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Abstract—Demand-side management (DSM) is a process by
which the user demand patterns are modified to meet certain
desired objectives. Traditionally, DSM was utility-driven, but with
an increase in the integration of renewable sources and privacy-
conscious consumers, it also becomes a “consumer-driven” pro-
cess. Promising theoretical studies have shown that privacy can
be achieved by shaping the user demand using an energy storage
system (ESS). In this paper, we present a framework for utility-
driven DSM while considering the user privacy and the ESS
operational cost due to its energy losses and capacity degradation.
We propose an ESS model using a circuit-based and data-driven
approach that can be used to capture the ESS characteristics
in control strategy designs. We measure privacy leakage using
the Bayesian risk of a hypothesis testing adversary and present a
novel recursive algorithm to compute the optimal privacy control
strategy. Further, we design an energy-flow control strategy that
achieves the Pareto-optimal trade-off between privacy leakage,
deviation of demand from a DSM target profile, and the ESS
cost. With numerical experiments using real household data and
an emulated lithium-ion battery, we show that the desired level
of privacy and demand shaping performance can be achieved
while reducing the ESS degradation.

Index Terms—Demand-side management, smart meter privacy,
energy storage model, Bayesian hypothesis testing, lithium-ion
battery degradation.

I. INTRODUCTION

ELECTRICITY demand in a power grid can vary signif-
icantly within short time frames, depending on weather

and other common user patterns. Generally, a conventional
power system responds to these fluctuations by increasing or
decreasing the generation. During peak demand, the additional
generation is supplied by standby generators, which incur
additional costs and reduces the energy efficiency of the
grid. As a consequence, the idea of demand-side management
(DSM) has emerged. DSM is a process by which the users’
energy demands are modified with various incentives to bring
them closer to the desired demand pattern. To enable DSM
in smart grids, smart meters (SMs) play a crucial role by
facilitating two-way communication between the user and the
utility provider. Based on cost-benefit analyses, the European
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Fig. 1. The smart metering system which enables the privacy-aware DSM by
altering the user demand from the grid Yk using an ESS so that the deviation
from the reference signal Ȳk is minimized while reducing the privacy leakage
and losses in the ESS. Here, the solid lines denote the energy flow and the
dotted lines denote the information flow.

Commission Electricity Directive (2009/72/EC) mandates that
its member countries should have at least 80% of users
equipped with SMs by 2020 [1].

However, the large-scale roll-out of SMs triggered public
opposition in several countries due to concerns about privacy
[2]. Non-intrusive load monitoring (NILM) techniques have
become quite effective in dis-aggregating the household energy
consumption data and thereby detecting the states of most
of the general types of household appliances [3]. In contrast
to the data security problem, where traditional encryption
techniques may prevent unauthorized access, any legitimate
receiver such as the utility provider or a third-party agent can
be an adversary in the SM privacy problem. The General Data
Protection Regulation (GDPR) in Europe defines strict rules
when dealing with data that contain sensitive personal informa-
tion. In particular, the GDPR prohibits the processing of data
that may reveal, for example, health status, religious beliefs,
etc., without the users’ informed consent. Therefore, when
using SM data one should not be able to infer information
about health-related appliances or appliance usage patterns
during specific days that may reveal the religious beliefs of
consumers without consent.

Addressing the SM privacy problem, several privacy-by-
design techniques have been proposed in the literature [4]–
[25], which can be classified into two main categories: data
manipulation techniques that directly alter the SM data; and
user demand shaping techniques that physically alter the user
demand from the grid using energy storage systems (ESSs),
flexible loads such as heating systems, and renewable energy
sources. Although data manipulation techniques may succeed
in protecting privacy in the measured SM data, they result in a
mismatch between the reported and the real energy consump-
tion values (quantity or timing or both). More importantly,
these techniques would fail if an adversary gathers high-
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frequency energy consumption data using an additional meter
outside a household [4]. So, we consider the physical layer
privacy problem in the system shown in Fig. 1 where the
user demand from the grid Yk is altered using an ESS so that
the deviation from a reference signal Ȳk is minimized while
reducing the privacy leakage in the smart meter measurements
and losses in the ESS. Here, we envision a future smart grid
where the DSM operator generates the reference signal Ȳk for
each user to actively control the grid in real-time. Alternatively,
the reference signal Ȳk may be generated by a local controller
based on a demand response incentive signal from the DSM
operator such as time-of-use electricity price.

Although several user demand shaping techniques have
been proposed in the literature, the physical ESS operating
limitations on the energy management unit (EMU) strategy
design, the effects of privacy-preserving control actions on
the ESS, and the utility-driven DSM are not well understood.
To the best of our knowledge, [22] is the first attempt to
consider a deterministic ESS model characterizing energy
losses due to privacy control actions of a one-step-ahead
sub-optimal EMU strategy. Further, [23] considers capacity
and energy loss degradation aspects in the privacy controller
design using a deterministic energy storage model based on
degradation maps. Extending [22] and [23], in this work, we
propose a stochastic ESS model that is circuit-based as well
as data-driven, characterizes important ESS aspects such as
energy losses and capacity degradation, and can be used for
general storage technologies such as electrochemical batteries,
flywheels, and pumped hydro storage.

Compared to other privacy metrics such as mutual infor-
mation [10]–[17]; conditional entropy [6], [20]; Kullback-
Leibler divergence in [18]; and load variance [9], Bayesian
risk [21]–[24] has an operational meaning as it explicitly
captures the detection performance of an adversary. Hence,
using the Bayesian risk metric, we model the adversary using
the Bayesian hypothesis testing framework [26] and present
the design of an EMU strategy that optimally trades-off privacy
risk, deviation from the DSM target profile, and the ESS cost.
With the same system model and optimization objective, our
preliminary work [24] briefly presents the strategy design and
initial numerical simulation results. We note that this work
significantly extends [24] by deriving the stochastic modeling
approach to capture crucial ESS aspects as well as deriving
the optimal EMU control strategy. Moreover, in this work,
the numerical experiments have been significantly extended,
including a comparative study that demonstrates the value
of the stochastic modeling approach. In summary, this paper
introduces a novel and comprehensive design framework for
privacy-preserving DSM that includes crucial ESS aspects,
which enhances the technology readiness of these approaches.
The key contributions are as follows:
• We propose a realistic ESS model that is both circuit-

based and data-driven, which captures the steady-state
energy losses and slow degradation in ESS capacity. This
model can be used to capture the ESS characteristics in
control strategy designs with sufficient accuracy.

