 2015.

[55] R. G. Melton, “Time-explicit representation of relative motion between
elliptical orbits,” Journal of Guidance, Control, and Dynamics, vol. 23,
no. 4, p. 604–610, 2000, doi : 10.2514/2.4605.

[56] S. A. Schweighart and R. J. Sedwick, “High-fidelity linearized J2
model for satellite formation flight,” Journal of Guidance, Control, and
Dynamics, vol. 25, no. 6, p. 1073–1080, 2002, doi : 10.2514/2.4986.

[57] T. E. Carter, “New form for the optimal rendezvous equations near a
keplerian orbit,” Journal of Guidance, Control, and Dynamics, vol. 13,
no. 1, pp. 183–186, 1990, doi : 10.2514/3.20533.

[58] K. Yamanaka and F. Ankersen, “New state transition matrix for relative
motion on an arbitrary elliptical orbit,” Journal of Guidance, Control,
and Dynamics, vol. 25, no. 1, p. 60–66, 2002, doi : 10.2514/2.4875.

[59] H. Schaub, “Relative orbit geometry through classical orbit element
differences,” Journal of Guidance, Control, and Dynamics, vol. 27, no. 5,
p. 839–848, 2004, doi : 10.2514/1.12595.

[60] H. Schaub and K. T. Alfriend, “J2 invariant relative orbits for spacecraft
formations,” Celestial Mechanics and Dynamical Astronomy, vol. 79,
no. 2, pp. 77–95, 2001, doi : 10.1023/A:1011161811472.

[61] D.-W. Gim and K. T. Alfriend, “State transition matrix of relative motion
for the perturbed noncircular reference orbit,” Journal of Guidance,
Control, and Dynamics, vol. 26, no. 6, p. 956–971, 2003, doi :
10.2514/2.6924.

[62] D. Karaboga and B. Basturk, “A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC)
algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–
471, Nov 2007, doi : 10.1007/s10898-007-9149-x. [Online]. Available:
https://doi.org/10.1007/s10898-007-9149-x

[63] K. Deb, “An introduction to genetic algorithms,” Sadhana, vol. 24, no.
4-5, pp. 293–315, 1999, doi : 10.1007/BF02823145.

[64] S. Sivanandam and S. Deepa, Introduction to Particle Swarm Optimiza-
tion and Ant Colony Optimization. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 403–424, doi : 10.1007/978-3-540-73190-0 11.

[65] D. Karaboga and B. Basturk, “On the performance of artificial bee
colony (ABC) algorithm,” Applied Soft Computing, vol. 8, no. 1, pp.
687 – 697, 2008, doi : 10.1016/j.asoc.2007.05.007.

[66] A. Muthiah and R. Rajkumar, “A Comparison of Artificial Bee Colony
algorithm and Genetic Algorithm to Minimize the Makespan for Job
Shop Scheduling,” Procedia Engineering, vol. 97, p. 1745–1754, 2014,
doi : 10.1016/j.proeng.2014.12.326.

[67] V. R. Kulkarni and V. Desai, “ABC and PSO: A comparative analysis,”
in 2016 IEEE International Conference on Computational Intelligence
and Computing Research (ICCIC), 2016, pp. 1–7, doi : 10.1109/IC-
CIC.2016.7919625.

[68] D. Scharf, F. Hadaegh, and S. Ploen, “A survey of spacecraft formation
flying guidance and control. part ii: control,” Proceedings of the 2004
American Control Conference, 2004, doi : 10.23919/acc.2004.1384365.

[69] P. Wang, F. Hadaegh, and K. Lau, “Synchronized formation rotation and
attitude control of multiple free-flying spacecraft,” Journal of Guidance
Control and Dynamics, vol. 22, 01 1999, doi : 10.2514/2.4367.

[70] M. Mesbahi and F. Y. Hadaegh, “A robust control approach for the
formation flying of multiple spacecraft,” 1999 European Control Con-
ference (ECC), 1999, doi : 10.23919/ecc.1999.7099774.

[71] V. Manikonda, P. O. Arambel, M. Gopinathan, R. K. Mehra, and F. Y.
Hadaegh, “A model predictive control-based approach for spacecraft
formation keeping and attitude control,” in Proceedings of the 1999
American Control Conference (Cat. No. 99CH36251), vol. 6, 1999, pp.
4258–4262 vol.6.

