DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING,

@EE‘; SECOND CYCLE, 30 CREDITS
oS =

FKTHS

STOCKHOLM, SWEDEN 2021

VETENSKAP
28 OCH KONST 2%

eos®

HypervisorLang

Attack Simulations of the OpenStack Nova
Compute Node

FREDDY AASBERG

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

HypervisorLang: Attack
Simulations of the OpenStack
Nova Compute Node

FREDDY AASBERG

Master in Computer Science

Date: February 20, 2021

Supervisor: Viktor Engstrém

Examiner: Mathias Ekstedt

School of Electrical Engineering and Computer Science

Host company: Saab AB

Swedish title: HypervisorLang: Attacksimulering av OpenStack
Novas Berakningsnod

Abstract

Cloud services are growing in popularity and the global public cloud services
are forecasted to increase by 17% in 2020[1]. The popularity of cloud services
is due to the improved resource allocation for providers and simplicity of use
for the customer. Due to the increasing popularity of cloud services and its
increased use by companies, the security assessment of the services is strate-
gically becoming more critical. Assessing the security of a cloud system can
be problematic because of its complexity since the systems are composed of
many different technologies. One way of simplifying the security assessment
is attack simulations, covering cyberattacks of the investigated system.

This thesis will make use of Meta Attack language (MAL) to create the Domain-
Specific Language (DLS) HypervisorLang that models the virtualisation layer
in an OpenStack Nova setup. The result of this thesis is a proposed DSL Hyper-
visorLang which uses attack simulation to model hostile usage of the service
and defences to evade those. The hostile usage covers attacks such as a denial
of services, buffer overflows and out-of-bound-read and are sourced via known
vulnerabilities. To implement the main components of the Nova module into
HypervisorLang, literature studies where performed and included components
in Nova together with threat modelling.

Evaluating the correctness of HypervisorLang was performed by implement-
ing test cases to display the different attack steps included in the model. How-
ever, the results also show that some limitations of the evaluations have been
found and are proposed for further research.

Sammanfattning

Molntjanster vixer i popularitet och de publika molntjansterna forvéntas oka
med 17% &r 2020[1]. Populariteten beror bland annat pa en forbéttrad
resursanviandning hos leverantorer och enkelheten for kunden att

inforskaffa resurser. P4 grund av molntjansternas 6kande popularitet och deras
okade anvindning hos foretag blir sdkerhetsanalyser av tjdnsterna mer kritisk.
Att bedoma en molntjéinsts sidkerhet kan vara problematiskt pd grund av dess
komplexitet. Detta eftersom systemen oftast bestir av ménga olika

tekniker. Ett satt att forenkla sikerhetsanalysen ar attacksimuleringar som
tiacker cyberattacker mot den undersokta tjdnsten.

Detta examensarbete kommer att anvinda Meta Attack Language (MAL) for
att skapa ett dominspecifikt sprék som modellerar virtualiseringslagret i en
OpenStack Nova-installation. Resultatet av examensarbetet dr HypervisorLang
som anvander attacksimuleringar for att modellera attacker mot tjdnsten samt
sakerhetslosningar for att undvika dem. Nagra av attackerna som

tacks av modellen ir ’denial-of-service’ (DOS), Out-of-bound-read, buffer over-
flow och dr himtade via kinda sérbarheter. Utvecklingen av spriket
genomfordes med hjélp av litteraturstudier av komponenterna i Nova
tillsammans med studier kring hotmodellering gillande de komponenter som
ingér i modellen.

Utvirderingen av HypervisorLang utfordes genom att implementera testfall
for att bekrifta att de olika attackstegen som ingér i modellen fungerar som
tankt. Resultaten visar ocksa att vissa begrinsningar av utvirderingarna har
hittats och foreslas for framtida forskning.

Acknowledgements

I would like to express my deepest gratitude to Prof. Mathias Ekstedt and Vik-
tor Engstrom for their valuable and constructive suggestions and continuous
help. I also wish to thank Joakim Ekblad and Filip Lundqvist for their support
and advice during this thesis.

Contents

1 Introduction

1.1

Problem definition
1.1.1 Research Question
1.1.2 Delimitations and scope
1.1.3 Ethics and sustainability
1.1.4 Thesisoutline

2 Related work

3 Background

3.1

3.2

33

Cloud computing L
3.1.1 Deploymentsmodels
Probabilistic Threat modelling
3.2.1 Mathematical formalism of the Meta attack language .
The Meta attack language
33.1 coreLang oL

4 Methodology

4.1

Domain Survey L oL
4.1.1 AttackLists oL
4.1.2 Creation of Domain-specific language
4.1.3 Evaluation

5 Domain Survey

5.1
5.2

53

OpenStack L
Hypervisor
52.1 Imstances
SELinux & sVirt
5.3.1 Secure Virtualisation

vi

10
11

14
16

18
19
19
19
19

CONTENTS vii

6 Results 25
6.1 Feature Matrix and Attack Lists 25
6.1.1 Feature Matrix 25

6.1.2 Attack and defence lists. 26

6.2 HypervisorLang oo oL 28
6.2.1 coreLang 29

6.2.2 HypervisorLang 30

7 Evaluation 36
7.1 Evaluation of Testcases 36
7.1.1 Example test case 1 - Access to Instance 36

7.1.2 Example test case 2 - Breakout from Instance 38

7.1.3 Example test case 3 - Accesstohost 39

8 Discussion 40
8.1 Completness of HypervisorLang 40

8.2 Completness of Attack Lists and Defenses 40

8.3 Completenessof testing 41

8.4 Using MAL as a base for HypervisorLang 41

8.5 Regarding the works of HypervisorLang 41

9 Conclusion and future work 43
9.1 Conclusion 43

92 Futureworko 43
Bibliography 45
A Test-Cases 50
B Core 57
C HyperVisorLang 66
D Testmodel 74
D.1 TestCaselinResult 74
D.2 test2 75

D.3 test3 78

Chapter 1

Introduction

Cloud services are getting more and more popular every year, the global public
cloud services are forecast to grow 17% in 2020[1], whereas the [aaS cloud ser-
vices are the fastest-growing segment of the market, with a forecasted growth
of 24% year after year[1].

Cloud within the IT sector is a broad concept of providing many different types
of services via the web. The concept is not new and was first thought of in the
early 1960s when John McCarthy opined that “computation may someday be
organised as a public utility” and the first scholarly usage of the term "cloud
computing" was in a lecture by Ramnath Chellappa, in 1997[2].

The main change which cloud computing brings is the possibility for compa-
nies to outsource their need for infrastructures such as servers and network.
For example, if a small startup would like to launch a web service, they only
need to pay for a cloud service which covers their needs usually described as
"pay-as-you-go", instead of investing in a complete server. The opposite of
cloud computing is "on-premise" where the company host their hardware for
their applications.

Two of the key players taking Cloud computing to the broad masses were Ama-
zon and Salesforce. Amazon saw the need for maximising utilisation of their
computing resources, which was using as little as 10 per cent of the capacity
at any given time[2]. Amazon Web services (AWS) was launched as a utility-
based computing service in 2006[2]. Salesforce was launched to customers in
1999 providing a SaaS "Software as a service", to their customers.

In 2010 OpenStack was founded by Nasa and Rackspace[3][4]. OpenStack
provides a free opensource cloud operating system with a large variety of ser-

2 CHAPTER 1. INTRODUCTION

vices, amongst these services are a standard IaaS functionality, container and
function services, orchestration provided by additional components, fault and
service management[5]. Some of the commercial provides of OpenStack are
RedHat[6] and Rackspace.

Assessing the security of cloud systems could be difficult since the infras-
tructure is composed of numerous technologies which are working together to
provide a wide variety of services. This implies that the person assessing the
security of cloud systems require information regarding the technologies and
their security-relevant features, and when this is completed an assessment of
the system as a whole is needed. The system can be described as a chain, and
a chain is only as strong as the weakest link.

One of the key technologies that enable cloud IaaS is the Hypervisor, which
let servers run multiple virtual-machines (VM) or Instances which can be seen
as virtual servers. The Hypervisor monitor the virtual machines and presents
an operating platform for each VM. This solution enables the cloud provider
to optimise the resource utilization on the server and enabling multiple cus-
tomers using one server, or one customer using a server for multiple projects.
The VM or Instances can be used to host a web server or other types of soft-
ware that needs computing resources.

There are several approaches for assessing the security of a system, formal
verification and model checking, which is a way of exploring and verifying
all states of a model. Formal verification is used in the aerospace industry for
verifying software.

Threat modelling and attack simulation are two ways of assessing the secu-
rity of a system. There are many different definitions of threat modelling[7],
and one definition given by Banquero et al., is "threat modelling is the tech-
nique that assists software engineers to identify and document potential secu-
rity threats associated with a software product, providing development teams
a systematic way of discovering strengths and weaknesses in their software
applications"[8]. Attack simulations are a non-intrusive way of simulating at-
tacks on a model of a system. Penetration testing or ethical hacking is a way
of assessing security by hiring professionals to find exploits in the system.
Meta Attack Language (MAL) provides the means of codifying domain-specific
knowledge. With MAL it is possible to create domain-specific languages that
describe applications and systems, which then in the domain-specific language
is paired with attacks and defences. The outcome of the codification is attack

CHAPTER 1. INTRODUCTION 3

graphs which represent different attack paths in the system described in the
domain-specific language (DSL). One domain-specific language used in this
thesis is coreLang[9], which models an abstract it domain with assets such as
applications firewalls and networks[10].

1.1 Problem definition

The problem which is addressed in this thesis is the complexity of ensuring
the security of the virtualisation layer in the cloud platform. The complexity
is due to the many different components the virtualisation layer consists of.
These components also relate to each other in different ways and bring their
vulnerabilities to the system. Due to this complexity, security is problematic
to ensure.

This thesis project will investigate the possibility of representing the compute
node provided by OpenStack in a domain-specific language HypervisorLang
to simulate cyber attacks as an aid to simplify the process of assesing security
in the virtualisation layer. To create a model of the compute node a domain-
specific language will be created, and to do this the Meta Attack Language
(MAL)[12] will be used. The codified threat model will contain vulnerabili-
ties tied to the identified assets and will be used for simulating virtual attacks.

1.1.1 Research Question

This thesis aims to examine and answer the following question:
Req 1: How can a domain-specific, language be designed to accurately simu-
late cyber-attacks on a QEMU host setup?

1.1.2 Delimitations and scope

OpenStack provides an opensource cloud operating system which consists of
multiple components providing a wide range of services. This thesis project
will be limited to the Nova compute module and more specifically toa QEMU/KVM
hypervisor setup with Ephemeral storage. In this setup, the host hypervisor
is at focus together with the host, instances and the Novaservice command-
line interface (CLI). Apart from this, related components from Core lang will
be added, such as Data and System(the host). The Libvirt API will not be
covered, since the Novaservice CLI communicates with libvirt which then, in

4 CHAPTER 1. INTRODUCTION

turn, sends the information to QEMU, but in this domain-specific language,
the NovaService CLI talks directly to QEMU. This is a simplification, which
also removes the ability to describe attack vectors tied to libvirt. No storage
modules will be added due to time constraints, therefore only Ephemeral stor-
age will be described, this further implies that persistent storage is missing and
if an instance were to be removed the data is lost.

1.1.3 Ethics and sustainability

Today’s digital society sees increased threats in the form of cyberattacks, in
recent years cyber attacks have increased and pose a greater problem for com-
panies and individuals who operate digitally. As the use of cloud services is
steadily increasing, tools are also needed to easily assess how secure service
is, this to ensure that the service is trusted by both the user and the provider.
The creation of a domain-specific language (DSL) that analyzes the security of
a cloud service can advantageously result in the cloud service becoming more
secure. It can also result in the user of DSL gaining an increased understand-
ing of Cybersecurity and how one with simple means can improve this. On the
downside, in the same way, a user can access the information and improve the
security of a system, the methodology can be used to identify weaknesses in
a system to possibly use them to exploit the system. As for sustainability, de-
veloping secure software can help expand the lifetime of a software, whereas
security flaws can cause the users mitigate to a different software. As for the
writer, I would argue that the ethics of providing means of assessing the se-
curity of a system for a good cause does out-weight the downside of someone
using the tool for identifying the flaws and misuse them.

1.1.4 Thesis outline

The thesis is organized in the following outline:

Chapter 2 Contains related work which is relevant for the thesis and its cov-
ered subjects.

Chapter 3 presents the background, and covers cloud computing, deployment
models probabilistic threat modelling, the mathematical formalism of MAL

and the meta language MAL.

Chapter 4 Contains the methodology which the thesis has used and explains

CHAPTER 1. INTRODUCTION 5

the different phases of the method.
Chapter 5 Consists of the Domain Survey and display the results of the survey.

Chapter 6 presents the results of the thesis, the feature matrix and the dis-
covered attacks and defenses.

