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Abstract

Physical asset management in the electric power sector encompasses the schedul-
ing of the maintenance and replacement of grid components, as well as de-
cisions about investments in new components. Data plays a crucial role in
these decisions. The importance of data is increasing with the transformation
of the power system and its evolution toward smart grids. This thesis deals
with questions related to data management as a way to improve the perfor-
mance of asset management decisions. Data management is defined as the
collection, processing, and storage of data. Here, the focus is on the collection
and processing of data.

First, the influence of data on the decisions related to assets is explored.
In particular, the impacts of data quality on the replacement time of a generic
component (a line for example) are quantified using a scenario approach, and
failure modeling. In fact, decisions based on data of poor quality are most
likely not optimal. In this case, faulty data related to the age of the compo-
nent leads to a non-optimal scheduling of component replacement. The corre-
sponding costs are calculated for different levels of data quality. A framework
has been developed to evaluate the amount of investment needed into data
quality improvement, and its profitability.

Then, the ways to use available data efficiently are investigated. Es-
pecially, the possibility to use machine learning algorithms on real-world
datasets is examined. New approaches are developed to use only available
data for component ranking and failure prediction, which are two important
concepts often used to prioritize components and schedule maintenance and
replacement.

A large part of the scientific literature assumes that the future of smart
grids lies in big data collection, and in developing algorithms to process huge
amounts of data. On the contrary, this work contributes to show how au-
tomatization and machine learning techniques can actually be used to reduce
the need to collect huge amount of data, by using the available data more
efficiently. One major challenge is the trade-offs needed between precision of
modeling results, and costs of data management.

Keywords: asset management, data analytics, data management, distribu-
tion system operators, electrical power grid, machine learning, real-world datasets.



Sammanfattning

Anlédggningsforvaltning inom elkraftsektorn omfattar schemaliggning av un-
derhall och utbyte av nitkomponenter samt beslut om investeringar i nya
komponenter. Data spelar en avgorande roll i dessa beslut. Vikten av data
okar med omvandling av kraftsystemet och dess utveckling mot smarta nét.
Denna licentiatuppsats behandlar fragor relaterade till datahantering som ett
sitt att forbattra prestanda for anlaggningsforvaltningsbeslut. Datahantering
definieras som insamling, bearbetning och lagring av data. Hir dr fokus pa
insamling och bearbetning.

Forst undersoks inflytandet av data pa besluten relaterade till anldggningar.

I synnerhet kvantifieras effekterna av datakvaliteten pa utbytesstidpunkten
for en generisk komponent (till exempel en ledning) med hjilp av scenario-
metodik och felmodellering. Faktum &r att beslut baserade pa data av dalig
kvalitet inte 4r optimala. I detta fall leder felaktiga data relaterade till kom-
ponentens alder till en icke-optimal schemalidggning av komponentutbyten.
Motsvarande kostnader beriknas for olika nivaer av datakvalitet. Ett ram-
verk har utvecklats for att utvirdera méngden investeringar som behovs for
forbattring av datakvalitet och dess lonsamhet.

Dérefter undersoks sitten att anvianda tillgdnglig data effektivt. Speci-
ellt understks mojligheten att anvinda maskininlarningsalgoritmer pa verk-
liga datamingder. Nya tillvigagangssitt utvecklas for att endast anvénda
tillgénglig data for komponentrankning och felférutséigelse, vilket dr tva vikti-
ga begrepp som ofta anvinds for att prioritera komponenter och schemaligga
underhall och utbyte.

En stor del av den vetenskapliga litteraturen antar att framtiden fér smar-
ta nit ligger i stor datainsamling och i att utveckla algoritmer for att bearbeta
stora mangder data. Tvéartom bidrar detta arbete till att visa hur automa-
tisering och maskininldrningstekniker faktiskt kan anvidndas for att minska
behovet av att samla in enorma méngder data genom att anvanda tillgdngliga
data mer effektivt. En stor utmaning &r avvidgningarna som behdvs mellan
precision i modelleringsresultat och kostnader for datahantering.
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Chapter 1

Introduction

1.1 Background and motivation

Traditional power systems are composed of a few centralized large power plants
providing most of the electricity to the consumers. However this structure, de-
fined by unidirectional power flows from big power generators to consumers, is
undergoing changes. The need to decarbonize energy to fight climate change has
supported the development of climate-friendly ways to generate electricity (wind
turbines, solar panels), to transport people and goods (electric vehicles), to heat
spaces (heat pumps). The deployment of distributed generation, the apparition
of new loads, and the multiplication of prosumers, not only change the structure
of the grid, but also the way power adequacy and security of supply are calculated
and managed [2H5]. The power system integrates an increasing number of new
devices, components and stakeholders, becomes more complex, and is much more
difficult to analyze.

At the same time, the role of data in the power system is growing. For
instance, an increasing number of sensors and smart meters are installed and
provide more data [6H8]. This context creates a situation where the use of data
for asset management is both possible and needed. Decisions increasingly need
to be supported with data-driven approaches. In this transition toward ”smart
grids”, data analytics play a central role. Therefore, the study of the ways data
collection and processing can support and improve asset management decisions is
primordial to decarbonize the power system, while keeping costs and the security
of supply at satisfactory levels.

1.2 Research objectives
Literature related to big data analytics is well developed, and expanding. Still,

the data used often do not reflect the actual data available to public and private
organizations, which are often incomplete, faulty, sparse, imbalanced and unspe-
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CHAPTER 1. INTRODUCTION

cific. Some literature on data analytics also use data that are not collected by all
asset operators, or are supposed to be available in the future.

This work focuses on commonly available data, and on approaches to manage
data in the most efficient way, to improve decision making in asset management,
and ultimately support the transition to smart grids. Data management includes
data collection, data processing (data analytics), and data storage. One major
challenge is to determine the data quality, type and quantity needed for the assets
to achieve a given performance level.

1.3 Research contributions

In the framework of this thesis, the relations between data management and
grid performance have been conceptualized (Figure , and are explained in
Chapter [2l Data and information on the situation of the grid are inputs used in
approaches. Data refer to physical measurements on the grid such as load, power
flows, and outages, while situation refers to regulatory requirements, as well as
the structure of power generation (e.g. share of renewables) and consumption
(e.g. number of electric cars). Approaches include data processing and analytics.
Data and information are processed in approaches, which provides outputs that
are used to take actions related to asset management. The impacts of decisions
can be measured through performance indices.

