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Abstract— Differential-algebraic equations (DAEs) arise nat-
urally as a result of equation-based object-oriented modeling.
In many cases, these models contain unknown parameters that
have to be estimated using experimental data. However, often
the system is subject to unknown disturbances which, if not
taken into account in the estimation, can severely affect the
model’s accuracy. For non-linear state-space models, particle
filter methods have been developed to tackle this issue. Unfor-
tunately, applying such methods to non-linear DAEs requires a
transformation into a state-space form, which is particularly
difficult to obtain for models with process disturbances. In
this paper, we propose a simulation-based prediction error
method that can be used for non-linear DAEs where distur-
bances are modeled as continuous-time stochastic processes.
To the authors’ best knowledge, there are no general methods
successfully dealing with parameter estimation for this type of
model. One of the challenges in particle filtering methods are
random variations in the minimized cost function due to the
nature of the algorithm. In our approach, a similar phenomenon
occurs and we explicitly consider how to sample the underlying
continuous process to mitigate this problem. The method is
illustrated numerically on a pendulum example. The results
suggest that the method is able to deliver consistent estimates.

I. INTRODUCTION

Equation-based object-oriented modeling languages [1]—
such as Modelica1, MathWorks Simscape, and VHDL-
AMS—are today standard in industry when modeling and
simulating complex physical dynamical systems. A key
feature of these component-based languages is that they
are acausal, meaning that the information flow between
components is bidirectional. The underlying mathematical
foundations of acausal models are Differential-Algebraic
Equations (DAEs), which express both the dynamics and
constraints between acausal components.

The differential index (or index) of a set of DAEs is
the minimum number of times the DAEs have to be dif-
ferentiated before one obtains a system of implicit ordinary
differential equations (ODEs). The index can be seen as
a distance measure between the DAEs and an underlying
system of ODEs. In general, the higher the index, the more
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difficult the DAEs are to solve. Many of the available
numerical solvers can only handel DAEs of index 1 (see e.g.,
[2]), or semi-explicit DAEs of index 2. Such DAEs consists
of a set of explicit ODEs coupled with algebraic constraints
(see [3]).

In this paper, we consider the parameter estimation prob-
lem of a class of non-linear DAEs using experimental data.
In practice, there are many sources of disturbances acting on
a system, including measurement noise causing inexact mea-
surements of the output, as well as process disturbances that
can be considered as unknown inputs. The consequences of
process disturbances are more difficult to predict compared
to measurement noise, since the effect of the disturbance is
transformed by the system dynamics. It is well known from
the analysis of stochastic non-linear discrete-time systems
that parameter estimation methods neglecting process distur-
bances in general leads to asymptotically biased estimators
as well as an increase in the variance error, see e.g. [4].

A. Available methods

The parameter estimation problems of DAEs are far less
treated in the literature compared to, for example, that of non-
linear state-space models (see e.g., [5] and [6] for the latter).
Most of the methods currently available for DAEs can only
handle cases with no process disturbance (i.e., all inputs are
known). Under this assumption, the methods have relatively
straightforward formulations, and are usually concerned with
the numerical aspects of the involved optimization problem,
such as ensuring convergence to globally optimal solutions.
(see e.g., [7] and [8], and the references therein).

On the other hand, cases with process disturbances are
much more difficult to formulate and solve. This is mainly
due to the challenges introduced by modeling disturbances
as continuous-time stochastic processes. A naive treatment
of DAEs with continuous-time stochastic inputs may result
in variables representing physical quantities being modeled
as having infinite variance, among other issues. Methods
for ensuring the existence of well-defined solutions in these
cases are discussed in [9], together with an approximate
implementation of a particle filter for state estimation. A
modified extended Kalman filter that can handle both uncer-
tainty in the differential constraints as well as continuous-
time white noise in algebraic constraints of index 1 DAEs is
presented in [10], while [11] presents conditions for well-
posed estimation problems for linear DAEs with process
disturbances.

