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Toward Tractable Global Solutions to Bayesian Point Estimation

Problems via Sparse Sum-of-Squares Relaxations∗

Diogo Rodrigues, Mohamed R. Abdalmoaty, and Håkan Hjalmarsson†

Abstract— Bayesian point estimation is commonly used for
system identification owing to its good properties for small
sample sizes. Although this type of estimator is usually non-
parametric, Bayes estimates can also be obtained for rational
parametric models, which is often of interest. However, as in
maximum-likelihood methods, the Bayes estimate is typically
computed via local numerical optimization that requires good
initialization and cannot guarantee global optimality. In this
contribution, we propose a computationally tractable method
that computes the Bayesian parameter estimates with posterior
certification of global optimality via sum-of-squares polynomi-
als and sparse semidefinite relaxations. It is shown that the
method is applicable to certain discrete-time linear models,
which takes advantage of the rational structure of these models
and the sparsity in the Bayesian parameter estimation problem.
The method is illustrated on a simulation model of a resonant
system that is difficult to handle when the sample size is small.

I. INTRODUCTION

Bayesian point estimation is widely used for system iden-

tification and other contexts in parameter estimation, mostly

owing to its good properties for small sample sizes [1]–[3].

The connection between Bayesian point estimation and regu-

larization in the context of system identification of nonpara-

metric models is known and allows observing that Bayesian

point estimation is useful since it deals effectively with bias-

variance tradeoff so as to minimize the mean squared error of

the estimator [4]. However, its computational implementation

for common parametric models is complicated by the fact

that it results in nonconvex optimization problems and it is

difficult to verify that the Bayes estimator is unique [5]. The

performance of the prevalent local optimization algorithms

is greatly dependent on the choice of the initial estimate and

one cannot guarantee convergence to the global solution.

Alternatively, one could solve the Bayesian parameter

estimation problem via appropriate global optimization meth-

ods. Several approaches for global optimization have been

reported in the literature, for example the popular branch-

and-bound approach. In this method, the space of decision

variables is divided into several subsets and the global

optimum is sought by estimating upper and lower bounds

of the cost and constraints for each subset. Then, the subsets

where an optimum cannot be located are excluded from the
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search and the remaining subsets are subdivided until the

global optimum is found [6]. However, its computationally

cost can be high due to being a tree-based method that relies

on discretization. The worst-case computational complexity

grows exponentially with the problem size [7].

This paper uses another approach, namely, the reformula-

tion as a convex problem via the concept of sum-of-squares

polynomials, which has been extensively studied in algebraic

geometry [8], [9] and applied to a wide variety of problems,

including applications in control theory, experimental de-

sign, parameter initialization, and set-membership estimation

[10]–[17]. In particular, it is shown that the rational structure

of certain models, such as the models of discrete-time linear

systems, leads to sparsity patterns in the Bayesian parameter

estimation problems. One can then exploit this fact for

tractable computation of global solutions via the concept of

sum-of-squares polynomials and sparse semidefinite relax-

ations. Interestingly, the methodology is similar to the one

used recently by the same authors for tractable computation

of maximum-likelihood parameter estimates with posterior

certification of global optimality [18].

II. PRELIMINARIES

A. Parameter estimation for linear models

Consider the estimation of the parameters of a discrete-

time, linear time-invariant (LTI), single-input single-output

(SISO) model with output y(t) and input u(t). A strictly

causal model of order nx is described by the transfer function

Pd(z) =
∑

nx

k=1 bkz−k

∑
nx

k=0 akz−k
, a0 = 1. (1)

Assume that the output y(t) is corrupted by additive noise

e(t), such that it is given by the output-error (OE) model

y(t) = Pd(z)u(t)+ e(t). (2)

Then, the inputs and outputs satisfy the relation

nx

∑
k=0

ak (y(t − k)− e(t− k)) =
nx

∑
k=1

bku(t − k), t = 1, . . . ,N, (3)

with e(1−nx) = . . .= e(0) = y(1−nx) = . . .= y(0) = u(1−
nx) = . . . = u(−1) = 0, the system response g(t) to the unit

impulse δ satisfies the relation

nx

∑
k=0

akg(t − k) =
nx

∑
k=1

bkδ (t − k), t = 1, . . . ,N, (4)

with g(1− nx) = . . . = g(0) = 0, and the goal is the esti-

mation of the OE model (3) specified by the parameters



θθθ := (a1, . . . ,anx ,b1, . . . ,bnx) based on the observations y :=
(y(1), . . . ,y(N)) and the knowledge of the inputs, where N is

the sample size. In this paper, e(t) denote the output errors

that satisfy the equations (3) for the true values of θθθ .

An alternative and compact way to write (3) and (4) is

A(θθθ)(y− e) = Hb(θθθ), (5)

A(θθθ)g = b(θθθ), (6)

where e := (e(1), . . . ,e(N)), g := (g(1), . . . ,g(N)), and

A(θθθ ) := T (
[

a0 · · · anx 0T
N−nx−1

]T
), (7)

H := T (
[

u(0) · · · u(N − 1)
]T
), (8)

b(θθθ ) :=
[

b1 · · · bnx 0T
N−nx

]T
, (9)

with the operator

T (
[

v1 · · · vN

]T
) :=











v1 0 · · · 0

v2 v1 · · · 0
...