Chapter 7 presents the discussion.

Chapter 8 contains evaluation of the test cases and presents three examples
of cases.

Chapter 9 presents conclusions and future work.

Chapter 2

Related work

The Meta Attack Language or MAL is part of the field of model-driven se-
curity and attack graphs. Two approaches in this field are UMLSec and Se-
cureUML which emerged to further aid developers creating security-critical
systems, they are both based on the Unified Modelling Language (UML) that
is a standardised modelling language used in object-oriented programming
projects to provide system specifications. UMLSec was developed as an ex-
tension to UML and provides a tool to add expressions regarding security in
the UML-diagrams of a system specification[14]. The focus of SecureUML
is modelling access control policies based on Role-based access Control ex-
tended with constraints and integrates into a model-driven software develop-
ment process[15].

MAL supports probabilistic threat modelling, threat modelling which is a pro-
cess of finding potential threats to a system or lack of safeguards in certain
parts of a system. Relevant to this thesis is the survey conducted by Rajendra
Patil and Chirag Modi[11], which is an in-depth survey covering various vul-
nerabilities, security threats and attacks related to the two hypervisors XEN
and KVM+QEMU]J11]. The vulnerabilities are also classified to the compo-
nents of the virtualisation infrastructure they are tied to. Also the work[16]
by Diego Perez-Botero, Jakub Szefer, and Ruby Lee has been relevant to this
thesis. In this paper vulnerabilities tied to the Hypervisor are characterized to
the affected component[16].

MAL uses the concept of attack graphs to visualise the different attack scenar-
ios and many different approaches which are based on graphs has been pro-
posed[17], and several tools based on attack graphs have been developed. The

CHAPTER 2. RELATED WORK 7

purpose of these tools has been to collect information regarding the structure
of a system or infrastructure, and automatically generate attack-graphs based
on the data. Attack trees is a different concept which is often mentioned with
attack-graphs and were popularized in 1999 when the paper written by Bruce
Schneier regarding modelling security threats in computer systems by using
Attack Trees[18] was released. The paper was later on extended by Kordy et
al.[19] who further added defences to the Attack Trees. One example of such a
tool that uses Attack-graphs is MulVAL, which is a framework for determining
the security impacts of software exploits on a network. MulVAL uses informa-
tion from a vulnerability database together with configuration data from each
machine on the scanned network, then derives logical attack graphs from the
combined data[20]. Another tool is NetSPA - a Network Security Planning
Architecture, which outputs worst-case attack-graphs from the use of network
configuration information[21].

A sub-domain in the field of attack graphs are Probabilistic attack graphs were
the steps involved in the graph are assigned with a probability, thus creating a
Bayesian network. In [22] the authors use the Bayesian attack graphs to assess
the security risks of a network system at various levels, the information can
then be used to form a security mitigation and management plan. Most relevant
for this thesis project is the works of Johnson et al. in creating the Meta At-
tack Language[12], which support the creation of domain-specific languages
for probabilistic threat modelling and attack simulations. MAL has previously
been used to create domain-specific languages which also is relevant for the
creation of HypervisorLang, Corelang[9] which models a large abstract do-
main of I'T and AWSlang[23] which is a domain-specific language to the AWS
cloud platform.

Chapter 3
Background

This chapter will cover relevant background information connected to Hyper-
visorLang. 3.1 Covers cloud computing and Deployment models for cloud
applications. 3.2 Covers Probabilistic Threat modelling and mathematical for-
malism of MAL, in 3.3 MAL is introduced.

3.1 Cloud computing

Cloud computing can be described as a resource on demand, or pay as you go
for the consumer. To the provider cloud computing can be used to maximise
resource utilisation, since multiple tenants can share the resources.

The National Institute of Standards and Technology (NIST) definition of
cloud computing: Cloud computing is a model for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of configurable comput-
ing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or
service provider interaction. The cloud model is composed into five essential
characteristics, three service models and four deployment models[p.2, 24].

The five essential characteristics are:

e On-demand self-service. The consumer can independently provision
computing capabilities, such as server time and network storage. This
can be done without requiring human interaction with each service provider[24].

e Broad network access. The resources hosted by the provider are ac-
cessible from a broad range of devices, such as mobile phones, tablets,
laptops, and workstations[24].

CHAPTER 3. BACKGROUND 9

e Resource pooling. The providers computing resources are pooled to
serve multiple consumers using a multi-tenant model, with different
physical and virtual resources dynamically assigned and reassigned ac-
cording to a consumers demand[24]. Examples of resources include
storage, network bandwidth, memory and processing power. The re-
source pooling enables optimisation of resource usage since many con-
sumers can make use of the same resources.

e Rapid elasticity. Capabilities can be elastically provisioned and released,
in some cases automatically[24].
To the consumer, resources can appear unlimited or infinite[24], unlike
the era before cloud computing when storage and computing power lim-
its were visible to the consumer.

e Measured service. Cloud systems automatically control and optimise
resources by leveraging a metering capability at some level of abstrac-
tion appropriate of the type of service provided (storage, processing
power, network bandwidth, and active user accounts)[24]. The measure-
ment tools can provide both the consumer and provider with an account
on the utilisation of the services.

The three different types of service models described by NIST:

e Software as a Service (SaaS) is a software delivery model which can
be described as a software licensing model or "software on demand",
instead of the traditional way where the consumer installs the software
on their computer.

With SaaS, the consumer makes use of the provider’s software which is
executed on a cloud infrastructure[24]. The access is usually provided
via the web-browser or a client program. The provider takes care of
configurations, updates, cloud infrastructure and since the software is
hosted this way it is also possible to provide the service via a subscrip-
tion model.

e Platform as a Service (PaaS) is a step further to the left, as shown in
Figure 3.1. PaaS lets the consumer deploy their software on a cloud ser-
vice. The consumer takes part in managing the code and configurations
of the application-hosting environment, the programming languages, li-
braries, services, tools, and all the underlying infrastructure such as net-
work, operating system, storage and servers are all provided by the cloud
provider[24].

10 CHAPTER 3. BACKGROUND

laaS PaaS SaasS

[users &

[Users& | | Users& |
Processes

| Processes | | Processes |

‘Appl\catlons ‘Appllcatwons ‘ ‘Appl\catlons ‘

‘ Data ‘ Data ‘ ‘ Data ‘

‘ Runtime Runtime ‘ Runtime ‘

‘ MlddIeWare ‘ M\dd\eWare ‘ MiddleWare ‘

‘ 0s [OF] ‘ ‘ 0s ‘
‘ Servers ‘ ‘ Servers ‘ ‘ Servers ‘
‘ Storage ‘ ‘ Storage ‘ ‘ Storage ‘

‘ Networking ‘ ‘ Networking ‘ ‘ Networking ‘

‘ Physical ‘ ‘ Physical ‘ ‘ Physical ‘

Figure 3.1: Depiction of service models, the blue colour describes the modules
managed by the cloud-vendor. The gray areas are the parts managed by the
consumer.

e With Infrastructure as a Service (IaaS), the cloud provider offers ‘raw’
access to the infrastructure which consist of processing, storage, network
and other fundamental computing resources [24]. The consumer is re-
sponsible for the application software, operating system and has control
over storage[24].

3.1.1 Deployments models

The way of deploying a cloud infrastructure can be done in various ways, and
could be described as the ’configuration’ of the infrastructure and are based
on the needs of a consumer.

Private cloud

Private cloud is when the infrastructure is operated by one exclusive organi-
sation, which also may be divided into several different business units using

CHAPTER 3. BACKGROUND 11

the same infrastructure. The infrastructure may be owned, managed and op-
erated by the organisation, or by a third party[24]. It may also reside on or
off premises[24]. Traditionally private clouds ran on-premise, but currently
organizations are building private clouds on rented, vendor owned data enters
which are resided off-premise.

Community cloud

The community cloud infrastructure is provisioned and shared by the members
of an exclusive community[24]. The infrastructure might be owned, managed,
and operated by one or more of the members in the community[24].

Public cloud

The public cloud infrastructure is managed by the cloud vendor and resides
on the premises of the same vendor[25]. The pooling of resources is done
automatically by a self-service interface[25]. The infrastructure is provisioned
for the use of the general public[24].

Hybrid cloud

The hybrid cloud is a mix between the former deployment models (public,
private or community cloud)[24], for example, some parts may reside on the
private infrastructure, while other parts are deployed in the public infrastruc-
ture[26].

3.2 Probabilistic Threat modelling

Threat modelling is a process of assessing the security of a system or an in-
frastructure in a structured way[27] and help identify threats, vulnerabilities
and countermeasures in the evaluated system. Preferably security engineering
should be integrated as early as possible in the software development pro-
cess[27], it is also possible to implement threat modelling on an existing sys-
tem, but this is generally more time consuming and costly when incorporating
security fixes at a later stage[27]. When the security requirements are formed,
the threats are analysed concerning likelihood and criticality, based on the out-
come the threat could either be mitigated or the risk is accepted[27]. The ben-
efits of using threat modelling when developing security requirements are that
the process helps define realistic and meaningful requirements[27] by looking

12 CHAPTER 3. BACKGROUND

at the system as a whole and taking threats and vulnerabilities into consider-
ation. This is especially important since the security definition of the system
would be flawed if the security requirements were to be picked at random.

Myagmar et al[27] describe the process of threat modelling in three steps.
Characterizing the System, describing dataflows in a software or a network
model. Which could be a description of computers in a network that are con-
nected. This step emphasising extracting the main characteristics of a system.
The second step is to Identify assets and access points, an asset is an ab-
stract description of a resource in the system that needs to be protected from
an adversary. One example of an asset would be customer-related data or a
system used to provide services, in the threat model the assets are targeted
by an adversary. Access points are the ways into the systems that an attacker
could exploit, such as ports, web-services or an SSH connection. When these
two steps have been completed the third step is to identify the threats to the
system. Depending on what type of system that is modelled, the threat would
differ, examples of threats are denial of service, information disclosure or el-
evation of privileges.

Attack-graphs is a valuable tool in the threat modelling process and visualise
the path an attacker could perform through the system. Thus the Attack-graphs
offer both detection of vulnerabilities in a system and mitigations[28]. The
attack tree represents the identified vulnerabilities and each node is one pos-
sible attack designed according to the attacker’s perspective[28]. The edges
connecting the nodes represent relations between attacks, where one attack is
connected to another succeeding attack. The constructed attack tree can then
be analysed by the assessor, according to parameters specified by the said as-
sessor. The chosen parameters could differ depending on the system, but one
parameter, being used in this thesis, is time to compromise where each attack
step would have a local time to compromise, and the tree as a whole would
have a global time to compromise[12].

3.2.1 Mathematical formalism of the Meta attack lan-
guage
Let X express an object or domain entity. For example, an object could be a

Laptop or an Application. Objects are divided into a set of classes
X =Xy,...,X,, e.g

CHAPTER 3. BACKGROUND 13

Laptop € Machine and Application € Software

Each class is linked with a set of attack steps A(X;), X.A is used to denote
the attack step from an object A in class X . For example, an application could
be infected with malicious code which performs some sort of code-execution.
Examples of attack steps of the previously mentioned class could be Applica-
tion.codeExecution or Laptop.fullaccess.

The representation of relationships between objects are denoted by links and
associations in MAL[12]. A link relationship is denoted by A, and consist of
a binary tuple of objects, each taken from a class, such that A = (X;, X;). For
instance, an application needs to be installed on a laptop.

Links are partitioned into associations such that A = {A;,..., A, }, that re-
late classes to each other in the following manner[12]:

Tiy Tk, € Xom, g, 11 € XA = (24, 25) € AN Xy = (2, 1) €A

Classes also play roles in associations, ¥(X;, A), For example, an Installed
association between Application and Machine would define a role, say, Host-
System for Laptop which would define that the application resides on the Ma-
chine when installed.

As mentioned earlier, the attack steps are connected through directed edges,
eck,

One example of such a connection could be that accessing an application on
the laptop could lead to request access to data in said application. And implies
that the first attack-step leads to the second step.

e = (Laptop.access, Application.data.request Access).

To further enhance the threat modelling a proposed addition is to use a proba-
bilistic relational model, which is useful in the creation and analysis of attack
graphs[29]. The probabilistic relational model allows for the creation of a
Bayesian network, where the attack steps in the attack graph can be associated
with a probability. The addition of probability to each attack step enhances
the model and instead of displaying attack steps as "if this step is breached,
then these steps are available", the model instead expresses how likely a cer-

14 CHAPTER 3. BACKGROUND

tain path is to occur. The Probabilistic relational model also contains classes,
class-relationships and attributes, which makes it possible to associate a proba-
bilistic dependency model to the attributes of classes in the architectural meta-
model[29].

