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Abstract

Knowledge of the genetic basis for autotrophic metabolism is valuable since it relates to

both the emergence of life and to the metabolic engineering challenge of incorporating

CO2 as a potential substrate for biorefining. The most common CO2 fixation pathway is the

Calvin cycle, which utilizes Rubisco and phosphoribulokinase enzymes. We searched

thousands of microbial genomes and found that 6.0% contained the Calvin cycle. We then

contrasted the genomes of Calvin cycle-positive, non-cyanobacterial microbes and their

closest relatives by enrichment analysis, ancestral character estimation, and random for-

est machine learning, to explore genetic adaptations associated with acquisition of the Cal-

vin cycle. The Calvin cycle overlaps with the pentose phosphate pathway and glycolysis,

and we could confirm positive associations with fructose-1,6-bisphosphatase, aldolase,

and transketolase, constituting a conserved operon, as well as ribulose-phosphate 3-epim-

erase, ribose-5-phosphate isomerase, and phosphoglycerate kinase. Additionally, carbo-

hydrate storage enzymes, carboxysome proteins (that raise CO2 concentration around

Rubisco), and Rubisco activases CbbQ and CbbX accompanied the Calvin cycle. Photo-

respiration did not appear to be adapted specifically for the Calvin cycle in the non-cyano-

bacterial microbes under study. Our results suggest that chemoautotrophy in Calvin cycle-

positive organisms was commonly enabled by hydrogenase, and less commonly ammonia

monooxygenase (nitrification). The enrichment of specific DNA-binding domains indicated

Calvin-cycle associated genetic regulation. Metabolic regulatory adaptations were illus-

trated by negative correlation to AraC and the enzyme arabinose-5-phosphate isomerase,

which suggests a downregulation of the metabolite arabinose-5-phosphate, which may

interfere with the Calvin cycle through enzyme inhibition and substrate competition. Cer-

tain domains of unknown function that were found to be important in the analysis may indi-

cate yet unknown regulatory mechanisms in Calvin cycle-utilizing microbes. Our gene

ranking provides targets for experiments seeking to improve CO2 fixation, or engineer

novel CO2-fixing organisms.
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Author summary

Rising carbon dioxide levels driving climate change prompts us to embrace sustainable

resources, such as autotrophic microbes that produce biomass or chemicals by consuming

carbon dioxide. As genetic engineering of natural autotrophs is challenging, it is of inter-

est to engineer autotrophy in more pliable microbial species, such as Escherichia coli. We

contrasted 1,020 genomes of microbes carrying the most widespread carbon dioxide fixa-

tion pathway, the Calvin cycle, to genomes of closest relatives lacking this pathway. This

comparison identified and ranked genetic adaptations that may enable Calvin cycle opera-

tion. This list of adaptations sheds light on the evolution of autotrophy and represents a

recipe for an autotrophic microbe, which can aid genetic engineers in improving auto-

trophs or creating them from scratch.

Introduction

Organisms that produce biomass by fixation of CO2 are classified as autotrophic. As atmo-

spheric CO2 levels rise, autotrophs offer attractive ecological and biotechnological routes to cli-

mate change mitigation and sustainable biomanufacturing. Autotrophs such as Cyanobacteria,

algae, and plants already serve as primary producers in most ecosystems. Emphasizing the cen-

tral role of autotrophic metabolism in evolution and life, the last universal common ancestor

possessed the Wood-Ljungdahl pathway for CO2 fixation [1], possibly in combination with the

reductive tri-carboxylic acid (TCA) cycle and the reductive glycine pathway [2]. These three

ancient CO2 fixation pathways were later accompanied by the dicarboxylate/4-hydroxybuty-

rate cycle [3], the 3-hydroxypropionate/4-hydroxybutyrate cycle [4], the 3-hydroxypropionate

bicycle [5,6], and the Calvin-Benson-Bassham (CBB) cycle [7].

The CBB cycle, or Calvin cycle, is the most common CO2 fixation pathway in living organ-

isms [8,9]. The Calvin cycle is distinguished by phosphoribulokinase (Prk), which phosphory-

lates the phosphosugar ribulose-5-phosphate to ribulose-1,5-bisphosphate using ATP, and

ribulose bisphosphate carboxylase/oxygenase (Rubisco), which carboxylates ribulose-

1,5-bisphosphate with CO2, thereby generating two molecules of 3-phosphoglycerate. Rubisco

oxygenation of ribulose-1,5-bisphosphate generates toxic 2-phosphoglycolate, prompting recy-

cling through the photorespiration pathway, reducing carbon yield [10]. While 3-phospho-

glycerate connects to glycolysis/gluconeogenesis and the TCA cycle, ribulose-5-phosphate

connects to the pentose phosphate pathway (PPP) and ribonucleotide synthesis [11]. Accord-

ingly, the Calvin cycle is also named the reductive pentose phosphate cycle. Rubisco evolved

from a methionine salvage enzyme [12] over 2.9 billion years ago [13], before the great oxygen-

ation event [14]. Research has explored Rubisco evolution [15–19] and biochemistry [20–23],

identifying several forms [24–26]. Form I (Cyanobacteria, Proteobacteria, other Bacteria,

algae, and plants), form II (Proteobacteria, Archaea, and dinoflagellates), and form III

(Archaea) Rubiscos fix CO2, while form IV “Rubisco-like” proteins (RLPs) retain the earlier

methionine salvage role.

The overlap of the Calvin cycle with the PPP has inspired attempts to grant Rubisco-cata-

lyzed CO2 fixation to heterotrophs with minimal insertion of heterologous genes. For example,

transformation with just Prk and Rubisco reduces carbon loss during fermentation in yeast

[27] and E. coli [28]. In a series of reports, it was recently shown that introduction of Prk and

Rubisco, followed by selected severing from glycolysis metabolism and directed evolution,

could result in complete autotrophic generation of biomass from CO2 in E. coli [29,30].
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Growth of E. coli required 150–250 generations of adaptive evolution to enable stable Calvin

cycle operation. Carbon retention within the cycle was enabled by mutations suppressing glu-

cose-phosphate isomerase, which initiates glycogen synthesis, and ribose-phosphate-dipho-

sphokinase, which diverts pentoses to nucleotide metabolism [30,31], consistent with branch

point reactions being crucial for autocatalytic cycle stability [32]. In light of these reports, a

comparison of microbial genomes with and without the Calvin cycle could also expose meta-

bolic adaptations responding to the acquisition of Prk and Rubisco, which may aid engineering

new autotrophs.

Horizontal gene transfer (HGT) processes raise the question of how genomes accommodate

the Calvin cycle in nature. For example, HGT of Rubisco has occurred within Proteobacteria,

and from Proteobacteria to Cyanobacteria and plastids [33]. Rubisco was also horizontally

acquired together with Prk in candidate phyla radiation Bacteria and DPANN Archaea [34],

and together with the regulator CbbR and the activase chaperone CbbQ in Rhodobacter capsu-
latus [35]. Rubisco HGT has also been reported in acid mine drainage microbiomes [36].

Interestingly, Calvin cycle operons locate to plasmids in Ralstonia eutropha [37] and Oligotro-
pha carboxidovorans [38]. R. eutropha has a second, nearly identical operon encoding the Cal-

vin cycle enzymes situated on the chromosome [39], which may reflect a horizontal transfer

via plasmid caught in progress.

Here, we sought to shed light on the natural adaptations surrounding autotrophic metabo-

lism. We contrasted 1,020 archaeal and bacterial genomes possessing the Calvin cycle with

genomes from the 1,020 closest relatives without the Calvin cycle and thereby identified a

range of Calvin cycle-associated adaptations (Fig 1). The adaptations reported here may also

inspire future metabolic engineering initiatives aiming to generate artificial Calvin cycle-utiliz-

ing organisms.

Fig 1. Sequence-based analysis identifies genetic adaptations unique to Calvin cycle-containing genomes. Bacterial and archaeal genomes from the

Genome Taxonomy Database (GTDB) were subjected to a Hidden Markov Model-based homology search for Prk and Rubisco, which identified Calvin

cycle-positive genomes. The Calvin cycle-positive genomes were contrasted as a collective against their closest relatives to identify genes, i.e. Enzyme

Commission (EC) numbers and Pfams, associated with the Calvin cycle via three statistical comparison methods. First, enrichment identified genes that

were generally depleted or enriched in Calvin cycle-positive genomes using a Wilcoxon rank sum test. Second, phylogenetics-based ancestral character

estimation was used on subtrees in order to correlate the emergence of the Calvin cycle to other genes. Third, a random forest machine learning

algorithm was employed to distinguish between Calvin cycle-positive and Calvin cycle-negative genomes based on other genes that were thereby ranked

according to their importance in the classification task.

https://doi.org/10.1371/journal.pcbi.1008742.g001
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Results and discussion

Genomes were classified as Calvin cycle-positive or -negative

We first sought a way to classify genomes as CBB-positive and CBB-negative. Our approach

was to search for the unique Calvin cycle genes Rubisco (large subunit) and Prk in the 24,706

bacterial and archaeal genomes of the Genome Taxonomy Database (GTDB; https://gtdb.