...
. . .

...

vN vN−1 · · · v1











, (10)

that forms a lower triangular Toeplitz matrix from a vector.

The equalities (5) and (6) have two known implications:

1) The impulse response coefficients g can be written as

an explicit function gθθθ of the parameters θθθ , that is,

g = gθθθ (θθθ ) = A(θθθ)−1b(θθθ ). (11)

2) The outputs y can be written as an explicit function of

the parameters θθθ and output errors e, that is,

y = A(θθθ )−1Hb(θθθ)+ e = Hg+ e, (12)

since A(θθθ)H = HA(θθθ ), which follows from the fact

that A(θθθ ) and H are lower triangular Toeplitz matrices.

III. PARAMETER ESTIMATION PROBLEM

A. Bayesian parameter estimation for linear models

Below, we review some concepts of Bayesian point esti-

mation, in the context of estimation of the impulse response

coefficients g in the set G that are compatible with parametric

models specified by θθθ from the data y in the set Y . The

estimation uses decision rules δδδ in the set D , which maps the

data y to actions ĝ in the set A ⊆ G , that is, D = (Y → A ).
Furthermore, L(g, ĝ) denotes a loss function, while a

probability density function (p.d.f.) of a distribution related

to probability of occurrence and degree of belief is denoted

by f and π , respectively. In particular, π(g) and f (y|g)
denote a prior p.d.f. and a likelihood function that will be

defined later, which result in a marginal likelihood f (y) :=

∫G f (y|g)π(g)dg and a posterior p.d.f. π(g|y) := f (y|g)π(g)
f (y) .

The risk function is defined as

R(g,δδδ ) := ∫
Y

L(g,δδδ (y)) f (y|g)dy, (13)

while the posterior expected loss is defined as

ρ(y, ĝ) := ∫
G

L(g, ĝ)π(g|y)dg, (14)

which means that the average risk is

r(δδδ ) := ∫
G

R(g,δδδ )π(g)dg = ∫
G

∫
Y

L(g,δδδ(y)) f (y|g)dyπ(g)dg

= ∫
Y

∫
G

L(g,δδδ(y))π(g|y)dg f (y)dy = ∫
Y

ρ(y,δδδ (y)) f (y)dy.(15)

Since the Bayes estimator is defined as [1]

δδδ
∗
BE := argmin

δδδ
r(δδδ ) s.t. δδδ ∈ D (16)

and δδδ ∗
BE can be chosen individually for each y so as to

minimize (15), the Bayes estimate is

δδδ
∗
BE(y) = argmin

ĝ
ρ(y, ĝ) s.t. ĝ ∈ A . (17)

The use of q(δδδ) :=−∫Y π(δδδ(y)|y) f (y)dy in lieu of r(δδδ )
allows defining the maximum a posteriori (MAP) estimator

δδδ
∗
MAP := argmax

δδδ
−q(δδδ) s.t. δδδ ∈ D , (18)

which, by using similar arguments, yields the MAP estimate

δδδ
∗
MAP(y) = argmax

ĝ
π(ĝ|y) s.t. ĝ ∈ A . (19)

Since we are interested in impulse response coefficients g

that are compatible with parametric models specified by θθθ ,

we restrict the previous estimates to actions in the set

A = {ĝ ∈ G : ∃θθθ ĝ = gθθθ (θθθ )} . (20)

Since y = Hg+ e according to (12), the p.d.f. f (y|g) is

determined by the distributions of the random variables with

the realizations e(1), . . . ,e(N). If we assume that (i) these

random variables are independent and identically distributed

(i.i.d.), which implies that e(1), . . . ,e(N) can be seen as

realizations of the same random variable E , and (ii) E is

normally distributed with zero mean and variance σ2, then

f (y|g) = p(y|Hg,σ2IN), (21)

where p(x|x̄,ΣΣΣx) is the p.d.f. of the multivariate normal

distribution with mean x̄ and covariance ΣΣΣx [3].

Furthermore, we assume here that the prior p.d.f. also

corresponds to a normal distribution and is given by

π(g) = p(g|0N ,K), (22)

with symmetric K. One can show that this implies that [3]

f (y) = p(y|0N,ΣΣΣy), (23)

π(g|y) = p(g|ḡ,ΣΣΣg), (24)

with

ΣΣΣy = σ2IN +HKHT, (25)

ḡ =
(

HTH+σ2K−1
)−1

HTy, (26)

ΣΣΣg = σ2
(

HTH+σ2K−1
)−1

. (27)

We also assume that the loss function corresponds to the

mean squared error (MSE) weighted by some matrix W

L(g, ĝ) = 1
N
||g− ĝ||2W, (28)



with the notation ||g||W =
√

gTWg used in the paper. Then,

for the constrained case ĝ ∈ A , we can show the following

result, which is well known in the unconstrained case ĝ ∈ G .

