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Abstract: Alloy 825 is widely used in several industries, but its useful service life is limited by
both mechanical properties and corrosion resistance. The current work explores the effect of the
addition of magnesium on the recrystallization and mechanical behavior of alloy 825 under hot
compression. Compression tests were performed under conditions representative of typical form-
ing processes: temperatures between 1100 and 1250 ◦C and at strain rates of 0.1–10 s−1 to a true
strain of 0.7. Microstructural evolution was characterized by electron backscattered diffraction.
Dynamic recrystallization was found to be more prevalent under all test conditions in samples con-
taining magnesium, but not in all cases of conventional alloy 825. The texture direction 〈101〉 was the
dominant orientation parallel to the longitudinal direction of casting (also the direction in which the
samples were compressed) in samples that contained magnesium under all test conditions, but not
in any sample that did not contain magnesium. For all deformation conditions, the peak stress was
approximately 10% lower in material with the addition of magnesium. Furthermore, the differences
in the peak strain between different temperatures are approximately 85% smaller if magnesium is
present. The average activation energy for hot deformation was calculated to be 430 kJ mol−1 with
the addition of magnesium and 450 kJ mol−1 without magnesium. The average size of dynamically
recrystallized grains in both alloys showed a power law relation with the Zener–Hollomon parameter,
DD ∼ Z−n, and the exponent of value, n, is found to be 0.12. These results can be used to design
optimized compositions and thermomechanical treatments of alloy 825 to maximize the useful service
life under current service conditions. No experiments were conducted to investigate the effects of
such changes on the service life and such experiments should now be performed.

Keywords: nickel alloys; alloy 825; magnesium; stress/strain measurements; grains and
interfaces; texture

1. Introduction

Alloy 825, with its excellent combination of mechanical properties and corrosion
resistance, can be used at high temperatures and in acidic environments. It is used in the
petrochemical sector, such as in oil and gas extraction and petroleum refining. It is also
used in other applications to make tanks that are subject to corrosive environments. In
these applications, it is subjected to both mechanical loading and prolonged contact with
corrosive substances. Therefore, both the mechanical properties and corrosion resistance
can be limiting. If both the mechanical properties and corrosion resistance can be improved,
the service life of components made from the alloy can be increased. This will promote
sustainable development by reducing resource consumption and increasing the economic
benefits of the component.
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It is well known that the addition of microalloying elements such as magnesium,
calcium and boron has a strong influence on the mechanical properties of both wrought and
cast nickel-base superalloys [1–3]. Moreover, the addition of 194 ppm by mass magnesium
in nickel-base and iron–nickel-base superalloys has been shown to improve properties
such as stress rupture life and creep life, a function currently fulfilled by cobalt, which is a
critical element and is the subject of a drive to reduce its use [4,5].

It was found that the addition of magnesium leads to the refinement of grain bound-
ary carbides and retards the formation of grain boundary δ-phase (Ni3Nb) [5]. A small
magnesium addition of 16–110 ppm by mass increases the impact toughness and decreases
niobium segregation in as-cast Inconel 718 [6]. This is because the minor magnesium
addition makes MC-type precipitates finer and spheroidal. Magnesium has also been
found to spheroidize grain boundary carbides [5] and decrease the grain boundary en-
ergy [7]. The latest effect increases the cohesion of adjacent grains and the rupture energy
of the grain boundaries, which increases the time required to nucleate and grow a crack by
creep. It also reduces the energy barrier to the nucleation of recrystallized grains. The fine
particle density in the Fe-36Ni alloy increases with an increasing content of magnesium
from 49 to 69 ppm by mass during hot tensile tests at 700 and 850 ◦C, which pins grain
boundaries and leads to grain refinement [8]. Even a trace addition of magnesium of the
order of 10 ppm by mass (0.001 wt%) can lead to very fine grain size of 20 to 30 µm [9].
It is also claimed that the addition of 50 to 100 ppm by the mass of magnesium can sig-
nificantly improve hot workability and prolong the rupture life of nickel-base alloys [10].
Furthermore, it has been reported that nickel-base superalloys without the addition of
magnesium can suffer grain boundary cracking as grains cannot slide relative to each other
during deformation [1]. It has been suggested that a small addition of magnesium to some
alloys can improve stress-rupture ductility, even if the alloy contains less than 0.003 wt%
carbon [11]. However, the addition of more than 400 ppm magnesium can lead to the
formation of Ni2Mg, a brittle phase, which deteriorates hot workability but may benefit
forgeability [12]. Previous investigations consistently state that a small amount addition
of magnesium in nickel-base and iron–nickel alloys can improve creep and stress rupture
properties due to the spheroidization of precipitates [1–12]. Moreover, the stress required
for plastic deformation can be increased by an addition of magnesium due to substitutional
solid solution strengthening and causing an increase in dislocation density, prolonging
work hardening [13].

There is very little work reported on the dynamic recrystallization of nickel-base and
iron–nickel superalloys containing magnesium. Previous work by some of the current
authors characterized the microstructure in hot deformed alloy 825 by optical microscopy
and electron backscatter diffraction (EBSD). It was shown that no significant dynamic
recrystallization had occurred [14,15]. Instead, a substructure dominated by low-angle
grain boundaries was formed. The present work studies the effect of trace additions of
magnesium on the mechanical behavior of cast alloy 825 after one-hit hot-deformation,
with emphasis on whether or not dynamic recrystallization occurs.

The onset of dynamic recrystallization is triggered at a critical stress, σc, and critical
strain, εc [16–18] or when some minimum dislocation density value is exceeded [19,20].
During hot deformation, stress increases continuously until work hardening is balanced
by the removal of dislocations via dynamic recrystallization. At this point, the strain
hardening rate, θ, becomes zero. The corresponding stress and strain are known as peak
stress, σp, and peak strain, εp. The corresponding microstructure is called a “necklace”
structure and consists of grains that are still undergoing recrystallization at the end of
the deformation [21]. Such a structure was observed and reported in the current alloy
in a previous paper [15]. The critical strain, εc, is often approximately 0.8 εp [22] and
the critical stress, σc, is often approximately 0.9 σp [23,24]. The formation of the necklace
structure coincides with a sudden reduction in the flow stress following the work hardening
regime. In the stress–strain curves of constant strain rate, stress will thus decrease after
the peak stress and, once the necklace structure is fully formed, reach a plateau called the
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steady-state stress. This is because the reduction in flow stress due to the formation of
the necklace structure is exhausted and the material exhibits a dynamic balance between
recrystallization and work hardening. Dynamic recrystallization may also occur without
any apparent peak in the flow stress [25].