3.3 The Meta attack language

The following text presents the Meta attack language (MAL), which is a meta-
language based on the formalism presented earlier. MAL is also the foundation
for HypervisorLang, which this thesis project is based upon. Only the core en-
tities of the MAL specification will be presented, and further information can
be found at the original publication[12] and the mal-lang GitHub account[30].

asset System {
| connect
—-> attemptGainFullAccess
| authenticate
—> attemptGainFullAccess
& attemptGainFullAccess
—> fullAccess
| fullAccess
—> attemptAccessToData
| attemptAccessToData
—> sysData.attemptAccess

Figure 3.2: Depiction of the System asset and included attack steps

asset Data {
| attemptAccess
—-> access

Figure 3.3: Depiction of the data asset and included attack step

The name of the asset in fig 3.2 is System and includes attack steps, there
are four OR-step denoted by | named connect, authenticate, full Access and at-
temptAccessToData. The OR-step implies that only one parent attack step is

CHAPTER 3. BACKGROUND 15

associations/{

System [system] 1..* <—— DataHosting —-
> * [sysData] Data

}

Figure 3.4: Depiction of associations between assets

Object CorelLang Asset

A
Extends -
Association

1.* DataHosting

System Data

Figure 3.5: Depiction of two assets in coreLang

needed to reach this node, for example the attemptAccessToData-step can be
reached from fullAccess. The third attack step attemptGainFullAccess of the
type AND is denoted by an &, this implies that both of the parent attack-steps
are needed to reach this step (connect and authenticate). Defences in the lan-
guage can be defined by #. The arrow -> represents the next step if connect is
compromised, and the attack would proceed to attemptGainFullAccess when
both OR steps are compromised. sysData in the attemptAccessToData step is
an association-role and are denoted in MAL by specifying roles in the follow-
ing manner seen in figure 3.4. This connects the attack step attemptAccessTo-
Data in figure 3.2 with attemptAccess in figure 3.3. The roles "sysData" and
"system" represent the relation step between System and Data, where one Ma-
chine can host the Data. The representation from System to Data is through
the role "sysData". The cardinality of the association is declared after the role,
"1..*#" which translates to "one or many (*)" computers can host data. One at-
tack step may be described such as sysData.attemptAccess and describes an
attempt to access any of the data which resides on the System.
MAL also supports class inheritances in the same manner as other object-
oriented languages. Classes which are intended for specialisation and never
meant to be instantiated may be defined as an abstract class (asset). The asso-
ciations are depicted in figure 3.5 to visualise how the assets are connected.
As seen above in figure 3.6, the abstract class Object defines the attack
step "attemptUseVulnerability" which is then extended to the class System,
it is also possible to override the attemptUseVulnerability-step. In the above

16 CHAPTER 3. BACKGROUND

abstract asset Object{
| attemptUseVulnerability

—->

asset System extends Object{
| connect
—> attemptGainFullAccess
| authenticate
—-> attemptGainFullAccess
& attemptGainFullAccess
—> fullAccess
| attemptUseVulnerability
—> fullAccess

Figure 3.6: Depiction of extending an asset in MAL

attack, the "fullAccess" is compromised instantaneously via the "attemptUse-
Vulnerability", there may be situations where a compromise of a certain attack
step requires a certain amount of time. Below in figure 3.7 is such an exam-
ple where a dictionary attack against an Instance would result in access to the
Instance. The dictionary attack in this example is specified to take 18 hours
in the following way: As mentioned before defences in MAL are denoted by
the #-sign, and BOOLEAN values indicate if the defence is active or not. In
the above example, 2FA is added and assigned to the attemptGainFull Access-
step. This leads to that the attack step "attemptGainFull Access" is unreachable
if the 2FA-protection is set to true.

It is also possible to use probability distributions to better describe uncertain-
ties tied to an attack. For example, the choice of password, or how early in the
employed dictionary the aforementioned password is listed. In the example
depicted in figure 3.8, the deterministic time of 18 is instead a probabilistic dis-
tribution, indicating that on average, the dictionary attack would be expected
to take 18 hours but with an added uncertainty.

3.3.1 corelLang

coreLang is a domain-specific language (DSL) created with MAL and models
an abstract ['T-infrastructure. The modelled components are core structures of

CHAPTER 3. BACKGROUND 17

class Instance({
| connect
—> dictionaryAttack
| dictionaryAttack [18.0]
-> attemptGainFullAccess
| attemptGainFullAccess
—-> fullAccess

2FA
-> attemptGainFullAccess

Figure 3.7: Depiction of specifying the time consumption of a specific attack

class Instance({
| connect
—> attemptGainFullAccess

| dictionaryAttack [GammaDistribution(l.5, 15)]
-> attemptGainFullAccess

& attemptGainFullAccess
—> fullAccess

Figure 3.8: Depiction of a GammaDistribution connected to a attack step

software systems and IT infrastructure[10]. coreLang is meant to be a foun-
dation for future DSL, where the DSL’s can make use of the basic structures
captured in coreLang[10]. The assets covered by coreLang are System which
are Compute instances, Vulnerability a set of vulnerabilities and exploits, User
that covers exploits connected to the users, JAM Identity and access manage-
ment, Data resources which models data, Network that models the OSI model

in a compact way[10].

Chapter 4

Methodology

The design science research methodology (DSRM) by Preffers et al [31] was
used during the thesis project, since it offers an systematic process for the
development of an artefact involving principles and procedures. The DSRM
methodology consists of six activities, the first part is problem identification
and definition were the problem definition is connected to the creation Hyper-
visorLang which is part of the problem solution. The second and third activ-
ity is to Define the objectives for a solution and design and development. The
second activity connects to the focus of HypervisorLang, since the OpenStack
platform is broad and contains numerous different services the scope had to be
narrowed down to only focus on the Virtualisation layer in the computing node,
and the third activity of development is when developing the actual language
in MAL. This is followed by Demonstration, Evaluation and Communication
where communication is the part of this thesis to communicate the works of
HypervisorLang, the steps are depicted in figure 4.1.

Process lteration

I A]
IDENTIFY

DEFINE DESIGN & EVALUATION
&P;g%bin':E OBJECTIVES DEVELOPMENT DEMONSTRATION COMMUNICATION
OF A SOLUTION Test cases and Communicating the

y Development of Proof-of-concept unit test of the assets in

Defining the specific research - work via the thesis

problem and Justity the solutio Defining scope and assets HypervisorLang HypervisorLang

Figure 4.1: Depiction of the DRSM process model

18

CHAPTER 4. METHODOLOGY 19

4.1 Domain Survey

During this thesis, an artefact was created, and to fully understand the assets
included in the artefact, an extensive survey was needed. The first part of the
study was to limit the thesis project and identifying main assets which were to
be included in the artefact. The second part was to find studies covering threat
models regarding hypervisors. Also, earlier creations of domain-specific lan-
guages in MAL was taken into consideration when creating HypervisorLang,
such as AWSLang[23] and corLang[9].

4.1.1 Attack Lists

The following phase was to create Attack Lists tied to the assets identified in
the earlier phase. The threat models by Rajendra Patil and Chirag Modi[11]
was a great help, also the CVE[32] database was consulted. Further, instal-
lation of OpenStack was used together with the OpenStack documentation to
understand how the Cloud platform could be managed.

4.1.2 Creation of Domain-specific language

The creation of the artefact was done during the domain survey and creating
the Attack Lists. The first part of creating the domain-specific language was to
identify main assets for the language and combine the findings into the model.
Also, many features have been collected from coreLLang[9] and AWSlang[23],
however, the main parts from these two are based on corelLang, since it is
updated and also has some parts adapted from AWSlang.

4.1.3 Evaluation

The DRSM process model by Preffers et al [31] proposes testing of the arte-
fact as evaluation. Testing has also been applied to the HypervisorLang since
it is supported by MAL, and in the case of evaluating HypervisorLang both
unit testing and integration testing will be performed. The Unit test used for
evaluating that each asset works as intended by asserting the outcome from
specific attack steps or a whole attack chain. The integration testing is used
to perform traversing via the associated assets and testing that the combined
functions do work as intended.

Chapter 5

Domain Survey

This chapter covers the outcome of the domain survey. In section 5.1 the Open-
Stack Nova is covered. A background regarding Hypervisors are covered in
section 5.2 and in 5.3 SELinux and sVirt are covered.

5.1 OpenStack

OpenStack is an openSource cloud operating system which can be used to
deploy public or private clouds. It is an IaaS cloud platform that also has
further possibilities to add additional components that provides orchestration,
service management and other services.

e Nova Nova is the computational part in OpenStack, it consists of five
different parts working together to provide a way to provision the com-
putational resources to users (virtual servers). These parts are depicted
in 5.1 and are:

— Nova-compute Nova-compute is primarily a worker daemon, which
has the function to create or terminate virtual machines. This is
done via the hypervisor API, for KVM libvirt is used.

— Nova-Scheduler The Nova-Scheduler determines how a compute-
request will be dispatched[33]. If a compute-request arrives, the
scheduler decides which host that will launch the VM (Virtual ma-
chine). A hostis a physical node which has a nova-compute service
running.

— api The Nova-API handles the API calls from end-users. The calls
can be made directly via API-request, HTTP requests via the dash-
board or CLI-tools (Command line)[34].

20

CHAPTER 5. DOMAIN SURVEY 21

oslo.messaging
—_—

DB
"""" 'D Keystone [f=========
API
HTTP K DB
:D L] .7

Nova services

Conductor

Scheduler

[y
External services

Compute

Figure 5.1: Key components of a Nova deployment

— Nova-Conductor The Nova-Conductor handles request that needs
coordination (build/resize), acts as a database proxy, or handles
object conversions[35]. Since it acts as a database proxy it does
not reside on a Nova-Compute node, since that would negate the
security properties of removing database access from the compute-
node and moving these to the Conductor[36].

5.2 Hypervisor

Before the hypervisor computers could mainly operate one singular operating
system (OS) at a time, this made them stable since the hardware only had to
handle request from one operating system[37]. However this approach has the
downside of wasted resources, this is mainly due to usage of one OS does not
make use of all the resources available[37].

This is solved by using a hypervisor, which is a software layer that adds support
of running multiple OS along with each other on one single machine (Virtual
machines, VM)[37]. They all share the resources of the physical machine and
the OS does function in the same way as it would if not run on top of a hyper-

22 CHAPTER 5. DOMAIN SURVEY

e VM ™ VM ™

oo

4 M N O M N
I

. N S/
\ VAN J Hypervisor (Type 2) App C

Infrastructure
(Compute, Storage, Network)

Infrastructure
(Compute, Storage, Network)

Figure 5.2: Type 1 and 2 hypervisors

visor. Since the OS are running on the same machine at the same time there
is a need for isolation, this is handled by the hypervisor, it separates the VM
from interfering with each other[37].

There are two different types of hypervisors, often refered to as Type 1 & Type
2. Type 1 is the kind of hypervisor that runs directly on top of the hardware,
this means that it interacts directly with the CPU, storage and memory[37]
This is depicted in figure 5.2 to the left. Type 1 hypervisors are common in an
enterprise data centre or other server-based environments[38].

The Type 2 hypervisor need an underlying OS to function and it runs as an
application on top of this OS. This is suitable for individual PC users that have
the need for running multiple operating systems on their machine [37] and is
depicted in figure 5.2 to the right.

The hypervisors are central for the cloud-based industry since it lets the cloud
provider utilize the same physical resources (CPU, memory, network, and stor-
age) for multiple users. The hypervisors provide an “abstraction of computer
resources" where the resources are pooled together and enable users to obtain
the resources on demand.

KVM and QEMU

Kernel-based Virtual Machine (KVM) is a virtualisation module in the Linux
kernel which allows the kernel to function as a hypervisor. All hypervisors
need some operating system-level components (memory manager, I/O stack,
device drivers, and more) to function, and since KVM is part of the Linux

CHAPTER 5. DOMAIN SURVEY 23

kernel it has all these parts[38]. KVM is a Type 1 hypervisor and was merged
with the mainline Linux kernel in 2007[38]. With KVM it is possible to run
multiple virtual machines, running unmodified Windows or Linux images[39].
Each virtual machine gets private virtualised hardware such as network-card,
storage disk, graphics adaptors etc[39]. KVM functions together with QEMU
which provides device emulation and virtualizer. QEMU takes on the part of
emulating hardware, which means that you can run an operating system build
for a certain type of machine (e.g. an ARM board) on top of your machine
of choice (e.g. your X86 PC) but also device emulation such as network-
interfaces, soundcard or videocards are emulated. The device emulation in
QEMU is, however, software-based, this means that every CPU instruction
needs to be translated from ARM to X86 instructions. This is done in soft-
ware and has a certain performance penalty to it.

However together with KVM, QEMU can make use of CPU extensions (HVM),
for the virtualisation and this lets the emulation reach near-native performance
when executing guest-OS code directly on the host machine when the target
architecture is the same as the host architecture.