Theorem 1: Suppose that the loss function is given by (28)

with W = σ2ΣΣΣ−1
g . Then, the estimates (17) and (19) satisfy

δδδ
∗
BE(y) = δδδ

∗
MAP(y) = argmin

ĝ

σ 2

N
||ḡ− ĝ||2

ΣΣΣ−1
g

s.t. ĝ ∈ A . (29)

Proof: One can consider (17) and (19) and observe that

ρ(y, ĝ) = ∫
G

1
N
||g− ḡ||2W p(g|ḡ,ΣΣΣg)dg

+ ∫
G

1
N
||ḡ− ĝ||2W p(g|ḡ,ΣΣΣg)dg

+ ∫
G

2
N
(g− ḡ)T

W(ḡ− ĝ) p(g|ḡ,ΣΣΣg)dg

= 1
N

tr(WΣΣΣg)+
1
N
||ḡ− ĝ||2W, (30)

2σ 2

N
logπ(ĝ|y) =−σ 2

N
||ĝ− ḡ||2

ΣΣΣ−1
g
− σ 2

N
log

det(ΣΣΣg)
(2π)−N , (31)

which implies that (29) holds as claimed.

Hence, we denote these estimates as δδδ
∗(y) and note that

δδδ
∗(y) = argmin

ĝ

σ 2

N
||ĝ||2

ΣΣΣ−1
g

− 2σ 2

N
ĝTΣΣΣ−1

g ḡ s.t. ĝ ∈ A

= argmin
ĝ

1
N
||ĝ||2

HTH+σ 2K−1 −
2
N

ĝTHTy s.t. ĝ ∈ A

= argmin
ĝ

1
N
||ĝ||2D + 1

N
||y−Hĝ||2IN

s.t. ĝ ∈ A , (32)

that is, δδδ
∗(y) is the solution to a nonlinearly constrained, reg-

ularized least-squares problem with a regularization matrix

D = σ2K−1. The fact that δδδ
∗(y) ∈ A allows defining prop-

erly (i) the estimate of θθθ given by
{

θθθ : A(θθθ)δδδ ∗(y) = b(θθθ)
}

and (ii) the cost that δδδ
∗(y) minimizes as the function of θθθ

Ĵ(θθθ ) := σ 2

N
||ḡ− ĝ||2

ΣΣΣ−1
g
. (33)

One can also write Ĵ(θθθ ) in terms of prediction errors as

Ĵ(θθθ ) = 1
N
||ḡ− ĝ||2W

= 1
N
||ȳ− ŷ||2IN

+ 1
N
||ḡ− ĝ||2D

= 1
N
||ê||2IN

+ 1
N
||d̂||2D, (34)

with W = HTH+D, ḡ =
(

HTH+D
)−1

HTy, ŷ := Hĝ, and

ȳ := Hḡ, and the prediction errors d̂ := ḡ− ĝ and ê := ȳ− ŷ.

Note that the estimate δδδ
∗(y) is the vector-valued coun-

terpart of the one in Proposition 4 by [2] that is also valid

when W is not diagonal, and it is similar to an estimate that

was recently suggested [5]. However, this section motivates

it as a straightforward and unambiguous consequence of the

use of concepts of Bayesian point estimation that bridges the

gap between nonparametric and parametric models.

Hence, the Bayesian point estimation of θθθ in the case of

i.i.d. Gaussian noise and normal prior distribution is formu-

lated as the following constrained optimization problem:

min
θθθ ,d̂,ê

1
N

êTê+ 1
N

d̂TDd̂, (35a)

s.t. A(θθθ)
(

d̂− ḡ
)

+b(θθθ) = 0N , (35b)

A(θθθ)(ê− ȳ)+Hb(θθθ) = 0N . (35c)

Note that (i) the first N equality constraints can be

expressed linearly in the N variables d̂, and (ii) the last

N equality constraints can be expressed linearly in the N

variables ê. Also, we assume in the remainder that D is a

tridiagonal matrix (only the main diagonal, the first diagonal

above the main one, and the first diagonal under the main one

are nonzero) since this yields a sparse estimation problem.

It is then possible to formulate (35) explicitly using d̂ =
(d̂(1), . . . , d̂(N)), ê = (ê(1), . . . , ê(N)) as decision variables:

min
θθθ ,d̂,ê

N

∑
t=1

ê(t)2 +Dt,t d̂(t)
2

N
+

N

∑
t=2

2Dt,t−1d̂(t)d̂(t − 1)

N
, (36a)

s.t. d̂(t)− ḡ(t)+
nx

∑
k=1

ak(d̂(t − k)− ḡ(t − k))+ bkδ (t − k) = 0,

t = 1, . . . ,N, (36b)

ê(t)− ȳ(t)+
nx

∑
k=1

ak(ê(t − k)− ȳ(t − k))+ bku(t − k) = 0,

t = 1, . . . ,N. (36c)

Alternatively, one can solve the 2N equality constraints in

the constrained problem (35) for the 2N decision variables

d̂, ê and formulate an equivalent unconstrained problem:

min
θθθ

1
N

(

ḡ−A(θθθ)−1b(θθθ )
)T

W
(

ḡ−A(θθθ)−1b(θθθ )
)

. (37)

Although A(θθθ ) is a lower triangular Toeplitz matrix with

det(A(θθθ )) = 1, which simplifies its inversion, the cost func-

tion of this unconstrained optimization problem is typically

a polynomial of high degree (up to 2N) in θθθ .