In order to model the material behavior during the hot deformation, it is important
to determine the values of critical, peak and steady-state stress. Except in the case of a
visible peak in the flow curve—which is usually promoted by high temperatures and low
strain rates—direct measurement of peak stress and peak strain are difficult. It is even more
complex to measure critical stress and critical strain. One established method to find these
values from experimental stress–strain data is to relate them with the Zener–Hollomon
parameter, Z, (Equation (1), where

.
ε is the deformation strain rate, Q is the activation energy

for the rate-limiting process in the deformation and R and T have their usual meanings) and
dynamic recrystallization kinetics [17,25]. The dynamically recrystallized grain size, DDRX,
is highly sensitive to the deformation conditions, which can be adequately represented by
the Zener–Hollomon parameter. A power law function (Equation (2) with 0.27 ≤ n ≤ 0.4)
has been reported in studies on the discontinuous dynamic recrystallization of austenite
with low stacking fault energy during hot working [26–30]. The current alloy has a moder-
ate stacking fault energy and so is not entirely dissimilar to the austenite reported in the
aforementioned studies. In this discontinuous regime, recrystallized grains nucleate on
prior grain boundaries [18]. This strong temperature and strain rate dependence of the
dynamically recrystallized grain size becomes much weaker as deformation temperature
decreases. The dominant mechanism of dynamic recrystallization changes from discontin-
uous to continuous. In the first case, recrystallized grains are found only on prior grain
boundaries and a necklace structure is observed. This mechanism is favored in situations
where deformation strain is localized in the microstructure. In the second case, which is
favored when deformation can take place throughout the microstructure, recrystallized
grains nucleate near prior boundaries and within the bulk of deformed grains [18,28,29].
Under the continuous recrystallization regime, the mean dynamically recrystallized grain
size, DD, can be also expressed by a power law function of the Zener–Hollomon parameter
with a much smaller exponent, n ∼ 0.1 (Equation (2)) [28–30]:

Z =
.
ε exp(Q/RT) (1)

DD = CZ−n (2)

In the current study, the influence of a magnesium addition on the deformation behav-
ior of alloy 825 was investigated for the first time using one-hit compression testing. The
critical and peak stresses and strains are measured. The microstructure was investigated
using electron backscatter diffraction to determine the nature of the microstructure after
compression testing.

2. Materials and Methods
2.1. Materials

Samples of alloy 825 with the addition of magnesium (Alloy A, Table 1) were manu-
factured by argon oxygen decarburization (AOD) refining and then ingot cast. Samples
without the addition of magnesium (Alloy B, Table 1) were produced by AOD-refining,
followed by continuous casting.
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Table 1. Chemical compositions of alloy 825 in this study. All compositions expressed in wt%. Levels of carbon and sulfur
were measured using combustion photometry. Combustion analysis was used for carbon and nitrogen. X-ray fluorescence
spectrometry was used for other elements. Uncertainty estimates for C and N measurements are taken from data in standard
ASTM E1018-11. The uncertainty estimates of the other elements are taken from ASTM E572-13.

Elements C S Cr Mo Co Ti Cu N Mg Fe O

Alloy A 0.020 <5 ppm 22.20 3.09 0.078 0.76 1.58 0.012 0.0076 30 7 ppm
Alloy B 0.007 <5 ppm 22.08 2.53 0.045 0.80 1.60 0.010 0 32 10 ppm

Uncertainty 0.01 0.001 0.001 0.03 - 0.003 0.002 0.005 0.0001 - -

2.2. Hot Compression Tests

Cylindrical compression test pieces with a diameter of 10 mm and a length of 15 mm
in Alloy A were machined with the compression axis parallel to the ingot axis from a
constant radial position, which corresponds to places where columnar grains were found to
be occur. Hot compression test pieces of Alloy B were produced with the same dimensions
as the test pieces of Alloy A with the compression axis parallel to the long axis of the
continuously cast blooms in a region where grains were found to be columnar. Moreover,
isothermal deformation tests were conducted on a Gleeble-3500 thermomechanical sim-
ulator (Dynamic Systems Inc. (DSI), New York, NY, USA) at temperatures from 1100 to
1250 °C at 50 °C intervals and with target strain rates of 0.1, 1.0, and 10.0 s−1 (Figure 1).
These temperatures were chosen to prevent the phenomenon of barreling, which results in
inhomogeneous strains in compression testing samples [16]. The typical deviation in test
temperatures was ±5 °C and the actual strain rate did not deviate by more than 10% from
the target strain rate. The calibration of the Gleeble thermomechanical simulator showed
a precision of ± 1% in both stress and temperature measurement. For simplicity, the test
conditions will be referenced with respect to their target values in this paper. The samples
were compressed to a degree of height reduction of 50%, corresponding to a target true
strain of 0.7, and the actual strain was 0.68± 0.04.

Following the convention in published literature for compression testing, all com-
pressive stresses and strains are defined as positive in this paper. Tests were carried out
under two conditions: a constant temperature in the range of 1200 and 1250 °C, and at
two different temperatures of 1100 and 1150 °C. These conditions were selected as the
dynamic recrystallization was not complete and the flow stress was not affected by the
cast grain structure or grain size [14,15]. Samples tested at two temperatures were initially
heated to the homogenization temperature of 1200 °C for 100 s. The samples were then
cooled to the deformation temperature at a rate of 5 °C s−1. The samples were held at each
deformation temperature for 30 s. Samples were then compressed by a load of 100 kN
under vacuum, before being quenched in high pressure air to a temperature of between
1000 and 200 °C. The deformed samples were cut parallel to the axis of compression and
prepared for metallography following standard procedures. The specimens were then
electrochemically etched for optical microscopy (Zeiss microscopy, Oberkochen, Germany)
in a solution of 10 g oxalic acid and 100 mL water for 3 to 60 s under an applied potential
of 6 V.

The measurement of peak stress and strain was achieved using the measured work
hardening rate, θ = dσ

dε

∣∣∣
T,

.
ε

[17], which was calculated from the stress and strain measure-

ments by averaging the slopes of two adjacent points for each data point (Equation (3),
where σ and ε are the coordinates of each data point):

θ = 0.5(
σn+1−σn

εn+1 − εn
+

σn − σn−1

εn − εn−1
) (3)

To overcome noise in the data, a curve smoothing by fitting with a high-order polyno-
mial to the stress–strain curves were used to eliminate fluctuations [18–20].
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During the strain test, the strain hardening coefficient, θ, decreases quickly with the
increase in stress, σ, (and strain, ε). This means that the rate of increase in the flow stress
decreases and is due to dynamic recovery. This corresponds to deformation from the
onset of plastic deformation to the point at which subgrains have formed in the material.
Eventually, θ = σ and the conditions at this time are defined as the critical stress, σc, and
critical strain, εc. Beyond this strain, dynamic recrystallization begins. During subsequent
deformation, σ continues to increase and θ reduces to zero. The stress at which this occurs
is defined as the peak stress, σp. Similarly, the corresponding strain is defined as the peak
strain εp. At this point, there is a balance between the work hardening and softening by
recovery and recrystallization. θ then decreases to the minimum before rising again. When
it increases to zero, there must be a new balance between work hardening and softening.
The stress at this point is defined the steady state stress, σs with a corresponding steady
state strain, εs. The definitions of the points are summarized in Figure 2 [21].
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Figure 1. Schematic representation of the samples, applied thermomechanical processes and sec-
tioning geometries for the hot compression tests. The tests were conducted on a Gleeble-3500
thermomechanical simulator.