[72] A. Robertson, G. Inalhan, and J. P. How, “Formation control strategies
for a separated spacecraft interferometer,” in Proceedings of the 1999
American Control Conference (Cat. No. 99CH36251), vol. 6, 1999, pp.
4142–4147 vol.6.

[73] F. Bauer, J. Bristow, D. C. Folta, K. Hartman, D. Quinn, and J. How,
Satellite formation flying using an innovative autonomous control
system (AutoCon) environment, doi : 10.2514/6.1997-3821. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.1997-3821

[74] D. C. Folta, L. Newman, and T. Gardner, Foundations of formation
flying for Mission to Planet Earth and New Millennium, doi :
10.2514/6.1996-3645. [Online]. Available: https://arc.aiaa.org/doi/abs/
10.2514/6.1996-3645

[75] D. C. Folta and D. Quinn, “A 3-D method for autonomously control-
ling multiple spacecraft orbits,” in 1998 IEEE Aerospace Conference
Proceedings (Cat. No.98TH8339), vol. 1, 1998, pp. 51–60 vol.1, doi:
10.1109/AERO.1998.686672.

[76] H. Liu, J. Li, and B. Hexi, “Sliding mode control for low-
thrust Earth-orbiting spacecraft formation maneuvering,” Aerospace
Science and Technology, vol. 10, no. 7, pp. 636 – 643, 2006,
doi : 10.1016/j.ast.2006.04.008. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1270963806000848

[77] D. C. Redding, N. J. Adams, and E. T. Kubiak, “Linear-quadratic
stationkeeping for the STS orbiter,” Journal of Guidance, Control, and

https://doi.org/10.1117/12.552928
https://arxiv.org/abs/0707.3385
https://www.researchgate.net/publication/224782021_FLIGHT_DYNAMICS_ASPECTS_OF_THE_GRACE_FORMATION_FLYING
https://www.researchgate.net/publication/224782021_FLIGHT_DYNAMICS_ASPECTS_OF_THE_GRACE_FORMATION_FLYING
https://www.researchgate.net/publication/234236368_The_Cluster_mission
https://www.researchgate.net/publication/234236368_The_Cluster_mission
https://www.spacelaunchreport.com/log2019.html
https://www.spacelaunchreport.com/log2014.html
https://www.spacelaunchreport.com/log2015.html
https://www.spacelaunchreport.com/log2016.html
https://www.spacelaunchreport.com/log2017.html
https://www.spacelaunchreport.com/log2018.html
https://doi.org/10.1007/s10898-007-9149-x
https://arc.aiaa.org/doi/abs/10.2514/6.1997-3821
https://arc.aiaa.org/doi/abs/10.2514/6.1996-3645
https://arc.aiaa.org/doi/abs/10.2514/6.1996-3645
http://www.sciencedirect.com/science/article/pii/S1270963806000848
http://www.sciencedirect.com/science/article/pii/S1270963806000848


KTH MASTER THESIS 34

Dynamics, vol. 12, no. 2, pp. 248–255, 1989, doi : 10.2514/3.20398.
[Online]. Available: https://doi.org/10.2514/3.20398

[78] A. Sparks, Linear control of satellite formation flying, doi :
10.2514/6.2000-4438.

[79] S. Starin, A. Sparks, and R. Yedavalli, Spacecraft formation
flying maneuvers using linear-quadratic regulation with no radial
axis inputs, doi : 10.2514/6.2001-4029. [Online]. Available: https:
//arc.aiaa.org/doi/abs/10.2514/6.2001-4029

[80] L. Breger and J. P. How, “Gauss’s Variational Equation-Based Dynamics
and Control for Formation Flying Spacecraft,” Journal of Guidance,
Control, and Dynamics, vol. 30, no. 2, pp. 437–448, 2007, doi :
10.2514/1.22649. [Online]. Available: https://doi.org/10.2514/1.22649

[81] H. Schaub and K. T. Alfriend, “Impulsive feedback control to establish
specific mean orbit elements of spacecraft formations,” Journal of
Guidance, Control, and Dynamics, vol. 24, no. 4, pp. 739–745, 2001,
doi : 10.2514/2.4774. [Online]. Available: https://doi.org/10.2514/2.4774