Unfortunately, both (36) and (37) are nonconvex problems,

which means that local optimization algorithms are prone to

attain local optima and cannot guarantee global optimality.

Hence, it would be useful to find a method that is able to

converge to the global optimum and certify this convergence.

The concept of sum-of-squares polynomials that is used for

global optimization in the paper is introduced in Appendix A.

B. Choice of regularization matrix

Regarding the matrix K that results in the regularization

matrix D, it can be chosen by making K depend on some

hyperparameters ηηη according to a predefined structure, that

is, K(ηηη) and D(ηηη) = σ2K(ηηη)−1. As mentioned, in this

paper we restrict the analysis to matrices K(ηηη) that result in

tridiagonal matrices D(ηηη), which is sufficient to handle the

typical diagonal, diagonal/correlated, and tuned/correlated

structures of K(ηηη) [3], [4]. For example, one can use a

diagonal/correlated structure K(ηηη)i, j = cλ (i+ j)/2α |i− j|, with

ηηη = (c,λ ,α), c ≥ 0, 0 ≤ λ ≤ 1, |α| ≤ 1, or a diagonal

structure that is obtained by fixing α = 0. To estimate the

hyperparameters ηηη from the data y, one can maximize the

marginal likelihood f (y), which corresponds to the problem

η̂ηη = argmax
ηηη

f (y), (38)

where

2σ 2

N
log f (y) =−σ 2

N
||y||2

ΣΣΣy(ηηη)−1 −
σ 2

N
log

det(ΣΣΣy(ηηη))
(2π)−N , (39)



which implies that, since ΣΣΣy(ηηη) = σ2
(

IN +HD(ηηη)−1HT
)

,

η̂ηη = argmin
ηηη

1
N
||y||2V(ηηη)+

σ 2

N
log

det(V(ηηη)−1)

(2πσ 2)
−N , (40)

with V(ηηη) :=
(

IN +HD(ηηη)−1HT
)−1

. This problem is non-

convex but involves only a few hyperparameters. The chosen

regularization matrix D(ηηη) affects the estimation of θθθ .

IV. GLOBAL SOLUTIONS TO BAYESIAN POINT

ESTIMATION PROBLEMS FOR LINEAR MODELS

This section contains a main contribution of this paper

since it shows how to apply the concept of SOS polynomials

presented in Appendix A to obtain tractable global solutions

to the Bayesian point estimation problems in Section III-A,

which is not obvious without the following results.

It has been shown in Section III-A that the Bayesian point

estimation problem for the model in (3) can be formulated as

the constrained problem (36) or the unconstrained problem

(37). Using the notation in Appendix A, the problem (36) in-

volves n= 2N+2nx decision variables, and each polynomial

in the cost function and the constraints is at most of degree 2,

which means that v = 1, whereas the problem (37) involves

n = 2nx decision variables, and the cost function is of degree

2N, which means that v=N. Since each relaxation order d in

the hierarchy of nonsparse semidefinite relaxations requires

solving one LMI of size
(

n+d
n

)

, with d ≥ v, both problem

formulations become intractable for large N.

However, one can note that, in the problem (36), each

equality constraint corresponds to a quadratic polynomial

that involves only the 2nx variables θθθ and nx + 1 variables

from d̂ or ê, and the cost function can be written as a sum

of quadratic polynomials that involve only a few variables.

This allows the use of sparse semidefinite relaxations if each

equality constraint is transformed into a pair of inequality

constraints to obtain a basic semi-algebraic set.

Hence, we introduce the following definitions:

f (x) := J(x)− τ, (41a)

g j(x) :=



















−hd
j (x), j = 1, . . . ,N,

−he
j−N(x), j = N + 1, . . . ,2N,

hd
j−2N(x), j = 2N + 1, . . . ,3N,

he
j−3N(x), j = 3N + 1, . . . ,4N,

(41b)

with x := (θθθ , d̂, ê) = (a1, . . . ,anx ,b1, . . . ,bnx , d̂(1), . . . , d̂(N),
ê(1), . . . , ê(N)) and

J(x) :=
N

∑
t=1

ê(t)2 +Dt,t d̂(t)
2

N
+

N

∑
t=2

2Dt,t−1d̂(t)d̂(t − 1)

N
, (41c)

hd
t (x) := d̂(t)− ḡ(t)+

nx

∑
k=1

ak(d̂(t − k)− ḡ(t − k))+ bkδ (t − k),

t = 1, . . . ,N, (41d)

he
t (x) := ê(t)− ȳ(t)+

nx

∑
k=1

ak(ê(t − k)− ȳ(t − k))+ bku(t − k),

t = 1, . . . ,N. (41e)

Then, the problem (36) is equivalent to that of com-

puting the maximum τ such that f (x) is strictly positive

∀x ∈K=
{

x : g j(x)≥ 0,∀ j = 1, . . . ,4N
}

. The previous def-

initions seem to suggest the choice of nk = 3nx+1 variables

x(Ik) = (a1, . . . ,anx ,b1, . . . ,bnx , d̂(k), . . . , d̂(k+nx)) and corre-

sponding index subsets Ik = {1, . . . ,2nx,k+ 2nx, . . . ,k+ 3nx},

for k = 1, . . . ,N − nx, and nk = 3nx + 1 variables x(Ik) =
(a1, . . . ,anx ,b1, . . . ,bnx , ê(k), . . . , ê(k+nx)) and corresponding

index subsets Ik = {1, . . . ,2nx,k+ 3nx, . . . ,k+ 4nx}, for k =
N−nx+1, . . . , p, with p := 2N−2nx. We now show that the

conditions in Theorem 2 are satisfied for these index subsets.

