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Minimal time delivery of multiple robots

Miguel Aguiar 1, Jorge Estrela da Silva2 and João Borges de Sousa1

Abstract— Consider a set of autonomous vehicles, each one
with a preassigned task to start at a given region. Due to
energy constraints, and in order to minimize the overall task
completion time, these vehicles are deployed from a faster
carrier vehicle.

This paper develops a dynamic programming (DP) based
solution for the problem of finding the optimal deployment
location and time for each vehicle, and for a given sequence
of deployments, so that the global mission duration is minimal.
The problem is specialized for ocean-going vehicles operating
under time-varying currents. The solution approach involves
solving a sequence of optimal stopping problems that are
transformed into a set variational inequalities through the
application of the dynamic programming principle (DPP). The
optimal trajectory for the carrier and the optimal deployment
location and time for each vehicle to be deployed are obtained in
feedback-form from the numerical solution of the variational
inequalities. The solution is computed with our open source
parallel implementation of the fast sweeping method. The
approach is illustrated with two numerical examples.

I. INTRODUCTION

Advances in sensor, computer, communication and naviga-
tion technologies, as well as in energy storage and composite
materials, have enabled impressive developments in field
robotics. However, this is just the beginning. In fact, up until
recently, the focus of most deployments has been on single
vehicle operations, while work on multi-vehicle control has
mainly targeted problems in formation control.

Future robotic operations in remote and communications-
challenged areas will entail new aspects of cooperation among
heterogeneous multi-domain vehicles. Some of these new as-
pects of cooperation are still being imagined today. Examples
include mobile computing (mobility of software) and mobile
computation (mobility of hardware), as well as distributed
processing of data streams coming from different sensors.
Other aspects are better understood. For example, one generic
motion pattern for multi-domain vehicles concerns iterated
rendezvous operations, in which vehicles exchange commands
and data to decide where and when the next rendezvous takes
place [7]. This motion pattern encompasses a significant
number of complex motion-planning problems, including,
for example, re-fueling, marsupial transportation [5] and
cooperative pick-and-place [2]. Most of these problems also
involve complex operational constraints such as dynamic
obstacles, time-varying winds or water currents, deadlines,
etc. The complexity of these problems comes from dynamic
motion models, combinatorial explosion, dynamic constraints,
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large areas of operation (in space and time) and stage-
dependent cost functions. The combination of these difficulties
makes it very difficult to derive a framework within which
these problems can be formally formulated, analysed and
solved. This is in part because of the hybrid nature of the state-
control spaces in which these systems evolve. While vehicles
evolve in continuous state-spaces, rendezvous activities signal
transitions between discrete modes of operation and cost
functions.

Here we present an approach to solve a class of multi-
vehicle planning problems. In this class of problems, one
ship is tasked to deliver n Autonomous Underwater Vehicles
(AUV) to n different departure areas. The AUVs are then
tasked to execute n different tasks. The ship travels much
faster than the AUVs, which are fuel constrained. All of these
vehicles are subject to time-varying currents. The approach
builds on DP methods applied to a hybrid-state model and
on an efficient solver [1] of the Hamilton-Jacobi-Bellman
partial differential equation resulting from the application of
the DPP to this model.

The paper is organized as follows. Section II presents the
formulation of the problem and section III discusses related
work. Section IV describes the approach, including some
results about it. Two numerical examples are presented in
section V. The last section discusses the conclusions and
future work.

II. FORMULATION

Consider a carrier vehicle which can transport and deploy
n smaller AUVs. We represent the position of the carrier
vehicle by a point x = (x1, x2) ∈ R2. The carrier is deployed
at some point x0 at some time t0, and the AUVs will be
deployed in the order by which they are numbered at positions
xi and times ti, i = 1, . . . , n. Once it is deployed, each AUV
will perform some task, and we assume that we can compute
a function θi : R×R2 → R≥0 such that θi(t,x) equals the
amount of time that AUV i will take to complete its task if
it is deployed at position x at time t.

The carrier is assumed to move according to the dynamics

ẋ(t) = u(t) + v(t,x(t)) (1)

where u is a control function satisfying ‖u(t)‖ ≤ r (here
and throughout, ‖·‖ denotes the Euclidean norm in Rn), and
v is a vector field modeling the water velocity. It is assumed
that v is globally bounded, and that for any (t,x) and y there
is a trajectory ξ of (1) such that ξ(t) = x and ξ(t′) = y for
some t′ ≥ t, even if ‖v‖ > r may happen occasionally.