[82] Y. Choi, S. Mok, and H. Bang, “Impulsive formation
control using orbital energy and angular momentum vector,”
Acta Astronautica, vol. 67, no. 5, pp. 613 – 622,
2010, doi : 10.1016/j.actaastro.2010.04.008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0094576510001256

[83] J. Scharnagl, P. Kremmydas, and K. Schilling, “Model predictive
control for continuous low thrust satellite formation flying,” IFAC-
PapersOnLine, vol. 51, no. 12, pp. 12 – 17, 2018, iFAC Workshop
on Networked Autonomous Air Space Systems NAASS 2018
doi : 10.1016/j.ifacol.2018.07.081. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S2405896318308243

[84] E. N. Hartley, P. A. Trodden, A. G. Richards, and J. M. Maciejowski,
“Model predictive control system design and implementation for space-
craft rendezvous,” Control Engineering Practice, vol. 20, no. 7, pp. 695 –
713, 2012, doi : 10.1016/j.conengprac.2012.03.009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0967066112000664

[85] G. Inalhan, M. Tillerson, and J. P. How, “Relative dynamics and control
of spacecraft formations in eccentric orbits,” Journal of Guidance,
Control, and Dynamics, vol. 25, no. 1, pp. 48–59, 2002, doi :
10.2514/2.4874. [Online]. Available: https://doi.org/10.2514/2.4874

[86] B. Kouvaritakis and M. Cannon, “Model predictive control,” Switzer-
land: Springer International Publishing, 2016.

[87] A. S. Yamashita, P. M. Alexandre, A. C. Zanin, and
D. Odloak, “Reference trajectory tuning of model predictive
control,” Control Engineering Practice, vol. 50, pp. 1 – 11,
2016, doi : 10.1016/j.conengprac.2016.02.003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0967066116300168

[88] M. Tavakoli and N. Assadian, “Model predictive orbit control of a low
earth orbit satellite using gauss’s variational equations,” Proceedings of
the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering, vol. 228, pp. 2385 – 2398, 2014.

[89] A. Bemporad, L. Chisci, and E. Mosca, “On the stabilizing
property of SIORHC,” Automatica, vol. 30, no. 12, pp. 2013 –
2015, 1994, doi : 10.1016/0005-1098(94)90064-7. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0005109894900647

[90] B. Akay and D. Karaboga, “Parameter tuning for the artificial bee colony
algorithm,” in Computational Collective Intelligence. Semantic Web,
Social Networks and Multiagent Systems, N. T. Nguyen, R. Kowalczyk,
and S.-M. Chen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 608–619.

[91] M. Mahooti, “High precision orbit propagator,” 2020,
MATLAB Central File Exchange. Retrieved July 23,
2020. [Online]. Available: https://www.mathworks.com/matlabcentral/
fileexchange/55167-high-precision-orbit-propagator

[92] D. Karaboga and B. Basturk, “Artificial Bee Colony (ABC) Optimization
Algorithm for Solving Constrained Optimization Problems,” in Founda-
tions of Fuzzy Logic and Soft Computing, P. Melin, O. Castillo, L. T.
Aguilar, J. Kacprzyk, and W. Pedrycz, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 789–798, doi : 10.1007/978-3-540-72950-
1 77.

[93] Yue Hang, G. Xu, D. Wang, and Eng Kee Poh, “Comparison study of
relative dynamic models for satellite formation flying,” in 2008 2nd
International Symposium on Systems and Control in Aerospace and
Astronautics, 2008, pp. 1–6, doi : 10.1109/ISSCAA.2008.4776195.

[94] O. E. Ramos, “A Comparison of Feedback Linearization and Sliding
Mode Control for a Nonlinear System,” in 2019 IEEE Sciences and
Humanities International Research Conference (SHIRCON), 2019, pp.
1–4, doi : 10.1109/SHIRCON48091.2019.9024871.