ecogenomic.org/). Using Hidden Markov Model (HMM) profiles, we detected 2,348 Rubisco

large subunit and 4,828 Prk sequences, in 2,141 and 4,284 genomes, respectively. We did not

include the Rubisco small subunit in the search since the small subunit lacks catalytic activity

and is only present in form I Rubisco [40]. Phylogenetic analysis showed that all Rubisco

forms (I-III) were detected and also that Rubisco-like proteins (form IV), which do not cata-

lyze CO2 fixation, were excluded (S1 Fig). We assumed that the presence of both Rubisco and

Prk in 1,490 of the genomes (6.0%) indicated a complete Calvin cycle and thus CBB-positive

classification. The fraction of CBB-positive genomes was lower than the 7.2% in KEGG

(https://www.kegg.jp/), which could be because incomplete sequencing and metagenome

assemblies caused some genomes to be incorrectly identified as CBB-negative. For example,

Cyanobacteria are CBB-positive, but 184 (28%) of 654 cyanobacterial genomes were classified

as CBB-negative. Cyanobacterial CBB-positive and CBB-negative genomes showed 98.8% and

82.8% median completeness (p� 5.8�10−33, Wilcoxon rank sum test), and 94% of the� 99%

complete genomes were CBB-positive, while just 60% of the< 99% complete genomes were

CBB-positive. If underestimated by 28%, as in Cyanobacteria, the true fraction of CBB-positive

genomes was 8.4%. Additionally, the carboxydotrophic genus Hydrogenophaga [41] fixes car-

bon using the Calvin cycle [42,43], but H. pseudoflava was 99.6% complete and CBB-negative,

due to missing Prk, while H. flava was 98.8% complete and CBB-positive. Here the open read-

ing frame (ORF) identification was flawed, since the Prk HMM yielded a hit (accession

WP_066156609.1) among the H. pseudoflava RefSeq ORFs (accession GCF_001592285.1).

Furthermore, incorrectly CBB-positive genomes may appear due to HMM hits scoring close to

the threshold (see Materials and methods). Among 50 randomly selected CBB-positive

genomes (S1 Table), 43 were mentioned in the literature, with 30 genomes likely to be true

CBB-positive examples, and only one a likely false CBB-positive human pathogen (Mycolici-
bacterium mageritense). The limitations imposed by incorrect classifications of individual

genomes were relieved by using global comparison methods.

Cyanobacteria are very different from other Bacteria due to an ancient evolutionary emer-

gence [44,45], and their inclusion could potentially bias a comparison between CBB-positive

and closely related, CBB-negative genomes. For example, median distances from CBB-positive

genomes to their closest CBB-negative relatives were 0.75 for Cyanobacteria (n = 470) and 0.14

for non-cyanobacterial microbes (n = 1,020; p� 1.5�10−83, Wilcoxon rank sum test), indicat-

ing significant divergence of Cyanobacteria from their most closely related, non-CBB

genomes. The closest CBB-negative relatives of Cyanobacteria include false CBB-negative Cya-

nobacteria (154 genomes), but mostly Firmicutes (313 genomes), primarily of class Bacilli (176

genomes). While Cyanobacteria are a highly relevant biotechnological platform, including

them here would bias the dataset, so that any discriminating genetic differences would be spe-

cific to separating the large number of Cyanobacteria from all other bacteria instead of focus-

ing on early adaptations specific to acquisition of the Calvin cycle. Additionally, the distant

“close relatives” of Cyanobacteria, i.e. Firmicutes, could introduce additional noise from their

specific genes compared to the rest of the dataset. To maintain the focus on early adaptations,

Cyanobacteria were excluded from further analysis, leaving 1,020 CBB-positive genomes. We

note that genetic differences among Cyanobacteria have been investigated previously [46].
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The 945 CBB-positive bacterial genomes were mainly from the orders Burkholderiales and

Rhizobiales, other Alpha- and Gammaproteobacteria, and some Actinobacteriota and Firmi-

cutes. The 75 CBB-positive archaeal genomes were mainly from the Halobacterota orders

Methanomicrobiales, Archaeoglobales, and Methanotrichales, and may harbor the CBB-like

reductive hexulose-phosphate pathway studied in methanogenic Archaea [47]. We picked an

equal number (1,020) of CBB-negative genomes with the shortest possible phylogenetic dis-

tance to the CBB-positive genomes to serve as a contrasting dataset with similar taxonomic

distribution (Fig 2).

Three complementary statistical analyses to rank genes for their relevance

to the acquisition of the Calvin cycle

From the 2,040 selected genomes (ORFs available at https://doi.org/10.6084/m9.figshare.

13013309) we identified genetic adaptations that specifically accompany the Calvin cycle using

three methods: enrichment analysis, ancestral character estimation (ACE), and random forest

machine learning. We used copy numbers of Pfam domains (https://pfam.xfam.org/) and

copy numbers of enzymes in these genomes as “genetic features,” to be investigated (12,703

features; ORF annotations available at https://doi.org/10.6084/m9.figshare.13013309, and copy

numbers provided in S1 Dataset). Enzymes were assigned Enzyme Commission (EC) numbers

by DeepEC [48]. We will refer to these genetic features simply as “genes” in the remainder of

the text. The enrichment analysis compared gene copy number distributions between CBB-

positive and CBB-negative genomes using a Wilcoxon rank sum test (S2 Dataset). ACE

”rewinded” evolution by estimating the ancestral CBB status (positive or negative) and copy

number of genes in phylogenetic tree clades that we call subtrees. The estimations of ancestral

CBB status and gene copy number were then correlated (S3 Dataset). Finally, the random for-

est analysis encompassed training a machine learning classifier to distinguish between CBB-

positive and CBB-negative genomes. The output is an importance value for 1,200 genes,

Fig 2. The Calvin cycle is present in a diverse range of Bacteria and Archaea. Bars display the taxonomic distribution of 1,020 CBB-positive (+) and

1,020 CBB-negative (-) genomes analyzed in this study. Bars are grouped by phylum, or class for Proteobacteria. The orders with most members have

separate bars, while other organisms are aggregated under the “Other” labels.

https://doi.org/10.1371/journal.pcbi.1008742.g002
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selected through logistic regression before training, that relates to their contribution to this

classifier (S4 Dataset). After analysis with the three methods, genes were ranked by seeking

low enrichment q values, high weighted sum of absolute ACE correlations, and high random

forest importance (Fig 3). The rankings correlated best between the ACE and random forest

analyses (Spearman r� 0.44, p� 1.0�10−57, n = 1,192), followed by enrichment and random

forest (r� 0.23, p� 4.5�10−16, n = 1,194), and ACE and enrichment (r� 0.20, p� 1.8�10−126,

n = 11,731). The agreement in rankings between the ACE and random forest analyses may

reflect their ability to emphasize positive and negative associations at the same time.

Using three different methods allowed us to avoid outliers in any one particular method.

The three methods also ensured that every gene and aspect of adaptation was probed thor-

oughly. For example, while machine learning should be the most powerful way to rank genes,

it is recommended to filter the input through feature selection to improve performance, reduce

training time, and avoid overfitting. In our case the random forest probed only the 1,200 most

promising genes, just a fraction of the total feature set. Furthermore, the random forest

machine learning model provides a ranking through the so-called feature importance values,

but it does not provide straightforward information on how it reaches those conclusions.

Therefore, we needed the enrichment analysis to determine if the copy numbers of specific

genes were generally higher or lower in CBB-positive genomes. We also needed the ACE anal-

ysis to determine if genes showed positive or negative correlation to the emergence of the Cal-

vin cycle within specific microbial groups. The ranks calculated by the three methods were

Fig 3. Three methods for identifying and ranking the importance of genes distinguishing Calvin cycle-positive genomes from relatives cooperate

to yield a consensus ranking. The rank of genes, i.e. Enzyme Commission numbers (EC) or Pfam families, within each method (x-axes, logarithmic

scale) is plotted against the consensus rank from all three methods (y-axis, logarithmic scale). The orange color intensity (square root scale) indicates

the median distance between the gene and Rubisco in number of genes in CBB-positive genomes (S6 Dataset), if the gene was found on the same DNA

strand as Rubisco more than 200 times. Genes detected 200 times or fewer on the same DNA strand as Rubisco are shown in light purple. Note that ECs

and Pfams were ranked separately in the random forest analysis and thereby each rank is shared by one EC and one Pfam. The random forest analysis

included only 1,200 genes due to so-called feature selection preceding ranking (see Materials and methods). The gap between ranks 4,714 and 6,824 in

the enrichment analysis is due to 2,110 genes sharing the same q value used for ranking (S2 Dataset). Abbreviations: Ald, fructose-bisphosphate aldolase

(EC 4.1.2.13, PF01116); ATPsyn, ATP synthase (PF02823); CbbQ, Rubisco activase CbbQ (PF08406); CbbX, Rubisco activase CbbX (PF17866,

“AAA_lid_6”); Fbp, fructose-1,6-bisphosphatase (EC 3.1.3.11, PF00316); GP, glycogen phosphorylase (EC 2.4.1.1); Mdh, malate dehydrogenase (EC

1.1.5.4); Rpe, ribulose-phosphate 3-epimerase (EC 5.1.3.1, PF00834); Tkt, transketolase (EC 2.2.1.1).

https://doi.org/10.1371/journal.pcbi.1008742.g003
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added together and then ranked again, which gave a final consensus rank that included 12,501

genes (Fig 3, Table 1, S5 Dataset). A top consensus rank indicated that the three methods were

in agreement, thereby identifying the most prominent genetic changes associated with the Cal-

vin cycle. From here on, we only report the consensus rank in the text.