We define ∆(s,y, t,x) = s − t if s ≥ t and there is a
trajectory ξ of (1) satisfying ξ(t) = x and ξ(s) = y, and



∆(s,y, t,x) = +∞ otherwise. The total mission time of
AUV i is defined as

T i = θi(ti,xi) +
∑

1≤k≤i

∆
(
tk,xk, tk−1,xk−1

)
,

i.e., the amount of time that AUV i spends in the carrier
vehicle plus the amount of time it takes to complete its task.

The global mission duration is defined as

T = max
1≤i≤n

T i

Note that T is a function of all the deployment times and
locations (ti,xi), i = 0, . . . , n.

Problem 1: Given the deployment position x0 and time
t0 of the carrier vehicle, find deployment positions xi and
times ti for the AUVs that minimize T .

The solution to Problem 1 is not necessarily unique. Here,
we present a method which computes one of the solutions.

III. RELATED WORK

Dynamic programming methods have been extensively
applied to solving optimal hybrid control problems [6, 12,
11]. The generic formulation addresses hybrid optimal control
problems for systems where autonomous and controlled state
jumps are allowed at the switching instants and the cost
function includes running costs, as well switching costs be-
tween discrete states. The application of DP methods to these
problems gives rise to a set of variational inequalities that
typically do not have a closed-form solution. Relationships
between adjoint processes in the Minimum Principle and the
gradient of the value function in DP have also been studied
in (e.g., in [11]).

These advances in hybrid systems research motivated
the development of solutions to problems in multi-vehicle
planning and execution control. For example, the problem of
optimal coordinated path planning for two vehicles in which
the path cost for one vehicle is a discontinuous function of
the distance to the other vehicle is formulated and solved
in [4]. The problem is solved with the help of three value
functions. One is defined in the space-state of one vehicle
and the other two are defined in the state-space of the other
vehicle. Alton and Mitchell formulated and solved a problem
of sequential coordinated pick and place for multiple robotic
arms using DP methods and an implementation of the fast
marching method [2]. The pick and place points are also
the rendezvous locations of the robotic arms involved in the
operation. Again, the solution of this iterated rendezvous
problem is determined from several value functions, each one
defined in the state-space of each robotic arm. Observe that
the reduction of dimension comes from the modularity of the
optimization problem. Space limitations preclude a thorough
discussion of related work.

The contributions of this paper are as follows. First, a new
formulation of a multi-stage multi-vehicle problem is intro-
duced and addressed in the framework of sequential optimal
stopping problems. The approach also encompasses more
general vehicle task specifications. Each task is abstracted
by a function returning the time to execute the task starting

from a given time-position pair. This enables decoupled task
optimization. Second, the approach deals with perturbations
in the form of ocean currents that may overcome the motion
capabilities of the vehicles for some periods of time. The
assumption is that this does not preclude reachability of
target positions. Third, an efficient numerical solver for
the Hamilton-Jacobi-Bellman equation is used in a modular
fashion to solve the sequential optimization problem. Finally,
the cost function is a positional functional [10] (i.e, satisfies
a non-decreasing property with respect to some arguments),
thus making it possible to apply the principle of optimality.

IV. APPROACH

A. Dynamic Programming
Our approach is to decompose the problem into a sequence

of optimal stopping problems. Once we have such a decom-
position, DP is used to solve these subproblems. The optimal
deployment positions and times are then recovered from the
corresponding value functions.

We start by defining the quantities T̂ i, i = 1, . . . , n, as

T̂ n = ∆
(
tn,xn, tn−1,xn−1

)
+ θn(tn,xn)

T̂ i = ∆
(
ti,xi, ti−1,xi−1

)
+ max{T̂ i+1, θi(ti,xi)}. (2)

Each T̂ i is a function of (tk,xk) for k ≥ i−1, and its value is
equal to the maximum mission time of AUV i, where these
times are measured starting from ti−1 (this is rigorously
shown in the proof of Lemma 1). We set T̂ n+1 ≡ 0 so that
relation (2) holds for i = n also.