5.2.1 Instances

An instance is the same as a virtual machine (VM) and is used for reducing
overhead. With the Hypervisor, it is possible to run multiple instances on one
server. Use cases could be to run outdated software or the fact that the instance
is encapsulated and if anything were to go wrong is easy to perform recovery.
This also means that if one instance is to go down, this does not affect the other
running instances.

5.3 SELinux & sVirt

Security enhanced Linux (SELinux) was introduced to the open-source com-
munity in late 2000 and was integrated into the Linux kernel in 2003[40]. It
was originally developed by the NSA to demonstrate how mandatory access
control (MAC) could be added to an operating system and the value of a flex-
ible MAC[41].

SELinux applies the principle of least-privilege on both users and processes.
By default, everything is denied and polices are added to provide each ele-
ment of a system (service, users or program) only access to the specific parts
needed for the specific element to function[42], and if the element were to try

24 CHAPTER 5. DOMAIN SURVEY

and access or modify files outside of its policy, the access is denied and action
is logged[42].

The default policy is the targeted policy which follows the model of least-
privilege model. This policy ’targets’ a selected system process and confines
it[43]. By default a logged-in user would be run in the unconfined_t domain
and a system process which is started at init would be run in a initrc_t domain.
Both of the domains unconfined_t and initrc_t are unconfined which results
in the members of these domains are unable to allocate writable memory and
execute it by default. This reduces vulnerabilities such as buffer overflow at-
tacks[43]. The processes that are confined runs their own domain, for example
the httpd_t domain is connected to the httpd process. The reason for this is
that the domain specifies what a certain process is allowed to do, and if a con-
fined process would be compromised by an attacker, the possible damage an
attacker could do would be limited[43]. SELinux does also implement role-
based access control (RBAC).

When it comes to securing virtualisation, sVirt integrates SELinux and the
virtualisation. sVirt uses process-based mechanisms and restrictions to pro-
vide extra security for the virtualized guest instances, in other words, it uses
the security framework provided by SELinux to add MAC to the host, this se-
cures the system from bugs in the hypervisor which could be used to target the
host or another virtual guest instance. OpenStack recommends using sVirt to
harden QEMU[44].

5.3.1 Secure Virtualisation

AMD Secure Encrypted Virtualisation (SEV), is a protection against the hy-
pervisor snooping of the guest memory. It uses encryption to separate the
guest instances and the hypervisor from each other[45] so neither has access
to the resources of the other part[46]. If an attacker has admin privileges on
the host and would try to read the data from one of the instances, the data is
encrypted[45].

Chapter 6

Results

In this chapter, the feature matrix and attack list will be presented in section
6.1 and in section 6.2 HypervisorLang be presented together with coreLang.

6.1 Feature Matrix and Attack Lists

6.1.1 Feature Matrix

In the Feature matrix, assets tied to HypervisorLang are presented. Covered in
this matrix is also which category each asset belongs to, and also if the asset is
tied to either coreLang, AwsLang (marked with A) or new by HypervisorLang.
The changes described in the matrix are connected to any new code in the said
asset.

25

26 CHAPTER 6. RESULTS

Adopted from Adopted from
:) New asset for
Category Asset coreLang without | coreLang with i
HypervisorLang
changes changes
Core Object X
System X
Application X
Information X
Data X
Network X
HypervisorLang | NovaService X
HMEnc X
LSM X
SELinux X
QemuKVM X
Instance X(A)

Table 6.1: Matrix regarding the assets in HypervisorLang

6.1.2 Attack and defence lists

In this section, the attack lists and defences for each asset are presented. Also,
a brief description of the attacks is added at the end.

QemuKVM

The following attacks are connected to the QemuKVM asset:

e Al.1 BufferOverFlow

e A1.2 OutOfBoundsReadOR-Write

e A1.3 NullPointerDereference

e A1.4 GuestlnstanceDOS

e Al.5 Stop

e A1.6 Delete

e Al.71fd_CMD_READ_ID

e Al.8 AttemptVenomFDC

e A1.9 VenomExploit

CHAPTER 6. RESULTS 27

e A1.10 PatchStatus

The QemuKVM exploits are mainly reached via the Instance. The BufferOver-
Flow[47] attack comes from improper restrictions of overwriting the memory
of an application, OutOfBounds[48][49] read or write corresponds to writing
outside of a designated area and nullpointerDereference[50] is tied to deref-
erencing a pointer which is expected to be valid. The GuestInstanceDOS step
is a followup if any of Al.1 - A1.4 are executed. A1.5 Stop[51] and A1.6
Delete[52] are functions if the attacker has gained access to the CLI. The at-
tacks A1.7-9 corresponds to the Venom attack[53], which were a vulnerability
in the floppy disk controller. The outcome of this attack could lead to VM Es-
cape and executing code on the host[54]. A1.10 is protection which describes
if the system is patched correctly. Further explanations of the attack-steps can
be found in Appendix tableA.1. The code for HypervisorLang can be found
in appendix B and C, and also at its repository[55].

Instance

Attacks connected to the Instance asset:
e A2.1 Connect
e A2.2 Authenticate
e A2.3 FullAccess
e A2.4 Stop
o A2.5 Delete
e A2.6 DeviceEmulationExploit
e A2.7 ImproperMemoryBounds
e A2.8 OutOfBoundsRead
e A2.9 NullPointerDereference
o A2.10 Deny

An instance running on top of the hypervisor behaves similar to an instance
running in AWSLang[23], therefore the attack-steps A2.1-A2.5 and A2.10 has
been adopted from AWSLang. The attack step A2.6 can be reached when the
attacker has compromised A2.3 and is a first step for reaching A2.7-A2.9, these

28 CHAPTER 6. RESULTS

attacks correspond to an attacker exploiting the hypervisor via the Instance.
Further information regarding the attacks can be found in Appendix A.2 and
a graph visualising the steps are depicted in figures 6.3 and 6.4.

NovaService

e A3.1 Attempt Use CLI

With Nova CLI it is possible for an attacker to shut-down or delete instances[52][51].

HardwareMemoryEncryption (HMEnc)

Defence list tied to host hardware memory encryption:
e A4.1 read

If the host machines support memory encryption via the hardware, it can
prevent an attacker with admin rights to read data which resides on the in-
stances[45][46].

LSM sVirt

Defence list tied to sVirt:

e A5.1 fd_CMD_READ_ID

If the host were to have enabled sVirt, it would prevent further escalation
outside the boundaries of the process running the Instance. In this case, the
fd_CMD_READ_ID corresponds to the Venom attack and could be prevented
by sVirt.

6.2 HypervisorLang

This section presents the QEMU specific model-language based on MAL. The
first part presents the coreLang which models core IT-infrastructure which
HypervisorLang borrows implementations from.

CHAPTER 6. RESULTS 29

6.2.1 corelLang

A few coreLLang assets are included in HypervisorLang and work in the follow-
ing way. Object represents the simplest form of an asset, and can be exploited
with two attack-steps: attemptUseVulnerability, which is the use of a Vulner-
ability and deny which represents a denial of service (DOS) attack, Object is
also defined as abstract and can therefore only be extended and not instantiated.

System represents a runnable system and can host Instances and Data.
It extends Object and to gain access to System, the attacker first has to
connect and authenticate to said system. With access, the user can perform
Denial of service attacks against the hosted instances on the system, access to
data contained in the system and also attempt to connect to the command-line
interface (CLI) which is connected with the Nova services orchestrating the
instances. In the connection between HypervisorLang and System, it can be
described as the "compute-node" in the OpenStack system, which hosts the
instances.

The asset Application is the representation of runnable software which
resides on the Instances. The application is also recursive which means
that one application can host another application.

The main attack-points are 1localConnect which is a local connection to
one or more applications and can be used to further gain full access to the
host application. NetworkAccess which is a connection which can be ex-
ecuted via a network connection or via codeExecution that describes a
code injection into the application. With full access to the application comes
the attack-steps read, modify or deny that translates to the CIA triad of expo-
sures. Further the fullaccess could lead to exposure of data connected
with the exploited application. coreLLang also models data resources such as
information which resides in the Data asset. The asset Data is also associ-
ated in a recursive way, that is the modelling of data that contains data, and is
also further associated with the asset Information. Attack-steps of the in-
formation asset is attemptAccess to the contained data. The Data asset
main attack-steps are related to deny, read, write and delete.

The last asset which is included in HypervisorLang is the Network asset, it
connects the applications to a network thus modelling network exposure con-
nected to the running applications. The attack-steps are physicalAccess,
which are direct access to the network, access that describes the possibility

30 CHAPTER 6. RESULTS

AppExecution

NetworkExposure
Applications Network coreLang Asset

Extends
P

AppContainment
Association
DataContainment

* InfoContainment *
~ * Data Information

DataHosting

0.1

Extends
—————— System

Figure 6.1: Associations between the assets used in coreLang

to connect to a network-connected-application, and atlastdenialOfService,
which is a denial of network communication for an application that uses the
network.

The associations between the assets are depicted in 6.1. Object extends
to both Application and System, which leads to the inheritance of the two
attack-steps mentioned earlier. Data is recursively associated with itself to
model data which contains data, and with Informat ion which leads to that
data can contain information. System is also associated with Data, thus
describing that System can hold data. Application is also recursively
associated to itself describing that one Application can execute one or many
Applications, Dat a is also associated to Application since an application
or program can contain data. The Network is associated with Application
which is described as network exposure, meaning that an application can be
connected to a network.

6.2.2 HypervisorLang

The HypervisorLang is an extension of the coreLang with the additional as-
sets, LSM (Linux security modules), NovaService, Instance etc. These
modules are key components for modelling the compute-node. This section
describes the different assets and their associations.

CHAPTER 6. RESULTS 31

Extends

+
Encryption

0.1
DataEncryption InfoC: it

Asset

| HypervisorLang

DataHosting

AppContainment

Data

coreLang Asset

InstanceContainment

DataContainment AppExecution
Association

0..* SysExecution * S~
Instance Al

Extends 1.7
NovaService

NetworkExposure

0.1

Extends

Jrchestratesinstancesvialiovirt A Network

0.1 0.1

ExecutesVirtHardware 0.1 0.1 ViriHardware
System L ExecesVittiardware 0.1 QemukvM

0.1

Extend:
ends LinuxSecurityModule

Extends Extends

[

LsM < Bxtends SELinux

> Object —

Figure 6.2: Associations between the assets used in HypervisorLang

Associations

The system executes one QEMU process which in turn can run multiple Instances.
The Instance can host data and are therefore associated with the Dat a as-

set. NovaService controls QEMU, however, the model is simplified and
therefore Libvirt is not described in the model. SELinux is associated with
QEMU to provide sVirt (MAC). This is depicted in figure 6.2.

HardwareMemoryEncryption

The HardwareMemoryEncryption asset is a hardware related defence
feature and added if the server processor support techniques such as AMD-
SEV. The defence connected to this asset is shown in table 6.2 and the associ-
ations in figure 6.2.

NovaService

The NovaService is the helper daemon running on a compute-node, it can
create or terminate instances. In this case, since it resides on a System, the

32 CHAPTER 6. RESULTS

Prevents Attack | Attacked Asset | Description
The hardware memory encryption
prevents snooping via the hypervisor

A4.1 read Data

Table 6.2: Defenses tied to hardware encryption.

Attack Name Attack Type | Description
Using the command line, an attacker
can stop or delete an instance

A3.1 attemptUseCLI | AND

Table 6.3: NovaService Attacks.

attack-steps are similar to the System-attack-steps. Therefore the NovaService
extends the system. To make use of the command-line interface (CLI) con-
nected to the NovaService, the attacker first needs to have admin or root
privileges in the system, and before this can be accomplished the attacker
would have been connected and authenticated to the system. The attack is
listed in table 6.3 and the associations are depicted in figure 6.2.

LSM & SELinux

The LSM asset is added in the model to further include software-related fea-
tures. In this case, SELinux extends LSM, to provide the possibility to model
activated SELinux on the host. sVirt is a framework used to harden the vir-
tualized instances and is modelled via the association between LSM and Qe-
muKVM in Hypervisorlang, this is depicted in figure 6.2. In HypervisorLang
sVirt is used to prevent break-out-attacks from the instances listed in table 6.4.

QemuKVM

The QEMU KVM asset is two of the core parts in the compute-node. As
mentioned earlier QEMU handles device emulation to the Instances. For this

Prevents Attack Attacked Asset | Description

Enabled sVirt would prevent further
AS5.1 fd_CMD_READ_ID | QemuKVM escalation outside the boundaries of
the process running the Instance.

Table 6.4: SELinux Defense.

CHAPTER 6. RESULTS 33

DSL the attack surface from the instances towards the QEMU module. The
attacks are listed in table A.1 found in appendix A and are depicted in figure
6.3. The associations are depicted in figure 6.2. The attacks are collected via
the survey conducted by Rajendra Patil and Chirag Modi[11]. Mainly tied to
the HypervisorLang the attacks in the QemuKVM assets are depicted in figure
6.3 which presents the steps from the Instance to the host. The Venom attack
could be used to break out of an Instance[54][53]. In figure 6.3 the defences
sVirt and patchStatus depicted to prevent the Venom attack. As for the other
attacks patchStatus is the only defence.