Before examining the biological results, we first briefly discuss the limitations of the three

individual statistical comparison methods. The enrichment analysis identified 878 genes sig-

nificantly enriched or depleted in CBB-positive genomes (q< 0.05), with log2 ratios of CBB-

positive to CBB-negative copy numbers ranging from -6.0 to 6.3 (95% of values -2.6 to 2.2).

Genes with low q values contributed to a prominent consensus rank. Rubisco activase CbbX

(PF17866) had the lowest q value, i.e. 6.8�10−22, indicating clear separation between CBB-posi-

tive (0.77 copies) and CBB-negative genomes (0.40 copies). At the other end of the significance

spectrum, the Major Facilitator Superfamily (PF07690) showed q value 0.038 and the smallest

significant absolute log2 ratio (0.012) between CBB-positive (38.6 copies) and CBB-negative

genomes (39.0 copies).

The ACE analysis was influenced by the structure of the phylogenetic trees, so that Calvin

cycle status signal was lost as leaf node patterns increased in complexity. For example, ancestral

nodes had equal likelihood of being CBB-positive and CBB-negative in subtree 1 when com-

bined with other subtrees (Fig 4A). However, when subtree 1 was analyzed separately the

ancestral characters became visible (Fig 4C). Therefore, we correlated the Calvin cycle and

other genes using the twelve subtrees. Ultimately, subtree 1 (Fig 4C) yielded a significant corre-

lation for 25% of the 7,265 genes in those organisms. At the extremes, Archaea yielded 2,217

significant genes out of 5,672 (39%), while subtree 3 yielded none out of 6,600. The second

highest number of significant genes among bacteria was 13% in subtree 5, indicating that

Archaea and bacterial subtree 1 dominated the contribution from the ACE analysis in the con-

sensus ranking.

The random forest analysis yielded a machine learning classifier that labeled genomes as

CBB-positive or CBB-negative with 72.9% accuracy using ECs and 76.5% accuracy using

Pfams, compared to the expected accuracy of 50% if picking labels at random. For comparison,

it has been shown that a random forest can achieve 88% accuracy in predicting photosynthetic

proteins based on gene neighborhood [49], a tree-based classifier can achieve 86% accuracy

(94% with a k-nearest neighbor model) in predicting the recombination status of HIV

genomes [50], and a support vector machine can achieve 87% accuracy in classifying bacteria

as pathogenic or not based on their proteomes [51]. The accuracy achieved in the present

study was likely limited by false negative genomes, genomes in the process of adapting to

recent loss or gain of the Calvin cycle, a low amount of training data, and limited ability of the

random forest to focus on relevant aspects of the data. Nevertheless, our algorithm appeared to

identify relevant biological information distinguishing CBB-positive genomes from those

without the Calvin cycle (discussed below).

Below we report on what we identified as the most prominent, interesting, and relevant bio-

logical patterns in the dataset. We consider adaptations in the top 10%, i.e. the top 1250 genes,

to have good consensus ranks, while others are poor, but the focus is mainly on the top 200

genes. There are other adaptations with a narrower scope that are not discussed here, but can

be found in the Supporting information.

Core Calvin cycle enzyme genes are generally enriched in genomes with

Rubisco and Prk

Fructose-1,6-bisphosphatase (EC 3.1.3.11), aldolase (EC 4.1.2.13), and transketolase (EC

2.2.1.1) each ranked within the top five genes (Table 1), thus highlighting the Calvin cycle’s
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Table 1. Consensus rank of genetic adaptations to the Calvin cycle.

Rank Gene CBB+ CBB- ACE r Imp. Description

2 EC 3.1.3.11 1.05 0.69 0.29 0.0200 fructose-bisphosphatase

4 EC 4.1.2.13 0.99 0.69 0.2 0.0149 fructose-bisphosphate aldolase

5 EC 2.2.1.1 1.33 0.98 0.19 0.0164 transketolase

7 EC 2.4.1.1 0.69 0.46 0.19 0.0104 glycogen phosphorylase

10 EC 1.1.5.4 0.11 0.19 0.3 0.0042 malate dehydrogenase (quinone)

27 EC 1.4.4.2 1.04 0.87 0.16 NA glycine dehydrogenase (aminomethyl-transferring)

51 EC 2.7.7.27 0.71 0.52 0.14 NA glucose-1-phosphate adenylyltransferase

53 EC 3.5.1.2 0.71 0.83 0.16 0.0061 glutaminase

56 EC 4.2.1.12 0.23 0.29 0.17 0.0040 phosphogluconate dehydratase (Edd)

62 EC 3.5.4.25 0.42 0.52 0.19 NA GTP cyclohydrolase II

75 EC 3.1.3.97 0.2 0.14 0.31 0.0029 3’,5’-nucleoside bisphosphate phosphatase

80 EC 4.1.1.3 0.24 0.33 0.12 0.0047 oxaloacetate decarboxylase

80 EC 4.1.1.3 0.24 0.33 0.12 0.0047 oxaloacetate decarboxylase (Na+ extruding)

82 EC 1.1.1.86 0.74 0.66 0.13 0.0058 ketol-acid reductoisomerase (NADP+)

87 EC 1.2.1.3 1.56 1.76 0.17 NA aldehyde dehydrogenase (NAD+)

116 EC 6.3.2.6 0.81 0.74 0.17 NA phosphoribosylaminoimidazolesuccinocarboxamide synthase

118 EC 4.2.1.3 1.07 1.26 0.11 0.0098 aconitate hydratase

143 EC 1.6.5.11 6.05 4.94 0.12 NA NADH dehydrogenase (quinone)

156 EC 2.1.1.177 0.55 0.46 0.12 0.0041 23S rRNA (pseudouridine1915-N3)-methyltransferase

161 EC 6.2.1.5 1.49 1.23 0.12 NA succinate—CoA ligase (ADP-forming)

1 PF00316 0.92 0.55 0.3 0.0174 Fructose-1-6-bisphosphatase, N-terminal domain

3 PF17866 0.77 0.4 0.21 0.0226 AAA lid domain (“AAA_lid_6”; CbbX)

6 PF08406 0.91 0.61 0.21 0.0062 CbbQ/NirQ/NorQ C-terminal

8 PF01116 1.18 0.81 0.17 0.0106 Fructose-bisphosphate aldolase class-II

9 PF02823 0.75 0.54 0.19 0.0033 ATP synthase, Delta/Epsilon chain, beta-sandwich domain

11 PF00834 1.03 0.87 0.16 0.0039 Ribulose-phosphate 3 epimerase family

12 PF12774 0.16 0.04 0.17 0.0049 Hydrolytic ATP binding site of dynein motor region

13 PF11684 0.29 0.19 0.22 0.0022 Protein of unknown function (DUF3280)

14 PF02347 1.22 1.05 0.18 0.0026 Glycine cleavage system P-protein

15 PF01112 0.27 0.15 0.24 0.0014 Asparaginase

16 PF01794 0.64 0.83 0.16 0.0024 Ferric reductase like transmembrane component

17 PF03441 0.77 0.95 0.18 0.0022 FAD binding domain of DNA photolyase

18 PF13420 2.13 2.53 0.15 0.0035 Acetyltransferase (GNAT) domain

19 PF03924 0.78 1.19 0.14 0.0036 CHASE domain

20 PF14691 1.49 1.34 0.21 0.0043 Dihydroprymidine dehydrogenase domain II, 4Fe-4S cluster

21 PF06580 0.47 0.61 0.18 0.0022 Histidine kinase

22 PF03595 0.53 0.38 0.19 NA Voltage-dependent anion channel

23 PF03200 0.32 0.17 0.19 NA Glycosyl hydrolase family 63 C-terminal domain

24 PF03881 0.41 0.29 0.17 NA Fructosamine kinase

25 PF04172 0.32 0.48 0.18 NA LrgB-like family

This table shows the top 20 ECs and Pfams, with lower ranked genes listed in S5 Dataset. Columns contain consensus rank (Rank), EC number or Pfam ID (Gene),

average copy number in CBB-positive (CBB+) and CBB-negative (CBB-) genomes, which was probed by the enrichment analysis, average weighted ACE correlation

value (ACE r; see Materials and methods), random forest importance (Imp.), and a description provided by the KEGG or Pfam databases (Description). Missing

importance values (NA) indicate that those genes were filtered out in the random forest analysis.

https://doi.org/10.1371/journal.pcbi.1008742.t001
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Fig 4. Tracing the evolution of Calvin cycle genome integration. The panels show likelihood of ancestral Calvin cycle presence (node

fill color; cyan indicates CBB-positive and brown indicates CBB-negative) in bacterial subtrees (A), positive correlation (Spearman r�
0.45) to ancestral gene copy numbers (line color) of fructose-1,6-bisphosphatase (Fbp; EC 3.1.3.11) in Archaea (B), and strong negative

correlation (Spearman r� -0.85) to ancestral gene copy numbers (line color) of transcriptional regulator AraC (PF06719) in bacterial

subtree 1 (C). Each leaf node (triangles) is one contemporary genome. Outer rings indicate genome taxonomic association. Scale bars
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integration with central carbon metabolism (Fig 5). Several underlying patterns explain the

excellent consensus ranking; Archaea was one of three subtrees that displayed positive correla-

tion between the Calvin cycle and fructose-1,6-bisphosphatase (Fig 4B). Fructose-1,6-bispho-

sphatase, aldolase, and transketolase genes often located adjacently to Rubisco and Prk (Fig 3,