The onset of dynamic recrystallization can also be detected from inflections in plots
of ln θ versus ln σ and ln θ versus ε, regardless of the presence of stress peaks in the flow
curves [17,22–26].
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2.3. Electron Backscatter Diffraction Analysis

Samples for EBSD were ground and polished to a 3 µm finish using diamond paste
and then to a finish of 0.05 µm using colloidal silica. EBSD was conducted using a Zeiss
Sigma field emission gun scanning electron microscope (Carl Zeiss Microscopy GmbH,
Oberkochen, Germany). The data were acquired and processed using the software TSL
OIM Analysis 7 (AMETEK, Inc., Berwyn, PA, USA). Orientation imaging microscopy
map and the misorientation angle of grains were calculated from the EBSD results. For
each sample, a single EBSD scan with a size step of 3.0 µm was acquired, covering an
area of 2319 µm× 1737 µm (∼4.03 mm2). In addition, two EBSD scans with size step of
1.0 µm were acquired for all samples, covering an area of 581 µm× 435 µm (∼0.253 mm2).
This was used to estimate dynamic recrystallized grain size (line intercept method). For
each deformation condition, a standard error of the average value was performed on
three scans (standard error of the mean value, σM, is related to the standard deviation of
each individual measurement, σ and the square root of the total number, N, of data sets,
Equation (4)):

σM =
σ

N0.5 (4)

A size step of 0.2 µm, covering an area of ∼0.01 mm2 was also used for local scans
of the recrystallized microstructure. In the present work, a grain boundary is defined
by EBSD when the change in orientation across it exceeds 5◦ [14,27]. This is known
as the grain tolerance angle [28,29]. Twin boundaries (defined as boundaries with a
misorientation of 60◦ about 〈111〉 axes) were ignored when estimating the recrystal-
lized grain size. Boundaries which are classified as high-angle (misorientation angle,
θ > 10◦) are interpreted as fully formed grain boundaries, whereas low angle boundaries
(2◦ < θ < 10◦) are interpreted as sub-grain boundaries comprising a high density of
dislocations. The minimum misorientation angle, θ, detected between grains. was 2◦ and
the maximum was 62.7◦. The grain orientation spread technique was used to distinguish
the dynamically recrystallized grains from the deformed matrix [29–33]. If a grain has a
grain orientation spread of < 2◦, it is interpreted as a recrystallized grain. Higher values
are taken to indicate that a grain has either not undergone recrystallization or has deformed
significantly after being formed by recrystallization [28,29]. In addition, EBSD was used to
investigate deformation texture and recrystallized texture by the inspection of the inverse
pole figure of each sample. The fraction of recrystallized grains, the number density of
dynamically recrystallized grains (excluding twins) and dynamically recrystallized grain
size (excluding twins) were investigated.
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3. Results
3.1. Stress–Strain Curves

The flow stress in both Alloys A and B increases with the strain rate and decreases
with deformation temperature (Figure 3). The peak stress of Alloy A was significantly
higher than that of Alloy B for each condition, with the sole exception of a deformation
at 1150 °C and a strain rate of 0.1 s−1. Alloy A exhibits slight flow softening at all strain
rates and at temperatures between 1100 and 1200 °C, which is visible as a reduction in the
flow stress in the stress–strain curves during deformation (Figure 3a–c). Alloy B shows
no such softening behavior. At a temperature of 1200 and 1250 °C, the flow curves of
Alloy A are located above those of Alloy B and Alloy B almost showed a steady-state
stress. The stress–strain curves of Alloy A show a softening behavior throughout the test
at 1200 °C (Figure 3c) but show a steady-state stress at 1250 °C (Figure 3d). The difference
between the highest recorded stress and stresses at strains higher than that at which the
highest stress was observed become less significant as the strain rate increases and/or the
deformation temperature decreases. There is no clear peak at a strain rate of 10 s−1 for
any test temperature: in some cases, it may be possible to identify feasible candidates for
peak stresses, but none of them are a clearly well defined peak and is either followed by a
second peak (e.g., Alloy B at 1200 °C) or a very slight reduction in stress (e.g., Alloy B at
1150 °C).
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Figure 3. True stress–true strain curves for alloy 825 tested at strain rates ranging from 0.1 to 10 s−1

and temperatures of (a) 1100 ◦C, (b) 1150 ◦C, (c) 1200 ◦C, and (d) 1250 ◦C. The vertical order of the
dashed lines is the same as for the solid lines. Solid lines are for samples that contain magnesium;
dashed lines represent data for samples to which magnesium has not been added. To aid a clear
comparison, the y axis range is kept constant in all subfigures.

3.2. Peak Strain and Peak Stress

The peak strain, εp, and peak stress, σp, were defined as occurring at a point at which
the work hardening rate first fell to zero. Both the peak strain and peak stress decrease
with increasing deformation temperatures and increase with the increasing strain rates
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(Figure 4). For all deformation conditions, the peak strain of Alloy B was approximately
25% to 150% higher than that of Alloy A. At 1200 and 1250 °C, the peak stress of Alloy A was
approximately 10 to 15% higher than that of Alloy B for all strain rates. However, neither
composition has a consistently higher value of peak stress. Furthermore, the differences
in the peak strain between different temperatures were smaller in Alloy A, compared to
Alloy B.
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3.3. Evolution of Microstructure
3.3.1. Initial Structure before Deformation

Inspection of the results of EBSD analysis of transverse samples in the as-solution
annealed condition (Figure 5) shows that both samples A and B are composed of large
fully recrystallized grains with an average grain size, D0, of 558± 80 µm (Alloy A) and
565± 65 µm (Alloy B), measured using the intercept method (Equation (4), where multiple
random straight lines of length di intercept a total of N grains). Alloy A contains grains
aligned with〈110〉, 〈111〉 and 〈112〉 directions, while Alloy B has grains oriented close to
〈001〉 directions:

D0 =
1
N

n

∑
i

di (5)
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Figure 5. EBSD image of the sections normal to the longitudinal direction in the casting of samples of (a) Alloy A and (b)
Alloy B after solution annealing at 1200 ◦C; (c) key used for the coloring of the pole figure maps shown in (a,b) is given. The
regions displayed are representative of the entire material and two additional EBSD scans of each alloy are available online
as Supplementary files.

3.3.2. Microstructure after Hot Compression Testing

The deformed microstructure consists of serrated grain boundaries, bulging non-
recrystallized grains, intragranular recrystallization and partially recrystallized grains
(also termed a necklace structure) (Figures 6–8), which are also all reported in previous
published work [14,15,27].

A large number of coarse grains and a necklace structure was observed in compressed
samples of both alloys deformed at a strain rate of 0.1 s−1 at 1100 and 1150 °C (Figure 6a–d).
Optical micrographs after deformation at a strain rate of 0.1 s−1 and deformation temper-
atures of 1200 and 1250 °C show that equiaxed grains dominated (Figure 6e–h). Finely
dispersed second-phase particles identified to be titanium nitride (TiN) were found at
the grain boundaries in samples deformed at 1200 °C, (Figures 6e,g, 7e,g and 8e,g). Fur-
thermore, small, recrystallized grains were also observed, marked by the circle in the
micrograph, (Figure 6h).

The prevalence of dynamically recrystallized grains in both materials is seen to de-
crease with increasing deformation temperature at a strain rate 10.0 s−1 (Figure 8). Non-
recrystallized grains and elongated deformed grains in Alloy A were observed at tempera-
tures from 1100 to 1200 °C. Necklace structures were also observed in both trials at 1150 °C.
However, it can also be observed that the fraction of recrystallized grains in sample A
seems higher than that of the equivalent sample B at all deformation temperatures. In
addition, large numbers of recrystallized grains surrounded by large TiN particles were
observed in Alloy B at a temperature of 1200 °C with a strain rate of 10.0 s−1 (Figure 8g). In
addition, refined dynamically recrystallized grains were observed in all samples deformed
at 1100 and 1150 °C and also in sample A at1200 °C. The recrystallized grains were larger
following deformation at a temperature of 1250 °C, compared to lower temperatures.
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Figure 6. Micrographs after the hot deformation at 0.1 s−1 of the materials and at temperatures of (a) and (c) 1100 °C, (b) 
and (d) 1150 °C, (e) and (g) 1200 °C, and (f) and (h) 1250 °C. The fraction of recrystallized grains in Alloy A is higher than 
that of Alloy B at all deformation temperatures. 

Figure 6. Micrographs after the hot deformation at 0.1 s−1 of the materials and at temperatures of (a,c) 1100 ◦C, (b,d) 1150 ◦C,
(e,g) 1200 ◦C, and (f,h) 1250 ◦C. The fraction of recrystallized grains in Alloy A is higher than that of Alloy B at all deformation
temperatures.
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Figure 7. Micrographs after hot deformation at 1 s−1 of the materials and at temperatures of (a) and (c) 1100 °C, (b) and (d) 
1150 °C, (e) and (g) 1200 °C, and (f) and (h) 1250 °C. The fraction of recrystallized grains in Alloy A is higher than that of 
Alloy B at all deformation temperatures. 

Figure 7. Micrographs after hot deformation at 1 s−1 of the materials and at temperatures of (a,c) 1100 ◦C, (b,d) 1150 ◦C,
(e,g) 1200 ◦C, and (f,h) 1250 ◦C. The fraction of recrystallized grains in Alloy A is higher than that of Alloy B at all
deformation temperatures.
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Figure 8. Micrographs after hot deformation at 10.0 s−1 of the materials and at temperatures of (a) and (c) 1100 ℃, (b) 
and (d) 1150 ℃, (e) and (g) 1200 ℃, and (f) and (h) 1250 ℃. The fraction of recrystallized grains in Alloy A is higher than 
that of Alloy B at all deformation temperatures. PSN stands for particle simulated nucleation. 

Large numbers of recrystallized grains surrounded by large precipitates were ob-
served in Alloy A after a hot-deformation at a temperature of 1250 ℃ and a strain rate of 
0.1 s−1 (Figure 9). The precipitates were elongated along the grain boundary and appear 
to consist of a central globular particle around which a cubic particle grew. Energy Dis-
persive X-ray spectroscopy (EDS) analysis shows that the central globular particle is rich 

PSN
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Figure 8. Micrographs after hot deformation at 10.0 s−1 of the materials and at temperatures of (a,c) 1100 °C, (b,d) 1150 °C,
(e,g) 1200 °C, and (f,h) 1250 °C. The fraction of recrystallized grains in Alloy A is higher than that of Alloy B at all
deformation temperatures. PSN stands for particle simulated nucleation.

Large numbers of recrystallized grains surrounded by large precipitates were observed
in Alloy A after a hot-deformation at a temperature of 1250 °C and a strain rate of 0.1 s−1

(Figure 9). The precipitates were elongated along the grain boundary and appear to consist
of a central globular particle around which a cubic particle grew. Energy Dispersive X-ray
spectroscopy (EDS) analysis shows that the central globular particle is rich in oxygen,
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aluminum and magnesium, which is consistent with a mixture of MgO and Al2O3 (Table 2,
spectrum 1). The larger cubic particle around the central particle was rich in titanium and
nitrogen and corresponds to a TiN inclusion (Table 2, spectrum 2). The titanium signal from
the central cubic particle is likely to come from the outer particle, since it is not possible to
prevent the electron beam from spreading in the sample and generating an X-ray signal
from the region around the central precipitate.
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tween 50 and 90% lower in Alloy B compared to Alloy A for each deformation tempera-
ture, according to the grain orientation spread analysis of EBSD data (Figure 10, original 
grain orientation spread data are available online as supplementary files). This finding is 
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Figure 9. Morphology of a representative precipitate observed at a grain boundary. EDS analysis
suggests that the central precipitate consists of a mixture of Al2O3 and MgO, while the square
precipitate surrounding it is likely to be TiN (spectrum 2 of EDS analysis) which forms on the
Al2O3–MgO particle.

Table 2. Composition of precipitate observed at grain boundaries in Alloy A after hot-deformation at
1250 °C and a strain rate of 0.1 s−1.

Element O N Ti Al Mg Ni Fe Cr

Spectrum 1 35.2± 0.2 0 30.0± 0.2 21.9± 0.1 11.2± 0.1 0.8± 0.1 0.4± 0.1 0.4± 0.1
Spectrum 2 0 11.7± 0.2 82.2± 0.3 0 0 1.5± 0.1 1.3± 0.1 1.3± 0.1

3.3.3. Dynamically Recrystallized Grains

The number fraction of grains that have undergone dynamic recrystallization is be-
tween 50 and 90% lower in Alloy B compared to Alloy A for each deformation temperature,
according to the grain orientation spread analysis of EBSD data (Figure 10, original grain
orientation spread data are available online as Supplementary Files). This finding is consis-
tent with results shown in Figure 6 to Figure 8. Below 1200 °C, the fraction of dynamically
recrystallized grains decreases with increasing strain rates for both compositions, but
generally increases following deformation at 1200 °C and above. However, at deformation
temperatures of 1200 and 1250 °C, the fraction of dynamic recrystallized grains increases
with increasing strain rates for both alloys.
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At a strain rate of 0.1 and 1.0 s−1, the fraction of high angle grain boundaries in Al-
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which it increases. At a strain rate of 10.0 s−1, the fraction of high angle grain boundaries 
in Alloy B increases with the deformation temperature. 

Figure 10. Effect of deformation temperature on the fraction of dynamically recrystallized grains.
The error bars represent the standard error about the mean value.

The number of recrystallized grains per unit area is almost constant as a function
of temperature for a given combination of composition and strain rate (Figure 11a). The
exception is for a deformation at 1100 °C and 0.1 s−1, after which the frequency of recrys-
tallized grains is significantly higher in Alloy A, compared to Alloy B. Up to a deformation
temperature of 1150 °C, there is no significant change in the average recrystallized grain
size as a function of strain rate. However, there is a decrease in the average dynamically
recrystallized grain size with an increased strain rate at both 1200 and 1250 °C (Figure 11b).
There is also a weak increase in the average dynamically recrystallized grain size as a
function of temperature for both compositions.
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3.3.4. Grain Boundaries

The fraction of high angle grain boundaries in Alloy A is approximately between 25%
and 70% higher than that of Alloy B for any given strain rate for any given set of conditions
(Figure 12). Such high angle boundaries include twins and grains that are likely to be
recrystallized. Conversely, low angle grain boundaries are likely to be deformed but not
recrystallized.