Lemma 1: For any choice of deployment times and loca-
tions, T̂ 1 = T .

Proof: If ∆
(
ti,xi, ti−1,xi−1

)
is infinite for some i,

then T and T̂ 1 must both be infinite. Thus we henceforth
assume that ∆

(
ti,xi, ti−1,xi−1

)
= ti − ti−1 for all i. It

follows that
T i = θi(ti,xi) + ti − t0.

Clearly we have T̂ n = T n −
(
tn−1 − t0

)
, so that the

relation
T̂ k = max

j≥k
T j −

(
tk−1 − t0

)
,

holds for k = n. If it holds for k = i+ 1, then

T̂ i = max

{
max
j≥i+1

T j −
(
ti − t0

)
, θi(ti,xi)

}
+ ti − ti−1

= max

{
max
j≥i+1

T j , θi(ti,xi) + ti − t0
}
−
(
ti−1 − t0

)
= max

j≥i
T j −

(
ti−1 − t0

)
.

so by induction it holds for k = 1, which proves the lemma.

We define the value function of AUV i, V i as

V i
(
ti−1,xi−1

)
= inf
tn,xn,...,ti,xi

T̂ i

= inf
tn,xn,...,ti,xi

{
∆
(
ti,xi, ti−1,xi−1

)
+ max

{
T̂ i+1, θi(ti,xi)

}}
.



The value of V i(t,x) equals the optimal value of the
remaining mission time when vehicle i − 1 is deployed at
position x at time t. In particular, V 1(t,x) equals the optimal
value of T when t0 = t and x0 = x. We define

Ki(t,x) = max
{
V i+1(t,x), θi(t,x)

}
(3)

to simplify the notation, where V n+1 ≡ 0. The following
relation is easily derived:

V i
(
ti−1,xi−1

)
= inf
ti,xi

{
∆
(
ti,xi, ti−1,xi−1

)
+Ki

(
ti,xi

)}
.

(4)
This implies that we can determine the functions V i starting
from V n, which depends only on known data, namely θn.

Theorem 1: Fix t0 = t̂0 and x0 = x̂0. Suppose that there
exist (t̂i, x̂i), i = 1, . . . , n satisfying

V i(t̂i−1, x̂i−1) = ∆
(
t̂i, x̂i, t̂i−1, x̂i−1

)
+Ki(t̂i, x̂i).

Then (t̂1, x̂1), . . . , (t̂n, x̂n) is an optimal solution to Prob-
lem 1.

Proof: The relation

T̂ k
(
t̂n, x̂n, . . . , t̂k−1, x̂k−1

)
= V k

(
t̂k−1, x̂k−1

)
clearly holds for k = n. If it holds for k = i+ 1, then

T̂ i = ∆
(
t̂i, x̂i, t̂i−1, x̂i−1

)
+ max

{
θi(t̂i, x̂i), T̂ i+1

}
= ∆

(
t̂i, x̂i, t̂i−1, x̂i−1

)
+ max

{
θi
(
t̂i, x̂i

)
, V i+1

(
t̂i, x̂i

)}
= V i

(
t̂i, x̂i

)
In particular, V 1 = T̂ 1 = T , so

(
t̂i, x̂i

)
is optimal.

The minimization in (4) has an implicit restriction: xi must
be reachable from xi−1, otherwise ∆ is infinite. Rewrite (4)
as

V i
(
ti−1,xi−1

)
=

inf

{
ti − ti−1 +Ki

(
ti, ξ

(
ti; ti−1,xi−1,u

))
: ti ≥ ti−1,u ∈ U t

i

ti−1

}
, (5)

where U ts is the set of measurable controls u : [s, t]→ R2

which satisfy ‖u(τ)‖ ≤ r for almost all τ ∈ [s, t] and
ξ(t; s,x,u) is the value at time t of a trajectory of (1) sat-
isfying ξ(s; s,x,u) = x. Thus, finding (ti,xi) is equivalent
to solving an optimal stopping problem with boundary cost
Ki. The application of the DPP to this problem gives

0 = max

{
V i(t,x)−Ki(t,x),

− 1 + r
∥∥∇xV

i
∥∥− ∂V i

∂t
−∇xV

i · v(t,x)

}
, (6)

and the optimal control is given in feedback form as

u(t,x) = −r ∇xV
i(t,x)

‖∇xV i(t,x)‖
. (7)

Equation (6) is a variational inequality which expresses the
intuitive fact that at each point the optimal decision is either

to deploy the next AUV, in which case the value function
equals the boundary cost at that point, or to move along an
optimal trajectory, in which case the derivative of the value
function along the trajectory is equal to −1.