S6 Dataset), indicating a wide-spread operon structure that has been reported previously in

Calvin cycle genes [52]. An obvious explanation for this operon structure is transmission

together, as illustrated by close association on megaplasmids in Ralstonia eutropha [37] and

Oligotropha carboxidovorans [38], though operons can form independently of HGT to facili-

tate complex regulation [53]. The increased copy numbers of fructose-1,6-bisphosphatase,

aldolase, and transketolase in CBB-positive genomes reflects the responsibility of these

enzymes to carry out reverse fluxes compared to heterotrophic growth on glycolytic carbon

sources such as glucose. Multiple copies could enable parallel evolution of Calvin cycle and gly-

colytic adaptations, as new copies can evolve expression levels and kinetic constants needed to

retain Calvin cycle flux. Stable operation of the Calvin cycle has been proposed to depend spe-

cifically on the saturation states of fructose-1,6-bisphosphatase, aldolase, and transketolase

[54].

The 3-phosphoglycerate node is important for Calvin cycle stability [31,32]. Phosphoglycer-

ate kinase (Pgk; EC 2.7.2.3) diverts fixed carbon to RuBP regeneration and gluconeogenesis

(3PG to BPG in Fig 5) and was enriched in CBB-positive genomes (0.88 copies compared to

0.77), yielding a consensus rank of 939. Phosphoglycerate mutase (Pgm) competes with Pgk to

divert 3-phosphoglycerate to the TCA cycle for biomass synthesis (3PG to 2PG in Fig 5). Pgm

isozymes have been shown to regulate Calvin cycle and glycolysis flux in response to changes

in growth conditions [55]. We observed enrichment for 2,3-bisphosphoglycerate-dependent

Pgm (EC 5.4.2.11) in CBB-positive genomes (0.49 copies compared to 0.36; consensus rank

563), but not for 2,3-bisphosphoglycerate-independent Pgm (EC 5.4.2.12; 0.40 copies com-

pared to 0.43; consensus rank 5,249). Recently, post-translational inhibition of Pgm, carried

out by the protein PirC, was shown to be critical for glycogen formation in Cyanobacteria

[56]. In our dataset, PirC (PF08865) was found in only one CBB-negative Bradyrhizobium
ORF, consistent with being a Cyanobacteria-specific adaptation.

Ribulose-phosphate 3-epimerase (EC 5.1.3.1; Xu5P to Ru5P in Fig 5) and ribose-5-phos-

phate isomerase (EC 5.3.1.6; R5P to Ru5P in Fig 5) held consensus ranks 316 (11 for the N-ter-

minus PF00834) and 170. Although occasionally observed adjacent to Rubisco or Prk, the

median distance for ribulose-phosphate 3-epimerase was five genes, and more than 280 genes

for ribose-5-phosphate isomerase (S6 Dataset). The good ranking of these reactions can be

attributed to their immediate connection to the Prk substrate ribulose-5-phosphate.

Our analysis generated poor consensus ranks for the three remaining core enzymes of the

Calvin cycle, i.e. glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12 and 1.2.1.59), trans-

aldolase (EC 2.2.1.2), and triose phosphate isomerase (EC 5.3.1.1), which ranked 1840th (triose

phosphate isomerase) or worse. Glyceraldehyde-3-phosphate dehydrogenase and triose phos-

phate isomerase showed average gene copy numbers close to one (0.8–0.9) regardless of CBB

status, emphasizing their contribution to glycolysis and gluconeogenesis in all organisms.

Directly connected to the central Calvin cycle metabolites, are the Entner-Doudoroff (ED)

and oxidative pentose phosphate (OPP) pathways. Glycogen usage via the ED and OPP path-

ways could restore depleted Calvin cycle intermediates, particularly during transition between

show substitutions per site. Asterisks (�) indicate archaeal genomes encoding Rubisco activase CbbQ (PF08406). CbbQ is negatively

correlated to the Calvin cycle in Archaea (r� -0.62), which is explained by the fact that most of the archaeal genomes with CbbQ are

CBB-negative (brown).

https://doi.org/10.1371/journal.pcbi.1008742.g004
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Fig 5. Central carbon metabolism and the pentose phosphate pathway represent a hotspot for Calvin cycle adaptations. Color

indicates the consensus rank of enzymes on a logarithmic scale. Points above the color scale bar represent the consensus rank of

individual enzymes. Line thickness indicates whether the enzyme-encoding genes were enriched or depleted in CBB-positive

genomes. Dashed lines indicate that the enzyme was not detected or that it was removed because it was Prk or Rubisco (see Materials

and methods). Co-factors and small molecules such as CO2 have been omitted from most reactions. Arrows are used where enzymes

that mainly catalyze specific directions rank differently. Special characters indicate pyrophosphate-dependent phosphofructo-

1-kinase (�) and 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase (†). The map is based on relevant subsystems of

KEGG’s central carbon metabolism map (map01200) and related maps. The logarithm of consensus ranks for Enzyme Commission

(EC) numbers were normalized to the range 0 to 1 and encoded as color. We also encoded significant EC enrichment or depletion in

CBB-positive genomes as different colors. The EC-to-color tables were submitted to KEGG’s pathway mapping tool (https://www.

genome.jp/kegg/tool/map_pathway2.html) to yield annotated maps that were then used as templates for drawing the figure. Note that

the reaction SBP to S7P is represented by EC 3.1.3.11, rather than the eukaryotic SBPase EC 3.1.3.37, assuming that EC 3.1.3.11

represents bifunctional F/SBPase (Fbp). Also note that when multiple ECs mapped to the same reaction, only the best ranking EC

color was used, unless special patterns of interest were present, e.g. 3PG to 2PG (†). Abbreviations: 2OG, 2-oxoglutarate; 2PG,

2-phosphoglycerate; 3HP, 3-hydroxypropionate; 3PG, 3-phosphoglycerate; AC, acetate; ACAH, acetaldehyde; AC-CoA, acetyl-CoA;

ACP, acetyl phosphate; Ald, fructose-bisphosphate aldolase; BPG, 1,3-bisphosphoglycerate; CIT, citrate; CM-CoA, citramalyl-CoA;

Cyt c, cytochrome c; DCHB, dicarboxylate-hydroxybutyrate; DD-Gn6P, 2-dehydro-3-deoxy-gluconate-6-phosphate; DHAP,

dihydroxyacetone phosphate; DHFUM, dihydroxyfumarate; E4P, erythrose-4-phosphate; Eda, 2-dehydro-3-deoxy-phosphogluconate

aldolase; Edd, 6-phosphogluconate dehydratase; EtOH, ethanol; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; Fbp,

fructose 1,6-bisphosphate phosphatase; FUM, fumarate; G1P, glucose-1-phosphate; G6P, glucose-6-phosphate; G, glycerate; GAP,

glyceraldehyde-3-phosphate; GLX, glyoxylate; Gly, glycine; GLYC, glycolate; Gnd, 6-phosphogluconate dehydrogenase; Gn6P,

gluconate-6-phosphate; GnL6P, glucono-1,5-lactone 6-phosphate; HPHB, hydroxypropionate-hydroxybutyrate; HPYR,

hydroxypyruvate; Hu6P, arabino-3-hexulose-6-phosphate; ICIT, isocitrate; LAC, lactate; MAL, malate; MAL-CoA, malyl-CoA;

MM-CoA, methylmalonyl-CoA; m-TAR, meso-tartrate; OA, oxaloacetate; OGLYC, oxaloglycolate; PEP, phosphoenolpyruvate;

PEPC, phosphoenolpyruvate carboxylase; PEPK, phosphoenolpyruvate carboxykinase; Pgl, 6-phosphogluconolactonase; PGLYC,

phosphoglycolate; PRPP, 5-phosphoribosyl 1-pyrophosphate; PYR, pyruvate; R1P, ribose-1-phosphate; R5P, ribose-5-phosphate;

Ru5P, ribulose-5-phosphate; RuBP, ribulose-1,5-bisphosphate; S7P, sedoheptulose-7-phosphate; SBP, sedoheptulose-1,7-

bisphosphate; Ser, serine; SSA, succinate semialdehyde; SUCC, succinate; SUCC-CoA, succinyl-CoA; TAR, tartrate; TARS, tartronate

semialdehyde; TCA, tri-carboxylic acid; Tkt, transketolase; Xfpk, phosphoketolase; Xu5P, xylulose-5-phosphate; Zwf, glucose-

6-phosphate dehydrogenase.

https://doi.org/10.1371/journal.pcbi.1008742.g005
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growth conditions [57]. The ED and OPP pathways transform glucose 6-phosphate into ribu-

lose-5-phosphate or glyceraldehyde-3-phosphate and pyruvate (Fig 5). The most prominent

ED and OPP enzymes in our analysis were Edd (EC 4.2.1.12) at consensus rank 56, Gnd at

consensus rank 100 (PF00393), and Zwf at consensus rank 579 (NADP-dependent; EC

1.1.1.49). Edd was slightly depleted in CBB-positive genomes (0.23 copies compared to 0.29)

and negatively correlated in subtrees 1 and 9. Meanwhile, CBB-positive genomes were slightly

enriched in NADP-dependent Zwf (0.84 copies compared to 0.71) and Gnd (0.86 copies com-

pared to 0.65 for PF00393, 0.33 versus 0.25 for NADP-dependent EC 1.1.1.44, and 0.051 versus

0.023 for NAD-dependent EC 1.1.1.343). Furthermore, NAD-dependent Gnd was positively

correlated in subtree 1. Thus, CBB-positive Bacteria and Archaea (non-cyanobacterial) may

benefit from using Zwf (G6P to GnL6P in Fig 5) and Gnd (Gn6P to Ru5P in Fig 5) to restore

ribulose-5-phosphate from stored glycogen. Judging by the depletion of Edd and close to poor

ranking of Eda (1,145th), the CBB-positive microbes utilize the OPP shunt. The OPP shunt is

less carbon efficient than the full ED shunt, but provides additional NADPH through Gnd,

which may be useful in a scenario limited by energy rather than CO2 availability.