• We present a framework for privacy-aware DSM and
an EMU strategy that optimally trades-off privacy risk,

deviation from the DSM target profile, and ESS cost. We
also present a recursive approach to optimally control the
risk against a hypothesis testing adversary.

• We validate our design approach with numerical simu-
lations using real household consumption data and an
emulated battery. Using the numerical study, we illustrate
the need for using accurate ESS models in EMU strategy
designs to achieve close-to-optimal privacy-preserving
and DSM performance.

Notations: Throughout the paper, we denote random variables
by capital letters, their realizations by lower-case letters, and
their alphabets, i.e., range spaces by calligraphic letters. We
use Ak:k+i to denote the row vector [Ak, Ak+1, . . . , Ak+i];
E[·] to denote the expectation operator; (·)ᵀ to denote the
matrix transpose; PA(a) to denote a probability distribution
function; 1 to denote an indicator function for which 1{a} = 1
if a is true, and 0 otherwise; 1n is an n dimensional vector
with all entries equal to one; and ∆n to denote an (n−1)
dimensional simplex. If not specified, the domain of a variable
in summations and integrals is its alphabet. The nomenclature
used in the paper is given in Table I.

II. SYSTEM MODEL

A. Preliminaries

In the presented design framework, the user demand is
controlled by an EMU using a strategy that is pre-computed
for a discrete-time finite-horizon K := {1, . . . , N}. Within K,
let k denote the index of the time-slot with a fixed duration T .
Let xmax, ymax, and žr denote the maximum power demand of
the user, maximum power drawn from the grid, and the rated
energy capacity of the ESS respectively. Further, we denote the
rated discharge and charge powers by dr,d and dr,c respectively.

For each k ∈ K, we model the consumer’s power demand,
the SM measurement, and the operating power of the ESS
using discrete random variables denoted by Xk, Yk, and Dk

respectively, which are defined on finite alphabets X ,Y , and
D. Let Žk denote the continuous random variable defined
on [0, žr], which represents the available energy in the ESS.
Further, let Zk denote the quantized value of the energy state
Žk, which is defined on a finite alphabet Z . Further, we design
an ancillary service provided by the user for the DSM. At each
k, the EMU receives a target demand signal from the grid
operator, which is modeled using a discrete random variable
Ȳk defined on Y . We assume that the probability distribution
of the target signal PȲk

is available to the EMU before the
horizon K starts, which can be empirically computed by the
EMU or publicly broadcasted by the grid operator for DSM.

Further, let Ěk and B̌k denote continuous random variables
defined on R+, which represent the operational energy loss
and the charge-capacity loss of an ESS. Let l ∈ N denote the
time index starting when the ESS is new and let φl ∈ [0, 1]
denote the age of an ESS given by

φl =
1

(žr − žeol)

∑l
m=1 b̌m, ∀l ≥ 1,

where žeol denotes the ESS capacity at its end of life.
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TABLE I. NOMENCLATURE

Parameters

T,N Duration and the number of time-slots in finite horizon
žr, žeol ESS energy capacity at its beginning and end of life
dr,c, dr,d Maximum charging and discharging power of the ESS
xmax, ymax Maximum user demand and max. power drawn from grid
θ, θ̂ Sets of HMM parameters of EMU and modeled adversary
c̄(h, ĥ) Reward of an adversary in Bayesian hypothesis testing
ωu, ωc Trade-off parameters of the objectives in [0, 1]
ρ, λk Price of unit charge-capacity loss of ESS and unit energy
rsd
l , c

sd
l Self-dissipation circuit parameters of the ESS

rl, vl Internal resistance and terminal voltage of the ESS
σl Efficiency factor of the ESS power converter

Deterministic variables

k Time-slot index in the horizon K
l Time-slot index starting from when the ESS is new
φl Age of the ESS at time-slot l, represented in [0, 1]
r̄k Bayesian risk of the user
wk Mean square demand deviation from the target signal Ȳk
ck Average ESS operational cost due to losses

Random variables and their realizations

Hk, hk Hypothesis state of user
Ĥk, ĥk Hypothesis state guessed by the modeled adversary
Xk, xk Actual power consumption of user
Yk, yk Power drawn from grid (and measured by SM)
Ȳk, ȳk Target signal from grid for DSM
Dk, dk ESS power consumption
Žk, žk ESS energy state defined on R+

Zk, zk Quantized ESS energy state defined on Z
Ěk, ěk ESS energy loss
B̌k, b̌k ESS charge-capacity loss
Ψl, ψk Three-circuit model parameters set of the ESS
Π̂k, π̂k Belief state of the modeled adversary
Sk, sk EMU state vector
Ik, ik Information state of EMU

Sets and state-spaces

R+,N Sets of non-negative real numbers and positive integers
K Discrete time-horizon in the EMU strategy design
H,X ,Y,Z Discrete space of random variables Hk, Xk, Yk, Zk
D, Ik Discrete space of Dk, Ik
Gk Set of polyhedrons within ∆|H|
Uk Set of randomized strategies of EMU