Approaches
Data - o
5 : TRADITIONAL Actions / decisions
= Faper u
? Paper | PREVENTION Performance
= Paper llI Ferrormance
NEW —» = Paperl
Situation = Paper I = Paper Il * Paper |
= Paper lll
CORRECTION
= Paper IV
= Paper V

Figure 1.1: Research framework and scope of papers within the framework.

© The impacts of data quality on decisions related to component replacement,
and then on grid performance (in terms of costs) are studied in Paper I. We
propose an innovative data quality management framework enabling asset
managers: (i) to quantify the impact of poor data quality, and (ii) to deter-
mine the conditions under which an investment in data quality improvement
is required.

© The relationships between data, approaches and actions, are identified in Pa-
pers IT and III. We discuss where and how machine learning approaches
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could contribute to more efficient asset management decisions (Paper II).
We also provide a literature review focused on three particular approaches:
anomaly detection, fault location, and load disaggregation, and analyze them
in terms of data requirements (Paper III).

© New approaches supporting asset management decisions are developed in Pa-
pers IV and V. We present methods to rank grid components according to
their importance, using outage data. Importance indices enable to prioritize
components according to a chosen criterion, and to adapt monitoring strate-
gies (Paper IV). We develop a component failure prediction model without
component-specific sensor data (Paper V), and study failure detection at
substation level.

1.4 Research ethics

This thesis intends to support the transition toward smart grids. In fact, it
contributes to helping grid managers to take efficient asset management decisions,
especially taking into account the development of renewable energy sources and
electric cars. It also aims to reduce the need for data collection and processing
to the minimum required to reach a satisfactory performance of the grid, thus
limiting the pollution generated by big data collection and storage, as well as
heavy computations. In this way, this work fulfills my moral responsibilities
toward the society and the environment. Finally, the data used in this work
come from publicly available sources (in which case they are clearly stated), or
from private utility data (in which case, they are not displayed individually), so
that transparency and confidentiality are guaranteed.

1.5 Thesis organization

The rest of the thesis is organized as follows:

e Chapter 2 provides an analysis of the role of data in asset management in
power systems, and explains in detail Figure (Paper I).

e Chapter 3 demonstrates how changes in data quality affect grid performance,
and illustrates the relations between data, approaches, actions and perfor-
mance in Figure (Paper I).

e Chapter 4 explains in which ways the energy transition affects data and grid
management (elements in Figure(l.1]), and how machine learning can support
the transition (Papers II, IIT).

e Chapter 5 describes new approaches that have been developed to support
asset management decisions (Papers IV and V).

e Chapter 6 contributes to the discussion and concludes the thesis.






Chapter 2

Relations between data and grid
performance

This chapter explains how data are used in practice to take decisions related to
assets. The aim is to show the central role played by data, especially to reach
a given performance level for the grid. The chapter concludes by displaying the
research framework.

2.1 Data as the basis to achieve efficient asset management
decisions

Performance goals

The main task of power grid operators is to manage their assets in such a way that
they achieve a given level of grid performance. The assets are a set of components
that compose the electric power grid. Grid performance can be defined in several
ways, but it generally encompasses three aspects:

© A technical aspect: i) Grid operators should prevent outages to minimize the
frequency of power supply interruptions; ii) if outages happen, their duration
as well as impacts or severity should be reduced to the minimum. Here, the
customer importance should be taken into account; iii) power quality, which
includes flickers, harmonic distortions, voltage and frequency instabilities,
should be kept at an acceptable level.

© An economic aspect: Asset management costs, including investments, main-
tenance and reparations, should be minimized.

© A regulatory aspect: Regulations related to safety, environmental, technical
and economic requirements (for example amortization time allowed, interrup-
tion fines, type of allowed investments) should be fulfilled. This aspect put
constraints on the two aspects mentioned above.

7



CHAPTER 2. RELATIONS BETWEEN DATA AND GRID PERFORMANCE

Grid performance can be measured through a variety of indices such as: the
number of outages, the duration of outages, the energy not supplied, the costs of
maintenance, or voltage instabilities.

Asset management decisions (actions)

Asset management consists in taking a number of actions or decisions that belong
to one of the following categories:

© Preventive actions: They aim at avoiding outages from happening, and entail
the scheduling of components maintenance and replacement, as well as the
investment in new components (for example new lines, new transformers,
dynamic line rating, switch placement, or automatization);

© Corrective actions: They aim at reducing the duration and impacts of outages
when these could not be avoided. They include fault localization, network
reconfiguration, supply curtailment, and peak shaving.

Approaches

The decisions are taken based on the insights provided by approaches. Tradi-
tionally, approaches for asset management decisions have been data-free or time-
based. This means that assets are maintained or replaced after a fixed period
of time, and not based on their health condition. On the contrary, data-driven
approaches are based on a monitoring step, where data and information are col-
lected, and a modeling step, where the collected information is processed. Ap-
proaches are specific to the decision they are supporting, as illustrated below.

In the case of investment decisions, one task might be to calculate the supply
adequacy for the future. The approach consists in modeling consumption and
supply patterns, and generating forecasts to calculate the adequacy of supply [9].
The input data include load time series and power flows. Another task might be
to choose between investment options. The approach then consists in modeling
the system, and running an optimization algorithm that gives the optimal invest-
ment option corresponding to the minimum costs [10]. The input data include
costs, outage data, and power flows.

In the case of maintenance/replacement scheduling, a common approach is to
assess the risk related to the failure of a particular component, as explained in
Paper I. This is often evaluated by two variables:

© the probability of failure, which gives information on the condition of the
component (state of deterioration). Various methods can evaluate the con-
dition: scoring systems [11], semi-Markov modelling [12], distribution func-
tions [13] [14]. Failure distributions are the most common way to model the
condition of the component;



© the consequence of the component’s failure on the system, which takes into
account the function and relative importance of the component in the system
compared to others (criticality). Various methods are used to determine the
importance level: scoring systems [11], fixed costs of failure and replacement
[15], and criticality importance indices [16], [17]. An index can be calculated
for example through a sensitivity analysis of system reliability (measured by
the energy not supplied or ENS) to component reliability (measured by the
unavailability due to failure).

Combining the probability of failure and the importance index enables power
grid managers to classify and prioritize their components, and thus supports the
scheduling of maintenance and replacement. The input data may consist in sen-
sor data, inspection results, and outage statistics.

2.2 Research framework

Figure summarizes the relations between the concepts detailed in Section
It represents a value chain: raw data and situational information are used in
approaches and transformed into information with higher value. This produced
information is then used to take asset management actions, which should enable
to achieve grid performance. This value chain represents the research framework.
Each link of the chain is illustrated in the figure by a non-exhaustive list of major
elements.