Instance

The instance is a guest virtual machine running on the host. It extends object
and the modelled attacks are depicted in figure 6.3 and 6.4. It is also asso-
ciated with Data since it can hold data, and QEMU which handles the em-
ulation for each instance, and it is also associated with Application since an
instance can host applications, all the associations are depicted in figure 6.2.
The first attack step depicted in figure 6.3 is A2.3 or FullAccess, the earlier
steps Connect (A2.1) and Authenticate (A2.2) is not depicted in this model due
to keeping the size down. Also the coreLang and AWSLang specific attacks
steps such as read and write data is also not depicted. When an attacker has
gained FullAccess to the Instance, the attacker can attempt to exploit the de-
vice emulation via BufferOverflow[47], Out-Of-Bounds-Read[48][49], Null-
Pointer Deference[50] or the Venom Attack[54][53]. As depicted in 6.3 the
first three attacks lead to denial of service, which in turn affects the Instance
locally with the Deny(DOS) step. In figure 6.4 the attack steps mainly come
from coreLLang and AWSLang, with fullAccess it is possible to reach the Data
asset since the assets are associated, this leads to the possibility to further read,
write or delete the Data. As for protection, the defence dataNotExist refers to
if the data does not exist. The attack step write in figure 6.4 leads to delete
since altering the data can lead to its corruption. When read is reached this
leads to the possibility to access information contained in the data.

34 CHAPTER 6.

RESULTS

FullAccess

deviceEmulationExploit

Attack Step

Defense

L
=
é improperMemoryBounds‘ | outOfBoundsRead ‘ | nullPointerDereference |
atternpt attempt atternpt
VenomrFDC Exploit Exploit NullFointer Deny (DOS)
BufferOverflow outOfBoundsRead Dereference
A
patchStatus ‘ | patchStatus | ‘ patchStatus
A 4 4 A 4 ¥
7 d_CMD attempt P B‘;‘:ﬁfs nullPointer
ufferOverflow
g _READ_ID VenomFDC ReadORWrite Dereference
. A
2 l
E patchStatus & sVirt
o
1AND A4 OR

g v

w

-]

<

3

2 | machineAccess|
&

atternpt
AccessToData

venomExploit guestinstanceDOS
Y
fullaccess

Figure 6.3: Depiction of attack-steps from instance to host in HypervisorLang

CHAPTER 6. RESULTS 35

Attack Step

Defence

deny e

Application

Connect Authenticate

AND

authenticated
Access

(v vy

read write delete stop deny

A J Y Y
‘dataNuIExist‘ dataMotExist ‘dataNutExist‘

Instance

Instance attack

Y ’Jr‘ A

attemptRead || attempt\Wirite

v v v

read write delete

4

attemptDelete

Data

\ 4

readContained
InformationAndData

h 4

attemptAccess

Information

Figure 6.4: Depiction of attack-steps from instance to data in HypervisorLang

Chapter 7

Evaluation

This chapter presents how the evaluation was performed in section 7.1 together
with three test cases used to evaluate HypervisorLang.

7.1 Evaluation of Testcases

For the evaluation of HypervisorLang, the DSRM methodology proposes some
different ways of evaluating the artefact. As for creating the HypervisorLang,
the artefact is similar to the creation of source code and therefore evaluation
of HypervisorLang can be done through testing. As for the test cases, they are
divided into two parts. The first part of tests is unit testing, created to evaluate
the individual assets in such a way showing that they perform as designed. The
second part of testing is to create test cases which are tied to the attack-steps
in the model and can traverse through different assets. A complete list of test
cases can be found in appendix A with a description of the scenario tied to
each case and the code for each case. The code for the three test cases in this
chapter can be found in appendix D. The full repository with test cases can be
found at[55].

7.1.1 Example test case 1 - Access to Instance

The first test case assumes an attacker gains access to one running Instance
via the attack steps A2.1, A2.2 and A2.3. Once access has been made, it is
assumed that the attacker has full privileges on the instance which results in the
possibility for the attacker to make use of the attack steps A2.4, A2.5 which are
connected to stopping or removing the instance. Also, coreLang specific attack
steps are available which are tied to the data on the instance, the fullAccess

36

CHAPTER 7. EVALUATION 37

gives a possibility to perform read, write and deletion of data on the instance.
The test case is depicted in figure 7.1, and the full list of attacks tied to the
instance can be found in Appendix A.2. The consequences of this attack are:

e Access to data contained on the instance.

e Stopping applications running on top of the instance, causing a denial
of service.

e Deletion of data on the instance, resulting in a denial of service and loss
of data.

f, Instance 1 \ Instance 2
Connect

& ¥ Guest OS Guest 0S
- J
: HOST
|

\

Hypervisor

Infrastructure

Figure 7.1: Depiction of test case 1. Where the attacker targets the Instance.

38 CHAPTER 7. EVALUATION

7.1.2 Example test case 2 - Breakout from Instance

In this test case, the attacker has access to the instance(attack steps A2.1-A2.3)
which implies that the attacker has full access(root), and attempts to break out
of the instance(attack steps A1.7 & A1.8 Together with A2.6), this would result
in gaining access to the process running the instance on the host, which also
means that an attacker can gain full privileges on the host. The consequences
of the attack are that the host is compromised. This is depicted in figure 7.2.

Access to data contained on the instance.

Gaining high privilege on the host.

e Gain access to data tied to the instances running on the host.

Stop or remove instances running on host causing a denial of service,
loss of data.

Instance 1 Instance 2
Connect

& ¥ Guest OS Guest 0S

HOST
[Hypervisor J
[Infrastructure]

Figure 7.2: Depiction of test case 2. The attacker targets the hypervisor from
the instance.

Preventions and defences added to the model which could prevent such at-
tack are sVirt and Patches. With these defences active the breakout procedure
via the Venom attack is prevented in this model.

CHAPTER 7. EVALUATION 39

f[Instance 1 \ f Instance 2 \

& Guest OS Guest OS

o VAN)
é HOST
Connect ‘ Hypervisor ‘
‘ Infrastructure ‘
S

Figure 7.3: Depiction of test case 3. Where the attacker targets the Host

7.1.3 Example test case 3 - Access to host

The third test case is if an attacker or malicious admin where to gain access to
the host. With such access, the consequences could lead to:

e Access to data on the host.
e Access to data tied to instances running on the host.

e Access to the NovaCli.

In test case 3 the system is compromised, in the test case data is associated
with both the system and instances. However, when using encryption as a
defence, the attacker does not gain the credentials to the encrypted data. Since
this is handled by the hardware. The attack is depicted in figure 7.3.

Chapter 8

Discussion

This chapter covers a discussion regarding the results of the previous chap-
ter. In section 8.1 the completeness of HypervisorLang is covered, in 8.2 the
completeness of attack lists and defences are discussed. In 8.3 a discussion
regarding the completeness of testing is discussed and section 8.4 covers a re-
flection regarding the usage of MAL as a base for HypervisorLang. 8.5 covers
the discussion tied to the works of Hypervisorlang

8.1 Completness of HypervisorLang

During the initial phase of the study, it was needed to limit the scope of the
study due to the many components in the compute node. However, the main
components of the virtualisation are covered on a high level. But since the the-
sis is limited to a few core parts there are still important components such as
the Scheduler, Conductor, API-service and also Keystone which is an external
service provided by OpenStack used for authentication. The model would also
benefit from modelling storage units thus abling the use of persistent storage.
Further, the Network module is also limited and could be expanded to describe
a complete network, covering access between different host. If these compo-
nents were to be added it would benefit the model by providing services such
as moving an instance to another host, thus changing the data from "at use’ to
an ’at rest’ state.

8.2 Completness of Attack Lists and Defenses

During the literature phase, the works by Rajendra Patil and Chirag Modi[11]
was at great help, not only was the vulnerabilities sorted by the affected compo-

40

CHAPTER 8. DISCUSSION 41

nent but also source and type of attack. However, the works of implementing
these vulnerabilities were performed by examining literature. The work re-
garding the attack-lists would benefit by being evaluated further by an expert
in this domain to validate how accurate the model performs. Regarding the de-
fences there exists more security systems which could be added to the model,
such as AppArmor could be added to visualise that different protections exist.

8.3 Completeness of testing

The included attack scenarios in HypervisorLang have been evaluated through
testing to show that the model performs as intended. However, to further val-
idate the model an interview with an expert in virtualisation field could help
verify the correctness of the scenarios described in the model, this would also
add a stronger confirmation to the cases implemented in HypervisorLang.

8.4 Using MAL as a base for HypervisorLang

HypervisorLang is based on MAL and borrows key parts from corelLang to
model some of the modules needed in a cloud setup. One issue when creat-
ing the model is that previous coding experience is needed, in my opinion,
the MAL syntax is easy to understand and apply, but could be difficult for
inexperienced users. A different approach to solve this part could be to use
securiCAD[56], which is a modelling tool made to visualise the process of
describing the infrastructure.

8.5 Regarding the works of HypervisorLang

As for the creation of HypervisorLang the works can be used as a conceptual
model to ‘visualise’ the components of a virtualisation layer and how the parts
interact. Because of this, we believe that the conducted work does simplify the
complexity of a cloud system by creating this model and therefore it might help
a service provider in some extent to understand how the parts interact and how
the system works. Further HypervisorLang also models vulnerabilities and de-
fences which can supply the audience of the created model with understanding
on why patching and applying security features to a cloud setup is needed and
what could happen if an end-of-life situation of a component were to occur. As
for accuracy, when creating a Domain-specific language with MAL the model
can be tested with unit tests and integration test to validate the model. In some

42 CHAPTER 8. DISCUSSION

extent, we would argue that security knowledge is one of the most important
parts, but it is as important to have the tools to explain such information in
a simplified way to the audience. Using MAL to build the model has some
positive effects when the first model is deployed and if the source-system col-
lects an update or new parts are added to the system, it is possible to add these
components to the model without redoing the earlier work. Also, the language
is written in such a way that it is easy to understand the code.

Chapter 9

Conclusion and future work

9.1 Conclusion

As concluded earlier HypervisorLang has some flaws regarding testing, val-
idation and completeness. Technical work is needed to validate the model
and further add functionality to reach a more complete phase of the domain-
specific language. As for now, HypervisorLang can be used to visualise some
virtualisation components together with attacks and defences in such way it
can aid the audience to understand the virtualisation parts of the cloud system,
even though the system is complex. The usage of MAL for the model is in our
view a good choice since it has a wide variety of functions and the syntax is
easy to follow.

9.2 Future work

As for the model, it is only a description of the virtualisation layer. A more
complete model would also incorporate how compute nodes work together and
also include the OpenStack services Nova-Scheduler, Nova-API and Nova-
Conductor.

At the moment the model focus on "data-at-use", however, there are func-
tions in the Nova-Compute to snapshot, stop, or migrate instances to different
nodes, these steps transform the "data-at-use" to "data-at-rest" and modelling
the "data-at-rest" would possibly uncover further vulnerabilities.

43

44 CHAPTER 9. CONCLUSION AND FUTURE WORK

Also further adding the OpenStack components such as Keystone which is
used for authentication, Cinder & glance used for storage, Neutron for pro-
visioning networks and Placement which keeps tracking inventory. Adding
these components could add up to a more complete model.

Regarding the Network Asset, it is only supporting connection to applications,
however, the implementation of the network on an OpenStack cloud deploy-
ment would be more advanced consisting of multiple networks and subnets.

Another DSL of the OpenStack cloud environment has also been created[57],
modelling the different services which are supported. As for completing the
OpenStack model, merging the modelling of the hypervisor to a broader DSL
could further complete the language.

Bibliography

Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17% in
2020. https://www.gartner.com/en/newsroom/press—
releases/2019-11-13-gartner—forecasts-worldwide-
public-cloud-revenue—-to-grow—-17—-percent —in-
2020. Accessed: 2020-06-07.

Kanchan Kamila. “Role of cloud computing in modern libraries: A crit-
ical appraisal”. In: Int. J. Inf. Libr. Soc 2.1 (2013).

Rackspace Private Cloud Powered by OpenStack. https : / /www .
rackspace . com/ openstack / private / openstack. Ac-
cessed: 2020-05-16.

Web Solutions Inspire Cloud Computing Software. https://spinoff.
nasa.gov/Spinoff2012/it_2.html. Accessed: 2020-05-16.

What is OpenStack. https://www.openstack.org/software/.
Accessed: 2020-05-16.

Red Hat OpenStack Platform. https://www.redhat.com/en/
technologies/linux—-platforms/openstack-platform.
Accessed: 2020-05-16.

Wenjun Xiong and Lagerstrom Robert. “Threat Modeling — A System-
atic Literature Review”. In: Computers & Security 84 (Mar.2019), pp. 53—
69.por1: 10.1016/j.cose.2019.03.010.

A.O. Baquero, Andrew Kornecki, and Janusz Zalewski. “Threat mod-
eling for aviation computer security”. In: CrossTalk 28 (Jan. 2015),
pp- 21-27.

Ekstedt. M et al. coreLang. 2019. URL: https://mal-lang.org/
corelLang/index.html (visited on 06/18/2020).

45

46 BIBLIOGRAPHY

[10] Robert Lagerstrom et al. “A probabilistic attack simulation language for
the IT domain”. In: (). URL: https://www.gramsec.uni.lu/
preproceedings/GraMSec_2020_paper_7.pdf.

[11] Rajendra Patil and Chirag Modi. “An Exhaustive Survey on Security
Concerns and Solutions at Different Components of Virtualization”.
In: ACM Comput. Surv. 52.1 (Feb. 2019). 1ssn: 0360-0300. por: 10 .
1145/3287306.urRL:https://doi.org/10.1145/3287306.

[12] Pontus Johnson, Robert Lagerstrom, and Mathias Ekstedt. “A Meta Lan-
guage for Threat Modeling and Attack Simulations”. In: Proceedings of
the 13th International Conference on Availability, Reliability and Se-
curity. ARES 2018. Hamburg, Germany: Association for Computing
Machinery, 2018. 1sBN: 9781450364485. por: 10.1145/3230833.
3232799. urRL: https://doi.org/10.1145/3230833.
3232799.

[13] Choosing a hypervisor. https : / / docs . openstack . org /
arch-design/design—-compute/design-compute—hypervisor.
html. Accessed: 2020-06-10.

[14] Jan Jiirjens. “UMLsec: Extending UML for Secure Systems Develop-
ment”. In: Proceedings of the 5th International Conference on The Uni-
fied Modeling Language. UML ’02. Berlin, Heidelberg: Springer-Verlag,
2002, pp. 412—425. 1sBN: 3540442545.

[15] Torsten Lodderstedt, David A. Basin, and Jiirgen Doser. “SecureUML.:
A UML-Based Modeling Language for Model-Driven Security”. In:
Proceedings of the 5th International Conference on The Unified Mod-
eling Language. UML ’02. Berlin, Heidelberg: Springer-Verlag, 2002,
pp- 426—441. 1sBN: 3540442545.

[16] Diego Perez-Botero, Jakub Szefer, and Ruby Lee. “Characterizing hy-
pervisor vulnerabilities in cloud computing servers”. In: May 2013,
pp. 3-10. por: 10.1145/2484402.2484406.

[17] Barbara Kordy, Ludovic Pi¢tre-Cambacédes, and Patrick Schweitzer.
“DAG-Based Attack and Defense Modeling: Don’t Miss the Forest for
the Attack Trees”. In: Computer Science Review 13 (Mar. 2013). por:
10.1016/j.cosrev.2014.07.001.

[18] Bruce Schneier. “Attack Trees”. In: Dr. Dobb’s Journal 24.12 (1999).
Accessed: 2020-06-14, pp. 21-29.

[19] Barbara Kordy et al. “Foundations of Attack—Defense Trees”. In: vol. 6561.
Sept. 2010, pp. 80-95. por: 10.1007/978-3-642-19751-2_6.

[29]

BIBLIOGRAPHY 47

Xinming Ou, Sudhakar Govindavajhala, and Andrew Appel. “Mul VAL:
A logic-based network security analyzer”. In: (July 2005), pp. 8-8.

Artz Lyle. “NetSPA : a Network Security Planning Architecture”. In:
(Mar. 2006).

N. Poolsappasit, R. Dewri, and I. Ray. “Dynamic Security Risk Man-
agement Using Bayesian Attack Graphs”. In: IEEE Transactions on De-
pendable and Secure Computing 9.1 (2012), pp. 61-74.

Amandeep Singh Virdi. “AWSLang: Probabilistic Threat Modelling of
the Amazon Web Services environment”. In: (2018). urRL: http://
urn . kb .se/resolve?urn=urn: nbn:se: kth:diva-
254329.

Peter Mell and Timothy Grance. “The NIST Definition of Cloud Com-
puting”. In: (2011). por: https://doi.org/10.6028/NIST.
SP.800-145.

Red hat What is public cloud? https :/ /www . redhat . com/
en/topics/cloud-computing/what—-is—-public—cloud.

Accessed: 2020-03-19.

Red hat What is private cloud? https://www.redhat .com/en/
topics/cloud—-computing/what-is—-private-cloud.
Accessed: 2020-03-19.

Suvda Myagmar, Adam Lee, and William Yurcik. “Threat Modeling as
a Basis for Security Requirements”. In: (Aug. 2005).

O. Sheyner et al. “Automated generation and analysis of attack graphs”.
In: Proceedings 2002 IEEE Symposium on Security and Privacy. 2002,
pp- 273-284.

Teodor Sommestad, Mathias Ekstedt, and Pontus Johnson. “A proba-
bilistic relational model for security risk analysis”. In: Computers &
Security 29 (Sept. 2010), pp. 659-679. por: 10.1016/ j . cose.
2010.02.002.

MAL-documentation. URL: https://github.com/mal-lang.

K. Peffers et al. “A Design Science Research Methodology for Informa-
tion Systems Research”. In: Journal of Management Information Sys-
tems 24.3 (2007). Accessed: 2020-02-26, pp. 45-78.

Common Vulnerabilities and Exposures (CVE). URL: https://cve.
mitre.org/.

48 BIBLIOGRAPHY

[33] Compute scheduler.https://docs.openstack.org/newton/

config-reference/compute/schedulers.html. Accessed:
2020-04-02.

[34] Compute API. https : / /docs . openstack . org/ newton /
config-reference/compute /api.html. Accessed: 2020-
04-02.

[35] Nova System Architecture. https : //docs . openstack.org/
nova/latest /user/architecture.html. Accessed: 2020-
04-02.

[36] Compute Conductor.https://docs.openstack.org/newton/
config-reference/compute/conductor.html. Accessed:
2020-04-02.

[37]1 Hypervisors What are hypervisors? https :/ /www . ibm . com/
cloud/learn/hypervisors. Accessed: 2020-03-30.

[38] Red hat what is a hypervisor? https : / /www . redhat . com/

en/topics/virtualization/what—-is—a-hypervisor.
Accessed: 2020-04-14.

[39] KVM. Main Page — KVM. [Online; accessed 19-April-2020]. 2016.
URL: https://www.linux—-kvm.org/index.php?title=
Main_Page&oldid=173792.

[40] Red hat What is SELinux? https :/ /www . redhat . com/en/
topics/linux/what—-is—-selinux. Accessed: 2020-05-22.

[41] NSA Security-Enhanced Linux. https://www.nsa.gov/what—
we—do/research/selinux/. Accessed: 2020-05-22.

[42] CentOS SELinux. https : / /wiki . centos . org/ HowTos /
SELinux. Accessed: 2020-05-22.

[43] Targeted Policy.https://access.redhat.com/documentation/
en—-us/red_hat_enterprise_linux/6/html/security-
enhanced_ linux /chap-security—-enhanced_ linux-—
targeted_policy. Accessed: 2020-05-26.

[44] OpenStack Security Guide.2020. URL: https://docs.openstack.
org/security-guide/compute/hardening-the-virtualization-
layers.html (visited on 07/12/2020).

BIBLIOGRAPHY 49

Garry McCracken and Brent Hollingsworth. Solving the Cloud Trust
Problem with WinMagic and AMD EPYC™ Hardware Memory En-
cryption. Oct. 2018. URL: https://www.amd.com/system/
files /documents / trusted - cloud - winmagic — amd -
epyc—hardware-memory—encryption.pdf.

David Kaplan, Jeremy Powell, and Tom Woller. AMD MEMORY EN-
CRYPTION. Apr. 2016. urL: https://developer.amd.com/
wordpress/media/2013/12/AMD_Memory_Encryption_
Whitepaper_v7-Public.pdf.

CVE ID: cve-2015-5158. urL: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-5158.

CVEID: cve-2017-11334. UrRL: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-11334.

CVEID: cve-2017-13672. URL: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-13672.

CVEID: cve-2017-12809. urRL: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-128009.

Stop and start an instance. URL: https : / /docs . openstack .
org/newton/user—-guide/cli-stop—-and-start—-an-
instance.html.

Delete an instance. URL: https : / / docs . openstack . org/
ocata/user—guide/cli-delete—an-instance.html.

CVE ID: cve-2015-3456. URL: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-3456.

Pierluigi Paganini. VENOM Vulnerability Opens Millions of Virtual Ma-

chines to Attack. URL: https://resources.infosecinstitute.

com/topic/venom-vulnerability-opens-millions-
of-virtual-machines-to-attack/.

Freddy Aasberg. HypervisorLang. URL: https://gits—15.sys.
kth.se/pipirs/HypervisorLang.

Mathias Ekstedt et al. “Securi CAD by Foreseeti: A CAD Tool for Enter-
prise Cyber Security Management”. In: Sept. 2015, pp. 152-155. por:
10.1109/EDOCW.2015.40.

Rosander Sara. “StackLang: Automatic Attack Simulations Against the
OpenStack Cloud Environment”. unpublished. N.D.

Appendix A

Test-Cases

50

TestCase: TC description

TC1

TC2

TC3

TC4

Attacker Gains full access
to Host(System)

and reads data tied to the
system.

Attacker Gains full access
to Host(System) and
NovacCli. This leads to the
possibility to stop or delete
Instances.

Attacker Gains full access
to Host(System)

and reads data tied to the
system.

However, hardware
encryption is active
resulting in failure to read
data

Attacker gains access to
Instance, hardware
memory encryption is
active. Since the attacker
has access to the instance,
data is unencrypted on said
instance.

APPENDIX A. TEST-CASES

Expected outcome
//Access to system
model.system1.fullAccess.assertCompromisedinstantaneously();
model.system1._machineAccess.assertCompromisedinstantaneously();
model.system1.denialOfService.assertCompromisedinstantaneously();
//Access to data tied to system
model.datal.read.assertCompromisedinstantaneously();
model.data2.read.assertCompromisedinstantaneously();
//Access to Model1 System and also to the CLI
model.system1.fullAccess.assertCompromisedinstantaneously();
model.system1._machineAccess.assertCompromisedinstantaneously();
model.system1.denialOfService.assertCompromisedinstantaneously();
//Since full access, its possible to read data.
model.datal.read.assertCompromisedinstantaneously();
model.data2.read.assertCompromisedinstantaneously();
//Reaching CLI
model.novaCLl1.attemptUseCLl.assertCompromisedinstantaneously();
//Reaching hypervisor
model.hypervisorl.delete.assertCompromisedinstantaneously();
model.hypervisorl.stop.assertCompromisedinstantaneously();
// Reaching instancel
model.instancel.deny.assertCompromisedinstantaneously();
// Reaching instance2
model.instance2.delete.assertCompromisedinstantaneously();

//Since Instances are stopped/removed following attacksteps are tied to applications

or data

//Instancel -> deny-> application ->Deny.
model.applicationl.deny.assertCompromisedinstantaneously();
//Instance2 -> delete-> data ->attemptDelete.
model.data2.attemptDelete.assertCompromisedinstantaneously();
model.data2.delete.assertCompromisedinstantaneously();

//Access to system
model.system2.fullAccess.assertCompromisedinstantaneously();
model.system2._machineAccess.assertCompromisedinstantaneously();
model.system2.denialOfService.assertCompromisedinstantaneously();
//Data is encrypted which means the attacker cannot access the data
model.encDatal.read.assertUncompromised();
model.encData2.read.assertUncompromised);

model.instancel.authenticatedAccess.assertCompromisedinstantaneously();

model.encdatal.read.assertCompromisedinstantaneously();

51

Status:

passed

passed

passed

passed

52

TCS

TC6

TC7

TC8

APPENDIX A. TEST-CASES

Attacker gains access to
Instance, hardware
memory encryption is
active. The attacker breaks
out of the instance via
Venom attack.

Attacker gains access to
Instance, hardware
memory encryption is
active together with sVirt
and patches.

The breakout attack is
evaded.

Attacker gains access to
Instance, no
defenses are active.

Access to Instance,
ExploitBufferOverflow case
is performed.

model.instancel.authenticatedAccess.assertCompromisedinstantaneously();
model.instancel.fullAccess.assertCompromisedinstantaneously();
model.encdatal.read.assertCompromisedinstantaneously();
model.instancel.deviceEmulationExploit.assertCompromisedinstantaneously();
model.instancel.improperMemoryBounds.assertCompromisedinstantaneously();
model.instancel.venomFDC.assertCompromisedinstantaneously();
//Hypervisor traverse
model.hypervisor.attemptVenomFDC.assertCompromisedlnstantaneously();
model.hypervisor.venomExploit.assertCompromisedinstantaneously(); pa=sed
//SystemTraverse

model.system.fullAccess.assertCompromisedinstantaneously();
model.system._machineAccess.assertCompromisedinstantaneously();

/**Breakout Complete */

//Data from first instance is compromised(Access to instance, however the data to the
second instance is uncompromised).

model.encdata2.read.assertUncompromised();

//Instance traverse
model.instance3.authenticatedAccess.assertCompromisedinstantaneously();
model.instance3.fullAccess.assertCompromisedinstantaneously();
model.encdata3.read.assertCompromisedinstantaneously();
model.instance3.deviceEmulationExploit.assertCompromisedinstantaneously();
model.instance3.improperMemoryBounds.assertCompromisedinstantaneously();
model.instance3.venomFDC.assertCompromisedinstantaneously();

//Hypervisor traverse
model.hypervisor2.attemptVenomFDC.assertCompromisedinstantaneously(); passed
model.hypervisor2.venomExploit.assertUncompromised();

//SystemTraverse

model.system?2.fullAccess.assertUncompromised();
model.system2._machineAccess.assertUncompromised();

/**Breakout Failed */

//Data from first instance is compromised(Access to instance, however the data to the

second instance is uncompromised).

model.encdatad.read.assertUncompromised();

//\nstance traverse

model.instance5.authenticatedAccess.assertCompromisedinstantaneously();
model.instance5.fullAccess.assertCompromisedinstantaneously();
model.data5.read.assertCompromisedinstantaneously();
model.instance5.deviceEmulationExploit.assertCompromisedinstantaneously();
model.instance5.improperMemoryBounds.assertCompromisedinstantaneously();
model.instance5.venomFDC.assertCompromisedinstantaneously();

//Hypervisor traverse
model.hypervisor3.attemptVenomFDC.assertCompromisedinstantaneously(); passed
model.hypervisor3.venomExploit.assertCompromisedinstantaneously();

//SystemTraverse

model.system3.fullAccess.assertCompromisedinstantaneously();
model.system3._machineAccess.assertCompromisedinstantaneously();

/**Breakout Complete */

//Data from first instance is compromised(Access to instance, however the data to the

second instance is also compromised due to Data is not encrypted).
model.data6.read.assertCompromisedinstantaneously();

//Access to instance
model.instancel.authenticatedAccess.assertCompromisedinstantaneously();
model.instancel.fullAccess.assertCompromisedinstantaneously();

//Attempt Buffer overflow
model.instancel.attemptExploitBufferOverflow.assertCompromisedinstantaneously();
model.instancel.attemptExploitOutOfBoundsRead.assertCompromisedinstantaneously(

. . . passed
model.hypervisorl.outOfBoundsReadORWrite.assertCompromisedinstantaneously();
model.hypervisorl.guestinstanceDOS.assertCompromisedinstantaneously();

//Successful attempt leads back to deny on instance.
model.instancel.deny.assertCompromisedinstantaneously();
//Application is denyed, leads to denial of data.
model.application1.deny.assertCompromisedinstantaneously();
model.data2.deny.assertCompromisedinstantaneously();

TC9

TC10

TC11

TC12

TC13

Access to Instance,
OutOfBoundsRead attack is
performed.

Access to Instance,
NullPointerDereference
attack is performed.

Access to Instance and
defense "Patch" is active.
Attacks are evaded

Access to Instance. Attack
on hosted application.

Access to physical network.

APPENDIX A. TEST-CASES

model.instancel.authenticatedAccess.assertCompromisedinstantaneously();
model.instancel.fullAccess.assertCompromisedinstantaneously();

//Attempt OutOfBoundsRead
model.instancel.deviceEmulationExploit.assertCompromisedinstantaneously();
model.instancel.outOfBoundsRead.assertCompromisedinstantaneously();
model.instancel.attemptExploitOutOfBoundsRead.assertCompromisedinstantaneously(
model.hypervisorl.outOfBoundsReadORWrite.assertCompromisedinstantaneously();
model.hypervisorl.guestinstanceDOS.assertCompromisedinstantaneously();
//Successful attempt leads back to deny on instance.
model.instancel.deny.assertCompromisedinstantaneously();

//Application is denyed, leads to denial of data.
model.application1.deny.assertCompromisedinstantaneously();
model.data2.deny.assertCompromisedinstantaneously();

//Access to instance
model.instancel.authenticatedAccess.assertCompromisedinstantaneously();
model.instancel.fullAccess.assertCompromisedinstantaneously();

//Attempt OutOfBoundsRead
model.instancel.deviceEmulationExploit.assertCompromisedinstantaneously();
model.instancel.nullPointerDereference.assertCompromisedinstantaneously();
model.instancel.attemptNullPointerDereference.assertCompromisedinstantaneously();
model.hypervisorl.nullPointerDereference.assertCompromisedinstantaneously();
model.hypervisorl.guestinstanceDOS.assertCompromisedinstantaneously();
//Successful attempt leads back to deny on instance.
model.instancel.deny.assertCompromisedinstantaneously();

//Application is denyed, leads to denial of data.
model.applicationl.deny.assertCompromisedinstantaneously();
model.data2.deny.assertCompromisedinstantaneously();

//Access to instance
model.instance2.authenticatedAccess.assertCompromisedinstantaneously();
model.instance2.fullAccess.assertCompromisedinstantaneously();

//Attempt attempt attack hypervisor via instance
model.instance2.deviceEmulationExploit.assertCompromisedinstantaneously();
model.instance2.nullPointerDereference.assertCompromisedinstantaneously();
model.instance2.attemptNullPointerDereference.assertCompromisedinstantaneously();
//Attempts to reach attacksurface on hypervisor is evaded.
model.hypervisor2.bufferOverflow.assertUncompromised();
model.hypervisor2.outOfBoundsReadORWrite.assertUncompromised();
model.hypervisor2.nullPointerDereference.assertUncompromised();
model.hypervisor2.guestinstanceDOS.assertUncompromised();

//Access to instance
model.instancel.authenticatedAccess.assertCompromisedinstantaneously();
model.instancel.fullAccess.assertCompromisedinstantaneously();

//Attempt DOS on application via instance
model.instancel.deny.assertCompromisedinstantaneously();
model.applicationl.deny.assertCompromisedinstantaneously();
model.data2.deny.assertCompromisedinstantaneously();

//Access to physical network
model.netD.denialOfService.assertCompromisedinstantaneously();

Result in denial of service of //Denial of service on networkconnected application

connected application.

model.app1l.deny.assertCompromisedinstantaneously();
model.datal.deny.assertCompromisedinstantaneously();

53

passed

passed

passed

passed

passed

54

TC14

TC15

APPENDIX A. TEST-CASES

Access to network and has
authentication to
application running on
network which then
provide fullAcces to the
application.

Access to Instance, data is
missing.

// Access to network application
model.appl.networkConnect.assertCompromisedinstantaneously();
model.appl.networkAccess.assertCompromisedinstantaneously();
model.app1l.fullAccess.assertCompromisedinstantaneously();
//Access to data
model.datal.attemptRead.assertCompromisedinstantaneously();

passed

model.datal.attemptAccess.assertCompromisedinstantaneously();
model.datal.deny.assertCompromisedinstantaneously();

//Access to instance
model.instance2.authenticatedAccess.assertCompromisedinstantaneously();
model.instance2.fullAccess.assertCompromisedinstantaneously();
//Attempt attempt find missing data
model.data5.read.assertUncompromised();
model.data5.delete.assertUncompromised();
model.data5.readContainedinformationAndData.assertUncompromised();
model.data5.write.assertUncompromised();

passed

APPENDIX A. TEST-CASES 55

Attack Name

Attack Type

Description

A1.1 bufferOverflow

OR

CWE-119: Exploiting improper restrict-
ions of overwriting the memory of an
application

A1.2 outOfBoundsReadOR-
Write

OR

CWE-125: Exploits reading outside
of the intended area

A1.3nullPointerDereference

OR

CWE-476: occurs when a application
dereferences a pointer which
is expected to be valid, but is null

A1.4 guestInstanceDOS

OR

If an instance is to go down, this would
lead to DenialOfService.

A1.5 stop

OR

If an instance is to be stopped, this
would lead to DenialOfService

A1.6 delete

OR

Removal of an instance would result in
DOS and loss of data

Al.7fd_CMD_READ_ID

Exists

CVE-2015-3456 or VENOM.
Makes it possible

to execute arbitrary code via
FD_CMD_READ_ID.

However this attack only exist if
sVirt is unavailable

A1.8 attemptVenomFDC

OR

VENOM. This is a step to attempt
use the Venom Exploit.

A1.9 venomExploit

AND

This is the venom attack step.

Both attemptVenomFDC

and fd_CMD_READ_ID

needs to be successful for this

step to be available.

A successful exploit would lead to
executor.fullAccess, which is admin
privileges on the host

A1.10 patchStatus

Defense

Ensure the QEMU/KVM is patch & up-to
-date, and the patch is installed correctly

Table A.1: QEMUKVM attacks.

56 APPENDIX A. TEST-CASES

Attack Name Attack Type | Description
A2.1 connect OR connect to an instance, for example via SSH
authenticate OR A2.2 authenticate to an instance, for example via SSH
A2.3 authenticated- If the authentlcatl.or} and CT)nnectlon steps arfa
Access AND both successfull, it is possible to get authenticated
access on an instance
If an attacker has authenticated access, but needs
A2.3 fullAccess OR elevated privileges, fullaccess is the next step to
gain more privileges
A2.4 stop OR Stoppil?g the instance‘would ls:ad ‘to denial
of service of the running applications
Deleting the instance would lead to denial
A2.5 delete OR of service and loss of data. Deletion ca.n also refer to the
removal of data kept on the Instance, since the model data
is on ephemeral storage
)) This is a first attack step for reaching
A2.6 (.16v1ceEmulat10n— OR improperMemoryBounds, outOfBoundsRead
Exploit)
or nullPointerDereference
A2.7 improperMemory- OR CWE-119: Exploiting improper restrictions
Bounds of overwriting the memory of an application
A2.8outOfBounds- CWE-125: Exploits reading outside
OR .
Read of the intended memory area
A2.9 nullPointer- CWE-476: Occur‘s when ::.1 apphcatlon
OR dereferences a pointer which is expected to
Dereference . .
be valid, but is null
A2.10 deny OR Dem‘al O_f service at‘tack of the executed
applications of the instance
A2.11 read OR Reading data which is contained on the instance
A2.12 write OR Writing to data which is contained on the instance

Table A.2: Instances Attacks.

Appendix B

Core

category System {

abstract asset Object
developer info: "An object is the simplest form of an
asset that can be compromised by a vulnerability."

| attemptUseVulnerability

| deny {A}
user info: "The Attacker can deny some or all
functionality of an object"

asset System extends Object
developer info: "Adapted from AWSLang"
{
| connect
developer info: "Attempt connection to the eg

via shell, but the attacker has yet to authenticate"

-> attemptGainFullAccess

| authenticate
developer info: "Does the attacker have the
credentials to an account?."
-> attemptGainFullAccess

57

58 APPENDIX B. CORE

& attemptGainFullAccess
developer info: "One way to get access to the
machine is through legitimate authentication."
-> fullAccess

| fullAccess
-> _machineAccess
| _machineAccess
developer info: "if access to machine, its possible to

read data from instances."
-> denialOfService,
attemptAccessToData,
subSystems [NovaService] .attemptUseCLI

| attemptAccessToData
developer info: "Access to data on system."
—> sysData.attemptAccess

| denialOfService
-> deny

asset Application extends Object
developer info: "Adopted from Corelang. An application
specifies pretty much everything that is executed or
can execute other applications."

//No changes from Corelang, Applications run on VM’s

| localConnect
user info: "An attacker with low-privilege access on
the executing instance is assumed to be able to locally
(on the same host i.e. using loopback) interact with the
application."”
-> localAccess,
specificAccessFromConnection

APPENDIX B. CORE 59

| specificAccessFromConnection @hidden
developer info: "This intermediate step is used to
represent that at least one type of connect has
happened before being able to interact locally."
—> specificAccess

| specificAccessFromIdentity @hidden
developer info: "This intermediate step is
needed because if no LowApplicationPrivileges
Identity 1is associated then locallInteraction
would be instantly compromised after connect"
—-> specificAccess

& specificAccess
user info: "An attacker with low-privilege access on the
executing instance is assumed to be able to locally
(on the same host i.e. using loopback) interact with
the executed applications."
-> appExecutedApps.localConnect //
But also achieve localConnect on all child applications
(this is something that needs to be reviewed again at a
later stage)

| networkConnect
user info: "An attacker can connect to any network exposed
application.”
-> networkAccess,
specificAccessFromConnection

| networkRequestConnect
user info: "The attacker has successfully sent a request
to the application."
developer info: "Adopted from awsLang."
—-> networkConnect

60 APPENDIX B. CORE

| networkRespondConnect [Exponential (0.001)]

user info: "An attacker may be able to respond to requests
submitted by an application.'
developer info: "Adopted from awsLang."