Phosphoketolase (Xfpk in Fig 5) is an alternative route from the Calvin cycle intermediates

xylulose-5-phosphate and fructose-6-phosphate to acetyl-CoA, via acetyl phosphate, that pre-

vents the decarboxylation of pyruvate. On average poor ranking of Xfpk (1,074 for EC 4.1.2.9,

and 8,215 for EC 4.1.2.22) and low copy numbers in both CBB-positive and CBB-negative

microbes (0.11 versus 0.07 for EC 4.1.2.9, and 0.20 versus 0.18 for EC 4.1.2.22; not significant)

indicates that the phosphoketolase pathway is not a widely embraced adaptation to the Calvin

cycle.

The Calvin cycle is accompanied by increased carbon storage capacity

Once carbon has been fixed by a stably operating Calvin cycle, it must be distributed to grow-

ing biomass or saved for later use. The top 200 genes, by consensus rank, included twelve

sugar metabolism and carbon storage proteins (EC 2.4.1.1, PF00343, PF03200, PF17167,

PF03065, PF03881, EC 2.7.7.27, PF00953, PF06165, PF09492, PF05116, and PF10091), e.g. car-

bohydrate/glycogen phosphorylase, glycosyl hydrolase, and pectic acid lyase, that were all

enriched in CBB-positive genomes. When energy is readily available, CBB-positive organisms

stockpile sugar in order to survive nutrient or energy limitation, as a sink for electron overflow

[58], or as a source for supplying Calvin cycle intermediates [57]. Polyhydroxybutyrate (PHB),

a well-studied carbon storage polymer [59], was not a general Calvin cycle adaptation. Instead,

PHB depolymerase (PF10503; consensus rank 1,244) had a negative correlation in subtree 9,

and the PHB accumulation regulator (PF05233 and PF07879) was significantly depleted in

CBB-positive genomes.

Carbon concentrating and recycling mechanisms enhance Calvin cycle

operation

Adaptations to the Calvin cycle may go beyond enzymes in central carbon metabolism. For

example, the carboxysome is a microcompartment made of protein that houses Rubisco and

carbonic anhydrase, ensuring high concentration of CO2 for optimal CO2 fixation by Rubisco

[60]. Subtree 1, dominated by Burkholderiales, showed positive correlations between the Cal-

vin cycle and the carboxysome shell protein CsoS as well as the carboxysome-related protein

ethanolamine utilization protein EutN (PF03319). Furthermore, the bacterial microcompart-

ment protein BMC (PF00936) was enriched in CBB-positive genomes (0.27 copies per genome

compared to 0.13). While CsoS (PF12288) occupied consensus rank 824, with 0.12 copies per

CBB-positive genome (0.02 in CBB-negative), the associated carbonic anhydrase (PF08936)
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ranked 263th, with 0.16 copies per genome (0.03 in CBB-negative), suggesting that the carbonic

anhydrase might operate independently of the shell protein, as shown for Ralstonia eutropha
[61]. Optimal Rubisco function also requires activase chaperones [62,63], i.e. CbbQ (PF08406)

and CbbX (PF17866), which occupied top consensus ranks and were genomically associated

with Rubisco (Fig 3). A lack of accessory proteins might make the introduction of Rubisco into

new hosts difficult, but it was not necessary in E. coli [29,30]. Among Archaea, CbbQ genes

were primarily restricted to the CBB-negative Methanosarcinales clade (asterisks in Fig 4B),

which harbors e.g. Methanococcoides that uses Rubisco for nucleoside metabolism [64]. CBB-

positive Archaea may use a different activase, or may not need one. For example, the Synecho-
coccus sp. PCC 7942 Rubisco is independent of RbcX activase [65] with RbcX supporting car-

boxysome assembly [66]. Consistent with excluding cyanobacterial genomes, we did not

detect RbcX (PF02341).

Photorespiration, i.e. when Rubisco fixes O2 instead of CO2, produces 2-phosphoglycolate,

which is subsequently oxidized to glyoxylate by phosphoglycolate phosphatase (EC 3.1.3.18;

PGLYC to GLYC in Fig 5) and glycolate oxidase (EC 1.1.3.15; GLYC to GLX in Fig 5). These

two enzymes ranked 255th and 268th, and while the former was enriched in CBB-positive

organisms (0.81 copies compared to 0.68), the latter was rare and depleted (0.07 copies com-

pared to 0.1). Cyanobacteria, which were excluded in this analysis, benefit from having more

than one copy of phosphoglycolate phosphatase to prevent inhibition of Calvin cycle enzymes

caused by 2-phosphoglycolate [67]. However, other CBB-positive microbes do not seem to

have a rich complement of phosphoglycolate phosphatase in general (0.81 copies per genome).

Looking at CBB-positive genomes individually, 416 had no copies, 447 had one copy, 143 had

two copies, 13 had three, and one genome (Enterovibrio calviensis) had four copies. Out of

these 157 genomes with more than one copy, 118 belonged to Gammaproteobacteria and 37

belonged to Alphaproteobacteria, i.e. a total of 99%, while these groups constitute 73% of the

analyzed genomes (Fig 2). The microbes with putative phosphoglycolate phosphatase isozymes

belonged mainly to the orders Burkholderiales (62 genomes), Rhizobiales (23), Rhodobacter-

ales (9), Thiomicrospirales (9), Chromatiales (8) and Enterobacterales (8). These findings sug-

gest that some CBB-positive microbes may benefit from having phosphoglycolate phosphatase

isozymes like observed in Cyanobacteria. Glyoxylate carbons can be recycled or eliminated for

example by the glycerate pathway in Ralstonia eutropha, the malate cycle, or the photorespira-

tory C2 cycle [68,69]. Tartronate semialdehyde reductase (EC 1.1.1.60; TARS to G in Fig 5)

and tartrate dehydrogenase (EC 1.1.1.93; OGLYC to TAR/m-TAR in Fig 5) represent the gly-

cerate pathway, but these enzymes showed no enrichment, and only the former was significant

in the ACE analysis, reporting both positive (subtree 5) and negative correlation (subtree 4).

The malate cycle (EC 2.3.3.9, EC 1.1.1.38–40, EC 1.2.4.1, 1.8.1.4, and 2.3.1.12) did not rank bet-

ter than 2,246th and was therefore not a Calvin cycle-specific adaptation, although gene copy

numbers of 0.19–1.4 would support operation in certain organisms. Photorespiration in non-

oxygenic autotrophs may be less important than in oxygenic photosynthetic organisms such as

Cyanobacteria. Another explanation could be use of the Calvin cycle to increase carbon yield

on sugar rather than an exclusively autotrophic lifestyle [70], which could lower the selection

pressure for evolving extensive photorespiration routes. Nevertheless, another 2-phosphogly-

colate “salvage” alternative is the glyoxylate shunt operated by isocitrate lyase, which generates

isocitrate from succinate and glyoxylate (SUCC and GLX to ICIT in Fig 5). Lower aconitase

(EC 4.2.1.3) and higher NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42) rates could

facilitate flux along the glyoxylate shunt towards 2-oxoglutarate (CIT to ICIT to 2OG in Fig 5),

releasing CO2 for re-fixation in the Calvin cycle. Aconitase was indeed depleted in CBB-posi-

tive genomes (1.1 copies compared to 1.3), while isocitrate dehydrogenase was enriched (0.52

copies compared to 0.44).
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The Calvin cycle is accompanied by adaptations for energy acquisition

Autotrophic metabolism is fueled by inorganic energy sources such as light (photosynthesis),

iron [71], sulfur/sulfide [72,73], or molecular hydrogen [74]. Based on the enrichment of

energy metabolism among essential genes in Cyanobacteria [75,76], we expected an associa-

tion between energy metabolism and the non-cyanobacterial Calvin cycle. Indeed, e.g. sulfur

oxidation protein SoxZ (PF08770) from autotrophic sulfur-oxidizing bacteria, and six hydrog-

enase domains (PF01155, PF01924, PF17788, PF07503, PF00374, and PF02769) showed higher

gene copy numbers in CBB-positive genomes. The best ranking hydrogenase gene occupied

consensus rank 34 (PF01155). Each hydrogenase gene co-located with Rubisco or Prk on a

plasmid at most on three occasions, and located > 80 genes away in general, suggesting that

transmission through plasmid or adjacency is rare (S6 Dataset). However, note that only 163

(16%) of the 1,020 CBB-positive genomes had contigs confirmed to be chromosomes or plas-

mids. Nevertheless, we interpret the good ranking of hydrogenase as either adaptations to the

Calvin cycle, or as a genetic background that favored the acquisition of the Calvin cycle.