Actions / decisions

PREVENTION
Data Approaches = Al: Scheduling of maintenance
= Qutage statistics and component replacement
= Inspections = Degradation modeling ) Performance
= Sensor data (component failure model) = A2: Investment in new T
= Hourly power flows = Importance of components —
. : = # outages
= GIS data components (simulations 3 T e eieEes
= Costs of consequences) CORRECTION ] g
) —» —p = Severity of outages
* Modeling of load and = A3: Quick localization of the = Power quality
9 2 supply changes origin and cause of outages .
Situation P G g g Total costs

= Grid modeling and = Fulfillment of

= TWh power consumption

= # electric vehicles

= % distributed generation
in the power mix

= Regulatory requirements

optimization algorithms for
investment ar design
options

= Ad: Restoration of power

supply through redundancy or

back-up strategy (network
reconfiguration)

= A5: Power management
(supply curtailment, peak
shaving)

regulatory
requirements

Figure 2.1: Conceptualized relations between data collection and grid performance.



CHAPTER 2. RELATIONS BETWEEN DATA AND GRID PERFORMANCE

The research framework constitutes the guiding thread for this work, and is
used to study the relations between data and grid performance. In particular,

© The way a change in data quality impacts decisions (asset management ac-

tions), and performance (in terms of costs) is explored using usual approaches
- Chapter 3.

© The influence of the energy transition on the framework is investigated. Es-
pecially, big data analytics offer new possibilities to process data, and thus
could be used to improve asset management decisions - Chapter 4.

© New approaches to improve the efficiency of decision making by giving more
insights into the state of the grid are developed - Chapter 5.

10



Chapter 3

Impacts of data quality on asset
management decisions

This chapter is based on Paper I, and focuses on the component replacement
time as asset management decision. Data is at the core of data-driven replacement
decisions. In practice, the quality of data varies from very good to severely
lacking. For example, it can be incomplete, inaccurate, incorrect or missing.
Therefore, the quality of data may have a significant influence on the efficiency of
asset management decisions. This work contributes to the reflection on the value
of data, and provides a method to quantify the impact of poor data quality on
asset management decisions.

3.1 Optimization of component replacement time and
analysis of key influencing factors

Theoretical model

The model used to find the optimal year of replacement is based on i) a failure
distribution that models the condition of the component, and ii) fixed costs of
failure and replacement to take into account the impact of outages on the system
(see traditional approaches in section. One novelty in the proposed optimiza-
tion method is that it integrates discount rates that take into account the time
value of money.

To model the risk that component ¢ fails before its planned replacement in
year t, the cumulative function F' of the Weibull distribution is used, which is
commonly employed to model assets wear-out. The probabilities of failure are
conditional to the age of components, to take into account the fact that compo-
nents have not failed before the beginning of the planning period. This is done by
dividing the expressions in and by the same probability which cancels
out in . Therefore, only the simplified expressions are presented here.

11



CHAPTER 3. IMPACTS OF DATA QUALITY ON ASSET MANAGEMENT
DECISIONS

The probability that the component ¢ fails before time ¢ is modelled by:

Pi(t) = Fi(t;0, 8) = 1 — exp <_ (T)CY) (3.1)

where:

t is the planned year of replacement

a; is the age of the component ¢

« denotes the shape parameter of the Weibull distribution

[ denotes the scale parameter of the Weibull distribution

«a and 8 are constant scalars and assumed to be known. « is set, and (5 is calcu-

lated based on the value of « and the average technical lifetime of the components.
The probability for the component i to fail exactly at year k is modelled by:

pi(k) = Fi(k; o, B) — Fi(k — 1; 0, B)

ol () l(5))

The optimal asset management decision for component ¢ corresponds to the
year of replacement T; with the lowest annual costs over the whole period:

CT C’r‘ + C»L
T; = arg min

t (t+a) x (1—Pit) + X py (k +a;) x pi(k)

(3.3)

where:
C, denotes the costs of replacing the component at the planned year
C; denotes the additional costs generated by a failure of the component before
the planned year of replacement, including unplanned interruption of supply
r is the discount rate

The numerator represents the average costs. The first term accounts for the
costs of replacing a component at the planned year, weighted with the probability
that the component does not fail before replacement. The second term represents
the costs incurred if the component fails before the year of replacement. The
denominator represents the average lifetime of the component.

Analysis of influencing factors

The optimal year of replacement depends on the chosen parameters, particularly
the discount rate r, and the ratio between unplanned (corrective) interruption
costs and planned (preventive) replacement costs (C,. + C;)/C,.:

© When the discount rate increases, the effect of high interruption costs is re-
duced, and therefore the optimal year of replacement is postponed. When
the discount rate reaches a breaking point, the optimal decision in economic
terms is to let the component run to failure;

12



© The higher the corrective costs compared to the preventive costs, the sooner
the component should be replaced. When the unplanned failure of the com-
ponent does not generate any additional expenses (ratio equal to one), the
optimal management decision is to let the component run to failure.

3.2 Quantification of the impact of poor data quality on
component replacement time

Theoretical formulation of the problem

Data quality is defined in |18] as ’fitness for use’, meaning that it is a relative
assessment of the extent to which data serve the purpose of the user. Thus, the
level of data quality can be sufficient for a given task, but not good enough if
the task changes or the purpose evolves. This also means that the level of data
quality should be monitored over time to control its adequacy to the tasks.

To quantify the costs of faulty data, three scenarios are developed. In the
Reference scenario, the real condition of components, approximated by their age,
is known and used to calculate the optimal replacement time. In the Imperfect
information scenario, the assessed condition is only partially correct, which means
that the data quality is lower. Some components have been assessed as being in
a worse condition than they are in reality. Two variables describe the level of
data quality: the share of components affected by incorrect data (‘share of faulty
data’), and a variable determining, for each affected component, the difference
between its real age and its assessed condition, or in other words, how far the
incorrect data diverge from the true value (‘deviation from the true value’).

Results of simulations

Because faulty data have been translated in this work by an overestimation of the
age of the component, poor data quality affects the asset management decision by
hastening the planned year of replacement by one or more years. The interesting
result of the simulation is the quantification of the impact of faulty data. In
particular, this method provides a useful assessment of the orders of magnitude
of such time shifts, as a function of components’ age and data quality (expressed
by the ‘share of faulty data’ and ‘deviation from the true value’).

When considering a population with uniformly distributed age categories be-
tween 0 and 30 years, poor data quality can shift the planned year of replacement
by 0.03 years (5 % of components with incorrect data deviating by 5 % from the
true value) to 2.2 years (50 % of components with faulty data deviating by 140
% from the true value).