At a strain rate of 0.1 and 1.0 s−1, the fraction of high angle grain boundaries in Alloy
B initially decreases with an increased deformation temperature up to 1200 °C, after which
it increases. At a strain rate of 10.0 s−1, the fraction of high angle grain boundaries in Alloy
B increases with the deformation temperature.
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Figure 12. Effect of the deformation temperature on the fraction of high angle grain boundaries. The
error bars represent the standard error about the mean value. It should be noted that the remainder
of the angle grain boundaries in each measurement are classified as low-angle grain boundaries.

The fraction of low angle grain boundaries generally decreases with increasing tem-
perature for any given combination of chemistry and strain rate (Figure 12). The fraction of
low angle grain boundaries is higher in sample B than in sample A for all combinations
of strain rate and temperature. This is a good agreement with the observations made by
optical microscopy and EBSD.

3.3.5. Crystallographic Texture

Inverse pole figure maps of samples deformed at 0.1 s−1 at 1100 and 1250 °C at all
three strain rates demonstrate that the texture for both alloys is a double fiber texture with
〈110〉 and 〈100〉 parallel to the compression direction (CD) (Figures 13–15). Results from
all three EBSD scans (one with a step size of 3.0 µm and two with a step size of 1.0 µm)
for each sample in Figures 13–15. An example of the maximum <110> pole density of the
overall microstructure was found to be 8.616 and 10.546 for sample A at 1100 ◦C with a
strain rate of 0.1 s−1 and 1250 ◦C with a strain rate of 10 s−1, respectively, to a compressive
strain of 0.7, while the maximum <110> pole density was 4.147 and 4.198 for sample B for
the same deformation conditions.
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Figure 13. Microstructural evolution following hot-deformation at a strain rate of 0.1 s−1 and at temperatures with high
angle grain boundaries (a,b) 1100 °C, (c,d) 1150 °C, (e,g) 1200 °C, and (f,h) 1250 °C. Each image is overlaid with high angle
grain boundaries (white) and low angle grain boundaries (black). All images are presented using the same scale. (i) The
color map of the pole figure maps shown in (a–h). The regions displayed are representative of the entire material. CD means
the direction parallel to the direction of casting the length of the continuously cast strand, or the long direction of the ingot,
as appropriate). ND means the orientation normal to the casting direction, CD.
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Following hot-deformation at a strain rate of 1.0 s−1, Alloy A is found to have a 〈110〉
fiber texture at 1100 °C and predominantly a 〈100〉 fiber texture at 1250 °C. Alloy B was
found to have a 〈110〉 fiber texture following deformation at all deformation temperatures,
except at 1250 °C (Figure 13).
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After hot-deformation at a strain rate of 10.0 s−1, the texture of the deformed (non-
recrystallized) grains in Alloy A is a 〈110〉 fiber texture at all deformation temperatures.
However, a 〈100〉 fiber texture dominates at all deformation temperatures in Alloy B
(Figure 14). In addition, a decrease in total low angle grain boundaries with a simultaneous
increase in the high angle grain boundaries is apparent in both alloys as the temperature
increases.
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4. Discussion
4.1. Hot Deformation Stress Behaviour

The flow stresses in Alloys A and B increase with an increase in the strain rate and
decrease with an increased deformation temperature (Figure 3). This is conventional
behavior for dislocation-mediated deformation, as reported in the work that led to the well
known Zener–Hollomon parameter [34–37]. This behavior is seen in austenitic stainless
steels and other nickel-base alloys [38,39]. The fact that alloy A had higher flow stresses at
temperatures of 1200 °C and above can be attributed to the presence of fine precipitates
and/or a solute drag effect caused by magnesium atoms in alloy A. This is due to the fact
that magnesium atoms are significantly smaller than the other metal atoms in the alloys and
so impart a large lattice strain. There is no apparent explanation as to why alloy B exhibited
a higher peak stress than alloy A at below 1200 °C. Both the solid solution strengthening
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and the presence of magnesium-based precipitates effects will impede dislocation glides
and the movement of grain boundaries in alloy A, compared to alloy B [40]. If a grain
boundary motion is hindered, grain growth will be reduced, and the average grain size
will be lower, as is observed. This will lead to an increased strengthening due to grain
refinement. Due to the size of grains in the current study, grain refinement strengthening
will occur by a dislocation pile-up at grain boundaries—the Hall–Petch effect. Most of
the stress–strain curves show a single peak stress followed by a gradual fall towards a
steady state stress (Figure 3). This is consistent with a material undergoing dynamic
recrystallization [41]. However, the stress increases continuously during the compression
tests at 10 s−1, Figure 3c,d. This suggests that, at that strain rate, the material undergoes a
continuous dynamic recrystallization and this mechanism is not sufficient to balance work
hardening at any point during the deformation [42]. It is well known that peak stress and
strain decrease with increasing deformation temperatures and increase with increasing
strain rates, as may be seen in the form of the Zener–Hollomon parameter (Equation (1)).

4.2. Microstructure Analysis
4.2.1. Microstructure before Deformation

It appears that the grains in the Alloy A in the as-annealed sample have stronger
orientations (Figure 5a, a double fiber texture with 〈110〉 and 〈111〉) compared to Alloy
B (Figure 5b, a fiber texture with 〈100〉) [41]. Alloy A also exhibits a fiber compression
texture 〈110〉, which is consistent with other materials that have face-centered cubic crystal
structures [43]. This is also consistent with stress–strain curves for the deformation tests
(Figure 3). In general, the flow stress curves for Alloy A was slightly above that of the Alloy
B over all deformation temperatures, similar to other compression studies published in
literature [40].

4.2.2. Effect of Deformation Conditions on Microstructure

A large number of coarse grains and a necklace structure was observed in the com-
pressed samples of both alloys A and B, deformed at a strain rate of 0.1 s−1 at both 1100 and
1150 °C, Figure 6a,b. This has been attributed to a discontinuous dynamic recrystallization,
in which recrystallized grains nucleate on prior grain boundaries when the local dislocation
density exceeds that required to drive recrystallization [40,42,44]. The same combination
of structures has been found in Incoloy 945, in which recrystallization was determined to
be caused by the bulging and subgrain rotation mechanisms [43]. Optical micrographs
after deformation at a strain rate of 0.1 s−1 at a deformation temperature of either 1200 or
1250 °C show that equiaxed grains dominated the microstructure. This has been identified
to be the result of a continuous dynamic recrystallization, where recrystallized grains can
also nucleate in the body of prior grains [40].

Finely dispersed second-phase particles TiN were found at the grain boundaries at a
high temperature of 1200 °C (Figures 6–8). This tends to retard the growth of recrystallized
grains [41]. This is in a good agreement with previous observations in which it was
shown that TiN which precipitates in a Fe–20 wt% Cr Alloy are effective at pinning
grain growth [45]. Non-recrystallized grains and elongated deformed grains in Alloy A
were observed in at temperatures from 1100 to 1200 °C (Figure 8a,b,e). This is because
deformation at the highest strain rate leads to a high stored energy, which in turn causes
more dislocations to form. The limited deformation time under the highest strain rate
(deformation time occurs in ~0.07 s) restricts the onset of dynamic recrystallization [41,46].
Dynamically recrystallized grains were observed in all microstructures below 1200 °C and
were larger following the deformation temperature of 1200 °C in the case of alloy A. It is
concluded that the size of dynamically recrystallized grains is sensitive to deformation
temperatures and strain rates (or, equivalently, to the Zener–Hollomon parameter, Z) in
both alloys. No dynamic recrystallization was observed in Alloy B following a compression
at 10 s−1. It is expected that there is an insufficient dislocation density to provide a large
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enough driving force for a dynamic recrystallization to occur. This is consistent with
findings from other nickel-base alloys [43].

4.2.3. Dynamically Recrystallized Grains

The fraction of grains that have undergone dynamic recrystallization is lower in
Alloy B for each deformation temperature (Figure 10). This finding is consistent with the
results shown in Figures 6–8. Below 1200 °C, the fraction of dynamically recrystallized
grains decreases with the increasing strain rates for both compositions but increases after
a deformation at temperatures equal to and higher than 1200 °C. This is because the
deformation at a high strain rate provides more stored energy and dislocations than a low
strain rate [41,46]. However, at a deformation temperature of 1200 and 1250 °C, the fraction
of dynamic recrystallized grains increases with increasing strain rates for both structures.
This is attributed to the formation of subgrains with associated (occasional) nucleations
of grain boundary bulging, which results in a large fraction of grains being recrystallized
through subgrain rotation.

4.2.4. Fraction of High Angle Grain Boundaries

It was clear from the results that a discontinuous recrystallization was responsible
for the formation of the microstructure in alloy A following a deformation at a strain
rate of 0.1 s−1 (Figure 13). This is attributed to the nucleation of grain boundary bulging
and a necklace structure on pre-existing grain boundaries [41]. Conversely, a continuous
recrystallization occurred in alloy B at a strain rate of 1 s−1, as shown in Figure 14d,f. This
is due to that the recrystallized grains nucleated inside a non-recrystallized grain. At a
strain rate of 10.0 s−1, the fraction of high angle grain boundaries in Alloy A increases with
an increase in deformation temperature (Figure 12). This is because the deformed structure
is consumed by the recrystallizing grains, which form with high angle grain boundaries
and undergo little deformation once they have nucleated [41].

4.2.5. Texture Development

The differences in texture following a deformation between the two chemistries might
be attributed to the differences in alloy composition. Samples alloyed with magnesium
showed a much stronger orientation of 〈101〉 crystallographic directions parallel to the
axis of compression (also the longitudinal axis during casting) after deformation under
all conditions tested. A similar strong texture has been observed in other studies into
the hot-deformation of nickel alloys [43]. Furthermore, the as-cast samples alloyed with
magnesium show stronger orientations compared to those that are not alloyed with mag-
nesium. It is suspected that the texture is preserved, and possibly enhanced, due to the
effect of magnesium on the stacking fault energy of the alloy. It is well known that alloying
additions can have a significant effect on stacking fault energies in face-centered cubic
metals, including nickel-base alloys [47,48]. A change in stacking fault energy could lead to
a change in active slip system away from the standard {111}〈110

〉
for face-centred cubic

metals and such interplay between stacking faults and slip systems has been reported in
literature [49]. Alloy B (no magnesium) exhibits the expected texture after compression,
with the <100> directions parallel to the axis of compression—dislocations moving parallel
to

〈
110

〉
in the direction of maximum shear, which will occur at 45◦ to the axis of compres-

sion, and lead to the preferential alignment of 〈100〉 directions with the axis of compression.
Alloy A (with magnesium) has mostly 〈110〉 directions parallel to the axis of compression
in the non-recrystallized microstructure, which suggests that the slip may have occurred in
a different slip direction. While this explanation is consistent with existing literature and
the current findings, it is speculative and requires further study.

A change in stacking fault energy could also explain the change in recrystallization
behavior due the addition of magnesium, and this has been demonstrated in other stud-
ies [50]. However, this is also speculative and further study is required to investigate the
origin of this effect.
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In Alloy A, there was a high prevalence of high angle grain boundaries that showed
a misorientation angle of 60◦, which is indicative of twin boundaries. This suggests that
the stacking fault energy of Alloy A is lower than that of Alloy B. In turn, this suggest that
sub-grain rotation, and hence recrystallization, is easier in Alloy A.

The increase in the total fraction of grain boundaries that are low-angle grain bound-
aries in Alloy B at deformation temperatures at temperatures from 1100 to 1200 °C,
(Figure 12), except at a strain rate of 10 s−1 is due to an efficient dynamic recovery. The re-
crystallization occurs by a subgrain rotation, which is supported by the current results [42].

Conversely, the differing textures of the as-cast material (Figure 5) could lead to
changes in slip and recrystallization behavior during subsequent deformation, by affecting
the Schmidt factors for candidate slip systems in the two cases. Further study is needed to
identify the effect responsible for the change in the behavior of the two compositions.

4.3. Modelling of Flow Stress and Microstructural Behavior
4.3.1. Determination of Material Constants

An evaluation of the Zener–Hollomon parameter and a derivation of the deformation
activation energy can provide valuable insight into the material behavior. In the current
study, the deformation conditions lead to Zener–Hollomon parameters that cover a wide
range (13.5 ≤ log10 Z ≤ 18.5). In addition, both the peak stress and peak strain show a
linear dependence on the Zener–Hollomon parameter (Figure 16) and can be expressed as
pZq with and q as the regression fitting parameters (Table 3).

Table 3. Fitted parameters and q for the peak strain and stress in both alloys where the fit is of the
form pZq.

Alloy Parameter logp q

A
εP −2.7± 0.2 0.112 ± 0.015
σP −0.21± 0.17 0.145± 0.011

B
εP −4.2± 0.3 0.23± 0.02
σP −0.5± 0.3 0.174± 0.018

For a given value of the Zener–Hollomon parameter, both the peak strain and peak
stress of Alloy A are lower than those of Alloy B. This implies that the onset of a dynamic
recrystallization in Alloy A is initiated before that of Alloy B, as some source of strain
softening is required to reduce the work hardening rate to zero and meet the definition
of peak stress. The only significant source of strain softening in this case is a dynamic
recrystallization. Moreover, the differences in the peak strains and stresses between the
alloys are higher at the higher values of the Zener–Hollomon parameter (Figure 16). The
peak strain value is used to deduce the extent of a dynamic recrystallization [17,22,24,51].
It is clear that both the peak stresses and peak strains increase with an increase in the
value of the Zener–Hollomon parameter (Figure 16), meaning that the high deformation
temperature and low strain rate lead to a greater extent of dynamic recrystallization in
otherwise identical conditions. This finding is consistent with the microstructural results
(Section 3.3). Thus, the small magnesium addition is found to be more advantageous
on the dynamic recrystallization when the hot compression is carried out under high
deformation conditions.
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The relation between the true stress, strain rate and deformation temperature have
been shown to be described by Arrhenius-type laws (Equations (6)–(8), where A, n, n′, α
and β are dimensionless material constants, Qp, QE and QH are the activation energy for
deformation assuming a power, an exponential and hyperbolic-sine equation,

.
ε is the de-

formation strain rate. σ is the peak true stress and R and T have their usual meanings) [52]:

ZP = ε. exp
(

Qp

RT

)
= A′ σn′ (6)

ZE = ε. exp
(

QE

RT

)
= A′′ exp(βσ) (7)

ZS = ε. exp
(

QH

RT

)
= A[sin h(ασ)]n (8)

At a constant deformation temperature, the partial differential functions of Equations
(9) and (10) with respect to σP yield the following equations for estimating n′ and β:

∂ log10
.
ε

∂ log10 σP

∣∣∣∣∣
T

= n′ (9)

∂ log10
.
ε

∂σP

∣∣∣∣∣
T

= β (10)

Linear regression analysis of log10
.
ε versus log10 σP and log10

.
ε versus σP is carried out

to determine n′ and β, respectively, and the respective plots are shown in Figure 17a,b. The
values for n′ and β for Alloy A and Alloy B are calculated for each deformation temperature.
Each value is averaged and the mean values of n′ and β for Alloy A are 7.0 and 0.051,
respectively. The corresponding values for Alloy B are 6.2 and 0.047. The average value of
the material constant, α, can be calculated from the product of a division of the average
value of β by the average value of n′ and may be derived from Figure 17. The value of α is
equal to 7.3× 10−3 for alloy A and 9.3× 10−3 for alloy B.

From the slope of the linear relationship between log10
.
ε and log10(sinh[ασ])

(Figure 18a), the value of the parameter n for alloy A can be estimated to be 5.2 and
that of alloy B can be estimated to be 4.1. The average values of QH can then be obtained
from the values estimated from Figures 17–19 and Equation (8). The average value of
QH for alloy A and alloy B are equal to 430 and 450 kJ mol−1, respectively. This matches
very well with some other superalloys obtained through different methodologies (from 416
to 486 kJ mol−1, Table 4) [38,39,53–58].



Metals 2021, 11, 36 24 of 29
Metals 2021, 11, x FOR PEER REVIEW 24 of 30 
 

 

 
(a) 

 
(b) 

Figure 17. The relationship between the decadic logarithm of the strain rate, log10 𝜀𝜀̇, and (a) the decadic logarithm of peak 
stress, log10 𝜎𝜎P and (b) peak stress, 𝜎𝜎P, as a function of different deformation temperature. 

From the slope of the linear relationship between log10 𝜀𝜀 ̇ and log10(sinh[𝛼𝛼𝜎𝜎]) (Fiure 
18a), the value of the parameter 𝑛𝑛 for alloy A can be estimated to be 5.2 and that of alloy 
B can be estimated to be 4.1. The average values of 𝑄𝑄H can then be obtained from the val-
ues estimated from Figures 17–19 and Equation (8). The average value of 𝑄𝑄H for alloy A 
and alloy B are equal to 430 and 450 kJ mol−1, respectively. This matches very well with 
some other superalloys obtained through different methodologies (from 416 to 486 kJ 
mol−1, Table 4) [38,39,53–58]. 

 
(a) 

 
(b) 

Figure 18. The relationship between (a) the decadic logarithms of the strain rate and the hyperbolic sine of the product of 
peak stress and the parameter, 𝛼𝛼 , log10 𝜀𝜀̇  and log10[sinh(𝛼𝛼𝜎𝜎P)]  at a constant deformation temperature, and (b) the 
decadic logarithm of the product of peak stress and the parameter, 𝛼𝛼, log10[sinh(𝛼𝛼𝜎𝜎P)] and the inverse of absolute tem-
perature, 𝑇𝑇−1, at a constant strain rate. 

  

Figure 17. The relationship between the decadic logarithm of the strain rate, log10
.
ε, and (a) the decadic logarithm of peak

stress, log10 σP and (b) peak stress, σP, as a function of different deformation temperature.

Metals 2021, 11, x FOR PEER REVIEW 24 of 30 
 

 

 
(a) 

 
(b) 

Figure 17. The relationship between the decadic logarithm of the strain rate, log10 𝜀𝜀̇, and (a) the decadic logarithm of peak 
stress, log10 𝜎𝜎P and (b) peak stress, 𝜎𝜎P, as a function of different deformation temperature. 

From the slope of the linear relationship between log10 𝜀𝜀 ̇ and log10(sinh[𝛼𝛼𝜎𝜎]) (Fiure 
18a), the value of the parameter 𝑛𝑛 for alloy A can be estimated to be 5.2 and that of alloy 
B can be estimated to be 4.1. The average values of 𝑄𝑄H can then be obtained from the val-
ues estimated from Figures 17–19 and Equation (8). The average value of 𝑄𝑄H for alloy A 
and alloy B are equal to 430 and 450 kJ mol−1, respectively. This matches very well with 
some other superalloys obtained through different methodologies (from 416 to 486 kJ 
mol−1, Table 4) [38,39,53–58]. 

 
(a) 

 
(b) 

Figure 18. The relationship between (a) the decadic logarithms of the strain rate and the hyperbolic sine of the product of 
peak stress and the parameter, 𝛼𝛼 , log10 𝜀𝜀̇  and log10[sinh(𝛼𝛼𝜎𝜎P)]  at a constant deformation temperature, and (b) the 
decadic logarithm of the product of peak stress and the parameter, 𝛼𝛼, log10[sinh(𝛼𝛼𝜎𝜎P)] and the inverse of absolute tem-
perature, 𝑇𝑇−1, at a constant strain rate. 

  

Figure 18. The relationship between (a) the decadic logarithms of the strain rate and the hyperbolic sine of the product of
peak stress and the parameter, α, log10

.
ε and log10[sinh(ασP)] at a constant deformation temperature, and (b) the decadic

logarithm of the product of peak stress and the parameter, α, log10[sinh(ασP)] and the inverse of absolute temperature, T−1,
at a constant strain rate.

Table 4. Activation energies for high-temperature deformation of the as-cast alloy 825 with and without the addition of
magnesium as well as for some other nickel-base superalloys obtained via different methodologies. “W” stands for wrought,
“PHS” stands for precipitation hardened super-alloy, “SS” stands for solid solution, and “CW” stands for cold worked
nickel-base alloy. “HS” stands for hyperbolic-sine, and “Exp” stands for exponential.