Bardi and Capuzzo-Dolcetta [3] give a derivation of (6)
for the time-invariant discounted-cost case which is easily
adapted to the problem at hand. The derivation requires the
technical condition that Ki be uniformly continuous for each
i, which holds in this case assuming that the θi are bounded
and uniformly continuous.

Lemma 2: Assume that v in (1) is globally Lipschitz in
(t,x). If Ki is bounded and uniformly continuous, then so is
V i (as defined by (5)).

Proof: Consider the control system with dynamics

ż = g(z,u) = (1,u+ v(z))

where z = (t,x) ∈ R × R2. Let ζ(τ ; z,u) denote the
trajectory of this system satisfying ζ(0; z,u) = z. Setting

ϑ(z) = V i(t,x)

k(z) = Ki(t,x),

we have

ϑ(z) = inf
τ≥0,u∈U

{τ + k(ζ(τ ; z,u))} , (8)

where U is the set of measurable u : R≥0 → R2 which
satisfy ‖u(t)‖ ≤ r almost everywhere. This means ϑ is the
value function for a time-invariant optimal stopping problem.

Let Mk be such that 0 ≤ k(z) ≤ Mk for all z. Since a
feasible solution to the optimization problem (8) is τ = 0
and u arbitrary, it follows that

V (z) ≤ k(z) ≤Mk,

for each z, so ϑ is bounded. Additionally, since for τ > Mk

and any u we have

τ + k(ζ(τ ; z,u)) > Mk,

equation (8) can be rewritten as

ϑ(z) = inf
0≤τ≤Mk,u∈U

{τ + k(ζ(τ ; z,u))} .

Fix z0 and ε > 0 and pick τ ∈ [0,Mk] and u ∈ U so that

ϑ(z0) ≥ τ + k(ζ(τ ; z0,u))− ε.

For any z we have

ϑ(z) ≤ τ + k(ζ(τ ; z0,u))

so that

ϑ(z)− ϑ(z0) ≤ k(ζ(τ ; z,u))− k(ζ(τ ; z0,u)) + ε

≤ |k(ζ(τ ; z,u))− k(ζ(τ ; z0,u))|+ ε

≤ ωk(‖ζ(τ ; z,u)− ζ(τ ; z0,u)‖) + ε.

where ωk : R≥0 → R≥0 is an increasing modulus of
continuity for k (existence of ωk is implied by the uniform
continuity of k). Letting Lg > 0 be a global Lipschitz constant



for g, we have a bound on the distance between the two
trajectories [3]:

‖ζ(τ ; z,u)− ζ(τ ; z0,u)‖ ≤ exp(Lgτ) ‖z − z0‖ ,

so that

ϑ(z)− ϑ(z0) ≤ ωk(exp(Lgτ) ‖z − z0‖) + ε

≤ ωk(exp(LgMk) ‖z − z0‖) + ε

from which, since the bound depends only on ‖z − z0‖,

|ϑ(z)− ϑ(z0)| ≤ ωk(exp(LgMk) ‖z − z0‖) + ε

and thus ϑ is uniformly continuous.
Hence, if θn is bounded and uniformly continuous, then so

is V n, and by induction, if each θi is bounded and uniformly
continuous then all the V i are bounded and uniformly
continuous, so that all the Ki are too.

Equation (6) obviously requires that V i be differentiable
at (t,x), which is not necessarily the case. Solutions of (6)
are typically defined in a generalized (viscosity) sense [3].
Thus, in absolute rigor it would be necessary to prove that
(5) gives the unique viscosity solution of (6), but we do not
provide such a proof in this paper. A proof for the discounted
cost case is given in Bardi and Capuzzo-Dolcetta [3].