13



CHAPTER 3. IMPACTS OF DATA QUALITY ON ASSET MANAGEMENT
DECISIONS

3.3 Decisions of investment in data quality improvement

Theoretical formulation of the problem

Poor data quality generates costs, but so does improving data quality: preven-
tion costs (training, monitoring, deployment), detection costs (sensors, analysis,
reporting), and repair costs (planning and implementation). A major challenge
for grid managers is to find a balance between these costs. This is equivalent to
identify the optimal level of data quality. This section aims to provide a decision
support tool that helps grid managers estimate the amount of investments in data
quality improvement that would be profitable.

To this end, different levels of investments are introduced in an Investment in
higher data quality scenario, and their effect on the year of replacement is ana-
lyzed. The investment leads to a more accurate prediction of the time to replace
components compared to the Imperfect information scenario. For grid managers
to invest in data quality improvement, the savings generated by investments must
overcompensate the initial investment (first term of equation ) and yearly
costs of improved data quality (second term of equation ) The savings are
the avoided costs of the asset management without investments (third term of

equation (3.4))).

N C, 1
B its=— (px Cp) — | (T —ty) x — X =
enefits (p ) (( ) (L+r)ir tf—|—a>

+((th)><( Cr L >

X
1+7r)t  tr+a

(3.4)

where:
a is the age of the component
r is the discount rate
p is the percentage of component’s replacement costs
C, are the costs of replacement of the component
T is the planned year of replacement in the Reference scenario
ty is the planned year of replacement in the Imperfect information scenario
t~f is the planned year of replacement in the Investment in higher data quality
scenario

The second term represents the discounted asset management costs in the
Investment in higher data quality scenario. They are expressed as the reduction
of the component’s lifetime due to partly incorrect data, multiplied by the yearly
revenues generated by the component. The third term represents the avoided
and discounted costs of asset management in the Imperfect information scenario.
In this configuration, the investment is profitable when the sum of avoided costs
exceeds initial investment and yearly costs of data quality improvement.
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Results of simulations

Figure [3.3] illustrates the kind of results that can be obtained when using the
framework. Up to a certain level of data quality, economic gains are negative,
meaning that investments in higher data quality do not offset economic gains
resulting from improved asset replacement decisions. Data quality has to be
‘sufficiently poor’ for the investment to be profitable.

12 ~ 12
10 o . 23 ‘

syyeued

syyeudd

—os

Figure 3.1: Determination of thresholds for profitable investments in improved
data quality. Left and right panels represent the same plot seen from different
perspectives. Investments are represented by a color scale, and given as a percentage
of the component’s costs. The deviation from the true value and share of faulty
data are expressed as percentages on the axes. Benefits are given in 1000 USD.

3.4 Implementation of the framework in practice

Data quality can be improved by measures that enable a better evaluation of
the condition of components. These measures are diverse, and include the de-
velopment of a data quality management strategy on the one hand, and concrete
actions such as investigations or the installation of measurement devices on the
other hand. Figure [3.2] illustrates these concepts.

The framework has been implemented in one example. Assuming a population
of overhead lines, the asset manager aims to optimize the replacement time of the
lines based on the available data. Phase 1 of the framework reveals that around 20
% of the data related to the age of the lines are faulty, and that the age has been
overestimated by 50 % on average. The asset manager wants to know if investing
in a device that would improve data quality would be economically profitable.
Using the results of phase 1 and the model, the impact of faulty data on the
replacement year is assessed (phase 2). The asset manager then plans to invest in
a device that measures dissipation/power factor and capacitance, which indicates
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CHAPTER 3. IMPACTS OF DATA QUALITY ON ASSET MANAGEMENT
DECISIONS

INVESTMENTS IN DATA QUALITY

MANAGEMENT STRATEGY ACTIONS
MEASURES CORRECTIVE MEASURES PREVENTIVE MEASURES
= |dentification of the -Bad data detection
source of errors. «Investigations
= Choice of strategy =Data traceability

«Data entry automation
and rule setting

= Choice of monitoring actions
and metrics = Measurements and diagnostics

[ Human resources
[ Material resources (devices, software)

Figure 3.2: Overview of possible measures to improve data quality.

the overall condition of the insulation of the lines. This estimated condition can
be translated into an equivalent age.

Three artificially generated scenarios with different assumptions related to
population size, line length, share of faulty data, deviation from true value, cost
and type of monitoring device are developed. They aim to illustrate how the ben-
efits of an investment into data quality improvement change in different situations
(Table . Many other scenarios could be generated in this way.

Table 3.1: Framework implemented in a practical case for different scenarios.

Variable Scenario | Scenario | Scenario
1 2 3

Number of power lines 100 10 10
Average length of lines in km 1 2 2
Share of faulty data in % 20 10 10
Deviation from true value in % 50 20 20
Costs of condition monitoring
device in thousand USD 0 70 0
Condition monitoring type

(T = transportable) T T non T
Profits/losses from investing
in data quality improvement 1.11 -0.13 -0.73
in thousand USD per line

Only scenario 1 corresponds to a situation where the investment in a device
would be profitable. Having a smaller population size and high data quality (low
share of faulty data and deviation from the true value) reduces the benefits of
investing in data quality, as illustrated in the differences between scenarios 1 and
2. Transportable devices can be used on several components and lower the costs
of investments, explaining the difference between scenarios 2 and 3.
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Chapter 4

Increasing importance of data due
to the energy transition

The aim of this chapter is to explain how the transition toward cleaner energy
sources impacts the power grid, as well as the value chain illustrated in Figure
and how data-driven approaches can both contribute to the transition and
support performance goals. This chapter is based on literature reviews carried
out in Papers IT and ITI. Some of the identified new approaches are implemented
in Chapter

4.1 Complexification of the traditional asset and data
management

The decarbonization of the energy sector is at the heart of the fight against cli-
mate change [19]. This energy transition translates into the replacement of large
fossil fuel power plants by smaller-scale renewable energy-based power generators
such as wind turbines, solar panels, and hydropower, the replacement of fossil
fuel vehicles by electric or fuel cell vehicles, and the replacement of fossil-based
heating by, among others, heat pumps or biomass heating. This transition heavily
impacts the power grid: intermittent and distributed renewable generation such
as wind farms and solar panels are changing power supply patterns, and the de-
velopment of electric vehicles are not only influencing loads, but also transforming
unidirectional power flows into bi-directional ones [20] [21]. The situation of the
grid, represented in Figure changes.