Ammonia monooxygenase (EC 1.14.99.39) had on average 0.11 copies per CBB-positive

genome, but was nearly absent from CBB-negative genomes. The enzyme held one of the high-

est importance values in the random forest analysis, and showed significant correlation to the

Calvin cycle in subtree 1. Despite this, the consensus rank was only 2,322. Ammonia monoox-

ygenase catalyzes the first step of nitrification, supplying energy for e.g. CO2 fixation. Ammo-

nia oxidizing Archaea use the 3-hydroxypropionate/4-hydroxybutyrate cycle for autotrophic

growth [77], while certain ammonia oxidizing Bacteria, e.g. Nitrosospira, Nitrosococcus, and

Nitrosomonas, use the Calvin cycle [78]. The poor ranking, but near absence in CBB-negative

genomes, indicates that ammonia monooxygenase may be a niche adaptation to the Calvin

cycle.

CBB-positive genomes showed increased gene copy numbers of electron transport chain

components such as ATP synthase (PF02823; Fig 3, Table 1), proton-conducting membrane

transporter (PF00361), cytochrome C7 (PF14522), and NADH-ubiquinone oxidoreductase

(PF01059), among the consensus top 50 genes. These genes may reflect an energy management

unique to autotrophs.

Based on the photosynthetic bacterium Bradyrhizobium sp. ORS 278, we considered organ-

isms photosynthetic that carried at least three photosynthetic reaction center Pfams (S2 Table).

Since 115 CBB-positive genomes and 113 CBB-negative genomes encoded photosynthesis

capability, photosynthesis was not specific for the Calvin cycle.

Metabolic and genetic regulation associated with the Calvin cycle

Calvin cycle function in a new host is likely to require evolution of control at different levels,

such as regulation of enzyme activities and gene transcription. For example, when the Calvin

cycle was established in E. coli, its stable operation required mutation of both the PEP synthe-

tase regulator ppsR and the master metabolic transcription regulator crp [31]. With the ACE

analysis, we found evidence of several transcription factors that were selected for or against in

specific phylogenetic subtrees. The AraC-type transcriptional regulator (PF06719), showed

one of the strongest negative correlations, with r� -0.85 in subtree 1 (Fig 4C), yet its poor con-

sensus rank (2,117) suggests it is not a general adaptation across multiple subtrees. A helix-

turn-helix motif associated with AraC proteins (PF00165) had a good consensus rank of 234,

due to its depletion in CBB-positive genomes (13 copies compared to 16), and negative corre-

lation in subtree 1 and in Archaea. The arabinose binding domain of AraC (PF12625) was

even more prominent at consensus rank 52, and showed significant depletion in CBB-positive

genomes (1.4 copies compared to 2.0). AraC senses arabinose and regulates the arabinose
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operon [79]. AraC’s negative correlation in subtree 1 was matched by arabinose-5-phosphate

isomerase (EC 5.3.1.13; Fig 6A). CBB-positive microbes may have a smaller set of AraC-type

regulators than CBB-negative because of not utilizing the pentose arabinose, or because they

must avoid arabinose metabolism enzymes. Arabinose-5-phosphate isomerase connects to the

Calvin cycle by operating on ribulose-5-phosphate (Ru5P in Figs 5 and 6B). Diverting flux

near ribulose-5-phosphate may have a significant effect on Calvin cycle operation since this

metabolite is the substrate of Prk. Furthermore, arabinose-5-phosphate inhibits ribose-5-phos-

phate isomerase [80] and transaldolase [81], demonstrated for enzymes from E. coli and Fran-
cisella tularensis, respectively, which may disturb Calvin cycle operation (Fig 6B).

Many top ranked genetic adaptations have unknown functions

Pfam domains of unknown function (DUFs) and uncharacterized protein families (UPFs)

may play previously unknown roles in adaptation to the Calvin cycle. We found 20 DUFs/

UPFs among the top 200 Pfams, that is 10%, while they account for 22.6% of the full Pfam

32.0. Genes of unknown function were less frequent also among essential genes of the photo-

autotroph Synechoccoccus elongatus PCC 7942, which was attributed to essential gene conser-

vation and research focusing on phenotypes that can be measured [75]. DUF4156 (PF13698)

was the most enriched DUF/UPF (0.14 copies compared to 0.031 in CBB-negative genomes),

and held consensus rank 652. DUF2958 (PF11171) and DUF333 (PF03891) achieved strong

absolute correlations in the ACE analysis, but both showed positive and negative correlations

in different subtrees, and ranked poorly at consensus ranks 1,429 and 3,151. Finally, DUF3280

(PF11684), may be of special interest as it occupied the top 20 Pfams by consensus rank

(Table 1).

Fig 6. Calvin cycle-positive organisms avoid metabolite-level regulation that may disturb cycle function. The enzyme arabinose-5-phosphate

isomerase (Api; EC 5.3.1.13) was negatively correlated with the Calvin cycle (Spearman r� -0.61) in subtree 1 (A), illustrated by likelihood of ancestral

Calvin cycle presence (node fill color) and ancestral Api gene copy numbers (line color). The scale bar (A) shows substitutions per site. Api interferes

with Calvin cycle operation (B) by converting ribulose-5-phosphate to arabinose-5-phosphate (A5P). A5P inhibits (-) transaldolase (GAP and S7P to

F6P and E4P) and ribose-5-phosphate isomerase (R5P to Ru5P). The map is based on KEGG’s central carbon metabolism map (map01200).

Abbreviations: 3PG, 3-phosphoglycerate; A5P, arabinose-5-phosphate; Api, arabinose-5-phosphate isomerase; BPG, 1,3-bisphosphoglycerate; DHAP,

dihydroxyacetone phosphate; E4P, erythrose-4-phosphate; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; GAP, glyceraldehyde-

3-phosphate; R5P, ribose-5-phosphate; Ru5P, ribulose-5-phosphate; RuBP, ribulose-1,5-bisphosphate; S7P, sedoheptulose-7-phosphate; SBP,

sedoheptulose-1,7-bisphosphate; TCA, tri-carboxylic acid; Xu5P, xylulose-5-phosphate.

https://doi.org/10.1371/journal.pcbi.1008742.g006
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Conclusion

Our comparison of genomes carrying the Calvin cycle and their closest relatives lacking this

characteristic identified a wide range of adjustments to central carbon metabolism, sugar

metabolism, and energy metabolism supporting an autotrophic lifestyle. Some adaptations

were general, such that their enrichment or depletion were observed in multiple phylogenetic

subtrees, such as the closely associated enzymes fructose-1,6-bisphosphatase, aldolase, and

transketolase, while others were specialized, such as ammonia monooxygenase. The impor-

tance of CBB-adjacent reactions, such as that catalyzed by arabinose-5-phosphate isomerase,

that may alter concentrations of cycle intermediates or produce Calvin cycle inhibitors, may

become clear with more biochemical detail of Calvin cycle enzymes, or interpretation with

models that can detect metabolic effects on cycle stability [54]. Adaptations also differ depend-

ing on the local evolutionary context; The Rubisco activase CbbQ was either positively or nega-

tively correlated to the Calvin cycle, depending on what subtree was queried in the ACE

analysis. The domains of unknown function were similarly diverse in their responses to the

presence of the Calvin cycle. Importantly, many adaptations were not due to co-transmission

with the Calvin cycle, as demonstrated by significant depletions, or by occupation of distant

genomic loci. To conclude, we suggest that future metabolic engineering projects should learn

from adaptations in the host organism’s closest relatives to reach the most efficient nature-

aided design. Future analyses may also guide metabolic and protein engineering for improved

autotrophic traits by identifying mutations in key genes using methods similar to those pre-

sented here.

Materials and methods

Data analysis was carried out in R v.3.6.1 with tidyverse v.1.2.1 (https://www.tidyverse.org/),

and doMC v.1.3.6 and foreach v.1.4.7 for parallel computation. Random forest training was

done in Python v.3.5.6. Bash commands were parallelized using GNU Parallel v.20141022

[82]. Scripts are available at https://github.com/Asplund-Samuelsson/redmagpie. Software was

run on Ubuntu Linux 18.04.3 LTS (16 CPU cores and 128 GB RAM) and 20.04.1 LTS (12 CPU

cores and 32 GB RAM).

24,706 archaeal and bacterial genomes listed as species representatives in GTDB release 89

[83,84] were downloaded from NCBI on 16–19 August 2019 in nucleotide FASTA format.