Given the carrier deployment time and position
(
t0,x0

)
the optimal solution for i = 1, . . . , n comes from integrating

ẋ(t) = −r ∇xV
i(t,x(t))

‖∇xV i(t,x(t))‖
+ v(t,x(t)) (9)

with the initial condition x
(
ti−1

)
= xi−1, until the solution

reaches the set
{

(t,x) : V i(t,x) = Ki(t,x)
}

(by the proof
of Lemma 2, every trajectory of (9) reaches this set in finite
time). If this set is reached at time τ , then set ti = τ and
xi = x(τ), increment i and repeat.

B. Constraints

In the above we have not considered constraints on the
deployment positions and times (ti,xi). Let M ≥ 0 be
such that if V 1(t,x) ≥M ; then it is not feasible to deploy
the carrier from x at time t (M can be derived from the
maximum mission duration). If there are constraints on
the AUVs’ deployment locations, i.e. AUV i may only
be deployed at (t,x) ∈ Γi, then one modifies θi so that
θi(t,x) = M for (t,x) /∈ Γi and θi(t,x) is unchanged away
from the complement of Γi. This must be done so that θi

remains uniformly continuous, resulting in a conservative
approximation of the constraint set.

C. Numerical computation

Typically, variational inequalities of the form (6) do
not have a closed-form solution, so numerical methods
must be used to approximate the solution. Most numerical
methods will compute the solution over a discrete grid on a
hyperrectangle in the (t,x)-space. In our problem this is

D = [t, t̄]× [x1, x̄1]× [x2, x̄2].

Note that the dimension of the space in which the solutions
are computed is independent of the number of AUVs. The

gradient ∇xV
i in (7) can be approximated at the grid points

via a finite difference approximation and interpolated to points
of D not in the grid. The ordinary differential equation (9)
will then be numerically solved using any integration method.
Naturally, the stopping condition V i = Ki must be relaxed
to V i + ε > Ki for some appropriate tolerance parameter ε.

In the examples below we use our open-source parallel
implementation1 of the fast sweeping method (FSM) [13,
9, 1] to compute an approximate solution of (6). The FSM
is an iterative method which can be combined with several
different discretization methods. Our implementation uses a
Lax-Friedrichs type discretization described in Kao et al. [9].

The FSM is typically applied to partial differential equa-
tions, so in what follows we show how it can be applied to
the variational inequality in question. Writing

H(z, p) = r ‖(p2, p3)‖ − p1 − (p2, p3) · v(z)− 1,

where z = (t,x) and p = (p1, p2, p3) ∈ R3, (6) is written as

0 = max
{
V i(z)−Ki(z), H

(
z,∇V i(z)

)}
.

Kao et al. [9] show that the Lax-Friedrichs discretization of
H
(
z,∇V i(z)

)
results in an expression of the form

α(z)V̂ i(z)− Ĥ
(
z,
{
V̂ i(y)

}
y∈N (z)

)
for each gridpoint z, where α(z) > 0, V̂ i denotes the
numerical approximation of V i at the gridpoints, and N (z)
is the set of grid neighbors of z. An explicit expression for
α is given in Kao et al. [9]. Hence (6) is discretized as

0 = max

{
V̂ i(z)−Ki(z),

α(z)V̂ i(z)− Ĥ
(
z,
{
V̂ i(y)

}
y∈N (z)

)}
,

or equivalently, since α is positive,

0 = max

{
α(z)

(
V̂ i(z)−Ki(z)

)
,

α(z)V̂ i(z)− Ĥ
(
z,
{
V̂ i(y)

}
y∈N (z)

)}
,

and this can be solved for V̂ i(z) to give

V̂ i(z) = min

{
Ki(z), α(z)−1Ĥ

(
z,
{
V̂ i(y)

}
y∈N (z)

)}
.

The second branch of the min is the standard update formula
of the FSM (see Kao et al. [9] for details).

V. NUMERICAL EXAMPLES

We now illustrate our approach with two numerical
examples. The AUVs are assumed to have dynamics identical
to the carrier, with the norm of the control signal of AUV i
bounded by ri. The task of AUV i is to reach some point
xiT ∈ R2 in minimal time. Hence θi is the value function of

1https://github.com/mcpca/marlin



a minimum time control problem, and we also compute it
using the FSM.