As the structure of the power grid complexifies, integrating more and more
loads and generators, it becomes increasingly difficult to operate and manage it,
using the traditional methods. The energy transition generates challenges for
asset and data management:
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© Traditional data might not properly account for the presence of new devices
and stakeholders, and their impacts, for example on load profiles, supply
forecast, or power flows. More data need to be collected. One challenge is to
select the type and amount of data that are needed.

© Traditional approaches are not adapted to rapid changes affecting the grid.
New processing methods are needed to take into account the new data streams,
to support decisions in a pro-active way, and enable automated decisions.

© Asset management actions such as preventive (scheduling maintenance and
replacement, investments) and corrective actions become challenging. In fact,
more variable power flows put a new strain on grid components, possibly
changing maintenance scheduling; rapidly changing load patterns complexify
the calculations of power supply adequacy, and therefore investment decisions;
voltage and frequency instabilities induced by high penetration of renewables
make the adjustment of corrective actions and balancing measures necessary.

4.2 New approaches offered by big data analytics to
support asset management decisions and the transition
to smart grids

The development of big data analytics, and especially machine learning has be-
come of high interest to many countries and companies. The integration of ma-
chine learning to support efficient and automated asset management decisions is
part of the transition to smart grids. Grid managers could take advantage of
advances in information and communication technologies (such as smart meters,
sensors, 5G, processors), and harness consumer data, weather data, data from
renewable power generators, and from other internet sources, to tackle the chal-
lenges of fluctuating power generation and loads.

While research is quite extensive in real-time power operations and pricing,
as outlined in Paper II, few researchers have applied machine learning to help
distribution companies manage their assets, and adapt them to the greener elec-
tricity generation and consumption patterns on a more strategic timeline. In
Paper II, the possible ways machine learning could be applied in power sys-
tems to improve asset management strategies are presented. Three main areas
have been identified in the asset management process, where these techniques can
support decisions: detection, prediction, and selection.

Detection of changes in patterns or anomalies

This detection function is fundamental for asset managers, who need to identify
early signs of changes well in advance, to adapt the network and plan investments.
Especially, some factors like increased population, installation of renewables and
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deployment of electric vehicles can increase instabilities and outage risks if they
are not detected early enough. Therefore, an algorithm that would detect any
changes to usual or normal operating modes, and identify the origin or cause of
these changes is required for the reliable operation of the future grid. This kind
of task can be seen as a classification or novelty/bad data detection problem.

Improved predictions

In the field of asset management, and in particular maintenance, useful pre-
dictions are the predictions concerning component failures. The elaboration of
a model representing the component’s failure requires a deep understanding of
failure causes, and component degradation according to its operational character-
istics and environmental conditions. Often, the data needed to build the failure
rate model are not available, or difficult to obtain. Therefore, some research activ-
ities are focusing on algorithms to detect signals that would help predict outages,
on the basis of commonly available data (for example history of failures, data on
maintenance activities, power flow measurements, or weather-related data). This
approach is developed in Chapter [5.2

Selecting efficient asset management options

Usually, the selection of possible options is made based on an optimization algo-
rithm. However, the power system is expected to become more complex because
of bidirectional flows, as well as the development of distributed micro-generation.
Therefore, usual (linear, non-linear, mixed-integer) programming methods used
to model power flows are likely to get exceedingly complex for the network man-
ager to implement. Machine learning could offer a new way of analyzing for
example the benefits or drawbacks of “smart” technologies that allow flexibility
(such as flexible alternating current transmission systems, demand side manage-
ment, or quadrature boosters) compared to traditional adjustments, which are
often capital-intensive and not flexible (such as network expansion, and grid re-
inforcement). This would help avoiding stranded assets, which are common in
environments that are characterized by high uncertainty and changing rate. One
example of a selection method, applied to component ranking, is given in Chapter

Bl

4.3 Algorithms for detection purposes adapted to
real-world datasets

Often, machine learning algorithms suppose the availability of component-specific
sensor data. In practice, grid operators have access only to aggregated or partial
signals, from which the relevant information is difficult to extract. Also, installing
sensors at all components in the distribution systems is unrealistic. At the same
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time, distribution system operators are mostly impacted by the deployment of
distributed generation. Besides, many algorithms require data collected at a high
sampling rate. However, grid operators usually have hourly or half-hourly data,
and do not measure or store data with higher sampling rate. Therefore, algo-
rithms from the field of big data analytics should be adapted to real-world data,
characterized by low specificity (aggregated/partial signals), and low sampling
rate.

Paper III provides an analysis of detection algorithms developed in power
distribution systems for real-world data. Signal detection is a part of data analyt-
ics that “deals with the processing of information-bearing signals for the purpose
of extracting information from them” |22 p.1]. The analysis is focused on detec-
tion fields that are relevant for power systems, namely anomaly detection, fault
location, and load disaggregation. The algorithms are classified according to their
type. The way they are implemented is analyzed. Especially, we aim to clarify
which types of detection algorithm can be used for which task.

Classification of detection algorithms

The algorithms are classified in three types, as shown in Figure

Algorithms within the ”parametric modelling” type model the relationships
between variables through function approximation. They use different structures
or function characteristics: i) linear and stationary signals (time series), ii) neural
networks (autoencoders, other neural networks, restricted Boltzmann machines)
or iii) structure-independent optimization algorithms.

Algorithms within the ”projection” type project the data into other dimen-
sions such that features can be extracted and data separated more easily. Various
transformation processes are used: i) dimensionality reduction using eigenvectors
(linear discriminant analysis, principal component analysis), ii) dimensionality
increase to better separate data (support vector machines), iii) separation of a
set of source signals from a set of mixed signals (non-negative matrix factoriza-
tion, independent component analysis), or iv) projection of data from the time to
the frequency domain (Fourier / wavelet transform and empirical mode decom-
position).

Algorithms within the ”group assignment” type assign a cluster to each ob-
servation such that the formed clusters are homogeneous. Two methods can be
used: i) distance-based partitioning, which minimizes the sum of squared distance
between centroids and observations through the expectation-maximization algo-
rithm (K-means, finite mixture models, hidden Markov models), and ii) graph-
based partitioning, which uses tree structures in addition to metrics such as Gini
impurity, information gain, variance reduction (decision trees, random forests,
optimal path forest).
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Figure 4.1: Detection methods for anomaly detection, fault location, and load
disaggregation, classified according to their type.