Although the question of whether a parameter estima-
tion problem is well-posed in the presence of stochastic



disturbances has been explored before, we have not found
any complete tractable method that can be used for solving
the problem. For instance, guidelines for implementing the
Maximum Likelihood Estimator (MLE) for linear DAEs are
given in [11], but no such estimator is implemented. In
[12], the potential of using a particle filter to compute an
approximate MLE for non-linear DAEs is pointed out. The
challenges with this approach are also discussed, with the
conclusion that it is non-trivial to implement: it involves
minimizing a non-smooth approximation of the likelihood
function. In addition, due to the use of particle filters, the
approach is limited to DAEs that can be transformed into
a (semi-explicit) state-space form. In some cases, several
approximations and heuristics are used to achieve this, such
as removing some process disturbances from the model
whenever they appear at locations that hinder the aforemen-
tioned transformation. To the best of the authors’ knowledge,
there are currently no general reliable methods for parameter
estimation of non-linear DAEs with process disturbances.

B. Contributions
In this paper, we present a method for estimating parame-

ters of non-linear DAEs with process disturbances modeled
as continuous-time stochastic processes. Our approach can be
applied to well-defined general high-index non-linear DAEs
that can be reduced to a manageable form, so that off-the-
shelf numerical solvers (such as [2]) can be used. Moreover,
we provide details that allow for the implementation of
the method in a numerically tractable way. In particular,
we propose a method for modeling and simulating the
continuous-time process disturbance. Under certain standard
assumptions (such as ergodic data and smooth model param-
eterization), the proposed estimator is consistent; namely the
estimator converges, asymptotically in the data size, to the
true parameter. This is supported by a numerical simulation
experiment.

II. PROBLEM FORMULATION

We consider DAE models on a general form, given by

F (ẋ(t), x(t), u(t), w(t); θ) = 0 (1a)
y(t) = q(x(t), u(t); θ) + v(t), (1b)

where, at time t ∈ R, x(t) ∈ Rnx denotes the unobserved
state of the system, u(t) ∈ Rp denotes a known external
input, and w(t) ∈ Rmw denotes the process disturbance,
modeled as a continuous-time stochastic process. Further as-
sumptions on this process can be found in Section III-B. The
system’s output is given by y(t) ∈ Rm, and measurement
noise is denoted by v(t). We make no assumptions on the
distribution of v(t) except that E[v(t)] = 0 for all t. The
model is further assumed to be smoothly parametrized by a
constant unknown parameter vector θ ∈ Rdθ , to be estimated.
Since u(t) can be chosen by the user, it is assumed known
for all values of t, while the output y(t) must be sampled
at discrete time instants, which we denote {tk}. We assume
that we have access to a data set

DN (T ) = {(y(tk), u(s)) : k = 1, . . . , N, s ∈ [0, T ]}

for some time T , such that for each k the time instant tk ∈
[0, T ]. The objective is to estimate the parameters θ using
the data set DN (T ).

III. PROPOSED METHOD

A. Estimation method
The proposed method is a type of prediction error method

(see [13, Ch. 7]), recently developed in [14] for the iden-
tification of stochastic non-linear discrete-time models. The
basic idea relies on the use of predictors that are simpler to
compute than the optimal mean-square error one-step ahead
predictor, which is known to be intractable for most non-
linear stochastic systems. One of the predictors proposed in
[10] is the mean of the model’s output. It is well known
that among constant predictors the mean minimizes the
mean-squared error and from this property one can derive
consistency of a parameter estimator based on this predictor.
In the context of dynamical systems, the mean will be a
time-varying function depending on the known input signals
u(t), but independent of the observed output {y(tk)}. We
propose the use of an estimator equivalent to the OE-QPEM
estimator in [10] adapted to our context, which means that
the estimate is obtained by minimizing the cost function

JN (θ) =
1

N

N∑
k=1

‖y(tk)− E[y(tk; θ); θ]‖2, (2)

where the E[·; θ] denotes the expected value taken over both
the measurement noise and the process disturbances. This
expected value can be computed analytically only in special
cases, and for rather simple models. In general, and because
of non-linearities in the model through which the process
disturbances pass, the mean of the model’s output is usually
analytically intractable. Therefore, we borrow an idea used
in [15] and [16], where the expected value is estimated using
Monte Carlo simulations. For this purpose, we simulate M
independent realizations of the output of (1) with v(t) = 0,
which we denote by ŷ(m)(· ; θ), m = 1, ...,M , and estimate
the cost function (2) as

ĴN,M (θ) =
1

N

N∑
k=1

‖y(tk)− ȳM (tk; θ)‖2, (3a)

ȳM (tk; θ) =
1

M

M∑
m=1

ŷ(m)(tk; θ). (3b)

An approximate estimator is then defined as θ̂N,M =
minθ ĴN,M (θ). This estimator is expected to posses favor-
able asymptotic properties. Under suitable regularity condi-
tions, a uniform version of the law of large numbers implies
that almost surely ĴN,M (θ) → JN (θ) uniformly in θ as
M → ∞. If we assume that the data {y(tk)} has been
generated using (1) with the unknown true value of the
parameters θ = θ◦, the estimator θ̂N,M converges to θ◦ as
N,M → ∞ because, as mentioned above, the mean is the
constant predictor minimizing the mean-squared error.2

2convergence to a parameter θ∗ can be similarly established for the
practical case where no θ◦ exists.