Condition 1 is satisfied by using fk(x(Ik)) = D1,1d̂(1)2/N

+2D2,1d̂(2)d̂(1)/N +D2,2d̂(2)2/N + . . . +Dnx,nx d̂(nx)
2/N

+2Dnx+1,nx d̂(nx + 1)d̂(nx)/N + Dnx+1,nx+1d̂(nx + 1)2/N for

k = 1, fk(x(Ik)) = 2Dnx+k,nx+k−1d̂(nx + k)d̂(nx + k− 1)/N +
Dnx+k,nx+kd̂(nx + k)2/N for all k = 2, . . . ,N −nx, fk(x(Ik)) =
ê(1)2/N + . . .+ ê(nx + 1)2/N − τ for k = N − nx + 1, and

fk(x(Ik)) = ê(k−N + 2nx)
2/N for all k = N − nx + 2, . . . , p.

The running intersection property mentioned in Condition

2 is also satisfied since, for all k = 1, . . . ,N − nx − 1,

Ik+1 ∩
(

∪k
j=1I j

)

= {1, . . . ,2nx,k+ 1+ 2nx, . . . ,k+ 3nx} ⊆ Ik,

for k = N −nx, Ik+1 ∩
(

∪k
j=1I j

)

= {1, . . . ,2nx} ⊆ Ik, and, for

all k = N − nx + 1, . . . , p− 1, Ik+1 ∩
(

∪k
j=1I j

)

= {1, . . . ,2nx ,

k+ 1+ 3nx, . . . ,k+ 4nx} ⊆ Ik. Condition 3 is satisfied by

construction since, for all j = 1, . . . ,N, g j(x) involves only

the variables x(IK j
), with K j =max(1, j−nx), for all j =N+

1, . . . ,2N, g j(x) involves only the variables x(IK j
), with K j =

max(N − nx + 1, j − 2nx), for all j = 2N + 1, . . . ,3N, g j(x)
involves only the variables x(IK j

), with K j =max(1, j−2N−
nx), and, for all j = 3N + 1, . . . ,4N, g j(x) involves only the

variables x(IK j
), with K j = max(N − nx+ 1, j− 2N− 2nx).

Unfortunately, Condition 4 is not satisfied initially, but it is

possible to add additional constraints to ensure that it is satis-

fied. For this, we redefine K=
{

x : g j(x)≥ 0,∀ j = 1, . . . ,m
}

,

with m := 6N − 2nx, by adding the quadratic polynomials

g j(x) :=

{

−h̄d
j−4N+nx

(x), j = 4N + 1, . . . ,5N − nx,

−h̄e
j−5N+2nx

(x), j = 5N − nx + 1, . . . ,m,
(41f)

with

h̄d
t (x) :=−r2 + d̂(t)2 +

nx

∑
k=1

(

a2
k + b2

k + d̂(t − k)2
)

,

t = nx + 1, . . . ,N, (41g)

h̄e
t (x) :=−r2 + ê(t)2 +

nx

∑
k=1

(

a2
k + b2

k + ê(t − k)2
)

,

t = nx + 1, . . . ,N, (41h)

where r is some finite constant. It is important to observe

that, if r is chosen large enough to ensure that the minimizers

x∗ of problem (36) are such that ||x(Ik)
∗|| ≤ r, for k =

1, . . . , p, then the new constraints are redundant because

adding them does not change the minimizers. Moreover, the

polynomials (41g), (41h) are chosen to be quadratic since the

polynomials with compact superlevel sets are at least of de-

gree 2 and the polynomials that specify the other constraints



are also of degree 2v j = 2. Then, Condition 3 is still satisfied

with the new constraints since, for all j = 4N + 1, . . . ,m,

g j(x) involves only the variables x(IK j
), with K j = j− 4N.

In addition, now Condition 4 is also satisfied since, for all

k = 1, . . . , p, the superlevel set
{

x(Ik) : gk,qk
(x(Ik))≥ 0

}

=
{x(Ik) : ||x(Ik)|| ≤ r} is compact for qk = k+ 4N.