Functions

f
(l)
act function that accurately describes relation between the

variables in the sequence [ž1:l+1, b̌1:l, ě1:l, d1:l]
f3 a deterministic ESS model based on electrical circuits
Mπ̂ function that outputs matrices for belief state transforma-

tion
ζk Randomized strategy of modeled adversary, which outputs

a probability distribution of hypothesis guess Ĥk
µk Randomized strategy of the EMU, which outputs a prob-

ability distribution of control actions Dk

B. Energy storage system model

In practice, with repeated charge and discharge operations
of an ESS, the energy losses increase and the usable capacity
decreases due to physical degradation processes, which is
known as cycle aging. Further, an ESS undergoes calendar
aging whereby the ESS capacity degrades even when it is
not being used [27]. Let f (l)

act denote a deterministic function
that accurately models these physical processes considering
the complete history of the ESS states starting with a new
battery, represented as

(žl+1, b̌l, ěl, ψ̌l) = f
(l)
act(ž1:l, d1:l, b̌1:l−1, ě1:l−1, ψ̌1:l−1), (1)

where ψ̌l represents a set of parameters of a specific ESS. To
achieve truly optimal control, we need to consider f (l)

act in the
control strategy design. However, in general, it is difficult to
specify f (l)

act since the relationships between the variables are
too complex and highly depend on the storage technology.
Even if there exist high fidelity deterministic models that
approximate f (l)

act, such as in [28], [29] for lithium-ion battery
systems, the dimensionality of ψ̌l is generally big and hence
these high fidelity models are computationally too complex
to be used in system-level optimization problems. In such
situations, using a stochastic model has been a successful
approach in other engineering problems1. We therefore pro-
pose an ESS model using a simplified deterministic model to
describe energy losses and a stochastic model to capture the
remaining effects such as temperature dependence, capacity
fading, etc.

We first present a circuit-based deterministic ESS model to
describe the steady-state energy losses, as shown in Fig. 2,
which has been studied in the literature in different variations
[30]–[33], but in deterministic settings. The circuit in Fig. 2(a)
models the self-dissipation phenomenon using an RC network
of capacitance csd

l and resistance rsd
l . Fig. 2(b) shows the circuit

that models the internal resistive losses using a resistor rl,
and the circuit in Fig. 2(c) models the power converter losses
using an efficiency factor σl ∈ [0, 1]. The charge content on the
capacitor is updated through a current source controlled by the
current il flowing through the circuit in Fig. 2(b). Further, let
vl denote the open-circuit voltage across the converter, which
is modeled using a voltage source controlled by the charge
content on the capacitor. Here, we assume that the circuit
parameters and the circuit current remain unchanged within
the duration of the time slot. By solving the circuit equations,
the energy state žl+1 is given by

žl+1 = (1− γl)žl +
γlτlvl
2rl

[√
v2
l + 4rlσldl − vl

]
, (2)

=: f3(žl, dl, ψl), (3)

where ψl = {vl, rl, γl, σl} denotes the set of parameters of
the three-circuit model, γl = 1 − exp(−T/τl), τl = rsd

l c
sd
l ,

and f3 is a deterministic function given on the right-hand side
of (2). In this work, we use the energy state estimate of the
three-circuit model as the actual energy state of an ESS. The
steady-state energy loss estimate obtained by balancing the
energy flow is given by

ěl = žl + dlT − f3(žl, dl, ψl). (4)

In this work, we extend the three-circuit deterministic model
by considering the circuit parameters ψl and the ESS capacity
loss b̌l as random variables whose characteristics are learnt
using a data driven approach. In practice, the data samples
can either be obtained using system-identification methods
such as in [34], [35] or using existing high-fidelity models
[28], [29]. Assuming that sufficient data of [b̌1:l, ψ1:l, ž1:l, d1:l]
is available, we characterize the dependency between these

1In wireless communications, the ray-tracing approach provides a high-
fidelity model. However, transmission strategies are often designed using sim-
ple stochastic models such as Rayleigh fading and more realistic simulations
are done using detailed stochastic models such as COST 2100 or COST 259.
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Fig. 2. Three-circuit ESS model that characterizes the energy losses.

variables using empirically estimated conditional probability
density function (PDF) PB̌l,Ψl|Ž1:l,D1:l,B̌1:l−1,Ψ1:l−1

, where Ψl

denotes the random variable that represents the set of pa-
rameters of the three-circuit model. To limit the increasing
dimensionality of this conditional PDF, we partition the age
interval [0, 1] into a finite number of intervals within which
we assume that the variables in [B̌1:l,Ψ1:l, Ž1:l, D1:l] follow
a time-invariant Markov chain

(B̌l,Ψl)− (Žl, Dl)− (Ž1:l−1, D1:l−1, B̌1:l−1,Ψ1:l−1). (5)

Further, assuming that the circuit based model represented
by (3) and (4) accurately captures the energy state transition
and energy loss, we arrive at the simplified stochastic repre-
sentation of the ESS model PŽl+1,B̌l,Ěl|Žl,Dl

in (6). The first
term in the integral in (6) can be empirically estimated using
the available data. Whereas, the second term can be obtained
using (2) and (4), i.e.,

PŽl+1,Ěl|Žl,Dl,Ψl
(žl+1, ěl|žl, dl, ψl)=1

{̌
zl+1 =f3(žl, dl, ψl)

}
×

1
{̌
el= žl + dlT − f3(žl, dl, ψl)

}
. (7)

In (6) we marginalize the circuit parameters Ψl since, in
this work, the objective functions in the control strategy
design do not depend on the circuit parameters directly. To
reduce the computational complexity of the control strategy
design, we did not consider circuit parameter ψl as a state
variable. However, it is measured and used in the estimation
of the conditional PDF PŽl+1,B̌l,Ěl|Žl,Dl

and in the real-time
computation of the energy state žl+1.

Furthermore, when using discrete energy states Zl in the
EMU strategy design, we characterize the ESS using a con-
ditional PDF PZl+1,B̌l,Ěl|Zl,Dl

that is induced by (6) as a
result of the quantization of continuous state Žl. To achieve

optimal control, the data samples [b̌1:l, ψ1:l, ž1:l, d1:l] used for
estimating PZl+1,B̌l,Ěl|Zl,Dl

should ideally be generated using
the distribution PZl,Dl

corresponding to the optimal control
strategy, which in turn depends on PZl+1,B̌l,Ěl|Zl,Dl

. Given
this circular dependency, we propose to use an iterative ap-
proach where an initial distribution PZl,Dl

is used to generate
the data samples. Then PZl+1,Bl,El|Zl,Dl

, the EMU strategy,
and PZl,Dl

are updated iteratively.