Genome completeness CheckM [85] values were provided by GTDB. We identified ORFs with

stand-alone ORFfinder v.0.4.3 (https://www.ncbi.nlm.nih.gov/orffinder/), using the bacterial,

archaeal and plant plastid translation table (option -g 11), requiring ORF length� 300 (option

-ml 300), and excluding ORFs completely surrounded by another ORF (option -n true).
Two Hidden Markov Models (HMMs) were constructed for identification of Rubisco (EC

2.7.1.19) and Prk (EC 4.1.1.39). Amino acid sequences representing KEGG (https://www.

genome.jp) orthologs K01601 (Rubisco; 917 sequences) and K00855 (Prk; 933 sequences) were

downloaded from UniProt (https://www.uniprot.org/) on 25 July 2019, and clustered at 70%

identity using cd-hit v.4.7 [86,87], yielding 150 and 106 cluster representatives for Rubisco and

Prk. The representatives were aligned with MAFFT v.7.271 [88], followed by removal of posi-

tions with> 50% gaps, and then removal of sequences with > 50% gaps, using seqmagick

v0.6.2 (https://fhcrc.github.io/seqmagick/). The remaining 144 Rubisco and 105 Prk sequences

were re-aligned using MAFFT and encoded as HMMs using hmmbuild from hmmer v3.1b2

(http://hmmer.org/). The HMMs yielded bit scores� 25.3 for Rubisco and� 78.2 for Prk

when used with hmmsearch on the sequences from UniProt, thus assuring HMM quality.

The HMMs representing Rubisco and Prk were used with hmmsearch on the archaeal and

bacterial ORFs to classify genomes as Calvin cycle positive (CBB-positive) or negative (CBB-
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negative). The amino acid sequences identified by hmmsearch (sequence E-value < 0.01) were

submitted to KEGG BlastKOALA v2.2 (https://www.kegg.jp/blastkoala/) on 21–23 August

2019, and also subjected to DeepEC (https://bitbucket.org/kaistsystemsbiology/deepec) com-

mit b7e4546 [48] EC number classification. Sequences that only yielded an unexpected KEGG

ortholog or EC were removed. To eliminate form IV Rubisco, which lacks carboxylase activity,

the Rubisco sequences were aligned using MAFFT, and then filtered to sequences possessing

the critical catalytic lysine residue corresponding to position 174 in the alignment by Hanson

and Tabita [89]. Filtered Rubisco sequences and 181 examples of form I-III Rubisco and form

IV Rubisco-like proteins (RLPs) identified by Tabita and colleagues [19] were aligned using

MAFFT and used for tree construction with FastTreeMP v.2.1.8 SSE3 [90] to confirm removal

of RLPs (S1 Fig). Genomes with both Rubisco and Prk were classified as CBB-positive, but cya-

nobacterial genomes were excluded from the downstream analysis.

Distances between CBB-positive genomes and all other genomes (CBB-negative) were cal-

culated from the GTDB archaeal and bacterial core protein alignments using FastTreeMP and

the option -makematrix. Pairs of CBB-positive and CBB-negative genomes with the shortest

distance were selected by looping, excluding already selected genomes, until all CBB-positive

genomes had been selected. We thereby obtained a dataset with the same number of CBB-posi-

tive and CBB-negative example genomes, and with the closest possible similarity between

CBB-negative and CBB-positive genomes.

The example genome ORFs were annotated with DeepEC and Pfam (https://pfam.xfam.

org/) release 32.0 [91] using hmmsearch and the trusted HMM cutoffs. Rubisco (EC 2.7.1.19,

PF02788, PF00016, and PF00101) and Prk (EC 4.1.1.39, and PF00485) are expected in CBB-

positive genomes given our definition and were therefore excluded.

Example genomes that were at least 95% complete were subjected to an enrichment analysis

in R comparing the count of each EC or Pfam between CBB-positive and CBB-negative

genomes using a Wilcoxon rank sum test (function wilcox.test). A Benjamini-Hochberg q
value < 0.05 (function p.adjust) was considered significant.

For the ACE analysis, we generated phylogenetic trees of Archaea and Bacteria using the

GTDB core protein alignments and FastTreeMP (approximately maximum likelihood based

on the JTT+CAT model). Using phytools v.0.7–47 [92] for R, trees were midpoint-rooted

(function midpoint.root2 from MidpointRooter v.0.1.0; https://github.com/bwemheu/

MidpointRooter) and pruned to the example genomes (function drop.tip). Monophyletic bac-

terial subtrees (B) were selected based on four factors multiplied to yield a similarity score s rel-

ative to the archaeal tree (A), i.e. the ratios of number of CBB-positive genomes (P), CBB-

negative genomes (N), edge length coefficient of variation (cv), and maximum height (h), as

shown in Eq 1.

s ¼ 1=exp ln
PB

PA

� ��
�
�
�

�
�
�
�þ ln

NB

NA

� ��
�
�
�

�
�
�
�þ ln

cv;B
cv;A

� ��
�
�
�

�
�
�
�þ ln

hB

hA

� ��
�
�
�

�
�
�
�

� �

ð1Þ

First, we obtained all subtrees (function extract.clade) with 50 to 300 taxa and calculated

their similarity scores. The subtree with the highest similarity score was then selected by loop-

ing, excluding subtrees with nodes (function getDescendants) that overlapped with already

selected subtrees, until no more subtrees could be selected. The likelihood of being CBB-posi-

tive, and the count of every EC and Pfam, were estimated for ancestral nodes using the ace and

fastAnc functions, respectively. The ancestral CBB-positive likelihoods were subjected to

Spearman correlation to the ancestral EC or Pfam counts (functions cor and cor.test). Addi-

tionally, ancestral nodes were classified as CBB-positive if the likelihood for that state

was> 0.5, and otherwise as CBB-negative. The distribution of ancestral EC or Pfam counts
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were then compared between the two classes using a Wilcoxon rank sum test (function wilcox.

test). A Benjamini-Hochberg q value < 0.001 (function p.adjust) for both the Spearman corre-

lation test and the Wilcoxon rank sum test was considered significant. Correlations were visu-

alized on trees using ggtree [93].

A random forest classifier was implemented in Python scikit-learn v.0.23.1 (sklearn) using

CBB-positive and CBB-negative genomes as training and testing examples, and EC or Pfam

counts as features. The 600 most promising features were first selected using logistic regression

with the liblinear solver (function LogisticRegression from sklearn.linear_model) and looped

removal of the ten features with the lowest absolute feature coefficients using function RFE
from sklearn.feature_selection. Random forests (function RandomForestClassifier from sklearn.

ensemble) with 500 estimators were trained on a randomly sampled ¾ subset of the example

genomes and tested on the remaining ¼ of the example genomes. The feature importance val-

ues from 100 random forests produced a final mean feature importance for each of the 600

selected ECs and 600 selected Pfams.

Features were given a rank (R function rank) based on q (increasing) for the enrichment,

sum of absolute Spearman r among subtrees weighted by q values (decreasing) for ACE, and

feature importance (decreasing) for the random forest analysis. Eq 2 describes how the feature

ranking value was calculated for the ACE method:

X
jrwj ¼

XTn

T0

jrj �
lnðqc;n þ qcÞ

lnðqcÞ
�
lnðqW;n þ qWÞ

lnðqWÞ
ð2Þ

where Tn is the subtree, r is the Spearman correlation coefficient, qc,n is the correlation coeffi-

cient q value in subtree n and qc is the corresponding median across all subtrees and features,

and qW,n is the Wilcoxon rank sum test q value in subtree n and qW is the corresponding

median across all subtrees and features. The sum of weighted absolute r values |rw| over all sub-

trees was used to rank features. Feature types, i.e. EC or Pfam, were ranked together except in

the random forest analysis since the importance values are only comparable within types. The

enrichment, ACE, and random forest analysis feature ranks were correlated pair-wise using

the Spearman method on features in common between the methods (functions cor and cor.
test). A consensus rank for each feature was obtained by ranking the sum of ranks from the

three methods. Features not included by a method were given a rank corresponding to the

maximum rank within the method plus one.

Finally, we calculated the median distance in number of ORFs between feature-encoding

ORFs and Rubisco and Prk ORFs in CBB-positive genomes, considering all contigs, including

chromosomes, plasmids, and unplaced scaffolds, according to assembly information from

NCBI. Contigs were considered to be linear, meaning that some ORFs were assigned greater

distances than on circular DNA molecules.

Supporting information

S1 Fig. Phylogenetic analysis of Rubisco sequences indicates successful exclusion of

Rubisco-like proteins and possible horizontal gene transfer. The phylogenetic tree is based

on Rubisco sequences identified in ORFs from Genome Taxonomy Database (GTDB) and 181

example Rubisco and Rubisco-like proteins (RLPs) identified by Tabita et al. [19]. Outer ring

colors indicate the organism in GTDB carrying each Rubisco ORF, and inner ring colors indi-

cate the Rubisco form. Rubisco sequences from genomes in GTDB identified as CBB-positive,

i.e. containing Prk in addition to Rubisco, are indicated in gray in the inner ring. Note that

Cyanobacteria, although carrying the Calvin cycle, were not included in the CBB-positive data-

set in our analysis. The tree was rooted at the most recent common ancestor of all RLPs,
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turning the RLPs into an outgroup indicated by light purple shading. The scale bar shows sub-

stitutions per site.

(PNG)

S1 Table. Random sample of 50 CBB-positive genomes with literature references support-

ing or opposing Calvin cycle utilization and autotrophy. The columns contain GTDB acces-

sion ID (‘Accession’), species name from GTDB (‘Species’; family name is given within

parentheses if used for conclusion), a comment regarding Calvin cycle utilization and autot-

rophy or other acquired information (‘Comment’), statement about Calvin cycle confirmation

(‘CBB’; 1 if likely confirmed, 0 if not likely confirmed, NA if there was no information), and

references for the comment (‘Ref.’). There was no information available for seven genomes.

For the remaining 43 genomes, 30 (70%) appeared to be likely Calvin-cycle positive genomes,

but only one (2%) genome appeared unlikely to be Calvin-cycle positive given its status as a

human pathogen (Mycolicibacterium mageritense).
(PDF)

S2 Table. Pfams associated with photosynthesis. The table lists all Pfams that match the

search terms "photosynthesis", "photosynthetic", or "photosystem". The columns contain Pfam

feature ID (’Feature’), feature name (’Name’), and feature description (’Description’; the DESC

line from the Pfam HMM database). Given the occurrence of three of these Pfams in the pho-

tosynthetic organism Bradyrhizobium sp. ORS 278, photosynthesis capability was assigned to

organisms with at least three of these Pfams.

(PDF)

S1 Dataset. Example genomes and annotations. Tab-delimited text file with one row for each

of 1,020 CBB-positive and 1,020 CBB-negative microbial genomes investigated in this study.

The first row is a header with column titles. The columns contain GTDB accession ID (’Acces-

sion’), GTDB accession ID of closest relative with opposing CBB status selected through itera-

tion (’Relative’; see Materials and methods), distance to closest relative (’Distance’), subtree

association (’Subtree’; 0 for Archaea, 1–12 for Bacteria), CBB status (’CBB_status’; 0 for

CBB-negative, 1 for CBB-positive), CheckM genome completeness provided by GTDB

(’checkm_completeness’), GTDB taxonomy (’gtdb_taxonomy’), followed by columns with

per-genome total counts for each of 12,703 genetic features, i.e. Pfam and Enzyme Commis-

sion (EC) number. The genetic feature counts represent input data for the enrichment, ances-

tral character estimation, and random forest analyses.

(ZIP)

S2 Dataset. Enrichment analysis. Results from Wilcoxon rank sum tests to determine signifi-

cant differences in Pfam and Enzyme Commission (EC) number counts between CBB-positive

and CBB-negative genomes (see Materials and methods). The columns contain rank based on

’q’ (’Rank’), feature type (’Feature_Type’; DeepEC or Pfam), feature ID (’Feature’), feature

name (’Name’), mean feature count in CBB-negative genomes (’mean_Negative’), mean fea-

ture count in CBB-positive genomes (’mean_Positive’), coefficient of variation of feature count

in CBB-negative genomes (’CV_Negative’), coefficient of variation of feature count in CBB-

positive genomes (’CV_Positive’), Wilcoxon rank sum test p-value (’p’), Benjamini-Hochberg

adjusted p-value (’q’), feature description (’Description’; the DESC line from the Pfam HMM

database, or the full list of enzyme names from KEGG for DeepEC), and the KEGG EC of the

entry (’KEGG_EC’). Note that some DeepEC ECs were transferred to one or more new ECs in

KEGG, as indicated by a discrepancy between ’Feature’ (if ’Feature_Type’ is DeepEC) and

’KEGG_EC’. A single feature can therefore be listed more than once.

(XLSX)
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S3 Dataset. Ancestral character estimation (ACE) analysis. Results from ACE analysis in

subtrees of Archaea and Bacteria comparing the evolution of Pfam and Enzyme Commission

(EC) number counts to the evolution of the CBB-positive trait (see Materials and methods).

The columns contain rank based on sum of absolute ’r’ weighted by ’q_Correlation’ and

’q_Wilcox’ across subtrees (’Rank’), feature type (’Feature_Type’; DeepEC or Pfam), feature ID

(’Feature’), feature name (’Name’), organism domain (’Domain’; Archaea or Bacteria), subtree

number (’Subtree’; Archaea has only one subtree numbered ’0’), ancestral feature count versus

ancestral CBB-positive likelihood Spearman correlation r (’r’), significance (’Significant’; 1 if

both q-values < 0.001, otherwise 0), p-value for the Spearman correlation (’p_Correlation’),

Benjamini-Hochberg adjusted correlation p-value (’q_Correlation’), p-value for Wilcoxon

rank sum test comparing feature count in CBB-positive, i.e. likelihood > 0.5, and CBB-nega-

tive ancestral nodes (’p_Wilcox’), Benjamini-Hochberg adjusted Wilcoxon rank sum test p-

value (’q_Wilcox’), feature description (’Description’; the DESC line from the Pfam HMM

database, or the full list of enzyme names from KEGG for DeepEC), and the KEGG EC of the

entry (’KEGG_EC’). Note that some DeepEC ECs were transferred to one or more new ECs in

KEGG, as indicated by a discrepancy between ’Feature’ (if ’Feature_Type’ is DeepEC) and

’KEGG_EC’. A single feature can therefore be listed more than once.

(XLSX)

S4 Dataset. Random forest analysis. Feature importances derived from random forest classi-

fication of CBB-positive and CBB-negative genomes based on Enzyme Commission (EC)

number or Pfam counts. The columns contain rank based on ’Importance’ (’Rank’), feature

type (’Feature_Type’; DeepEC or Pfam), feature ID (’Feature’), feature name (’Name’), average

feature importance for 100 random forests (’Importance’), coefficient of variation for feature

importance based on 100 random forests (’CV_Importance’), feature description (’Descrip-

tion’; the DESC line from the Pfam HMM database, or the full list of enzyme names from

KEGG for DeepEC), and the KEGG EC of the entry (’KEGG_EC’). Note that some DeepEC

ECs were transferred to one or more new ECs in KEGG, as indicated by a discrepancy between

’Feature’ (if ’Feature_Type’ is DeepEC) and ’KEGG_EC’. A single feature can therefore be

listed more than once. Also note that the importance and rank was calculated separately for

DeepEC and Pfam feature types.

(XLSX)

S5 Dataset. Consensus ranks for the three methods (enrichment, ACE, and random forest).

The columns contain the consensus rank (’Rank’), feature type (’Feature_Type’; DeepEC or

Pfam), feature ID (’Feature’), feature name (’Name’), mean feature count in CBB-negative

genomes (’mean_Negative’), mean feature count in CBB-positive genomes (’mean_Positive’),

weighted average correlation coefficient coefficient in subtrees of the ACE analysis (‘weight-

ed_r’; see Materials and methods for details), average feature importance for 100 random for-

ests (’Importance’), feature description (’Description’; the DESC line from the Pfam HMM

database, or the full list of enzyme names from KEGG for DeepEC), and the KEGG EC of the

entry (’KEGG_EC’). Note that some DeepEC ECs were transferred to one or more new ECs in

KEGG, as indicated by a discrepancy between ’Feature’ (if ’Feature_Type’ is DeepEC) and

’KEGG_EC’. A single feature can therefore be listed more than once.

(XLSX)

S6 Dataset. Proximity between Rubisco or Prk and other genetic features on DNA mole-

cules in CBB-positive genomes. The columns contain the consensus rank (’Rank’; see S5

Dataset), feature type (’Feature_Type’; DeepEC or Pfam), feature ID (’Feature’), feature name

(’Name’), the Calvin cycle feature to which distance was measured (‘cFeature’), whether the
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genetic feature and Prk or Rubisco are on the same strand (‘Strand’; Same or Opposite), the

minimum observed distance in number of genes (‘minD’), the median observed distance in

number of genes (‘medD’), the maximum observed distance in number of genes (‘maxD’), the

average distance in number of genes (‘meanD’), the number of occurrences of the feature in

the particular configuration described by the row (‘Count’), number of occurrences on a chro-

mosome (‘locChr’), number of occurrences on a plasmid (‘locPsm’), number of occurrences

on an unknown DNA molecule type (‘locUnk’; e.g. a contig of a draft genome), fraction of

genes located on a plasmid (‘fracPsm’; ‘locPsm’ divided by the sum of ‘locPsm’ and ‘locChr’),

feature description (’Description’; the DESC line from the Pfam HMM database, or the full list

of enzyme names from KEGG for DeepEC), and the KEGG EC of the entry (’KEGG_EC’).

Note that some DeepEC ECs were transferred to one or more new ECs in KEGG, as indicated

by a discrepancy between ’Feature’ (if ’Feature_Type’ is DeepEC) and ’KEGG_EC’. A single

feature can therefore be listed more than once. The table has been sorted by increasing median

distance (‘medD’) followed by decreasing number of occurrences (‘Count’). Only features

located on the same DNA molecule as Rubisco or Prk were included, and only CBB-positive

genomes were considered. All DNA molecules were considered as linear due to the many

genomes in a state of unplaced scaffolds, which may place certain features further way from

Rubisco and Prk compared to if the DNA molecule would have been modeled as a circle.

Rubisco and Prk, representing ORFs that were identified by the specific method for Rubisco

and Prk identification described in the Materials and methods, are included as features in

order to show the proximity between Rubisco and Prk.

(XLSX)
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