Some comments about the boundedness of ||x(Ik)
∗||, for

k = 1, . . . , p, are necessary at this point. Since x(Ik) =
(a1, . . . ,anx ,b1, . . . ,bnx , d̂(k), . . . , d̂(k+nx)), for k= 1, . . . ,N−
nx, and x(Ik) = (a1, . . . ,anx ,b1, . . . ,bnx , ê(k), . . . , ê(k + nx)),
for k = N − nx + 1, . . . , p, this boundedness implies that the

parameters θθθ and nx + 1 prediction errors from d̂ or ê are

bounded. At least in the case of bounded-input bounded-

output (BIBO) stable systems, it seems reasonable to assume

that the parameters θθθ are bounded. Regarding the prediction

errors, they are expected to have the same magnitude as

the output errors, which are assumed to be realizations of

a normally distributed random variable with zero mean and

variance σ2 in this paper. Although in theory the support

of this random variable is unbounded, in practice it can

be bounded with a very high confidence level. To be more

precise, one can observe that (41g), (41h) include the sums

of squares of nx +1 predicted errors v̂(t)2 := ∑
nx

k=0 d̂(t − k)2,

ŵ(t)2 := ∑
nx

k=0 ê(t − k)2. Hence, we propose the bound r2 =
r2
||θθθ ||+max(r2

v̂ ,r
2
ŵ) for (41g), (41h), where r2

||θθθ || is an upper

bound on ||θθθ ||2 and r2
v̂ , r2

ŵ are upper bounds on v̂(t)2 and

ŵ(t)2 that are chosen according to the desired robustness.

Since all the conditions in Theorem 2 are satisfied, the

problem that consists in computing the global minimum of

J(x) subject to g j(x)≥ 0, for j = 1, . . . ,m, can be formulated

as the SDP (45) for some integer relaxation order d ≥
v j = 1 as described in Appendix A. A certificate of the

representation in terms of SOS polynomials for some order

d can be obtained upon convergence of the SDP as shown

in Theorem 3, which is a certificate of global optimality of

the solution x∗ := (θθθ ∗, d̂∗, ê∗) and the MSE τ∗ = J∗.

Suppose that a global optimum is computed and certified

for the relaxation order d = 2 (in fact, this is always the

case in the example of Section V). This implies that the

SDP (45) has been solved for d = 2, which is an SDP with

p
(

nk+2d
nk

)

−∑
p−1
k=1

(|Ik∩Ik+1|+2d

|Ik∩Ik+1|

)

≤ (4N−nx+1)(3nx+2)(3nx+3)(3nx+4)
12

equality constraints, p = 2N − 2nx LMIs of size
(

nk+d
nk

)

=
(3nx+2)(3nx+3)

2
, and m = 6N − 2nx LMIs of size

(

nk+d−v j
nk

)

=
3nx + 2. Note that, thanks to the sparse representation, the

input size of this SDP is linear in the sample size N, which

would not be possible with the nonsparse representation.

Since the complexity of SDPs is polynomial in their input

size, that is, the number of constraints and the size of the

LMIs, it means that it has been possible to compute and

certify a global solution x∗ in polynomial time.

V. SIMULATION EXAMPLE

In this section, we consider a third order LTI system

adapted from [5]. The implementation was performed on

MATLAB R2018a running on an Intel Core i5 1.8 GHz

processor. MOSEK 8.1 was used as SDP solver.

Bode Diagram

Frequency  (rad/s)

-20

-15

-10

-5

0

5

M
ag

ni
tu

de
 (

dB
)

10 -2 10 -1 100
-225

-180

-135

-90

-45

0

P
ha

se
 (

de
g)

Fig. 1. Bode diagram for the 100 repetitions with the sample size N = 15.
The blue line corresponds to the true model, the yellow lines correspond
to the models estimated via the proposed approach (BPE), and the red
lines correspond to the models estimated via oe (PEM). The dashed lines
represent the mean ± standard deviation for the 100 repetitions.

The discrete-time transfer function of the system is

Pd(z) =
0.4100z−1

1− 1.3000z−1+ 1.1025z−2− 0.5620z−3
. (42)

A pseudo-random binary signal (PRBS) of size N in a

range from -1 to 1 is applied as the input of this system of

order nx = 3 for system identification. The output is corrupted

by additive i.i.d. Gaussian noise with the standard deviation

σ = 0.1. The problem (38) is solved to obtain D according to

a diagonal structure of K. Then, the SDP (45) is formulated

using the input and output data, where f (x) and g j(x), for

j = 1, . . . ,m, are given in (41). For each N ∈ {15,31}, 100

repetitions of this procedure are performed, with different

realizations of the noise for each repetition.

In all the repetitions, it is possible to extract the unique

solution θθθ ∗ = (a∗1,a
∗
2,a

∗
3,b

∗
1,b

∗
2,b

∗
3) from the solution to the

SDP for the relaxation order d = 2 and the global optimality

of the solution θθθ ∗ that corresponds to the cost J∗ is certified.

Hence, the proposed approach avoids local minima and

certifies the global optimality of the solution.

Table I reports the execution time of the whole procedure

for global Bayesian point estimation, the fit between the

estimated impulse response ĝ and the true impulse response

g∗ given by W = 100
(

1− ||ĝ−g∗||

||ĝ−1T
Ng∗/N||

)

, and the parameter

estimates for the different sample sizes N. For each sample

size, these results that are labeled as BPE (Bayesian point

estimation) are compared to the ones provided by the oe

function from the MATLAB System Identification Toolbox

and labeled as PEM (prediction error method). The duration

of the pre-processing steps (formulation of the SDP) and

the post-processing steps (extraction and certification of the

global solution) is much smaller than the execution time of

the SDP solver. One can observe that the execution time

seems to be approximately a linear function of N, the mean

fit and the standard deviation of the fit and the parameter

estimates provided by BPE are better than the ones provided



TABLE I

EXECUTION TIME IN SECONDS, FIT W , AND ESTIMATES a∗1 , a∗2 , a∗3 , b∗1 , b∗2 , b∗3 (MEAN ± STANDARD DEVIATION FOR 100 REPETITIONS) OF GLOBAL

BAYESIAN PARAMETER ESTIMATION (BPE) AND PREDICTION ERROR METHOD (PEM) FOR DIFFERENT SAMPLE SIZES N .