Implementation of algorithms for anomaly detection,
appliance-specific load detection, and fault location

Figure shows the main tasks that are performed when implementing the algo-
rithms of the three detection fields. Green boxes represent the input, blue boxes
the data processing part, and pink boxes the results.
Some algorithms are ubiquitous. They perform multiple tasks, and are seldom
used in combination with other techniques: metaheuristic algorithms, autoen-
coders / restricted Boltzmann machines, optimal path forests. Other algorithms
are often combined, and used to fulfill a specific task, as indicated in Table
Some typical challenges include determining the threshold to label data as
anomalous, dealing with noisy, incomplete and/or imbalanced data, and analyz-
ing online streaming data (usually dealt with using sliding windows or parallel

processing).
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Figure 4.2: Application of detection algorithms in power systems. From left to right:
anomaly and theft detection, appliance-specific load detection, fault location. The
step represented between brackets is implemented only in certain cases.

Exo&_let':lﬂus Circuit breaker
measurements, variables
'

statuses
1

Aggregate Exogenous
power variables
] [

Combinatorial
optimization

Identification
of fault type or
faulty region

Table 4.1: Algorithms performing specific tasks.

Algorithms Tasks often performed

Time series, Fourier transform, wavelet trans- | Upstream tasks like fea-
form ture extraction

Classification  (anomaly

Support vector machines detection)

Principal component analysis, linear discrimi- | Both feature extraction
nant analysis, K-means, decision trees and classification

Neural networks, independent component | Downstream tasks in
analysis, matrix factorization, hidden Markov | signal disaggregation and
models, finite mixture models fault location
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Chapter 5

Development of new approaches to
improve decision making

This chapter provides reflections on the way to use available data to create
relevant new information for grid operators. The focus of this chapter is to
develop valuable insights related to individual components, without having to
install component-specific meters and sensors. The reason is that, for a system
composed of a great number of components (like at the distribution level), the
costs of monitoring each of the components would probably be higher than the
benefits of the monitoring resulting from efficiency gains of asset management
decisions. This trade-off between the costs and the benefits of data management
is at the heart of the present reflection.

This chapter focuses on two of the new approaches identified in Chapter [4.2]
selection (of critical components according to their importance), and prediction
(of component failure).

5.1 Selection of critical components through component
importance indices using outage data

This section is based on Paper IV and [1].

Importance indices

Monitoring the condition of components helps taking preventive actions to avoid
failures, and increases reliability. However, performing such monitoring for all
components of the distribution grid is prohibitively expensive. Instead, distribu-
tion system operators could focus efforts only on the most critical components. In
particular, importance indices enable to prioritize components according to a cho-
sen criterion, and to adapt monitoring strategies. Existing methods to calculate
component importance index are discussed in Paper IV and [16].
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In this work, two types of empirical methods for ranking components are
developed, as represented in Figure [5.1

© the method based on the calculation of de-energization time, which takes into
account only switch events recorded during the outages, and does not take
into consideration the component that caused the outage;

© the methods based on the identification and localization of components that
are responsible for outages. Four methods belong to this type, which rank the
responsible components according to their failure frequency or the impact
that their failure has on the system (disconnected power, energy not supplied
(ENS) and customer outage time).

< Ranking of components >

. I
v

P> Calculation of de-
energization time
P Frequency of
of failures outages

W

Localisation of
components
responsible for the

outage

P> Disconnected power
P ENS

P Customer outage time

Figure 5.1: Criteria used to calculate component importance indices.

Results of component ranking for an actual substation

The results of the rankings by each of the five methods are displayed in Figure[5.2
The colors red, orange, green and blue in the right panel represent the decreasing
de-energization time. The following observations can be made:

© The ranking based on the frequency of failure fails to provide a demarcation
between the components responsible, since the range of rankings is small
(from 1 to 5). This is because the frequency of failures for many components
is the same. The frequency of failures does not discriminate enough between
components.

© The ranking based on de-energization time performs better than the frequency
of failure. It provides information regarding components or sections of feeders
vulnerable to failures with appropriate ranking (see Figure right panel).
However, de-energization does not necessarily mean failure. When analyzing
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the switch events, a set of components with high de-energization time is ob-
tained. But only one or a few components in the set are actually responsible
for the outages. In addition, components used for backup also have a high de-
energization time. Hence, careful consideration is essential when interpreting
the results.

© The results obtained by the ranking based on the impact of outages are easier
to understand as they involve fewer components than the de-energization time
method, while providing a sufficiently large range of rankings that enables to
discriminate among components (see Figure left panel). In addition, this
ranking method takes into account the actual component at the origin of the
outage.

Since each method is based on a specific criterion that is not taken into account
in other methods (for example failure frequency, type and severity of impacts),
the selection of the "best” method depends on the primary goals and acceptabil-
ity levels of the grid operator. Besides, the components ranked high in all the
methods can be identified. These components can be seen as critical, and would
need a focused monitoring to prevent outages that can have high impacts for
distribution system operators.

Contrary to the methods reviewed (see Paper IV), which are computation-
ally expensive, require data that are not commonly available at the distribution
level (for example the expected outage rate and duration of components), or use
generic values for all components, the proposed ranking methods provide a simple
and easily understandable way to identify critical components, using accessible
empirical data. This enables to focus maintenance strategies, identify data col-
lection needs, and develop redundancy infrastructure at identified critical points,
eventually improving the reliability of the grid. This is essential at the distribu-
tion level, where a continuous monitoring apparatus covering all components, or
a completely redundant infrastructure are not economically feasible.

5.2 Prediction of failures using maintenance, failure, and
weather-related data

Component-level failure detection

This section is based on Paper V.

Automatization algorithm. The literature related to the use of data an-
alytics, and especially machine learning, for health prediction purposes is exten-
sive. However, the datasets used are often different from real-world datasets.
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Figure 5.2: Components and their rank using the localisation (left panel) and de-energization-time (right panel) methods.
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In practice, data are often multivariate, sequentiaﬂ imbalancedEl, and have a
low sampling rate. Moreover, many failure prediction algorithms use data from
component-specific sensors. The more sensors with high sampling rate, the higher
the quality of the dataset, and the easier the classification task. While this con-
figuration is possible for important components, it is unrealistic in other cases,
when a system is composed of many components whose failure is not life threat-
ening, as in the case of power systems. Thus, many of the methods developed
for sensor data with high sampling rate might not be useful for the prediction of
component failure in practice. Another challenge is the high amount of models
and hyperparameters that need to be fine-tuned. It becomes intractable to test
all models and hyperparameter sets to develop individual models.

Our goal is to investigate the possibility to predict rare events with mul-
tivariate, sequential, imbalanced datasets of low sampling rate, and without
component-specific sensors. We explore in which ways the usual classification
methods are relevant for a dataset with the afore-mentioned characteristics.

To this purpose, we designed an automatization algorithm to automatically se-
lect optimal hyperparameters for different models. It is composed of four phases:

© The input pre-processing phase results in several datasets, used to analyze
the influence of factors related to data pre-processing on model performance.
The factors are as follows: i) binary variables, ii) lag numbers and sliding
window, and iii) model type, and use of ensemble models;

© The hyperparameter optimization phase results in the selection of several sets
of hyperparameters for each selected model and each dataset. The resulting
sets of models are ranked according to the performance of hyperparameters
sets on validation data;

© The evaluation phase consists in testing the selected models on the selected
datasets, with a held-out test set;

© In the last phase, the performance of each model on each dataset is analyzed
and comparisons are performed to identify how some characteristics of the
datasets influence the results.

Six supervised learning and two unsupervised learning classification methods
are selected. Four of them are classical machine learning methods, four of them
are deep learning methods (neural networks):

— logistic regression (LOGIT)

1The order of datapoints must be taken into account because there are dependencies between
them. For example time series or DNA sequences.

?Dataset with skewed class proportions, containing majority classes that make up a large
proportion of the dataset, and minority classes that make up a smaller proportion.
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— support vector machines (SVM)

— random forests (RF)

— extreme gradient boosting (XGBoost)

— multi-layer perceptrons (MLP)

— convolutional neural networks (CONV)

— autoencoders with fully connected layers (AE-MLP)
— autoencoders with convolutional layers (AE-CONV).

One particularity of autoencoders is that the minority class? is not needed for
model training, which is advantageous when the minority event is a rare event.

Implementation on a real-world dataset. We apply the algorithm to
the prediction of the failure of a high-voltage, direct current (HVDC) power line,
using commonly available data. Eight variables are used in the input: i) mainte-
nance; ii) events in nearby AC links; iii) power exchanges; iv) solar radiations; v)
humidity; vi) maximum wind speed; vii) visibility; and viii) historical failures.

This is the first time a component failure prediction is attempted using only
maintenance information, weather-related data, and data on neighboring AC links
events. The performance results in terms of area under the curve (AUC) are
displayed in Figure Figure shows the confusion matrix of the two best

performing models.
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Figure 5.3: Ranking of models and associated datasets, in terms of AUC.

The main findings from Paper V are as follows:

© Autoencoders perform better than other models, especially, autoencoders

with convolutional layers;

© While taking ensemble models did not generally improve the performance,
the impact of pre-processing is significant, not only on the computing time,

but also on the AUC.
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Figure 5.4: Confusion matrix of the two highest ranked models: Model=AE-
CONV, dataset=db, AUC=0.73, F-score=0.11 (left panel) and Model=AE-CONV,
dataset=dnb, AUC=0.78, F-score=0.25 (right panel). See Paper V for character-
istics of the datasets.

© Substantial care should be brought to the choice of the criteria to select the
best models. The AUC has the advantage of synthesizing many concepts,
but another criterion like the number of false negative could be more suitable
for cases where true positives (outages) must be detected and avoided at any
costs.

© One difficulty in rare event prediction is the trade-off between the necessity
to detect as many outages as possible (maximize the true positives), and to
minimize the number of false alarms (false positives).

© Another difficulty is to predict outages that are caused by a factor that is
not reflected in the input data. In the field of component failure, information
about the cause of outages is scarce or not reported, which increases the
difficulty to train a model.

Further improvement of the algorithm would be to synthetically generate
more outage data through Generative Adversarial Networks (GAN) instead of us-
ing Synthetic Minority Oversampling Technique (SMOTE). An alternative would
be to use transfer learning, which would offset the issue of outage information
scarcity, by leveraging the outage experience of other similar components.

Substation-level failure detection

This section is based on [1]. See also contributions in section
Naive Bayes classification. At the substation level, outages happen rela-
tively frequently, and affect several components. One approach to prevent outages
from happening would be to model the failure distribution for each of the compo-
nents. However, this would require data that are inexistent in practice, and would
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be uneconomic since the cost of installing measuring devices at all components
would by far exceed the costs associated with the outages at the distribution
level. Instead, the idea is to divide the substation into several areas, and study
the relations between various factors or conditions, and the outages happening in
each of those areas. The goal is, for a particular set of future conditions, to be
able to point to an area, and a component type with the highest probability of
being affected by an outage, as shown in Figure [5.5

Probability of

failure
Temperature ———

Wind speed ——

E —> Failure area i
Humidity —

_____________________

Load — Failed component
type j

Component [
degradation = OH Line

= UG Cable
“--» = Transformer

= Line disconnector

= other disconnecting devices

Figure 5.5: Model for predicting outages at the substation level.

The conditions refer to available data such as weather-related data, failure
and maintenance history in the substation, load measurements and information
on component degradation state (usually age of the component).

Given the small amount of data, categorical Naive Bayes has been selected as
a classification method. In fact, this method tends to work well even with limited
amounts of data, contrary to neural networks. Also, updating the model when
new data are available is easy, because no heavy computing is involved. The aim
of Naive Bayes is to obtain the probability of a hypothesis given some conditions
(posterior probability P(Hyp,|Evi.)), and can be formulated as follows:

P(Hypn N Evi.)  P(Evic|Hypy)P(Hyps)

P(H Evi,) = - = -
(Hypn|Bvic) P(Evi,) P(Ewvi,)

where: Evi, = {Temp., Wind., Hum,, Load., Deg.} and Hypy, = {Areay, Compy}
FEvi, are the evidences or conditions

Temp, is the temperature category

Wind, is the wind speed category

Hum, is the humidity category

Load, is the load category

Deg, is the degradation category
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Hypy, is the hypothesis (about area and component type affected by an outage)
Areay, is the failure area
Compy, is the component type.

An important step in the methodology is to categorize the continuous vari-
ables. The categorization is based on quantiles. Besides, the maximum value
of windspeed and of relative humidity in the past 6 hours, as well as the aver-
age value of temperature over the 6 hours preceding the outage are calculated
before being categorized using quantiles. As for the load, a percentage load is
calculated considering the average value of load during the outage with respect
to the monthly average. This categorization enables to create a limited number
of condition sets. Any situation can thus be classified into one of the 384 possible
combinations created. Among them, 80 combinations are associated with actual
failures.

Implementation on a real-world dataset. For a particular condition
set, the categorical Bayes classifier provides answers to the following questions:
What is the probability that an outage happens? What type of component will
be affected? What type of area will be affected? Moreover, it can also give
information on the conditions that are critical. i.e. with higher probability of
failure.

In the case of the substation under study, the probability of the outage is
highest during summer (0.385), and autumn (0.266). The most affected compo-
nents are OH lines and UG cables. The areas most vulnerable to failures are area
2 and area 4, which are most affected in summer and autumn, notably because
of tree-falls and thunderstorms.

The results of the prediction model on a test dataset are represented in Table
The table gives seven samples of outages, the conditions associated to the
outage, and the area and component actually affected. Then, it provides a list
of predictions given by the model, which include the areas that could be affected
by an outage, and inside each area, the type of component affected. The last
column provides the probability that the outage affects the area and component
type predicted. Over the seven cases, the list provided by the model included the
correct area and component type that would be affected in four cases. However,
the highest probabilities were assigned to other elements of the lists. Therefore,
the prediction of location and component type likely to be affected is relatively
inaccurate, since the number of outages contained in the dataset is low. By
collecting more data, and updating the model accordingly, the predictions would
be more accurate. Besides, further investigations are needed to evaluate the false
positives on non-failure data.

In conclusion, the prediction model can be used to alert the distribution sys-
tem operator about possible outages in the network for a given set of weather
conditions. One condition for the model to be accurate is to have a long historical
dataset.
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CHAPTER 5. DEVELOPMENT OF NEW APPROACHES TO IMPROVE
DECISION MAKING

Table 5.1: Prediction of the area and type of component to be affected by failures.
Predictions in bold correspond to the actual area and component type affected.

Outage Actual o .
D Input area & | Predictions Probability
component
Area 2, OH Line 4/6111
Area 7 Area 3, OH Line 2/6111
2202669 T2.W2.H3| y@ Cable Area 4, OH Line 1/6111
Area 7, UG Cable | 1/6111
Area 2, OH Line 4/6111
Area 4 Area 3, OH Line 2/6111

2294308 T2,W2.H3 | OH Line Area 4, OH Line | 1/6111

Area 7, UG Cable 1/6111

Area 2, OH Line 4/6111

Area 3, OH Line 2/6111

2296566) T2,W2,H3 OAﬁeEige Area 4, ,OH Line 1?2111
Area 7, UG Cable 1/6111

Area 2, OH Line 4/6111

Area 4 Area 3, OH Line 2/6111

2208416) T2.W2.H3| y@ Cable Area 4, OH Line 1/6111
Area 7, UG Cable 1/6111

Area 2, OH Line 3/4642

Area 3, OH Line 1/4642

Area 4 Area 3, UG Cable 1/4642

2207573 T3,W2,H3 | O Tine Area 4, OH Line 2/4642
Area 4, Transformer | 1/4642

Area 4, UG Cable 2/4642

Area 5, UG Cable 1/4642

Area 1, OH Line 1/4192

Area 2, OH Line 1/4192

s | R, | A Db | U

Area 4, UG Cable 2/4192
Area 6, UG Cable 1/4192

Area 1 No outages recorded
2299564 T1L,WLH2| Oy Line historically 0

This chapter shows that already available data can be used more efficiently,
and give relevant insights to the grid operator, by using innovative approaches.
Approaches within the field of selection and prediction have been developed. They
can be used to prioritize components, and warn about possible outages, thus con-
tributing to a risk-based scheduling of component replacement and maintenance.
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Chapter 6

Conclusion

Main conclusions and discussion

This thesis is focused on the relations between data and asset management de-
cistons in the power sector. The two concepts are linked together through ap-
proaches. An approach consists in processing the data in such a way that the
result is used as a basis to take an action related to the assets. These relations
are important because the efficiency of the decisions taken can directly be traced
back to the kind of approach chosen and the data that have been used. The
influence of data quality on the decisions has been investigated in Paper I, with
a focus on component replacement as asset management decision. Low quality
data shift the choice of year of replacement, leading to higher annual costs for
the use of the component. A framework has been developed to support asset
managers to decide the optimal level of data quality, which is the level that is
economically profitable.

The need to reflect upon the amount and quality of data that is necessary to
take efficient actions is even more pronounced since the development of machine
learning and the energy transition. The multiplication of smaller-scale power
generators and new loads to fight climate change is complexifying the grid, and
makes the decision making process more challenging. Therefore, the transition to
smart grids is closely linked to the deployment of meters and sensors, and of ma-
chine learning algorithms, which in turn supports automatization, to automatize
modeling and reduce manual work. These new trends are analyzed and detailed
in Papers IT and III.

However, installing sensors on all components of the distribution system would
be prohibitively expensive. Therefore, many of the recently developed algorithms,
based on sensor data with high sampling rate, often cannot be used in practice.
Moreover, more data collection means also increased processing needs and storage
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CHAPTER 6. CONCLUSION

issues. It follows that data needs should be carefully evaluated, and that new
approaches should first take into account the real-world state of datasets, before
considering the use of data that could potentially be collected in the future.

In Paper IV, empirical approaches to assign an important index to com-
ponents of a substation are proposed. They use only commonly available data
such as the switch log, outage history, and outage impacts in terms of energy not
supplied and duration. The proposed rankings would enable to identify critical
components, and to adapt data and asset management accordingly.

In Paper V, an automatization algorithm has been developed for failure
prediction, also using commonly available data. It provides a basis of reflection
about the selection of algorithms that might be fit for multivariate, low frequency,
sequential, imbalanced, and unspecific datasets, which are very common in the
industry. It also shows that automatization can be used to reduce the need to
install sensors, by using more efficiently the data that are already available, in-
stead of supporting a race for big data.

A specific challenge common to the works presented in this thesis is the need to
make choices, particularly concerning trade-offs. For example Paper I deals with
finding a balance between the costs of increasing data quality, and the benefits of
taking more efficient decisions based on data with improved quality. In Paper V,
there is a trade-off between the precision of the prediction, and benefits of a more
precise prediction. Having excellent data for a particular component is profitable
when the costs of failure of this component are high. Otherwise, other solutions
need to be developed, as shown in Papers I'V and V. One way is to collect data
only for important components. Another way is to "zoom out”, which means
collecting high quality data for an area, not a single component, so as to reduce
the uncertainty in the area to an acceptable level. Therefore, an important step
in data management is to define the precision that is acceptable for each area
or situation, and then to pro-actively monitor data needs and upgrade them if
necessary.

Future work

Several avenues for further research are considered, that are all based on inves-
tigating the relations between data and grid performance, as conceptualized in
Figure One avenue is to study the benefits of installing new high sampling
rate devices, and explore whether more efficient decisions are taken. Another
avenue is to produce a state of the art of common measurement devices, and ex-
amine in which ways new approaches using the available data would enable to
achieve better decisions. Finally, an interesting avenue would be to investigate
whether current approaches and data collection level are adapted to a change in
the situation of the power system.
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