The benefit of this method over the MLE is that it bypasses
the intractable computations of the likelihood function, i.e.
the probability density function of the output given a value
of the parameters θ. It only requires the ability to simulate
the output of the DAEs model, and therefore is able to avoid
computational difficulties related to non-linear filtering and
some of the limitations of particle filters methods.

Note that, conditioned on the observed data, the cost
function (2) is a deterministic quantity. On the other hand,
conditioned on the observed data, the cost function ĴN,M (θ)
is stochastic and depends on the particular realizations of
ŷ(m)(· ; θ). This can cause several difficulties: If the realiza-
tions of ŷ(m)(· ; θ) are computed independently for different
values of θ, there are no guarantees that ĴN,M (θ) will be
a continuous function of θ. Many optimization algorithms
that can be used to find the minimizers, e.g. the Levenberg-
Marquardt algorithm, require the differentiability of the cost
function and only find local minima. Therefore, we need
to reduce the variability of the approximate cost function
and increase it smoothness, to alleviate the risk of the
algorithm getting stuck in a local minimum that is caused
by the algorithm itself. Ideally, we would like to generate
the realizations ŷ(m)(· ; θ) so that ĴN,M (θ) satisfies the two
following properties:

1) When ĴN,M (θ) is computed several times for the same
value of θ, it should always return the same value.

2) The mapping θ → ĴN,M (θ) should be as smooth
as possible, so that small changes in θ cause small
changes in the value of ĴN,M (θ).

The second property is in theory made possible since we
assume the model to be smoothly parameterized by θ. These
properties guide the approach taken in our implementation,
which takes measures to reduce the variability of ĴN,M (θ)
and improve its smoothness compared to the case when
ŷ(m)(· ; θ) are generated independently for different θ.

B. Disturbance modeling

Several approaches can be used to model (and simulate)
continuous-time stochastic disturbance. We will assume that
the continuous-time stochastic process w(t) is stationary with
a rational spectrum. Then its second-order properties can be
modeled as filtered white noise, with a model given by

dxw(t) = A(θ)xw(t) +B(θ)dzc(t) (4a)
w(t) = Cxw(t), (4b)

where dzc(t) is a process with orthogonal increments and
incremental variance E[dzc(t)dz

T
c (t)] = I , where I is the

identity matrix.
It is important to note that a solution x(t) of (1) can

depend on the derivatives of the input u(t), as well as
derivatives of the disturbance w(t) (see [17] for details).
This can be a problem, since the derivatives of w(t) do
not necessarily have finite variance. To avoid this problem,
we will assume that the rational spectrum of the process
disturbance (4) has a sufficiently high pole excess, as was
done in [12]. A pole excess of 2pw guarantees that w(t) has

pw − 1 derivatives (in quadratic mean) with finite variance.
This is a central assumption that has to be imposed, otherwise
the DAEs model might not be well-defined.

For simulating (1), the disturbance model (4) can be
exactly discretized at the time instants {τk}, k = 1, ..., Nw
(see e.g., [18]). This results in the discrete-time disturbance
model

x(m)
w (τk+1; θ) = Ad(∆k; θ)x(m)

w (τk; θ) +Bd(∆k; θ)zm(τk) (5a)

w(m)(τk; θ) = Cx(m)
w (τk; θ) (5b)

with Ad(∆k; θ) = eA(θ)∆k and Bd(∆k; θ) chosen as the
Cholesky factor of the matrix Dd(∆; θ) given by∫ ∆k

0

eA(θ)(∆k−s)B(θ)B(θ)T
(
eA(θ)(∆k−s)

)T
ds.

In this paper, we will assume that w(t) is a Gaussian
process3, and therefore the innovation process {zm(τk)}k
is a Gaussian discrete-time white noise process with zero
mean and variance E[zm(τk)zTm(τk)] = I . The potentially
time-varying sampling interval is given by ∆k = τk+1− τk.
Using the results from [19], the matrices Ad and Bd can be
readily computed as follows: First compute

Ĉ =

[
−A(θ) B(θ)BT (θ)

0 AT (θ)

]
,

where 0 represents a zero matrix of appropriate dimensions,
and then compute the matrix exponential

eĈ∆ =

[
A−1
d (∆; θ) A−1

d (∆; θ)Dd(∆; θ)
0 ATd (∆; θ)

]
.

The matrix Ad(∆; θ) can be obtained from the lower diag-
onal block of eĈ∆, and then left-multiplied with the upper
right block to obtain Dd(∆; θ).

IV. IMPLEMENTATION DETAILS

In this paper, we choose the DAE solver SUNDIALS
IDA [2] which is based on DASPK [20], a DASSL [21]
implementation. These are variable-step, general purpose
index 1 (and semi-explicit index 2) DAE solvers, able to
handle stiff problems, and usually the default solvers in
equation-based object-oriented modeling languages4. In this
section, we describe how to obtain samples of the process
disturbance at the time instants the solver needs, and how
to generate the disturbance realization in a way that reduces
the variability of the cost function (3a).

A. Sampling process disturbance

If the solver used for simulating (1) uses fixed step sizes,
the disturbance model can be discretized to obtain (5) for
a single fixed value of ∆k = ∆, equal to the solver’s step
size. Then, using the discrete-time model, one can obtain
samples of the disturbance at desired time instants. However,

3this assumption is not limiting, since a large class of processes can be
modeled as transformations of Gaussian ones. Such transformations can be
part of the model (see for instance the model in V-A)

4e.g. OpenModelica and Dymola. Simscape defaults to ode23t or
daessc for DAEs, both variable step solvers, depending on version.



in adaptive step solvers the step sizes are not know a priori.
This means that we do not know the time instants at which
the solver will request samples of the process disturbance,
and we therefore we cannot simply form a model on the
form (5) with fixed ∆. The solver also does not necessarily
request samples in chronological order, which removes the
option of constructing the discrete-time model as requests
from the solver arrive.

A way to solve this problem is to sample the process
disturbance a priori and uniformly at Nw time instants
{τk}Nwk=1, and then compute values between the sample
instants using some form of interpolation. For example,
polynomial interpolation or spline interpolation can be used
to obtain values of the disturbance w(m)(t; θ) between
sampling instants, i.e. when τk < t < τk+1 for some k.
The simplest method would be to use linear interpolation
between the two values of w(m)(t; θ) closest in time to
the requested time instants. This is the interpolation method
that we tested in the numerical experiments in Section V.
Interpolating is an approximative method and will result in
a realization of the process disturbance that does not have
the same exact spectrum as the process disturbance modeled
by (4). However, the approximation error can be reduced by
sampling the disturbance in a dense grid with large Nw.

B. Fixing noise realizations

It is important to note that, if the samples {w(m)(τk; θ)}
are generated anew for every value of the parameters θ, it is
possible that the cost function (3a) will not vary smoothly
in θ, and it will not give the same value if computed twice
for the same value of the parameters. In order to solve this
issue, and reduce the variability of the cost function, we use
an approach based on common random numbers (see [22]).
This is achieved in the dynamical setting considered here
by using the same M realizations of the process disturbance
every time the cost function is computed. However, since
the disturbance model could potentially be parameterized by
θ, we instead fix M realizations of the innovation process
{zm(τk)} that generates the process disturbance. Then one
can use (5) to generate the realizations of the process
disturbance for any value of θ. If the model is smoothly
parametrized, the cost function should also vary smoothly
with θ.

V. NUMERICAL EXPERIMENT

In this section, we will demonstrate the performance of our
proposed method using a numerical simulation experiment.
In Section V-A we perform parameter estimation on a
pendulum, modeled using DAEs. In Section V-B we demon-
strate the effects of using fixed white noise realizations,
as described in Section IV-B, for computations of the cost
function. For the implementation we used Julia5 and the
DiffEq package [23] with the SUNDIALS IDA solver.

5https://julialang.org/

A. Parameter estimation

We consider a model of a pendulum subject to a drag and
expressed in Cartesian coordinates. This model is of interest
due to its high index (index 3): a naive index reduction leads
to a numerically unstable solution. The model is defined as
the following DAEs:

mẍ1(t) = x3(t)x1(t)−k|ẋ1(t)|ẋ1(t)+u(t)+w2(t) (6a)
mẍ2(t) = x3(t)x2(t)−k|ẋ2(t)|ẋ2(t)−mg (6b)

L2 = x2
1(t)+x2

2(t) (6c)

where all signals are scalars. The variables x1(t) and x2(t)
denote the position of the pendulum-arm endpoint in the
plane and x3(t) the tension per unit length in the pendulum-
arm. The signal u(t) is a known input function, w(t) is an
unknown process disturbance, and v(t) a measurement noise
as described in Section II. It is sufficient for this demonstra-
tion to model these as scalar signals which simplifies the
numerical treatment. With a vector-valued disturbances, the
correlation of the components would additionally have to be
taken into account. The system output

y(t) = arctan

(
x1(t)

−x2(t)

)
+ v(t) (7)

is the angle φ between the pendulum-arm and the negative
vertical axis. We assume φ0 = 0 and that the pendulum is
initially at rest. The parameters m, g, k, and L denote the
mass, the gravitational force, the drag coefficient, and the
length of the pendulum-arm, respectively. We assume that m,
g, and k are known and attempt to estimate the pendulum-
arm length, so here θ = L.

Equations (6) describe a DAE model with differential in-
dex 3 which is not suitable for direct numerical solving [24].
We therefore transform (6) into a stabilized, index 1, first-
order formulation (see [25]) as

ẋ1(t) = x4(t)−2ẋ6(t)x1(t) (8a)
ẋ2(t) = x5(t)−2ẋ6(t)x2(t) (8b)

mẋ4(t) = ˙̃x3(t)x1(t)−k|x4(t)|x4(t)+u(t)+w2(t) (8c)

mẋ5(t) = ˙̃x3(t)x2(t)−k|x5(t)|x5(t)−mg (8d)

L2 = x2
1(t)+x2

2(t) (8e)
0 = x4(t)x1(t)+x5(t)x2(t) (8f)

where x4(t) and x5(t) are velocities, x6(t) = 0 is a
dummy variable introduced to maintain a consistent number
of variables and equations, and ˙̃x3(t) = x3(t). Equation (8f)
is the first derivative of (8e) with respect to time and with
velocities substituted for positions.

We fix the parameters m = 0.3 kg, g = 9.81 m/s−2,
k = 0.05 kg m−1, and choose the parameter θ◦ = L = 6.25
m for the true system. To simulate the process disturbance
w(t) and fixing the input u(t) we use the model (5) with

A =

[
0 1
−42 −0.8

]
, B =

[
0
1

]
, C =

[
1 0

]
, (9)



x0 =
[
0 0

]T
, and ∆k = ∆ = 0.01 s. We construct three

sets of realizations of (5) given (9) with sufficiently large Nw.
One set of size E = 1000, one set of size M = 500, and
one set of size 1. For all sets, we approximate inter-sample
values using linear interpolation. The first set belongs to the
true system, the second set belongs to the model, and the last
realization forms the input u(t), which is thus a realization
of a stationary process with the same spectrum as w(t). The
signal forming the process disturbance is scaled with 0.2
and the input signal is scaled with 0.6. This choice of scales
gives a balance between the input signal and the process
noise so that the effect of the process noise is visible in
the parameter estimation problem. We choose the variance
of the measurement noise σ as 0.002, and the output y(t)
is uniformly sampled every Ts = 0.1 s. We form the E

datasets {D(1)
N , . . . , D

(E)
N } by simulating the system at the

true parameter θ◦. For each dataset D(e)
N , we then mini-

mize (3a) to find an estimate θ̂(e)
N,M on a grid in the interval

[3.85, 10.25] with a stepsize 0.08. We assume a transient of
500 time-steps which are omitted when computing (3a). The
output function y(t) is computed by the DAE solver whose
relative and absolute tolerances are set to 10−6 and 10−9,
respectively. For comparison we include an output error
method ignoring the processes disturbance, i.e. (8) and (7)
with w(t) = 0 and v(t) = 0. We summarize the results for
different choices of the number of time-steps N in Figure 1.
These results show that the proposed method outperforms the
output error method starting from N = 5000. The median
and mean of the proposed method converges on θ◦ while
the median and mean of the output error method lies at
7.21 and 7.20, respectively, at N = 50000. This is due to
bias introduced by neglecting the process disturbance in the
output error model. In contrast, the proposed method has a
bias of | 1E

∑E
e=1 θ̂

(e)
N,M − θ◦| = 0.0343 at N = 50000.

B. Influence of fixing noise realizations

Here we demonstrate how the proposed method of fixing
the noise realizations {zm(τk)} improves smoothness of
the cost function. This approach is compared to a method
where, for every new value of θ, the values {x(m)

w (τk; θ)} are
obtained by sampling them anew from their distribution. The
cost function is computed for the same model as in Section
V-A. To exaggerate the results, 20 realizations were used
(M = 20). For larger M , because of the averaging of the
different realizations, even when the a priori samples of the
process disturbance are sampled anew for every value of θ
the cost function will become increasingly smooth. However,
as one can see in Figure 2, the proposed method clearly
results in a smooth cost function even when only a few
realizations are used. We expect the effect of this approach
to be even more significant if e.g. a parametrized disturbance
model is used.

VI. DISCUSSION

As seen from the results in the previous section, for the
model used, both the bias and the variance of the proposed
method approach zero as N increases. This is in contrast
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to the alternative method where the process disturbance is
ignored. All realizations of w(t) were approximated using
linear interpolation, as described in Section IV. Recall that
the target realizations are smooth, and notice that the error
caused by this approximation will be relatively small when-
ever the sampling time ∆ is sufficiently small. Thus, the
obtained results would not be drastically different if exact
sampling were used.

On the other hand, in cases where the process disturbance
is multi-dimensional with unknown parameters, the perfor-
mance of such a simple interpolation method may not be
acceptable: If each component of the process disturbance
is interpolated independently of the others, the interpolated
realization might not capture existing dependence between
the components of the disturbance. In such a situation,
an exact method based on conditional sampling should be
applied. Namely, the model (4) can be used to find the
conditional distribution of w(m)(s; θ), at an arbitrary value
s ∈ [0, T ], given an a priori uniformly sampled realization
{w(m)(τk; θ)}k. Such an exact sampling method has several
computational challenges. For example, to retain the correct
spectrum of the realization, every new sample has to be
stored and used for future conditioning. In principle, the
innovations used to generate the conditional samples can be
a priori generated and fixed. However, this method would
require a significant memory capacity, depending on how
large the data set is, and how many samples are requested
by the solver. A potential solution here is to use psuedo-
random number generators with fixed seeds, instead of a
priori generating and storing the samples. These challenges
and ideas are currently on our future research agenda.

VII. CONCLUSIONS

In this contribution, we proposed a simulation-based pre-
diction error method for estimation parameters of non-
linear DAE models with process disturbance. The method
is applicable to general high-index non-linear DAEs that can
be reduced to a form suitable for commonly used off-the-
shelf numerical solvers (such as SUNDIALS). The process
disturbances are modeled as a continuous-time stochastic
process with rational spectrum. The method does not re-
quire the solution of any non-linear filtering problems, and
therefore we are able to avoid some of the computational
difficulties and limitations of particle filter methods. We
provided an implementation where, parameter-independent,
a priori generated realizations of uniformly sampled standard
Gaussian process are used to approximate the used cost
function. This lessens the effects due to random variations
caused by the stochasticity of the algorithm itself, resulting
in a smoother behavior that is less prone to issues with local
minima. Under certain standard regularity conditions, the
obtained estimators are expected to be consistent, which is
supported by a numerical simulation experiment.
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A. Svensson, and L. Dai, “Sequential Monte Carlo methods for system
identification,” IFAC-PapersOnLine, vol. 48, no. 28, pp. 775 – 786,
2015.

[6] J. Schoukens and L. Ljung, “Nonlinear system identification: A user-
oriented road map,” IEEE Control Systems Magazine, vol. 39, no. 6,
pp. 28–99, Dec 2019.

[7] W. R. Esposito and C. A. Floudas, “Global Optimization for the
Parameter Estimation of Differential-Algebraic Systems,” Industrial
& Engineering Chemistry Research, vol. 39, no. 5, pp. 1291–1310,
2000.

[8] H. G. Bock, E. Kostina, and J. P. Schlöder, “Numerical Methods for
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