[95] D. Lee, H. Jin Kim, and S. Sastry, “Feedback linearization vs. adaptive
sliding mode control for a quadrotor helicopter,” International Journal
of Control, Automation and Systems, vol. 7, no. 3, pp. 419–428,

Jun 2009, doi : 10.1007/s12555-009-0311-8. [Online]. Available:
https://doi.org/10.1007/s12555-009-0311-8

[96] R. Schwarz, “Cartesian state vectors to keplerian orbit elements,” 2017.
[Online]. Available: https://downloads.rene-schwarz.com/download/
M002-Cartesian State Vectors to Keplerian Orbit Elements.pdf

[97] ——, “Keplerian orbit elements to cartesian state vectors,” 2014.
[Online]. Available: https://downloads.rene-schwarz.com/download/
M001-Keplerian Orbit Elements to Cartesian State Vectors.pdf

https://doi.org/10.2514/3.20398
https://arc.aiaa.org/doi/abs/10.2514/6.2001-4029
https://arc.aiaa.org/doi/abs/10.2514/6.2001-4029
https://doi.org/10.2514/1.22649
https://doi.org/10.2514/2.4774
http://www.sciencedirect.com/science/article/pii/S0094576510001256
http://www.sciencedirect.com/science/article/pii/S2405896318308243
http://www.sciencedirect.com/science/article/pii/S2405896318308243
http://www.sciencedirect.com/science/article/pii/S0967066112000664
https://doi.org/10.2514/2.4874
http://www.sciencedirect.com/science/article/pii/S0967066116300168
http://www.sciencedirect.com/science/article/pii/0005109894900647
https://www.mathworks.com/matlabcentral/fileexchange/55167-high-precision-orbit-propagator
https://www.mathworks.com/matlabcentral/fileexchange/55167-high-precision-orbit-propagator
https://doi.org/10.1007/s12555-009-0311-8
https://downloads.rene-schwarz.com/download/M002-Cartesian_State_Vectors_to_Keplerian_Orbit_Elements.pdf
https://downloads.rene-schwarz.com/download/M002-Cartesian_State_Vectors_to_Keplerian_Orbit_Elements.pdf
https://downloads.rene-schwarz.com/download/M001-Keplerian_Orbit_Elements_to_Cartesian_State_Vectors.pdf
https://downloads.rene-schwarz.com/download/M001-Keplerian_Orbit_Elements_to_Cartesian_State_Vectors.pdf


www.kth.se


	Introduction
	Brief History
	Mission Requirements
	Vehicle
	Scope of Thesis
	Thesis Structure

	Background
	Essentials of Astrodynamics
	Coordinate Frames
	ECI
	LVLH
	DCM

	Vector Notation
	Orbital Elements
	Classical Orbital Elements
	Differential Orbital Elements
	Mean Orbit Elements

	Coordinate Transformations
	ECI to LVLH
	Mean and Osculating Orbital Element Transformation
	Classical Orbital Elements to ECI
	ECI to Classical Orbital Elements

	Discretization of a Linear System
	Regulation and Tracking
	Equation for Relative Motion
	Numerical Optimization
	Controllers
	Lyapunov Stability

	Method
	Absolute Equations of Motion
	Non-linear Equation of Motion with J2 Perturbation
	Gauss Variational Equations
	Effect of J2 on Mean Orbital Elements

	Equations of Relative Motion
	Nonlinear Equation of Relative Motion
	CW Equations
	TH Equations
	Yamanaka and Ankersen STM

	Reference Orbit
	Reference with YASTM
	Mean Orbital Element Reference

	Controllers
	System to be Controlled
	Sliding Mode Control
	Feedback Linearization
	Model Predictive Control
	Impulsive Control Law

	Reference Feeding
	Tuning
	ABC Algorithm
	Parameters of ABC

	Test Scenarios

	Results
	Tuning
	Feedback Linearization
	Sliding Mode Control
	Model Predictive Control
	Impulsive Control Law
	Relative Orbit Mission
	Case 1
	Case 2
	Case 3
	Case 4

	Rendezvous Mission
	Case 1
	Case 2
	Case 3
	Case 4


	Discussion
	Conclusion
	Future Work
	Appendix A: Transformation Between Classical Orbital Elements and Cartesian Coordinates
	Cartesian Coordinates to Classical Orbital Elements
	Classical Orbital Elements to Cartesian Coordinates

	Appendix B: First Order Transformation Between Osculating Orbital Elements and Mean Orbital Elements
	References