N Time (s) W a∗1 a∗2 a∗3 b∗1 b∗2 b∗3

BPE
15 28.2±3.6 84.36±5.00 −1.2542±0.0954 0.9776±0.1101 −0.4885±0.0562 0.4055±0.0254 0.0220±0.0659 −0.0451±0.0469
31 83.8±17.7 89.36±3.53 −1.2430±0.0468 0.9905±0.0636 −0.4912±0.0369 0.4069±0.0196 0.0420±0.0425 −0.0407±0.0278

PEM
15 – 83.01±7.41 −1.2969±0.1058 1.0825±0.1239 −0.5515±0.0729 0.4078±0.0280 0.0032±0.0726 −0.0112±0.0976
31 – 92.58±2.22 −1.2989±0.0427 1.1012±0.0449 −0.5600±0.0249 0.4129±0.0211 −0.0007±0.0392 −0.0009±0.0379

by PEM in the case N = 15 but worse in the case N = 31,

and the parameter estimates converge to the true parameters

for larger N with both BPE and PEM, but PEM provides

parameter estimates closer to the true parameters.

Fig. 1 compares the Bode diagram for the true model

and the models estimated via the proposed approach (BPE)

and via oe (PEM) for N = 15. The diagram shows that the

models estimated via the proposed approach are more biased

with respect to the true model than the models estimated via

oe, but also less variable, which provides additional insight

into the better results achieved by BPE in the case N = 15.

VI. CONCLUSIONS

This paper has defined unambiguously a Bayes estimator

that bridges the gap between nonparametric and parametric

models and has shown that the hierarchy of sparse semidefi-

nite relaxations that results from the concept of SOS polyno-

mials can be used for tractable computation of Bayesian point

estimates with posterior certification of global optimality.

This computation and certification has been detailed for the

case of discrete-time OE LTI SISO models. The use of sparse

semidefinite relaxations for Bayesian parameter estimation

takes advantage of the fact that this method results in a sparse

structure of the optimization problem for certain rational

model structures. These properties have been illustrated by

a simulation example of a third-order LTI SISO system.

The efficiency of the method may be the focus of future

work, for example by further increasing the sparsity of the

estimation problem. Also, it would be interesting to extend

this method to the Bayesian parameter estimation of other

linear and nonlinear models. For example, the potential of

the method could be investigated for stochastic Wiener-

Hammerstein models [19] and nonlinear model structures of

biological systems described by Monod terms [20].
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APPENDIX

A. Sum-of-squares polynomials for global optimization

This appendix summarizes the discussion about the con-

cept of sum-of-squares polynomials and its application to

global optimization. For a more comprehensive discussion,

the reader is referred to the authors’ previous paper [18].

A polynomial p(x) of degree 2d in the n variables x :=
(x1, . . . ,xn) is a sum-of-squares (SOS) polynomial if it can

be written as a sum of squares of polynomials of degree

up to d in x. The concept of SOS polynomials is useful

for optimization because p(x) is an SOS polynomial if and

only if there exists a positive semidefinite matrix Q such

that p(x) = vd(x)
TQvd(x) = tr

(

vd(x)vd(x)
TQ

)

, where vd(x)
is the s(n,d)-dimensional vector of monomials of degree

up to d in the n variables x, with s(n,d) :=
(

n+d
n

)

[9].

Hence, constraining p(x) to the set of SOS polynomials

amounts to satisfying the linear matrix inequality (LMI) Q�
0s(n,d)×s(n,d), which can be done via a convex semidefinite

program (SDP) [21]. However, it is not generally true that a

nonnegative polynomial is an SOS polynomial [22].

On the other hand, if f (x) of degree 2v0 or 2v0 − 1

is a strictly positive polynomial on a compact basic semi-

algebraic set K specified by some polynomials g j(x) of

degree 2v j or 2v j − 1, that is, if f (x) > 0 ∀x ∈ K =
{

x : g j(x)≥ 0,∀ j = 1, . . . ,m
}

and K satisfies some technical

assumptions, then f (x) can be represented as a combination

of SOS polynomials up to some degree 2d, where d ≥ v :=
max j=0,1,...,m v j is the relaxation order [23].

A sparse representation can be obtained by taking advan-

tage of the fact that each polynomial g j(x) may involve

only a few variables, and f (x) may be written as a sum

of polynomials that also involve only a few variables [24].

For this, we define p index subsets Ik with the corresponding

nk := |Ik| variables x(Ik) = {xi : i ∈ Ik}, for k = 1, . . . , p, such

that ∪p
k=1Ik = {1, . . . ,n}. This important result about sparse

representation is summarized in the following theorem [25].