Alloy Type of
Cast Processing Temperature/◦C Strain Rate

Interval/s−1
Total True

Strain

Type of
Constitutive

Equation

Activation Energy
for Hot

Deformation/
kJ mol−1

References

Alloy A Columnar CW 1100 to 1250 0.1 to 10 0.7 HS 430.2 Current
Alloy B Columnar CW 1100 to 1250 0.1 to 10 0.7 HS 448.8 Current
42% Ni

(Alloy 825) W SS 800 to 1150 1 to 50 0.7–2.5 Exp 438 [53]

Alloy 825 W SS 1050 to 1200 0.1 to 10 0.7 HS 416.6 [54]
IN706 Cast SS 900 to 1100 5× 10−4 to 10 - Exp 472 [55]

Inconel 718 Cast PHS 950 to 1150 1× 10−4 to
4× 10−4 1.9 HS 450.8 [56]

Inconel 718 Cast PHS 900 to 1177 0.005 to 5 - HS 483 [57]
INCOLOY901 Cast PHS 950 to 1100 0.001 to 0.1 0.7 HS 415.7 [38]

Alloy G3 W SS 1100 to 1200 0.1 to 10 0.16–0.75 HS 486 [58]
Alloy 625 W SS 950 to 1200 0.1 to 10 0.7 HS 434 [39]

4.3.2. Strain Rate/Flow Stress Model

The activation energy value for the deformation of alloy B was found to be higher than
that of Alloy A. In addition, previous studies using the same methods reported activation
energies of 438 kJ mol−1 [53] and 416 kJ mol−1 [54], which are in good agreement with the
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values from the current study. For alloy 825 (as used in the current study), the constitutive
equations may also be expressed as Equations (11) and (12), where the subscript A and B
refer to the alloys in the current study, all other symbols have the meanings previously
defined and the peak stress is given in megapascal [52]:

.
εA = 1.8× 1021 [sinh

(
0.0073σp

)
]
5.2 exp

(
−430000

RT

)
(11)

.
εB = 6.4× 1016 [sinh

(
0.0093σp

)
]
4.1 exp

(
−450000

RT

)
(12)

By using the relation between the average grain size formed after dynamical recrys-
tallization and the Zener–Hollomon parameter (Z) in all the specimens (Figure 19), it is
possible to derive the activation energy for deformation, Qdef. The Zener–Hollomon param-
eter for Alloy A was calculated by using an activation energy value of Qdef = 430 kJ mol−1

and that for alloy B was Qdef = 450 kJ mol−1.
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4.3.3. Dynamically Recrystallized Grain Size Model

It was found that the dynamically recrystallized grain size of both alloy A and alloy B
is sensitive to the Zener–Hollomon parameter, Z, but not to the initial grain size, D0, as
stated in the literature [39,58–60]. The dynamically recrystallized grain size decreases as the
Z value increases (Figures 13a and 14a). The grain size of alloy A is somewhat lower (25 µm)
than that of alloy B (27 µm) (Figure 13e). For a given alloy, a power law is proposed to link
the dynamically recrystallized grain size to the Zener–Hollomon parameter (Equation (13),
where ϕ has units of length and ω is a dimensionless constant; both constants may be
derived from experimental data):

DD = ϕZ−ω (13)

For alloy A, ω = 0.123± 0.059 and ϕ = 1050± 8.5 µm. For alloy B, ω = 0.127±
0.054 and ϕ = 1530± 7.5 µm. A small power law exponent (∼0.1) and low homologous
deformation temperatures (∼0.5) implies that a continuous dynamic recrystallization
occurs [61]. The exponent value (0.12 ≤ ω ≤ 0.13) is of the order of those previously
reported data in the open literature: 0.19 [59], 0.13 [60], 0.17 [62], 0.25 [63] and 0.2 [64].
Thus, there is a reasonable agreement between the present data and the reported values
which included a variety of initial grain sizes and deformation types. Possible explanations
for the slight variations of the current study from the literature include the use of different
deformation conditions and the small number of data in the current study.



Metals 2021, 11, 36 26 of 29

By applying an Arrhenius law and neglecting the uncertainties in the regression
analysis for simplicity, the dynamically recrystallized austenite grain size can be estimated
as follows [52]:

DD,A = 1050× Z−0.123 = 1050
.
ε
−0.123 exp

(
−6370

T

)
(14)

DD,B = 1530× Z−0.127 = 1530
.
ε
−0.127 exp

(
−6860

T

)
(15)

These equations can be used to predict and, ultimately, optimize the thermomechani-
cal process to control the dynamically recrystallized grain size of as-deformed alloy 825
after a hot deformation with or without the addition of magnesium. In the case of lower de-
formation temperatures and higher strain rates (i.e., higher values of the Zener–Hollomon
parameter, Z), the greater accumulation of dislocations results in a more significant strain
hardening of the new recrystallized grains. This leads to an increased influence of the
nucleation rate and a decreased driving force, which as a consequence, promotes smaller
dynamically recrystallized grain sizes. Conversely, under higher temperatures and lower
strain rates (lower values of the Zener–Hollomon parameter), the lower rate of dislocation
generation results in a reduction in the strain hardening effect and leads to faster grain
growth. Nevertheless, in the deformation conditions studies, in the current work, the
mechanism of the hot deformation process in both alloys is substantially the same.

5. Conclusions

The hot deformation behavior of cast alloy 825 with and without the addition of
magnesium was investigated. The compression temperature was between 1100 and 1250 °C.
The strain rate used in the compression tests was 0.1≤ .

ε / s−1 ≤ 10.0. Based on the results
from the current study, the following conclusions may be drawn:

1. The fraction of the high angle grain boundaries and dynamic recrystallized grains is
between 43 and 70% higher in alloy 825, which contains a small amount of magnesium
alloy 825 for all the temperatures and the strain rates tested in the current study.

2. Deformed grains in the alloy containing magnesium showed a strong preference
for a 〈101〉-type directions oriented parallel to the compression axis under all test
conditions. However, this texture direction does not dominate in the alloy that was
free of magnesium at the intermediate and highest strain rates (

.
ε ≥ 1.0 s−1).

3. Except at a deformation temperature of 1200 °C, the peak stresses in the alloy that
was free of magnesium were between 10 and 15% lower than that in the alloy that
contained magnesium for any test condition. Furthermore, the differences in the peak
strain between different temperatures are between 25 and 150% smaller when the
alloy contains magnesium.

4. The average activation energy for the hot-deformation of alloy 825 that contains mag-
nesium is 430 kJ mol−1. Without magnesium, the activation energy is 449 kJ mol−1.

5. The relationship between the peak stress, σP, and the effect of temperature-compensated
strain rate (represented by the Zener–Hollomon parameter, Z) can be expressed
by a power law functions, pZq, with exponents, q, of 0.145± 0.011 (Alloy A) and
0.174± 0.018 (Alloy B). The decadic logarithm of the coefficient p is −0.21± 0.17 with
the addition of magnesium and −0.5± 0.3 without the presence of magnesium.

6. A power law exists between the dynamically recrystallized grain size, DD, and the
Zener–Hollomon parameter, Z. For a given value of the Zener–Hollomon parameter,
the dynamically recrystallized grain size was lower when magnesium was present.
The dynamically recrystallized grain size of both alloys is given by the following
expressions:

log10 DD = 3.03± 0.93− (0.123± 0.059)ZD with the addition of magnesium (16)



Metals 2021, 11, 36 27 of 29

log10 DD = 3.18± 0.88− (0.127± 0.054)ZD withOUT the addition of magnesium (17)
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