C. Adversarial model

Generally, the user demands are associated with events of
appliance usage, user presence or absence in the house during
certain hours, etc., which in turn depend on user behavioral
patterns. We call these events, which are privacy-sensitive to
a user, as hypothesis states, denoted by a discrete random
variable Hk. Let H denote a finite alphabet of Hk. Further,
we model the dependency between the sequence of user
demands and hypothesis states (H1:N , X1:N ) corresponding to
the finite-horizon K using a first-order hidden Markov model
(HMM), which simplifies their joint distribution as:

PH1:N ,X1:N
(h1:N , x1:N ) =

N∏
k=1

PXk|Hk
(xk|hk)×

PHk|Hk−1
(hk|hk−1), (8)

where PXk|Hk
and PHk|Hk−1

are the time-dependent obser-
vation and transition probabilities and the HMM is initialized
by a prior probability PH1

, which denotes PH1|H0
. The HMM

can be characterized using the set of parameters

θ := {PXk|Hk
, PHk|Hk−1

;∀k ∈ K}.

In practice, the HMM θ can be learned by the EMU using
private historical data of the user. Let θ̂ be the adversarial
estimate of θ that can be obtained either by using publicly
available datasets or by using the historical data of the specific
user. In this work, we model the adversary using the Bayesian
hypothesis testing framework [26]. We consider an adversary
who is unaware of the energy manipulation, and makes a
guess on the hypothesis state hk using the causal SM data
y1:k and HMM θ̂. Let Ĥk denote the adversarial hypothesis
guess on Hk, which is a discrete random variable defined on
H. In Bayesian hypothesis testing, each of the test outcomes
(h, ĥ) ∈ H2 is assigned a reward, denoted by c̄(h, ĥ) ≥ 0,
and an optimal detection strategy is designed by optimizing
the expected cumulative reward. Let r̄k denote the expected
privacy cost of the user (or the expected detection reward of
the adversary), known as the Bayesian risk of the user (or the
Bayesian reward of the adversary), given by

r̄k = E
[
c̄(Hk, Ĥk)

]
=

∑
h,ĥ∈H2

c̄(h, ĥ)PHk,Ĥk
(h, ĥ). (9)

PŽl+1,B̌l,Ěl|Ž1:l,D1:l,B̌1:l−1,Ψ1:l−1
(žl+1, b̌l, ěl|ž1:l, d1:l, b̌1:l−1, ψ1:l−1)

=

∫
ψl

PB̌l,Ψl|Žl,Dl
(b̌l,ψl|žl, dl)PŽl+1,Ěl|Žl,Dl,Ψl

(žl+1, ěl|žl, dl, ψl) dψl = PŽl+1,B̌l,Ěl|Žl,Dl
. (6)
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We consider c̄(h, ĥ) with a structure where the reward for a
correct guess is higher compared to that of the wrong guess so
that the adversary aims to maximize the cumulative reward,
while the EMU aims to minimize it. In a special case with
c̄(h, ĥ) = 1 for a correct guess and c̄(h, ĥ) = 0 for a wrong
guess, the Bayesian risk r̄k represents the successful detection
probability of the adversary. Due to this operational meaning,
we use the Bayesian risk metric to measure privacy leakage.

III. OPTIMAL ENERGY MANAGEMENT STRATEGY DESIGN

In the smart-metering system shown in Fig. 1, the EMU
schedules charge and discharge operations of an ESS that
achieve desired levels of privacy and demand shaping by
following a DSM target profile, while also considering the
ESS operational costs. In the following, we first design optimal
energy management strategies separately and then present
a randomized control strategy to trade-off between optimal
values of the multiple objectives.

In this work, we assume that the EMU has access to all
the causal information of the system states and formulate
Markov decision processes (MDPs) to design an optimal
control strategy with respect to each objective. Let Sk :=
[Xk, Zk, Hk, Ȳk] denote the EMU state vector, which is de-
fined on the discrete space S := X ×Z ×H×Y . Further, let
Ik := [S1:k, D1:k−1, Y1:k−1] denote the information available
to the EMU, which is defined on Ik := Sk ×Dk−1 × Yk−1.
Let µk : Ik → ∆|D| denote a randomized EMU strategy,
which is characterized by a conditional PDF PDk|Ik . Thus,
for each ik ∈ Ik, the EMU strategy µk specifies a probability
distribution of Dk, which can be represented by some vector
βk ∈ ∆|D|, i.e., µk(ik) = βk. Let Uk denote the set of all
mappings from Ik to ∆|D|. Let wk denote the mean square
demand deviation (MSDD) from the DSM target signal Ȳk,
given by

wk(ik, βk) = E
[
(Ȳk − Yk)2|Ik = ik

]
=
∑
d∈D

(ȳk − (xk + d))2PDk|Ik(d|ik) (10)

=: βᵀ
k · fw(sk), (11)

where fw : S → R|D|+ is a deterministic vector function which
can be obtained from (10). Further, let ρ be the price of unit
charge-capacity loss and λk be the price of unit energy drawn
from the grid. Then, the average ESS operational cost denoted
by ck is given by

ck(ik, βk) = E
[
ρB̌k + λkĚk|Ik = ik

]
=
∑
d∈D

∫
b̌

∫
ě

(ρb̌k + λkěk)PDk|Ik(d|ik)×

PB̌k,Ěk|Zk,Dk
(b̌k, ěk|zk, d) db̌ dě (12)

=: βᵀ
k · fc(sk, k), (13)

where fc : S × K → R|D|+ is a deterministic vector function
which can be obtained from (12).

A. Optimal control of the MSDD and the ESS cost objectives

Let µ∗w,1:N and µ∗c,1:N denote the optimal strategies among
all Uk that minimize the expected cumulative values of
wk(Ik, βk) and ck(Ik, βk), respectively over the horizon K.
Then, µ∗w,1:N and µ∗c,1:N can be characterized as follows.

Proposition 1. For each k ∈ K, the optimal strategies µ∗w,k
and µ∗c,k specify deterministic control actions d∗w,k and d∗c,k
which can be obtained by solving the recursive Bellman’s
equations:

w̃k(s)=min
d∈D

{
[fw(s)]d +

∑
s′∈S

w̃k+1(s′)PSk+1|Sk,Dk
(s′|s, d)

}
,

c̃k(s)=min
d∈D

{
[fc(s, k)]d +

∑
s′∈S

c̃k+1(s′)PSk+1|Sk,Dk
(s′|s, d)

}
,

where w̃k and c̃k represent the backward cumulative values of
wk and ck, respectively from k to N due to the optimal strate-
gies µ∗w,k:N and µ∗c,k:N , and the conditional PDF PSk+1|Sk,Dk

is given by PZk+1|Zk,Dk
, PȲk

, and the HMM θ.

The proof of Prop. 1 follows from the Bellman’s principle
of optimality [36, Section 6.2] and the fact that the objective
functions of the MSDD and the ESS cost in (11) and (13)
depend on ik only through the EMU state sk.

B. Optimal control of risk due to hypothesis testing adversary

For the design of the optimal Bayesian risk control strategy,
we first derive the worst-case adversarial detection strategy that
maximizes the average cumulative reward. Since the adversary
is assumed to be unaware of the energy manipulation, the
optimal sequential detection strategy of the adversary can
be obtained by formulating a HMM filter [36, Section 3.5].
In this case, the unaware adversary considers the likelihood
of the SM measurement yk given a hypothesis hk ∈ H
to be PXk|Hk

(yk|hk). Further, the posterior distribution of
the hypothesis state Hk given the sequence y1:k is given by
Pr(Hk|X1:k = y1:k), known as the belief state and denoted by
Π̂k. Let π̂k be its realization which lies on the simplex ∆|H|.
Using Bayes’ rule, each element of π̂k is given by[
π̂k
(
y1:k

)]
h

=PHk|X1:k

(
h|y1:k

)
=

∑
h′PXk,Hk|Hk−1

(yk, h|h′)[π̂k−1(y1:k−1)]h′∑
h̃,h′PXk,Hk|Hk−1

(yk, h̃|h′)[π̂k−1(y1:k−1)]h′
.

Therefore, the belief state evolution follows a linear-fractional
transformation given by

π̂k(yk, π̂k−1) =
Mπ̂(yk, k) · π̂k−1

1ᵀ
|H| ·Mπ̂(yk, k) · π̂k−1

, (14)

where Mπ̂ is a deterministic function of belief generating
matrices with its elements given by the HMM θ̂ as[

Mπ̂(yk, k)
]
h,h′

= PXk|Hk
(yk|h)PHk|Hk−1

(h|h′).

For each k ∈ K, let ζk denote a randomized detection strat-
egy of the adversary that is characterized by the conditional
probability distribution PĤk|Y1:k

, which can be represented by
some vector δk ∈ ∆|H| for each sequence y1:k. Further, the
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expected detection reward perceived by the adversary for a
given y1:k and δk can be expressed as

r̄k(y1:k, δk) = E
[
c̄(Hk, Ĥk)

∣∣X1:k = y1:k

]
=

∑
h,ĥ∈H2

c̄(h, ĥ)PĤk|Y1:k

(
ĥ
∣∣y1:k

)
PHk|X1:k

(
h
∣∣y1:k)

=: δᵀk ·C · π̂k
(
y1:k

)
, (15)

where C is a matrix with the adversarial reward c̄(h, ĥ) as its
elements. Then, the optimal detection strategy, denoted by ζ∗k ,
that minimizes the expected cumulative reward r̄k(Y1:k, δk)
over the finite-horizon K can be characterized as follows.
Proposition 2. For all k ∈ K, the optimal strategy ζ∗k specifies
a deterministic hypothesis guess ĥ∗k based only on the belief
state π̂k, and ζ∗k can be characterized using a set of polyhedral
decision regions in the simplex ∆|H|.

The proof of Prop. 2 follows from the fact that the objective
function in (15) depends on y1:k only through π̂k, which
evolves using the linear-fractional function in (14). Note that
the characterization of the adversarial strategy using polyhe-
dral regions is equivalent to the likelihood-ratio test where the
linear constraints defining the polyhedral decision regions cor-
respond to the thresholds of the likelihood-ratio test. Further,
the Bayesian risk perceived by the user for a given information
ik and a randomized control action distribution βk is given by

r̄k(ik, βk) = E
[
c̄(Hk, Ĥk)

∣∣Ik = ik

]
=
∑
d∈D

c̄(hk, ζ
∗
k(π̂k(xk + d, π̂k−1)))PDk|Ik(d|ik)

=: βᵀ
k · fr̄(sk, π̂k−1), (16)

where fr̄ : S×∆|H| → R|D|+ is a deterministic vector function
with the adversarial reward due to optimal detection strategy
ζ∗k as its elements. Then, the optimal strategies denoted
by µ∗r̄,1:N that minimize the expected cumulative values of
r̄k(Ik, βk) over the horizon K can be characterized as follows.

Proposition 3. For each k ∈ K, the optimal strategy µ∗r̄,k
specifies a deterministic control action d∗r̄,k, which can be
obtained by solving the recursive Bellman’s equation:

r̃k(s, π̂k−1) = min
dk∈D

{
[fr̄(s, π̂k−1)]d +∑

s′∈S
r̃k+1(s′, π̂k(x+ d, π̂k−1))PSk+1|Sk,Dk

(s′|s, d)
}
, (17)

where r̃k represent the backward cumulative Bayesian risk
from k to N due to the optimal strategies µ∗r̄,k:N .

The proof of Prop. 3 follows from the Bellman’s prin-
ciple of optimality [36, Section 6.2] and the fact that the
objective function in (16) depends on ik only through the
tuple (sk, π̂k−1). Note that the backward recursion in (17)
needs to be solved for all π̂k−1 in the continuous space ∆|H|,
similar to a partially observable Markov decision process
(POMDP) control problem [36]. However, unlike a POMDP
problem with a linear objective function where there exist
algorithms to find the optimal control strategy, the objective in
(17) depends non-linearly on π̂k−1. Nonetheless, the optimal

strategy µ∗r̄,k and the backward cumulative risk r̃k have the
following structure.

Theorem 1. At any k ∈ K, if r̃k+1 is piece-wise constant
with respect to π̂k in a set of polyhedral partitions, then the
simplex ∆|H| can be partitioned into a finite set of polyhedrons
Gk such that µ∗r̄,k is invariant and r̃k is constant with respect
to π̂k−1 within each polyhedron of Gk.

Sketch of the proof: The constructive proof follows by showing
the existence of polyhedral partitions Gk, where r̃k is piece-
wise constant, and they can be obtained using Algorithm 1.
Further, Fig. 3 illustrates the transformations of a polyhedral
partition with |H| = 3. Here, G(m)

k is the inverse image of
G(n)
k+1 through (14), which can be constructed by taking the

linear transformation of a polyhedral cone obtained by relaxing
the equality constraint of G(n)

k+1 through the matrix M−1
π̂ .

This backward transformation can be done for each partition
in Gk+1 using all non-singular belief generating matrices2.
If Mπ̂(yk, k) is singular, then the forward propagation of
π̂k−1 either becomes degenerate or lies in multiple partitions
in Gk+1. In this case, the control strategy depends on the
adversarial model choice defining the forward propagation of
π̂k−1. Generally, an unaware adversary may filter or ignore
those SM measurement yk which have very low likelihood
PXk|Hk

. In this case, the forward propagation of π̂k−1 can be
modeled using only the transition probability PHk|Hk−1

or it
can be reset to a priori distribution. Then, from (17), we have
that r̃k is piece-wise constant with respect to π̂k−1.

Algorithm 1 Backward recursive belief state-space partitions.

1: Initialization:M(θ̂), the set of belief generating matrices;
Gζ∗k , the set of adversarial decision regions; GN+1 = Gζ∗k .

2: for i = N to 1 do
3: Set Gi = Gζ∗k .

4: for gi+1 =
{̂
π ∈ ∆|H| : A(gi+1)·π̂ ≤ 0

}
∈ Gi+1 do

5: Partition and update Gi using linear constraints of

Mπ̂ ·A(gi+1)·π̂ ≤ 0, ∀Mπ̂ ∈M(θ̂),

6: end for
7: end for

Fig. 3. An example belief state-space partitioning recursion with |H|=3.

2In the backward recursion, the number of partitions of the simplex ∆|H|
can grow exponentially with k depending on the numerical precision of the
belief state. Hence, obtaining the optimal EMU strategy sequence, subject to
a finite precision, may be computationally tractable for long time-horizon and
high dimensional state space problems only with a low belief state precision.
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C. Optimal control over successive cycles of finite horizons

Note that the performance of the designed finite-horizon
optimal strategies depend on the initial energy state z1. There-
fore, to achieve optimal performance over successive finite
horizons, we formulate an infinite horizon problem with finite-
horizon cycles [K1,K2, . . . ]. Let p ≥ 1 denote the index of
finite-horizon and r̃p,k, w̃p,k and c̃p,k denote the backward
cumulative values of the Bayesian risk, the MSDD and the
ESS cost corresponding to k ∈ Kp. Then, extending the finite-
horizon problems discussed above to the infinite horizon case,
we introduce a discount factor ε ∈ [0, 1) and recursively solve
the finite horizon problems initialized with:

r̃p,N+1(s, π̂0) = ε · r̃p−1,1(s, π̂0),

w̃p,N+1(s) = ε · w̃p−1,1(s), c̃p,N+1(s) = ε · c̃p−1,1(s).

Here, for bounded and real-valued vector functions fr̄, fw and
fc, as the discount factor ε < 1, the backward cumulative value
functions r̃p,1, w̃p,1, and c̃p,1 converges over the finite-horizon
iterations p. Based on Banach’s fixed point theorem, this
successive approximation technique leads to optimal control
strategy sequences µ∗r̄,1:N , µ∗w,1:N and µ∗c,1:N that achieve
minimum expected discounted-cumulative values.

D. Pareto-optimal trade-off of privacy, DSM, and ESS cost

Since the objective functions wk, ck, and r̄k given in (11),
(13), and (15) are linear with respect to the optimization
variable βk ∈ ∆|D|, the achievable values of their aggregate
sum within the finite horizon K form a convex region and the
solutions obtained using the weighted-sum of the objectives
lie on the Pareto-optimal boundary curve [37]. Hence, we
design the Pareto-optimal trade-off strategy by optimizing the
weighted-sum, denoted by qk, which is given as

qk=ωc

[
ωu
wk
ηw

+(1− ωu)
r̄k
ηr̄

]
+(1− ωc)

ck
ηc
, (18)

where ωu ∈ [0, 1] denotes the trade-off parameter that weighs
the MSDD against the Bayesian risk objective, which are
considered as utility to the user; ωc ∈ [0, 1] denotes the trade-
off parameter that weighs the utility of the user against the ESS
cost; ηw, ηr̄, ηc are the normalization factors of the objectives
which are set according to their respective ranges. From (11),
(13), and (16), we can represent the weighted-sum qk as

qk(ik, βk) = βᵀ
k · fq(sk, π̂k−1), (19)

where fq : S × ∆|H| → R|D|+ is a deterministic vector
function, which can be obtained from the weighted-sum of
the vector functions fw, fr̄, and fc, similar to (18). As the
weighted-sum objective in (19) is similar to the Bayesian risk
function in (16), the Pareto-optimal strategy sequence µ∗1:N

corresponding to some fixed (ωu, ωc) can be obtained using
backward recursion similar to (17) and following the belief
state-space partition approach given in Algorithm 1.

IV. NUMERICAL STUDY

A. Simulation Setup

To evaluate the design approach, we performed numerical
simulations in MATLAB and COMSOL. We consider a utility-
driven DSM scenario where the user receives a target demand
signal from the grid which is constant throughout the day.
The target signal is generated by the grid operator using
the historical demands of the user averaged during the day.
For simplicity, we consider a privacy scenario where the
information about the presence or absence of the users in a
house is to be protected in the SM measurements, i.e., the
hypothesis state is defined as Hk = 1 when the users are
absent and Hk = 2 when the users are present in the house.
Other more complex hypothesis states may be considered
given sufficient computational resources and data, but it is left
for future work. We assign the Bayesian reward in hypothesis
testing as c̄(i, i) = 1 and c̄(i, j) = 0 for i, j ∈ {1, 2}, j 6= i so
that the Bayesian risk corresponds to the average adversarial
detection probability.

In the simulations, we have used data from the ECO dataset
[38] corresponding to 5 houses measured during the summer
of 2012. We consider a scenario where the adversary attempts
to infer occupancy information of house 2 from which the
adversary has no historical data, but has access to data from
similar houses. We perform the simulations until the end
of life of the ESS by repeating the available 83 days of
household 2 data in cycles. In the simulations, we have set
xmax = 2kW based on maximum power observed in the
dataset, dr,c = dr,d = 2.4kW corresponding to 1C ampere
rating of 48V-50Ah battery, ymax = xmax + dr,c = 4.4kW,
žref = žr/5 assuming that the battery reaches end of life
after 20% of its initial capacity, T = 1h, K = {1, . . . , 24},
σl = 0.95, γl = 1 assuming that self-dissipation within 1h
time-slot is negligible, ε = 0.5 as discount factor for infinite-
horizon, λl = 0.2e/kWh corresponding to the household
energy cost in Sweden [39], ρ = 650e/kWh using the lithium-
ion battery cost from [40], the power resolution as 100W,
and the belief state resolution as 0.01. For simplicity, the
adversary is assumed to use a homogeneous HMM θ̂, whereas,
the EMU strategies are designed using a non-homogeneous
HMM θ. Throughout the simulations, we assume that the real-
time energy state zl (obtained either by direct measurements of
three-circuit model parameters or estimated using high fidelity
models) is available to the EMU.

B. Emulation of ESS using high fidelity models

In this study, we consider a 48V-50Ah lithium-ion bat-
tery as an ESS. To generate the data samples, we emulate
a cylindrical 18650 Graphite/LiFePO4 battery cell with a
capacity of 1800mAh in COMSOL using high-fidelity elec-
trochemical models developed in [28] and [29]3. Also, we

3The models in [28] and [29] capture the isothermal battery aging
mechanism only at the negative electrode during the constant CC-CV charging
operations. The suitability of these models for measuring the degradation dur-
ing intermittent charging and discharging operations needs to be verified ex-
perimentally. The MATLAB and COMSOL programs to generate the data can
be downloaded from https://github.com/rravula93/Li-Ion-Degradation-Model.
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(a) Mean capacity loss relative to the initial charge-capacity

(b) Mean resistive energy loss estimate relative to input energy

(c) Relative variance of discrete SOC estimates

Fig. 4. Observed ESS characteristics using uniformly distributed (Zl, Dl).

consider calendar aging by taking a minimum state-dependent
capacity loss at each discrete ESS state-action pair by linearly
interpolating experimental data from [41]. In the simulations,
we have limited the voltage range to [2.5V, 4.2V] and the
state-of-charge (SOC) range to [0.1, 0.9] to avoid numerically
infeasible solutions in the emulated models. Further, we have
divided the age range [0, 1] into 3 intervals, and starting with
a new cell, we applied uniformly distributed random battery
currents within each age interval. For each discrete state-
action pair (zl, dl), we measure 50 data sample (b̌l, ψl) and
estimate (žl+1, ěl) using (2) and (4). Further, to avoid error
accumulation in žl+1 estimates, we reset the estimate to the
actual energy state when the ESS reaches the SOC limits.

The resulting mean capacity loss, mean resistive energy
loss and relative variance of discrete SOC estimates are
shown in Fig. 4. We can see that, on average, the capacity
loss decreases with aging, which can be attributed to the
decrease in the net amount of cyclable lithium ions with aging.
However, the resistive energy loss increases with aging which
is due to the increase in the solid-electrolyte-interface (SEI)
layer [28]. Further, the low variance observed in the SOC
transitions can be explained by the isothermal setting in the
emulated cell. In practice, the variations in cell temperature
affect its internal resistance [42] and consequently the SOC
transitions. In the control strategy design, starting with the data
generated using uniformly distributed control actions (Zl, Dl),
we iteratively compute empirical estimate of PZl+1,B̌l,Ěl|Zl,Dl

and its corresponding optimal strategies using data samples
observed during real-time implementation.

C. Evaluation of the proposed ESS model & optimal strategies

We first design the optimal DSM and privacy risk control
strategies µ∗w,1:N and µ∗r̃,1:N using the proposed ESS model
and evaluate them on the emulated ESS in COMSOL. Fig. 5

Fig. 5. Optimal risk control strategy designed using the proposed ESS model.

Fig. 6. Optimal DSM strategy designed using the proposed ESS model.

and Fig. 6 show the performance of the designed EMU after
3 iterations of PZl+1|Zl,Dl

and the EMU strategies. We can
see that the privacy control actions result in peak demands at
time instances differing from that of actual peak demands and
tend to increase variations in the SM readings. On the other
hand, the DSM control actions result in low variations in the
SM readings since the EMU tries to follow a daily-constant
DSM target signal. Here, deviations from the target signal are
observed mainly when the SOC reaches its limits.

Next, we design and evaluate the optimal strategies designed
using the three-circuit model with time-invariant parameters:
rl = 20mΩ (the empirical average internal resistance); γl = 1;
and vl = 48V. To assess how well the two different models
capture the ESS energy state transition characteristics, we use
the root-mean-square error (RMSE) in discrete SOC estimates
at each time-step. Note that the computed SOC estimates are
not used in real-time control as the real-time energy state zl
is available to the EMU. They are used only to assess the
mismatch between the energy state transition characteristics of
the actual ESS and that of the model used in the EMU strategy
design. Further, we use root-mean-square demand deviation
(RMSDD) from the DSM reference signal Ȳl as a metric to
assess the DSM performance. In Table II, we list the average
values of the RMSE in SOC estimates, Bayesian risk, and
the RMSDD in different test cases. Here, we can see that
the EMU strategies designed using the proposed ESS model
achieve lower RMSE in SOC estimates and better privacy /
DSM control performance compared to when designed using
a deterministic time-invariant three-circuit model. This shows
that the optimal strategies when designed using a less accurate
ESS model perform sub-optimally.
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TABLE II
COMPARISON OF EMU STRATEGIES IN DIFFERENT TEST CASES

EMU strategy ESS model Avg. RMSE
in SOC (%)

Avg.
Bayes risk

Avg.
RMSDD (W)

Optimal privacy proposed 2.74 0.186 400
three-circuit 5.33 0.213 424

Optimal DSM proposed 2.07 0.741 135
three-circuit 5.07 0.740 137

No control − − 0.740 213

D. Evaluation of the trade-off between the EMU objectives

Here, we evaluate the trade-off between the optimal privacy,
DSM, and ESS cost objectives. To reduce the complexity of
the simulations, we emulate the ESS using the proposed ESS
model instead of using the high-fidelity models. That is, we
assume that the proposed ESS model learned using sufficient
data samples represents the stochastic characteristics of the
high-fidelity model accurately. Fig. 7 shows the average values
of RMSDD, Bayesian risk, ESS lifetime, and its operational
cost obtained by varying the trade-off parameters (ωu, ωc)
over 50 Monte-Carlo simulations. Here we observe that the
Bayesian risk and the RMSDD behave as opposing objectives
and there exists a clear trade-off between the two. As there is
no mismatch between the simulated ESS and the model used
in the EMU strategy design, we observe that close to zero
Bayesian risk is achievable when using (ωu, ωc) = (0, 1),
significantly lower than the value observed when evaluated
using the high fidelity models. This shows the need for using
more accurate ESS models in the privacy-preserving control
strategy designs to meet strict privacy requirements.

As shown in Fig. 7, by using (ωu, ωc) = (0, 0.2), we
observe that the Bayesian risk remained close to zero while
the ESS life increased significantly by 137%, which in turn
reduces the ESS cost. This shows that by considering the
ESS cost in the design, privacy risk can be reduced while
significantly improving the ESS life. On the other hand, when
using (ωu, ωc) = (1, 0.4), the RMSDD increased by 7%
while the ESS life increased only by 8% compared to the

(a) Average RMSDD (b) Average Bayesian risk

(c) Average ESS life (d) Average ESS cost

Fig. 7. Pareto-optimal trade-off between DSM, privacy, and ESS cost.

case when using the optimal DSM control strategy. That
is, the improvement in the ESS life observed by trading
off some RMSDD is not as significant as compared to the
improvement in the ESS life observed by trading off some
Bayesian risk. This shows that DSM by tracking a reference
signal incurs significant ESS cost and the trade-off between
these two objectives must be designed by considering the DSM
monetary incentives. In general, the EMU strategy designed
with a higher ωc resulted in a shorter lifetime and consequently
higher ESS cost. Due to calendar aging, a non-zero ESS cost
is observed when it is not used at all, which achieves the
minimum ESS cost. The results show that the ESS operational
cost can be controlled while providing desired privacy and
demand shaping performance.

V. CONCLUSION

In this paper, we have presented a framework for privacy-
aware DSM that includes important ESS aspects such as
energy and capacity losses. We proposed a stochastic ESS
model based on a three-circuit model for general storage
technologies, which can be used in optimization problems to
capture these ESS aspects. To achieve privacy, we model an
adversary employing sequential Bayesian hypothesis testing
and characterize the adversarial optimal detection performance
using a deterministic set of polyhedral decision regions. Using
the Markov decision process framework, we designed optimal
control strategies with respect to privacy, DSM, and ESS cost
objectives. Further, we present a novel recursive approach to
compute the exact optimal privacy control strategy that mini-
mizes the detection performance of the modeled adversary.

We note that the designed control strategy is optimal cor-
responding to an adversary employing Bayesian hypothesis
testing using HMM θ̂, which provides us a generic adversarial
model. In particular, if the adversary uses a different inference
technique, uses different HMM model parameters, or tries to
infer on a different hypothesis, there will be a model-mismatch
in the system. In such a case, the exact adversarial detection
performance and user privacy leakage cannot be predicted a
priori. Nonetheless, using the optimal strategy presented in
this paper we could provide privacy guarantees with respect
to specific adversaries such as a common-case adversary who
uses publicly available datasets or a worst-case adversary who
knows the exact HMM θ.

Using numerical simulations, we have evaluated the pro-
posed ESS model and the optimal control strategies using
real household data and an emulated lithium-ion battery. From
the results, we conclude that the proposed ESS model can be
used to represent the ESS with improved accuracy. We have
identified the trade-off between privacy and DSM objectives
and conclude that optimal privacy or optimal DSM can be
achieved only at the expense of ESS degradation. However,
using the presented design approach, we have shown that the
ESS degradation can be controlled while providing the desired
level of privacy and demand shaping performance.

Investigating the impact on the privacy-controller perfor-
mance when the adversary knows the implemented EMU
strategy and designing an optimal control strategy for such
an adversarial model are interesting topics for future research.
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