The following holds in the two examples: i) The value
functions V i will be computed over the set (t,x) ∈ [0, 4]×
[−1, 1]× [−1, 1]; ii) The grid over which the value functions
are computed has resolutions of, respectively, 0.01 and 0.015
in the temporal and spatial dimensions; iii) The deployment
time and position AUV i is constrained to lie on the set Γi ={

(t,x) : θi(t,x) ≤ 0.7 and x2 ≤ 0.5
}

; and, iv) For AUV i,
r = 1.5 and ri = 1.0.

The constraint θi(t,x) ≤ 0.7 represents a fuel constraint,
which is translated into a task duration constraint. This can
be done because the expended power is proportional to the
cube of the magnitude of the control. Since the AUVs will
travel at maximum speed after deployment (because these are
solving a minimal time optimal control problem), the total
energy consumption of vehicle i is proportional to θi.

A. Two AUVs and zero ocean currents

Here, n = 2 and v is identically zero. The target positions
of the AUVs are x1

T = (−0.8, 0.8) and x2
T = (0.8, 0.8).

Fig. 1. Trajectory of the carrier and deployment positions of the AUVs.

Fig. 1 depicts the optimal solution for t0 = 0,x0 =
(−0.5,−0.8). The carrier trajectory is plotted in blue and
the deployment positions of the AUVs are indicated by the
red circle. The red stars indicate the target positions of the
AUVs, and the dashed lines the trajectories of the AUVs from
the deployment to the target positions. The colored regions
indicate the values of Ki on the constraint sets Γi at the
instant of time at which the corresponding AUV is deployed.
Note that the values increase rapidly near the boundary of
the sets (indicated by the lighter green color) due to the
modification of θi according to the remark in IV-B. As
expected, the trajectories of the carrier are straight lines,
because the velocity of the current is zero, Moreover, the
AUVs are expected to be deployed at the boundary of the
respective constraint sets Γi. In fact, since the global mission
time is dominated by T 2, one expects the first and second
AUVs to be deployed, respectively, at the boundary of the

region
{

(t,x) : θi(t,x) ≤ 0.7
}

, and near the region x2 = 0.5
(the carrier is faster than the AUVs).

B. Three AUVs and non-zero ocean currents

Here, n = 3 with target positions x1
T = (−0.8, 0.8), x2

T =
(0.0, 0.8) and x3

T = (0.8, 0.8). The vector field v is given by

v(t,x) =

(
b−A sin(πx1 − 2πft) cosπx2
A cos(πx1 − 2πft) sinπx2

)
with b = 0.5, A = 0.4, f = 1.0 (see Harrison et al. [8] for
the motivation to use this class of vector fields).

Fig. 2 shows the optimal solutions for two different
values of t0 with x0 = (0.0,−0.8) in both cases. Vectors
representing the velocity of the current are depicted along
the carrier and AUV trajectories in cyan and green colors,
respectively. Note that for t0 = 0.4 the sets Γ1 and Γ2

intersect. In this particular example the two AUVs are
deployed at the same time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a solution approach for the
problem of deploying a set of vehicles in order to minimize
the global mission time. A concise formulation of the problem
in the framework of dynamic optimization was provided,
followed by a solution approach based on the dynamic
programming principle. The resulting variational inequalities
are solved numerically to find the solution in the form of a set
of value functions. This computationally expensive operation
is efficiently performed by our parallel implementation of a
solver [1]. Given the desired time and location of departure
of the carrier, those value functions can then be used to
determine approximations of the optimal trajectory for this
vehicle, along with the deployment times and locations for
all AUVs.

Future research directions will include the solution of
problems where the deployment sequence is not given in
advance and the investigation of the effect of non-zero AUV
deployment times on the solution of the problem.
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by Portugal2020 through Compete2020 (ref POCI-01-0247-
FEDER-024508); “European Multidisciplinary Seafloor and
Water Column Observatory-Portugal – EMSO-PT’ funded
by the ERDF through Compete2020 and by FCT (ref. PIN-
FRA / 22157/2016 – POCI-01-0145-FEDER-022157); and,
“Sistema baseado em veículos autónomos para observação
oceanográfica de longa duração – ENDURANCE”, funded by
NORTE2020 under the Portugal2020 Partnership Agreement
through ERDF (ref. 17804).



(a) t0 = 0.4 (b) t0 = 0.7

Fig. 2. Optimal solutions for different values of t0
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