Theorem 2: Consider the basic semi-algebraic set K :=
{

x : g j(x)≥ 0,∀ j = 1, . . . ,m
}

and assume that the index

subsets I1, . . . , Ip satisfy the following conditions:

1) The polynomial f (x) can be written as a sum of p poly-

nomials that involve only the variables x(I1), . . . ,x(Ip),
that is, f (x) = ∑

p
k=1 fk(x(Ik)).

2) The running intersection property holds, that is, for all

k = 1, . . . , p− 1, Ik+1 ∩
(

∪k
j=1I j

)

⊆ Is for some s ≤ k.

3) For all j = 1, . . . ,m, there exists some K j ∈ {1, . . . , p}
that indicates that g j(x) involves only the variables

x(IK j
), that is, g j(x) = gK j , j(x(IK j

)).
4) For all k = 1, . . . , p, there exists some qk ∈ {1, . . . ,m}

such that the set
{

x(Ik) : gk,qk
(x(Ik))≥ 0

}

is compact.

If f (x) is strictly positive ∀x ∈K, then

f (x) =
p

∑
k=1

p0,k(x(Ik))+
m

∑
j=1

g j(x)p j(x(IK j
)) (43)

for some SOS polynomials p0,1(x(I1)), . . . , p0,p(x(Ip)) and

p1(x(IK1
)), . . . , pm(x(IKm)).

Proof: The proofs of Theorems 2–3 can be found in

the references before each theorem and are not replicated.

Remark 1: This representation can be used to relax the

verification of positivity of f (x) ∀x ∈ K as a hierarchy of

sparse LMI feasibility problems of increasing order d [25].

To introduce the sparse relaxations, note that the monomi-

als xααα := x
α1
1 . . .xαn

n of degree up to 2d in the variables

x(Ik) involve powers ααα := (α1, . . . ,αn) in the set X̄d,k :=
Xd ∩

{

(α1, . . . ,αn) ∈N
n
0 : αi 6= 0 ⇒ i ∈ Ik

}

, for k = 1, . . . , p,

where Xd :=
{

(α1, . . . ,αn) ∈N
n
0 : 0 ≤ α1 + . . .+αn ≤ 2d

}

.

We define X̄d :=∪p
k=1X̄d,k and use fααα and g j,ααα to denote the

coefficients of f (x) and g j(x) such that f (x) = ∑ααα∈X̄d
fααα xααα

and g j(x) = ∑ααα∈X̄v j
g j,αααxααα , for j = 1, . . . ,m. Moreover, the

matrices Rv,k,ααα are defined such that ∑ααα∈X̄d−v
Rv,k,ααα xααα =

vd−v(x(Ik))vd−v(x(Ik))
T, for v = 0, . . . ,d and k = 1, . . . , p. If

Theorem 2 applies and f (x) is strictly positive ∀x ∈K, then

there exists a positive integer d such that ∀ααα ∈ X̄d

fααα =
p

∑
k=1

tr
(

R0,k,ααα Q0,k

)

+
m

∑
j=1

∑
βββ∈X̄d−v j

ααα−βββ∈X̄v j

g j,ααα−βββ tr
(

Rv j ,K j ,βββ Q j

)

(44a)

and

Q0,k � 0s(nk,d)×s(nk,d), k = 1, . . . , p, (44b)

Q j � 0s(nKj
,d−v j)×s(nKj

,d−v j), j = 1, . . . ,m. (44c)

This result is very useful for the problem of computing

J∗, an accurate approximation of the global minimum of

J(x) subject to the constraints g j(x)≥ 0, for j = 1, . . . ,m, or

equivalently, the maximum value τ such that f (x) = J(x)−τ
is strictly positive ∀x ∈ K =

{

x : g j(x)≥ 0,∀ j = 1, . . . ,m
}

.

Using (44), such a problem can be formulated as the SDP

min
τ,Q0,1,...,Q0,p,Q1,...,Qm

−τ, s.t. (44). (45)

Hence, if nk and the maximum degree v of the polynomials

in the problem are relatively small, the SDP can be solved

efficiently since the relaxation order d that provides a sparse

representation in terms of SOS polynomials is usually not

much larger than v. If this representation exists for some

order d, a certificate can be obtained upon convergence of

the SDP. The result about the sparse representation for the

order d is stated as follows [26]:

Theorem 3: Denote the optimal values of the dual vari-

ables for the constraints (44a) as µ∗
ααα ∀ααα ∈ X̄d and of the

dual variables for the LMIs (44b) as L∗
0,k ∀k = 1, . . . , p.

If ∃G : G = rank
(

L∗
0,k

)

= rank
(

∑ααα∈X̄d−1
R1,k,ααα µ∗

ααα

)

∀k =
1, . . . , p, then f (x) = J(x)− J∗ can be represented as in

(43) with p0,k(x(Ik)) of degree 2d, for k = 1, . . . , p, and

p j(x(IK j
)) of degree 2(d− v j), for j = 1, . . . ,m. In addition,

the global minimum J∗ = τ∗ and G global minimizers x∗ can

be computed using the fact that vd(x(Ik)
∗) lie both in the null

space of Q∗
0,k and in the row space of L∗

0,k, ∀k = 1, . . . , p. �


