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Abstract
Artificial neural network (ANN) is a machine learning approach where param-
eters, i.e., frequency parameters and amplitude parameters, are learnt during
the training process. Random features model is a special case of ANN that the
structure of random features model is as same as ANN’s but the parameters’
learning processes are different. For random features model, the amplitude pa-
rameters are learnt during the training process but the frequency parameters
are sampled from some distributions. If the frequency distribution of the ran-
dom features model is well-chosen, both models can approximate data well.
Adaptive random Fourier features with Metropolis sampling is an enhanced
random Fourier features model which can select appropriate frequency distri-
bution adaptively. This thesis studies Rectified Linear Unit and sigmoid fea-
tures and combines them with the adaptive idea to generate another two adap-
tive random features models. The results show that using the particular set of
hyper-parameters, adaptive random Rectified Linear Unit features model can
also approximate the data relatively well, though the adaptive random Fourier
features model performs slightly better.
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Sammanfattning
I artificiella neurala nätverk (ANN), som används inom maskininlärning, be-
höver parametrar, kallade frekvensparametrar och amplitudparametrar, hittas
genom en så kallad träningsprocess. Random feature-modeller är ett speci-
alfall av ANN där träningen sker på ett annat sätt. I dessa modeller tränas
amplitudparametrarna medan frekvensparametrarna samplas från någon san-
nolikhetstäthet. Om denna sannolikhetstäthet valts med omsorg kommer båda
träningsmodellerna att ge god approximation av givna data. Metoden Adap-
tiv random Fourier feature[1] uppdaterar frekvensfördelningen adaptivt. Den-
na uppsats studerar aktiveringsfunktionerna ReLU och sigmoid och kombine-
rar dem med den adaptiva iden i [1] för att generera två ytterligare Random
feature-modeller. Resultaten visar att om samma hyperparametrar som i [1]
används så kan den adaptiva ReLU features-modellen approximera data rela-
tivt väl, även om Fourier features-modellen ger något bättre resultat.
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Chapter 1

Introduction

1.1 Statement of the problem
A central problem in machine learning is to find a parameterized function that
approximates the data well. Tuning the function parameters, minimizing the
empirical risk, producing a function that can generalize well for population
risk and, furthermore, predicting unseen data by using the parameterized func-
tion are the main targets of machine learning. Many models have been pro-
posed and investigated in the past decades to accomplish these targets. Among
those models, artificial neural network (ANN) is an excellent one that gets
practical success and over-performs than many other models.

However, for an one-hidden layer neural network model in which the parame-
ters in both the input and output layers are updated, the computation amount
will be relatively large. Moreover, in practice, it is sophisticated to tune the
learning rate of gradient descent dynamics to converge to a global minimum
or a small enough local minimum. When the widthK is large, usually, it will
trap into some relatively large local minimum and miss the global minimum.
These problems make ANN is a delicately tuned and fragile model.

To mitigate these two problems, one can use random features models, which
inherits the structure of ANN and employs another training process to make
the model becomes more easy-to-use and robust.

1
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1.2 Thesis objective
The random features model is first proposed in [2] as a kernel method with
the kernel defined by the initialization. From another perspective, the random
features model can be seen as an one-hidden layer neural network with the
frequency parameters that are fixed or sampled from some probability distri-
bution p(ω).

Figure 1.1: one-hidden layer neural network structure

The structure of an one-hidden layer neural network is demonstrated in figure
1.1. The parameter d is the dimension of the input data and the parameter m
represents the number of nodes in the hidden-layer. In this figure, the dimen-
sion of the output data is 1, which is a special instance. Actually, the output
data can be multi-dimensional.

The training data set is given by {(xn, yn)}Nn=1 with the data independent iden-
tically distributed (i.i.d) samples from an unknown distribution ρ, which is as-
sumed fixed but only known through the samples. We assume that there exists
a function f : Rd → R, such that yn = f(xn)+εn, where the noise component
is represented by i.i.d. random variables εn with E[εn] = 0 and E[ε2n] = σ2

ε .

We assume that the target function f(x) can be approximated by an one-hidden
layer neural network which defines an approximation f̂ : Rd×Rm×d×Cm →
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R.

f̂(x;ω, β̂) = β̂Tσ(z) = β̂Tσ(ωx) =
m∑
i=1

β̂iσ(ωi,x) (1.1)

where we use the notation for the parameters of the network β̂1, β̂2, . . . , β̂m ∈
C, β̂ = (β̂1, β̂2, . . . , β̂m) ∈ Cm,ω1,ω2, . . . ,ωm ∈ Rd,ω = (ω1,ω2, . . . ,ωm)

T ∈
Rm×d.

β̂ and ω are amplitude parameters and frequency parameters, respectively.

The ultimate goal of the neural network is to minimize, over the set of param-
eters (β̂,ω) ∈ Cm × Rm×d, the population risk defined by

L(β̂,ω) = 1

2
Ex,y[(f̂(x;ω, β̂)− y)2]. (1.2)

However, in practice, since the distribution ρ is unknown, we can only work
with the following empirical risk defined by:

L̂(β̂,ω) = 1

N

N∑
n=1

`(f̂(xn;ω, β̂), yn). (1.3)

We focus on the reconstruction with the regularized least squares type risk
function

`(f̂(xn;ω, β̂), yn) := |f̂(xn;ω, β̂)− yn|2 + λ

m∑
i=1

|β̂i|2. (1.4)

The least-square functional is augmented by the regularization term with a
Tikhonov regularization parameter λ > 0. For the sake of brevity we often
omit the arguments β̂,ω and use the notation f̂(x) for f̂(x;ω, β̂). We also
use |β̂|2 :=

∑m
i=1 |β̂i|2 for the Euclidean norm on Cm.

Approximately reconstructing f from the data based on the least squaresmethod
is a common task in statistics and machine learning, cf. [3], which in a basic
setting takes the form of the minimization problem
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min
f̂∈Nm

{
Eρ
[
|yn − f̂(xn)|2

]
+ λ

m∑
i=1

|β̂i|2
}

(1.5)

where

Nm :=

{
f̂(x) =

m∑
i=1

β̂iσ(ωi,x)

}
(1.6)

represents an artificial neural network with one hidden layer.

We assume that the frequencies ω are random and we denote the conditional
expectation with respect to the distribution ofω conditioned on the data (x, y)
as Eω[g(ω, x, y)] := E[g(ω, x, y)|x, y] . Since a minimum is always smaller
than or equal to its mean, there holds

min
(β̂,ω)∈Cm×Rm×d

{
Eρ
[
|yn − f̂(xn)|2

]
+ λ|β̂|2

}
≤ Eω

[
min
β̂∈Cm

{
Eρ[|yn − f(xn)|2] + λ|β̂|2

}]
.

(1.7)

The minimization in the right hand side of the inequality (1.7) is also known
as the random features problem, cf.[4] [5] [1].

Especially, when the we consider a particular activation function, which is
also known as Fourier features, σ(ω,x) = eiω·x, for ω ∈ Rd,x ∈ Rd, the
minimization in the right hand side of the inequality (1.7) is also known as
the random Fourier features problem. And a discrete version of problem (1.5)
can be formulated, for training data (xn, yn)Nn=1, as the standard least squares
problem

min
β̂∈Cm

{
N−1|Sβ̂ − y|2 + λ|β̂|2

}
(1.8)

whereS ∈ CN×m is thematrixwith elementsSn,j = eiωj ·xn , n = 1, . . . , N, j =

1, . . . ,m and y = (y1, . . . , yN) ∈ RN . Problem (1.8) has the corresponding
linear normal equations:

(STS + λNI)β̂ = STy. (1.9)
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The differences and relations between the one-hidden layer neural network and
random features model are apparent from the above statement. The structures
of the one-hidden layer neural network and random features model are the
same. However, the training processes of these two approaches are different.
In the one-hidden layer neural network, amplitude parameters and frequency
parameters are learnt during the training step. In the random features model,
only amplitude parameters are learnt directly from the train data set, whereas
the frequency parameters are usually sampled from some distributions.Thus,
in some sense, the random features model is a particular case of one-hidden
layer neural network model and the random Fourier features model is a par-
ticular case of one-hidden layer neural network model with cosine function as
the activation function.

The motivation of splitting one minimization in the left hand side of the in-
equality (1.7) into two minimizations in the right hand side of the inequality
(1.7) is that the inner minimization of the right hand side is a convex prob-
lem. So that there exists several robust solution methods to solve this inner
minimization.

E et al. [6] have proved that the functions obtained from an over-parametrized
one-hidden layer neural network are uniformly close to those found in an asso-
ciated random features model. An over-parameterized model is a model that
has more parameters than can be estimated from the data. For a one-hidden
layer neural network, it is over-parametrized if the width K is greater than the
number N of training points, i.e., K > N [1]. In other words, in the over-
parameterized regime, the relations and differences between one-hidden layer
neural network and random features model are clear. Thus, in this thesis, we
study and explore the differences between these two methods when K < N .

This thesis implements two types of optimization methods to train the model
with one-hidden layer neural network structure. When we use the first type
optimization methods, such as stochastic gradient descent and Adam, which
are classical optimizers and introduced in chapter 2, the model is called one-
hidden neural network as customary. When we use the second type optimiza-
tion methods, which are random features methods, the model is called random
features model in this thesis. We compare the performance of these two types
of optimization methods on MNIST dataset.And the result shows that if the
probability distribution p(ω) of the random Fourier features model is well-
chosen, both models can get a similar and good prediction accuracy.

However, how to choose an appropriate probability distribution p(ω) is the
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crucial problem. From Rahimi’s work [2], Barron’s work [4] and Jones’ work
[5], to minimize the right-hand side of the error estimation above, p(ω) =

p∗(ω) := |f̂(ω)|/‖f̂‖L1(Rd), where f̂ is the Fourier transform of f . Whereas,
the target function f is unknown, and the optimal distribution p∗(ω) cannot
be calculated explicitly. Thus, the aim is to formulate an adaptive method that
approximately generates independent samples from the density p∗(ω).

To accomplish this aim, Kammonen et al. [1] have proposed an improved
random features model, i.e., adaptive random Fourier features with Metropo-
lis sampling, a systematic method to approximately sample from the optimal
distribution p∗(ω).

Metropolis algorithm is a Markow chain Monte Carlo (MCMC) method to
generate a collection of random samples from the desired distribution from
which direct sampling is difficult. Metropolis algorithm is introduced more
detailed in Chapter 2.

In adaptive random featuresmodel, the application ofMetropolis sampling can
be summarized in two parts. Firstly, the distribution β̂(ω), which is asymptoti-
cally equidistributed by the optimal distribution p∗(ω) is proved. This property
is the motivation for using Metropolis sampling. The second part is using the
Metropolis algorithm to obtain a sequence of random samples from the distri-
bution β̂(ω). For more detailed information, it can be seen in [7].

It is necessary to state that though random features model is a more general
model (with many other activation functions can be used) compared with ran-
dom Fourier features model, we still study this "particular case" because the
error estimation of this "particular case" is explicit.

Following Barron’s work [4] [5], Kammonen et al. [1] has derived the known
error estimation for the random Fourier features model:

Eω
[
min
β̂∈CK

{
Eρ[|yn − β(xn)|2] + λ|β̂|2

}]
≤ K−1

(
1

(2π)d

∫
Rd

|f̂(ω)|2

p(ω)
dω − f 2(x)

)
.

(1.10)

Though Adaptive random Fourier features with Metropolis sampling provides
a systematic method to approximately sample from the optimal distribution
p∗(ω), it only uses Fourier features which might be a limitation of this sys-
tematic method. Thus, in this thesis, another two random features(activation
functions), i.e., Sigmoid function and ReLU function, are combined with the
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adaptive idea above and generates another two adaptive random features mod-
els.

From the results of the numerical experiments, for other random features (ac-
tivation functions), such as Sigmoid function and ReLU function, we can see
that though we cannot prove them rigorously at now, it also works well when
we use Metropolis sampling idea to approximately sample from the optimized
distribution p∗(ω).

1.3 Outline of Thesis
Chapter 2 includes a contextualization of machine learning and an explana-
tion of the mathematical theory behind it. The chapter covers a brief expla-
nation of the methods which are implemented in the thesis, such as stochastic
gradient descent (SGD), adaptive moment estimation (Adam) and Metropolis
sampling methods. Chapter 3 introduces the design of experiments. The sim-
ulation methods and datasets that have been used to in these experiments are
introduced. And the motivations and aims of these designed experiments are
also covered in this chapter. Chapter 4 gives details about the implementations
of the designed experiments, including the datasets and the methods used. At
the same time, this chapter includes all the results of these experiments. The
comparison and explanation of the results are also given in this chapter. Chap-
ter 5 analyses the results of the experiments through all the experiments of the
projects and presents the thesis’s conclusions, including the contributions, the
findings, the limitations and the future work.



Chapter 2

Background

2.1 Machine Learning
Machine Learning categories

Machine learning is a subject that using algorithms to build a model based on
sample data, in order to make predictions or decisions without being explic-
itly programmed to do so.1 [8]. More specifically, it is the family of compu-
tational methods with a data-driven approach, which extracts patterns from
data without knowing a precise mathematical model in advance. Machine
Learning methods can mainly be classified into two big groups, depending
on the learning goal and the type of data: supervised and unsupervised learn-
ing. Supervised learning uses labelled data to perform tasks like regression
or classification, while unsupervised learning uses unlabelled data to perform
clustering or dimensionality reduction. The machine learning methods stud-
ied and researched in this thesis all exclusively belong to supervised learning
methods.

Supervised Learning

In practice, supervised learning methods are characterized by exploiting a pre-
dictive ability. This means that generally, its primary function is to predict the
label of an unseen instance. The labels of the data can be of different types,
such as numerical or categorical. Generally speaking, the type of label will

1This definition of the term "machine learning"was popularized in 1959 byArthur Samuel,
an American pioneer in the field of artificial intelligence.

8
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define the nature of the supervised problem: if the output is numerical, the
problem will be defined as a regression problem, otherwise it will be a classi-
fication problem. In this thesis, in order to obtain a more comprehensive and
general result, we design both regression problems and classification problems
to test and compare the performance of different machine learning methods.

2.2 Artificial Neural Network
The perceptron: An artificial neural unit

Artificial neural networks (ANN) were inspired by biological neural networks.
Biological neural networks are composed of fundamental learning units called
neurons. A neuron receives stimuli by other neurons through connections
called synapses. Multiple synapses can stimulate a neuron simultaneously,
having an overall effect equal to the sum of stimuli Figure 2.1(a). If a neuron
receives enough inputs to reach a certain threshold, it will trigger a strong
response in the neuron called an action potential. The action potential is a
binary response, for which it is often described as an "all or none" response
[9].

Input
Input

Input

Output

(a) Stimulation of a biological neuron.

.

.

.

Σ 𝞼

(b) Perceptron.

Figure 2.1: The resemblance between biological neurons and perceptrons. a)
Red neurons give stimuli to the blue neuron. When the sum of the stimuli
reaches the threshold, the blue neuron generates an output. b) The perceptron’s
inputs are combined linearly with some weights and introduced in a non-linear
activation function.

A perceptron is the artificial analogue of a biological neuron. It receives a
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set of n inputs xi modulated by a corresponding set of weights ωi that mimic
the stimuli of a biological neuron (see Figure 2.1(b)). Each input represents
a feature of the data, meaning that a set of simultaneous inputs would repre-
sent a single data point being evaluated in the neuron. The inputs then are
transformed by an inner vector product, often called logit z equation (2.1).
An additional term b called bias is usually added to the vector product. Then,
the "all or none" response h is modelled evaluating the logit by an activation
function σ. One of the most simplified activation functions is the step function,
which outputs 1 if the logit reaches the desired threshold t or 0 otherwise:

z = ω1x1 + ω2x2 + · · ·+ ωpxp + b =

p∑
i

ωixi + b = ω · x + b (2.1)

h = σ(z) =

{
0, for z ≤ t

1, for z > t.
(2.2)

Artificial neural network: A perceptron network

In artificial neural networks, a single neuron has no significant influence if it is
not connected to others. Therefore, multiple perceptrons can be connected to
tackle more complicated tasks. A set of connected artificial neurons working
together to perform a specific task is known as an artificial neural network.

One way of integrating multiple neurons is by connecting them in parallel.
With this configuration, the different neurons receive a unique linear combi-
nation of the inputs since all the weight combinations are different. After the
respective activation functions evaluate their logits, each neuron returns its bi-
nary response. A subsequent neuron, called output neuron, can then linearly
combine these results to generate the output of the network figure 2.2.

The network as mentioned above would be composed of three parts: the input
neurons, each of them representing a feature of the input data; the set of neu-
rons evaluating the inputs known as the hidden layer; and the output neuron,
which consolidates the responses of the neurons in the hidden layer. Such a
network is called an one hidden-layer neural network.
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Figure 2.2: A one hidden-layer neural network with four input neurons, six
hidden neurons and one output neuron: Each hidden neuron receives a linear
combination of the inputs and transforms it by a non-linear activation function.
The output neuron receives a linear combination of the hidden neurons.

2.3 Training Artificial Neural Networks
Training dataset: Learning from examples

Training process is an essential step of every supervised learning method in
which it can learn from labelled examples. Though each machine learning
method may have its particular properties, all of them follow the same general
procedure in the training process. The process starts by selecting a representa-
tive subset of the available data known as the training dataset while leaving the
remaining examples as the test dataset. The training dataset is used to tune the
parameters, while the test dataset is left to evaluate the method’s generalisation
ability after training. Sometimes, an additional subset of the dataset known as
the validation dataset is built to monitor the performance during training and
change the value of non-training parameters, known as hyper-parameter. The
basic hyper-parameter of an one hidden-layer neural network is the number of
neurons per layer.

Cost function: Quantification of the error

The next step of the training process is to quantify the error between the pre-
dictions of the model and the true value. The true value of an instance xi is
its label yi. In contrast, the prediction ŷi of instance xi is the output given by
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the neural network based on evaluating xi. The required error function should
measure the discrepancy between yi and ŷi for all training data. This function
has to take relatively large values when yi and ŷi are pretty different, and rel-
atively small values when they are similar. Such a function J is known as the
cost function.

Different problems need to choose specific cost functions that fit the problem
best. For regression problems and classification problems, the most appropri-
ate cost functions are usually quite different. The mean squared error (MSE)
is an common choice for a regression problem:

L̂ =
1

N

N∑
i=1

(ŷi − yi)2, (2.3)

where N is the number of the training data.

For binary classification problems, cross-entropy is often used:

L̂ = −
N∑
i=1

(
yi log2(ŷi) + (1− yi) log2(1− ŷi)

)
. (2.4)

For multi-class classification, the cross-entropy takes the form:

L̂ = −
N∑
i=1

K∑
k=1

yi,k log2(ŷi,k), (2.5)

where K represents the number of different classes of output.

The cost function depends on the values of ŷi, which, in another word, de-
pends on each trainable weight ω. As the aim is to find the optimal values
for each weight ŵ, the cost function has to be minimized, and then take the
values ŵ corresponding to the minimum. However, due to the high dimen-
sion of the parameter space and the fact that the neural network implements
non-linear activation functions in the hidden layers, the cost function becomes
non-convex [10], leading to the minimum estimation to be made by iterative
algorithms.
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2.4 FromStochasticGradient Descent to Adap-
tive Moment Estimation

Stochastic Gradient Descent

An appropriate iterative algorithm to minimize the cost function is stochastic
gradient descent (SGD). SGD is an iterative method for optimizing an objec-
tive function with suitable smoothness properties (e.g. differentiable or sub-
differentiable). It can be regarded as a stochastic approximation of gradient
descent optimization, since it replaces the actual gradient (calculated from the
entire data set) by an estimate thereof (calculated from a randomly selected
subset of the data). The basic idea behind stochastic approximation can be
traced back to the Robbins–Monro algorithm of the 1950s [11].

In this method, on one hand, the cost function is estimated with fewer data
points in each iteration, which reduces the computational burden, achieving
faster iterations, especially in high-dimensional optimization problems. On
the other hand, the cost function is estimated over more iterations. This means
that the gradient calculationmay not be exact in each iteration but it has several
iterations to correct itself, reducing the risk of getting stuck in a flat region [12]
[13].

Generally, the stochastic gradient descent method can be divided into three
steps. The first step is calculating the stochastic gradient of the cost function
regarding the current parameter ωit:

gt = ∇L̂(ωit). (2.6)

Here L̂ is the cost function to be minimized. The subscript t of ωit represents
the iteration times. The superscript i of ωit represents only one or a small
batch of train data is used to calculate the gradient (If i is a stochastic number,
then one train data is used. If i represents several stochastic numbers, then a
small batch of train data is used). And ωit in this expression represents all the
parameters to be trained in the model.

The second step is calculating the current gradient descent:

ηt = α · gt (2.7)
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where α is the learning rate of SGD method.

The last step is updating the parameter ω according to the current gradient
descent:

ωt+1 = ωt − ηt. (2.8)

To summarize these three steps in one equation:

ωt+1 = ωt − α · ∇L̂(ωit). (2.9)

Due to the updating of parameters in each iteration, the current solution moves
to a new point in the cost function, so a new gradient must be calculated. The
number of iterations depends on the number of batches, which are subsets of
training data points used to estimate the cost function and update the network’s
weights. The number of batches equals the total number of the data divided
by the number of data of each batch which is batch size.

Usually the iterations are stopped when the cost function arrive at the mini-
mal value or the cost function doesn’t decrease for k iterations. This hyper-
parameter k is called as patience. However, in neural network training, another
frequently-used stopping schedule is setting the number of times the whole
dataset will be used in gradient descent as a stopping criterion. Each of these
complete passes is called an epoch.

Another important hyper-parameter of SGD method is learning rate α which
determines the method’s convergence speed. A too small learning rate will
make tiny steps towards the solution, which will cause the algorithm taking too
many iterations to reach the minimum. However, a too big learning rate may
cause the divergence of the algorithm and miss the desired minimum. In prac-
tice, we usually need a relatively large learning rate at the beginning of the it-
erations to approach a minimal region fast. After that a smaller learning rate is
preferred to explore this minimal region meticulously. Thus, several learning
rate schedules have been proposed to tune the learning rate delicately. Among
of these learning rate schedules, exponential decayed schedule is widely used
and performs quite well. There are three parameters in exponential decayed
schedule, which are initial learning rate α0, decay step k and decay rate θ,
respectively. When the current number of iteration is K, the current learning
rate is:
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α = α0 · θ
K
k . (2.10)

SGD is a popular algorithm for training a wide range of models in machine
learning, including (linear) support vector machines, logistic regression (see,
e.g., Vowpal Wabbit) and graphical models.[14] When combined with the
backpropagation algorithm, it is the de facto standard algorithm for training
artificial neural networks.[15] Though SGD is a quite old optimizer, it is still
a classical optimizer with strong vitality. It is necessary to state that the ad-
justment of SGD’s learning rate is tricky and needs abundant experience. But
if an appropriate learning rate schedule is chosen, this classical optimizer may
obtain brilliant results.

Stochastic Gradient Descent with Momentum

Based on the SGD method, many improvements have been proposed and used
which generate several extensions and variants of SGD. One of the most sig-
nificant improvements is the introduction ofMomentum, which is also known
as first-order momentum. Moreover, stochastic gradient descent with momen-
tum (SGDM) is proposed. To restrain the fluctuation during the iterations of
SGD algorithm, we could use SGDM algorithm to decrease the influence of
current gradient. The first and last steps of SGDM algorithm are as same as
SGD algorithm. However, the step of calculating the current gradient descent
is improved:

mt = β1 ·mt−1 + (1− β1)gt (2.11)

where m is the first-order momentum, which represent the accumulation of
former gradients and m0 = g0. β1, the hyper-parameter in SGDM, is usually
set as 0.9 which is an empirical value. And the current gradient descent is:

ηt = α ·mt. (2.12)

Adaptive Gradient Algorithm

Another significant improvement of SGD is the introduction of second-order
momentum. Based on the introduction of second-order momentum, adaptive
gradient algorithm (AdaGrad) is proposed. The only different step between
SGD and AdaGrad is still the step of calculating the current gradient descent:
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vt =
t∑

τ=1

g2t (2.13)

where vt is the second-order momentum, which is the summation of former
gradients’ square.

ηt =
α
√
vt
· gt (2.14)

Thus, in AdaGrad algorithm, the learning rate α will be tuned adaptively,
which is the reason of the name. Compared with SGD, convenience is a sig-
nificant advantage of AdaGrad.

Adaptive Moment Estimation

Adaptive moment estimation (Adam) is an extension of SGD. In this optimiza-
tion algorithm, both first-order momentum and second-order momentum are
used.

mt = β1 ·mt−1 + (1− β1)gt (2.15)

vt = β2 · vt−1 + (1− β2)g2t (2.16)

where β2, the hyper-parameter in Adam, is usually set as 0.999 which is also
an empirical value. And the current gradient descent is:

ηt =
α
√
vt
·mt. (2.17)

One can see from above, not only the fluctuation during the iterations of the al-
gorithm is restrained, but also the learning rate is tuned adaptively. Combining
these two advantages, Adam is becoming more and more popular nowadays.

2.5 Metropolis-Hasting Algorithm
The Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC)
method for obtaining a sequence of random samples from a probability dis-
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tribution P (x) from which direct sampling is difficult. A precondition of this
algorithm is a function f(x) is known, which is propotional to P (x).

To accomplish this, the algorithm uses a Markov process, which asymptoti-
cally reaches a unique stationary distribution π(x) such that π(x) = P (x).

A Markov process is uniquely defined by its transition probabilities P (x′|x),
the probability of transitioning from any given state x to any other given state
x′. It has a unique stationary distribution π(x) when the following two condi-
tions are met [16]:

Existence of stationary distribution: there must exist a stationary distribution
π(x). A sufficient but not necessary condition is detailed balance, which
requires that each transition x → x′ is reversible: for every pair of states
x, x′, the probability of being in state x and transitioning to state x′ must be
equal to the probability of being in state x′ and transitioning to state x, i.e.,
π(x)P (x′|x) = π(x′)P (x|x′).

Uniqueness of stationary distribution: the stationary distribution π(x) must
be unique. This is guaranteed by ergodicity of the Markov process, which
requires that every state must be aperiodic2 and positive recurrent3.

The Metropolis–Hastings algorithm involves designing a Markov process (by
constructing transition probabilities) that fulfills the two above conditions,
such that its stationary distribution π(x) is chosen to be P (x). The detailed
derivation of the algorithm can be seen in [16].

Steps of Metropolis-Hasting Algorithm

1. Initialize

1) Pick an initial state x0.

2) Set t = 0.

2. Iterate

1) Generate a random candidate state x′ according to g(x′|xt).

2) Calculate the acceptance probabilityA(x′, xt) = min
(
1, P (x′)

P (xt)
g(xt|x′)
g(x′|xt)

)
.

3) Accept or reject:
2aperiofic means the system does not return to the same state at fixed intervals
3positive recurrent means the expected number of steps for returning to the same state is

finite



18 CHAPTER 2. BACKGROUND

i) generate a uniform random number u ∈ [0, 1];

ii) if u ≤ A(x′, xt), then accept the new state and set xt+1 = x′;

iii) if u > A(x′, xt), then reject the new state, and copy the old
state forward xt+1 = xt;

4) Increment: set t = t+ 1.

Note that P (x) can be replaced by f(x), if f(x) is propotional to P (x). The
requirement that f(x) must only be proportional to the density, rather than
exactly equal to it, makes the Metropolis–Hastings algorithm particularly use-
ful, because calculating the necessary normalization factor is often extremely
difficult in practice.

It is important to notice that it is not clear, in a general problem, which distri-
bution g(x′|x) one should use or the number of iterations necessary for proper
estimation; both are free parameters of the method, which must be adjusted to
the particular problem in hand.

Metropolis Sampling

Metropolis sampling is a special case of the Metropolis–Hastings algorithm
where the proposal function g(x′|x) is symmetric. One of frequently-used
proposal functions is normal distribution. In these situation, the acceptance
probability will be simplified to:

A(x′, x) = min

(
1,
P (x′)

P (x)

)
= min

(
1,
f(x′)

f(x)

)
(2.18)

while the other steps ofMetropolis sampling are as same asMetropolis–Hastings
algorithm.
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Design of Experiments

The project first implements the random Fourier features method and one-
hidden layer neural network method onMNIST dataset. This experiment aims
to reveal that if the distribution of frequency parameters is well-chosen, the
random Fourier features model and one-hidden layer neural network model
will achieve similar prediction accuracy on this classification task.

The MNIST database (Modified National Institute of Standards and Technol-
ogy database) is a large database of handwritten digits commonly used for
training various image processing systems. The dimension of each input data
is 28 × 28 = 784 and the labels of each data are 0, 1, 2, . . . , 9, which are 10
classes. The prediction accuracy is the indicator to measure the performance
of different machine learning methods. The algorithms will predict the labels
of test data and the prediction accuracy is:

prediction accuracy =
the number of correctly predicted labels of test data

the total data number of the test data
×100

(3.1)

MNIST database is widely used for training and testing in the field of machine
learning [17]. Thus, the MNIST dataset will be appropriate and straightfor-
ward enough to evaluate the performance of different machine learning mod-
els.

In this first experiment three neural network’s activation functions are used,
which are sigmoid function, ReLU (Rectified Linear Unit) function and cosine
function, respectively. And neural network’s optimizer are applied, which are

19
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SGD and Adam, respectively.

A sigmoid function is a mathematical function having a characteristic "S"-
shaped curve or sigmoid curve. The sigmoid function in this thesis is specified
as the logistic function and defined by the formula below:[18]

s(x) =
1

1 + e−x
. (3.2)

Logistic functions are often used in neural networks to introduce non-linearity
in themodel or to clamp signals to within a specified interval. A popular neural
net element computes a linear combination of its input signals, and applies a
bounded logistic function as the activation function to the result; this model
can be seen as a "smoothed" variant of the classical threshold neuron.

In the context of artificial neural networks, the ReLU activation function de-
fined as the positive part of its argument:

f(x) = x+ = max(0, x). (3.3)

ReLU activation functionwas first introduced to a dynamical network byHahn-
loser et al. in 2000 with strong biological motivations and mathematical jus-
tifications [19] [20]. It was demonstrated for the first time in 2011 to enable
better training of deeper networks,[21] compared to the widely used activa-
tion functions prior to 2011, e.g., the logistic sigmoid (which is inspired by
probability theory) and its more practical[4] counterpart, the hyperbolic tan-
gent.[22] The ReLU is, as of 2017, the most popular activation function for
deep neural networks. [23]

To get an intuitive understanding of these two activation functions, the figures
of them are shown in figure 3.1.

Though cosine function is not a frequently-used activation function, it is also
involved in this experiment. Since cosine function, which is the Fourier fea-
tures, i.e., trigonometric features, is used as the activation function in random
features model.

The project then implements the adaptive randomFourier featureswithMetropo-
lis sampling model and one-hidden layer neural network model on a generated
dataset (sampled from the designed functions). This experiment intends to in-
dicate that adaptive random Fourier features with Metropolis sampling model
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(a) Sigmoid Function (b) Rectified Linear Unit Function

Figure 3.1: The figures of two activation functions

can choose an appropriate distribution of frequency parameters automatically,
which reproduces the conclusion of Kammonen’s work [1].

In this experiment, one-hidden layer neural network model still applies three
activation functions, which are sigmoid function, ReLU function and cosine
function. For the adaptive random Fourier features with Metropolis sampling
model, of course, only Fourier features, i.e., cosine function, is used. The last
experiment compares the performance of two methods under a classification
problem. In contrast, this experiment compares the performance of two meth-
ods under a regression problem.

To enhance the interpretability of the comparison, rather than choosing a real-
world function, we decide to choose a generated target function, which is de-
fined as:

f(x) = Si(
x1
a
)e−

|x|2
2 (3.4)

Si(v) :=

∫ v

0

sin(t)

t
dt. (3.5)

There are two parameters of the target function, i.e., parameter a and the di-
mension of the input data x. To show the target function intuitively, the figures
3.2 to 3.4 plot the target function when the dimension of input data x is 1 and
the parameter a = 0.1, 0.03 and 0.01 respectively:
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Figure 3.2: Target function with d=1, a=0.1

Figure 3.3: Target function with d=1, a=0.03

Figure 3.4: Target function with d=1, a=0.01
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The figures reveal that the parameter a determines the steepness of the tar-
get function. The smaller a is, the steeper the target function will be, which
means higher frequency component in the target function. The function’s high-
frequency component is usually the hardest or the latest part for machine learn-
ing models to learn.

It is necessary to state the motivation of choosing this target function. On
the one hand, this target function is simple enough. It is straightforward to de-
scribe the target function and convenient to sample from the the target function.
On the other hand, this target function is complicated enough. The smaller pa-
rameter a is used, the higher frequency components the function will contain.
The high frequency components are usually the intractable problem for the
machine learning models to approximate precisely. Thus, the target function
can generate hard enough challenge to test the machine learning models and
compare the performances of different methods.

In the last experiment, the project following inherits the Metropolis sampling
idea and generalizes from Fourier features to ReLU and sigmoid activation
functions. To be specific, the project constructs another two similar adaptive
random features model with ReLU and sigmoid features and apply these two
models on the same dataset, which is sampled from the generated target func-
tion. This experiment aims to demonstrate that the adaptive random features
model with Metropolis sampling can not only be used on Fourier features but
also on some other feature types.
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Implementations and Results

4.1 Compare one hidden-layer neural network
andAdaptive randomFourier features on
classification task

The first experiment is designed to compare the randomFourier features model
with one-hidden layer neural network model on MNIST dataset. The number
of train data in MNIST is 60,000, and the number of test data is 10,000.

The project implements the neural networkmodel using the TensorFlow frame-
work with version 2.1.0 and implements the random Fourier features model
using MATLAB with version R2020a.

For this experiment, the neural network’s hidden layer activation function is
the sigmoid function. To normalize the output of the network, the output layer
activation function is the softmax function, which is defined as:

σ(z)i =
ezi∑K
j=1 e

zj
for i = 1, . . . , K and z = (z1, . . . , zK) ∈ RK . (4.1)

The loss function is the cross-entropy function, and the iteration method is
stochastic gradient descent (SGD). For the parameters of SGD, the learning
rate is 1.0, the batch size is 100, and the experiment runs the whole dataset
with 10 epochs. The only variable of the neural network in this experiment is

24
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the hidden layer’s width, i.e., the number of nodes, ranging from 256 to 4096.

For the random Fourier features model, the number of random features and the
distributions of frequency parameters are the variables. Moreover, selecting
the distributions of frequency parameters is the crucial part, which is selected
personally. And it is pretty experience dependent. After many trials, three
appropriate distributions are selected. To be specific, N(0, 0.1), N(0, 0.15),
which are two normal distribution with both means of the distributions equal
0 and the standard deviations of the distributions equal 0.1 and 0.15 respec-
tively and a uniform distribution U(−0.25, 0.25), which is an open uniform
distribution with the bounds are -0.25 and 0.25 respectively.

The result is shown in figure 4.1.

Figure 4.1: Accuracy comparison of one-hidden layer NN and RF on MNIST
dataset

From the result, one can observe that when the number of nodes becomesmore
extensive, the prediction accuracy of the neural network model does not im-
prove, or even decrease a little bit, since the number of the epoch is limited. As
a contrast, when the number of nodes becomes more massive, the prediction
accuracy of the random Fourier features model improves significantly. More-
over, one can predict that when the number of nodes becomes large enough,
these two models’ prediction accuracy will be similar, though random Fourier
features model’s prediction accuracy is a little bit smaller at the current level.

It is worth emphasizing that the random Fourier features model’s training time
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is much shorter, which indicates the calculation amount. Since the frequency
parameters are sampled from the selected distribution rather than trained from
the dataset, the random Fourier feature model’s calculation amount decreased
significantly.

The training time for random Fourier features models with different frequency
parameters’ distribution is similar. Because sampling the random frequency
parameters is not the time determining step which needs O(K) times calcula-
tion. The figure 4.2 compares the training time of these two models.

Figure 4.2: Time comparison of one-hidden layer NN and RF on MNIST
dataset

4.2 Compare one hidden-layer neural network
andAdaptive randomFourier features on
regression task

As stated above, in the first experiment, the frequency parameters’ distribution
of RFmodels are selected personally, whichmay be a tricky step. In the second
experiment, the adaptive random Fourier features with Metropolis sampling,
which will sample the frequency parameters adaptively, is implemented and
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compared with one-hidden layer neural network model on the generated target
functions, which is defined in equations (3.4) and (3.5).

The pseudo-code of adaptive random Fourier features with Metropolis sam-
pling is shown in below [1]:

Algorithm 1 Adaptive random Fourier features with Metropolis sampling
Input: {(xn, yn)}Nn=1 {data}
Output: x 7→

∑K
k=1 β̂ke

iωk·x random features
Choose a sampling time T , a proposal step length δ, an exponent γ, a
Tikhonov parameter λ and a frequencym for β̂ updates
M ← integer part (T/δ2)
ω ← the zero vector in RKd

β̂ ← minimizer of the problem (1.8) given ω
for i = 1 toM do

rN ← standard normal random vector in RKd

ω′ ← ω + δγN random walk Metropolis proposal
β̂′ ← minimizer of the problem (1.8) given ω′
for k = 1 to K do

ru ← sample from uniform dist. on [0, 1]
if |β̂′k|γ/|β̂k|γ > ru Metropolis test then

ωk ← ω′k
β̂k ← β̂′k

end if
end for
if i modm = 0 then
β̂ ← minimizer of the problem (1.8) with adaptive ω

end if
end for
β̂ ← minimizer of the problem (1.8) with adaptive ω
x 7→

∑K
k=1 β̂ke

iωk·x

To control the variables, we fix the parameters of the target function as a =

0.01 and d = 3. All the target functions in below are same. And both the
train dataset and test dataset contain 10000 random samples from the target
function. To be specific, 10000 d-dimension samples are sampled from the
multi-dimension normal distribution N(µ,Σ), where µ is d-dimension zero
vector and Σ is d× d dimension identical matrix. And then these samples are
transferred to the target function to calculate the corresponding labels. Since
the high frequency component of the target function occurs around the zero
point, having more data points around zero point will be easier for the machine
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learning algorithm to learn the high frequency component. Thus, we choose
a multi-dimension normal distribution rather than multi-dimension uniform
distribution.

Firstly, we investigate the performance of one-hidden layer neural network
with different nodes on the target function. During this part, different com-
binations of activation functions and optimizers are tested.

When using sigmoid function as the activation function, no matter using SGD
or Adam as the optimizer, the generalization error will always be pretty large.
For example, setting the number of the nodes in hidden-layer as 512 and us-
ing stochastic gradient descent optimizer, if the activation function is ReLU
function, the mean square error between the prediction and the label is around
0.0128. However, the mean square error is around 0.6186, which is 40 times
larger, if sigmoid activation function is used. This situation reveals that the op-
timizer always traps into some local minimum, which is relatively large. This
phenomenon may be related to gradient vanishing of the sigmoid function.
Thus, only the results using ReLU activation function are showed in figure
4.3:

Figure 4.3: Adam vs SGD: generalization error on target function

In this experiment, if using ReLU function as the activation function, Adam as
the optimizer will get a slightly better generalization error than SGD, i.e., the
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minimal generalization error using Adam is smaller than using SGD. How-
ever, it can not say that Adam is a better optimizer than SGD for this problem.
Since adjusting the learning rate of SGD is highly delicate, it may exist a learn-
ing rate schedule that works better than Adam. For this experiment, several
learning-rate schedules have been tested. Finally, an exponentially decayed
learning rate schedule is selected (the initial learning rate is 0.025, the decay
step is 4000 iterations, and the decay rate is 0.985). And with this learning-rate
schedule, the amplitude of generalization error’s fluctuation of SGD is smaller
than Adam, which means SGD is a more steady optimizer than Adam.

However, an interesting phenomenon occurs on both Adam and SGD opti-
mizer. When the width (the number of nodes) is over 500, the generalization
error will not decrease anymore as the width increases. This phenomenon
reveals that when the width of the one-hidden layer neural network is large
enough, the optimizers can not find a better local minimum even if the width
becomes more extensive, which is the bottleneck of one-hidden layer neural
network model.

Supplements:
1. The maximal epochs of the iteration is 10000 for both Adam and SGD op-
timizers;
2. BothAdam and SGDoptimizers use early-stopping strategywith patient=100;
3. All these results are computed three times and averaged;

Secondly, we investigate the performance differences between one-hidden layer
neural networkwith different activation functions and adaptive randomFourier
features with Metropolis sampling. From above experiment, one can know for
this regression problem the one-hidden layer neural network performs best
when the width is around 500. Thus, in this part, we set the number of nodes
for both models as 512. Moreover, the activation functions we test are ReLU,
sigmoid and cosine (Fourier feature). The optimizers of the neural network
are still Adam and SGD.

The result is shown in figure 4.4.

When using the sigmoid activation function, the neural network model per-
forms poorly. Whether using Adam or SGD, the neural network model con-
verges pretty slow, and the converged result is unsatisfactory. For the cosine
activation function, the result is similar to the sigmoid activation function for
the neural network model, but the result is much better for the random feature
model.
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Figure 4.4: Adaptive randomFourier featureswithMetropolis samplingmodel
vs one-hidden layer neural network model: the generalization errors on target
function

Though the random feature model with cosine feature is not as good as the neu-
ral network model with the ReLU activation function, it is much more stable.
For the neural network model with the ReLU activation function, the gener-
alization error fluctuates severely, especially when using Adam optimizer. In
contrast, the adaptive random Fourier features model’s generalization error is
steady and similar to the training error.

Notably, unlike the neural network model, random feature models’ generaliza-
tion error will improve if the number of random features increases continually.
Thus, we next investigate the performance of adaptive random Fourier features
model with a larger number of nodes.

We implement the adaptive random Fourier features model with K equals 512,
1024 and 2048, respectively. From the results in figure 4.5, it is clear that when
the number of random features becomes more extensive, the adaptive random
Fourier features model’s generalization error decreases steadily.

Figure 4.5: Adaptive random Fourier features with Metropolis sampling
model: generalization error on target function with more random features
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4.3 Adaptive random featuresmodel with dif-
ferent random features

The last experiment investigates adaptive random featuresmodel’s performance
with Metropolis sampling when using other random features. The adaptive
idea with Metropolis sampling provides a systematic method to approximately
sample from the optimal distribution p∗(ω). This adaptive idea may work if
it combines with some other random features, which is the original intent of
designing this experiment. We still focus on the regression problem to approx-
imate the generated target function.

We select sigmoid function and ReLU function as the new random features.
Since these two functions are widely used as activation functions in neural
network model. Especially, ReLU function is the activation function that per-
forms best in the above experiments.

There are some hyper-parameters in the adaptive random features model with
Metropolis sampling. In this experiment, we do not investigate the influences
of these hyper-parameters and inherit these hyper-parameters’ value from the
original paper[1] (λ = 1.1, δ = (2.42)/(2d), γ = 3d − 2). Furthermore, we
implement the adaptive random features model with cosine(Fourier), ReLU
and sigmoid features, respectively.

Figure 4.6: adaptive random features models with different features and dif-
ferent number of nodes

The results in figure 4.6 shows that the cosine feature works best among these
three random features if the hyper-parameters are as same as the original paper.
Though the adaptive random features models with ReLU and sigmoid features
do not perform as good as Fourier features, ReLU and sigmoid features may
also be ideal choices if the hyper-parameters are different. In the following
work, we will investigate the influences of the hyper-parameters.
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Conclusions and Discussion

The thesis implements several experiments and investigates the performance
differences between different activation functions and optimizers of one-hidden
layer neural network and random feature models focus on two specific prob-
lems (one classification problem and one regression problem). Furthermore,
the thesis accomplishes the adaptive random Fourier feature with Metropolis
sampling and combine this adaptive idea with other random features to gen-
erate two new similar models. We also make the performance comparison
between these three models and one-hidden neural network model.

1. For the two specific problems, choosing ReLU function as the neural net-
work’s activation function will get better results than sigmoid function no mat-
ter using SGD or Adam as the optimizer. This phenomenon may be related to
the gradient vanish of the sigmoid function.

2. In the experiments, the Adam optimizer usually converges faster than SGD,
and the convergence results are usually better. However, it can not directly
claim that Adam is a better optimizer than SGD. Because tuning the learning
rate of SGD is sophisticated and delicate. A well-tuned SGD may obtain a
better result and usually with a more steady process.

3. If the frequency parameters’ distribution is well-chosen, the random feature
model will attain a similar prediction accuracy or generalization error as one-
hidden neural network model.

4. Since the frequency parameters are sampled rather than trained, the random
features model usually require less computation, i.e., faster, than one-hidden
neural network model.

32
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5. The thesis reproduces the model adaptive random Fourier features with
Metropolis sampling, which can approximately sample frequency parameters
from the optimal distribution p∗(ω), i.e., select the frequency parameters’ dis-
tribution automatically rather than personally.

6. The experiments reveal that the new adaptive random featuresmodels which
combine the adaptive idea using Metropolis sampling with other random fea-
tures can also work well. However, if the hyper-parameters are as same as the
original paper, the Fourier (cosine) feature works best.

7. The exploratory experiment indicates that the hyper-parameters will affect
adaptive random feature models’ performance and determine which random
feature fits best. However, the hyper-parameters’ influence is not clear enough
now, which needs future works to investigate.
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