-> networkConnect

| authenticate
user info: "The attacker is able to authenticate with the
appropriate credentials."
-> localAccess,
networkAccess

& localAccess @hidden
-> fullAccess

& networkAccess @hidden
-> fullAccess

| fullAccess {C,I,A}
user info: "Legitimate access, as user or as administrator."
-> read,

modify,

deny,

appExecutedApps.fullAccess, // Gain access on all applications
executed by this (host) application

hostApp.localConnect // and localConnect on the host
application
| codeExecution
developer info: "Adopted from awsLang."
—> fullAccess,
modify
| read {C}
user info: "The attacker can read some or all of this
service’s code and data."
developer info: "Adopted from awsLang."

—-> containedData.attemptRead

APPENDIX B. CORE 61

| modify {I}
user info: "The attacker can modify some or all of
this service’s data. Adopted from awsLang."

—-> containedData.attemptAccess

| deny {A}
user info: "The attacker can deny some or all functionality
and data pertaining to this service. Adopted from awsLang."
—-> containedData.deny

}

category DataResources(

asset Information
user info: "Represents any type of information that
might be contained inside Data."
{
| attemptAccess
user info: "The attacker is attempting to access
the information."

asset Data
developer info: "Adopted from AWSlang, Encryption:
https://docs.openstack.org/project-deploy—guide/
openstack-ansible/draft/overview-storage—arch.html ,
Storage Nova: https://docs.openstack.org/project-
deploy—-guide/
openstack-ansible/draft/overview—-storage—-arch.html"

{

| attemptAccess
user info: "Attempt to access the data, this might
fail if the dataNotExist defense is used."

-> access

& access
-> attemptRead,

62 APPENDIX B. CORE

attemptWrite,
attemptDelete

'E dataEncrypted @hidden
user info: "If the data are encrypted then accessing them
requires the associated encryption credentials/key."
developer info: "Data will be considered as encrypted 1if
there is at least one Credentials instance associated with it.
Otherwise, 'accessUnencryptedData’ is reached."
<— secureVirtualization
—> accessUnencryptedData

& accessUnencryptedData
user info: "If data is unencrypted then access them."
—-> accessDecryptedData

| accessDecryptedData @hidden
user info: "Intermediate attack step to only allow effects of
"accessUnencryptedData’ on data after compromising the encryption
credentials or encryption is disabled."
-> access,
readContainedInformationAndData,
read,
write,
delete

dataNotExist
user info: "It models the probability of data actually not
existing on the connected container (i.e. System,
Application, Connection, etc.)."
—-> access,
readContainedInformationAndData,
read,
write,
delete

& readContainedInformationAndData
user info: "From the data, attempt to access also the contained
information/data, if exists."

APPENDIX B. CORE 63

-> 1information.attemptAccess,
containedData.attemptAccess

attemptRead

user info: "Attempt to read the data."

-> read

attemptWrite

user info: "Attempt to write on the data."

-> write

attemptDelete
user info: "Attempt to delete the data."
-> delete

read {C}

user info: "The attacker can read the data."

—> containedData.attemptRead,
readContainedInformationAndData

write {I}
user info: "The attacker can write to the location
of the data, effectively deleting it."
—-> containedData.attemptWrite,
delete

delete {I,A}
user info: "The attacker can delete the data."
—-> containedData.attemptDelete

deny {A}

user info: "if a DoS is performed data are denied,
it has the same effects as deleting the data."

—-> containedData.deny

}

category Networking {

64 APPENDIX B. CORE

asset Network
user info: "A network zone is a set of network accessible
applications."
{
| physicalAccess {A}
developer info: "Attacker has physical access on the network.

This means he can cut wires/fibers and also connect using iLOs."

-> denialOfService

| access
user info: "Access provides connect to all reachable
applications."
—-> applications.networkConnect,
denialOfService

| denialOfService {A}
user info: "If a DoS is performed it affects, the applications
communicating over the network as well as the connected
application."
-> applications.deny

associations {
[/ === ### System/Application related associations

Application [hostApp]O0..1 <—— AppExecution —-->
* [appExecutedApps] Application

/) ### Data related associations
Data [containingData]*<—-— DataContainment —--—>
* [containedData]Data
user info: "Data can be contained inside other data."

Data[containedData] *<——AppContainment——>
*[containingAppl]Application
developer info:

APPENDIX B. CORE 65

"An application should be able to contain some data."

System [system]O..l1 <-- DataHosting --»>
*[sysData]Data
user info: "A system can host data."

Data [containerData]*<——InfoContainment——>
*[information]Information
user info: "Data can contain information, as for
example credentials."
/)= ### Network related associations
Network [networks] *<—-—NetworkExposure——>
*[applications] Application
user info: "An application can communicate /
be exposed on a network."

Appendix C
HyperVisorLang

#id: "org.mal-lang.kvmlang"
fversion: "0.0.2"

include "core.mal"

category System {

asset HardwareMemoryEncryption extends Information/{
//If the machine supports AMD-SEV or Intel-MKTME,
the data in use is encrypted.
| use {C}
user info: "Someone is using the credentials to
perform a legitimate authentication."
—> encryptedData.accessDecryptedData

| attemptAccess

user info: "The attacker is attempting
to access the credentials."”
-> use

asset NovaService extends System
developer info: "This is the worker deamon
that creates or terminates VM’s
through 1libVirt, which further controls QemuKVM"

66

APPENDIX C. HYPERVISORLANG 67

user info: "This is when a user has access to the

Nova Comand Line interface (CLI) / Openstack CLI which
controls the VM’'gs"

{

| fullAccess @hidden
—-> attemptUseCLI

| _machineAccess @hidden
—> attemptUseCLI

& attemptUseCLI
user info: "the user is attempting to access the CLI,
goes via the hypervisor"
-> mgmtInstance.stop,
mgmt Instance.delete

abstract asset LSM extends Object
developer info: "New asset for KVM-QEMU. Linux security
module."

asset SELinux extends LSM

developer info: "New asset for KVM-QEMU. Security-Enhanced
Linux restricts the privileges of the gemu process by
establishingsecurity boundaries, so if an attacker would
compromise the hypervisor, sVirt restricts the VM’'s access
outside of its boundaries"

{

//developer info: "If sVirt is enabled, MAC is enforced

to the VM’'s running on the host. The attack cannot

proceed outside of the VM-process boundaries."

}

asset QemuKVM extends Object

68 APPENDIX C. HYPERVISORLANG

developer info: "New asset for KVM-QEMU."

user info: "Qemu emulates vCpu, SMP, Soft MMU, I &T.

Mech, I/0 Network, Paravirtualized I/O, VM Exits, Hypercalls"
{

& bufferOverflow

developer info: "CVE-2015-5158,

CVE-2015-7504, CVE-2017-10806"
—> guestInstanceDOS

& outOfBoundsReadORWrite
developer info: "CVE-2017-11334, CVE-2017-13672,
CVE-2017-7718, CVE-2017-15289, CVE-2015-8619, CVE-2016-
10029"

—> guestInstanceDOS

& nullPointerDereference
developer info: "CVE-2017-12809"
—-> qguestInstanceDOS

| guestInstanceDOS
developer info: "If an instance goes down, this means
DenialOfService"
-> sysExecutedInstances.deny

| stop
developer info: "If an instance is stopped, this means
DenialOfService"
—-> sysExecutedInstances.deny

| delete
developer info: "Removal of an instance would result in
DOS and loss of data"
-> sysExecutedInstances.delete

'E fd_CMD_READ_ID
developer info: "CVE-2015-3456, VENOM, fd_CMD_READ_ID
attack wvector"

APPENDIX C. HYPERVISORLANG 69

user info: "If SELinux is disabled, it’s possible to
proceed with the an successful attack."

<— svirt [SELinux]

—> venomExploit

& venomExploit
-> executor.fullAccess

| attemptVenomFDC @hidden
—-> venomExploit

patchStatus
developer info: "Ensure the Qemu/KVM is patch up-to-
date,
and it’s patched correctly"
-> bufferOverflow,
fd_CMD_READ _ID,
outOfBoundsReadORWrite,
nullPointerDereference

asset Instance extends Object
developer info: "Adapted from AWSLang, with minor changes.
One instance is the running on the machine"

{

| connect
developer info: "Attempt connection to the eg via
shell, but the attacker has yet to authenticate"
—> authenticatedAccess

| authenticate
developer info: "Does the attacker have the credentials
to an account?."
—-> authenticatedAccess

& authenticatedAccess
developer info: "One way to get access to the machine is

70 APPENDIX C. HYPERVISORLANG

through legitimate authentication."
—> fullAccess

| fullAccess

developer info: "privileged user access, can read/Write/delete
data, and stop an instance"
-> read,

write,

delete,
deviceEmulationExploit,

deny,

stop

| stop
developer info:"The instance is stopped /shutdown result is DOS"
—-> deny

| read

developer info:"Access to the instance can lead to the
attacker gains acces to the data"

—-> containedData.attemptRead

| write
developer info:"Attempts to write."
—-> containedData.attemptWrite

| delete

developer info:"the instance is removed, since the instance uses
ephemeral storage, removal of instance result in loss of data."
—-> containedData.attemptDelete

| deviceEmulationExploit
developer info: " The codebase in the QEMU quick emulator,
stands for many of the exploits."
—-> improperMemoryBounds,
outOfBoundsRead,
nullPointerDereference

| improperMemoryBounds

APPENDIX C. HYPERVISORLANG 71

developer info: "CVE-2015-5158, CWE-119: Improper Restriction

of Operations within the Bounds of a Memory Buffer"

user info: "Exploits connected to: CVE-2015-5158,

CVE-2015-7504, CVE-2017-10806, CVE-2017-10806, CVE-
2016-3710"

//user info: "deviceEmulationExploit —-> [Vulnerability] -

[Exploit] —> hypervisor.<exploit>"
-> attemptExploitBufferOverflow,
venomE'DC

| outOfBoundsRead
developer info: "CWE-125: Out-of-bounds Read"
-> attemptExploitOutOfBoundsRead

| nullPointerDereference
developer info: "CWE-476: NULL Pointer Dereference"
—> attemptNullPointerDereference

| attemptNullPointerDereference
developer info: "Attack Step for CWE-476."
—> hypervisor.nullPointerDereference

| attemptExploitBufferOverflow
developer info:"Attack Step for CWE-119."
—>hypervisor.bufferOverflow

| attemptExploitOutOfBoundsRead
developer info:"Attack Step for CWE-125."
—>hypervisor.outOfBoundsReadORWrite

| venomFDC
developer info: "CVE-2015-3456, VENOM"
—->hypervisor.attemptVenomFDC

| deny {A}
—-> guestSysExecutedApps.deny

72 APPENDIX C. HYPERVISORLANG

associations {

/) ### Nova/orchestrator related associations

System [system] 1..* <—— ExecutesSubSystems —=
>

0..* [subSystems]System

developer info: "Subsystems runs on the machine"
/=== ### gemuKVM/System/Instance related associations
System [executor] 1 <——- ExecutesVirtHardware -->

0..1 [hypervisor] QemuKVM
developer info: "The system executes the Qemu virtulizer
and the KVM converts the system kernel into a hypervisor."

QemuKVM [hypervisor] 0..1 <—-- VirtHardware --—>
1..* [sysExecutedInstances] Instance
developer info: "Qemu-KVM handles I/0 emulation CPU
emulation and virtual hardware for each instance.
Fach instance have their own Qemu-process tied to the instance."

NovaService [instanceMGMT] 0..1 <—-
OrchestratesInstancesVialibvirt ——-> 0..1 [mgmtInstance]QemuKVM
developer info: "Nova compute orchestrates

the KVM-QEMU instances."

[)———mm e ### Data related associations
Data [containedData] * <—- InstanceContainment —-->

* [containingInstance] Instance

developer info: "An instance should be able to contain some data."
Instance [guestExecutor] 1..* <—— SysExecution ——>

* [guestSysExecutedApps] Application
developer info: "The instance ’‘guestSystem’ on which

APPENDIX C. HYPERVISORLANG 73

Applications are running."

Data[encryptedbData] * <—- DataEncryption —--—>

0..1[secureVirtualization]HardwareMemoryEncryption
user info: "Encrypted data can be associated with
the relevant encryption credentials."

/)= ### LSM related associations

LSM[svirt]0..1 <—-LinuxSecurityModule—-->
0..1[hypervisor]QemuKVM

developer info: "SELinux provides MAC framework
for the virtual machines"

Appendix D

Testmodel

D.1 TestCase1 in Result

package org.mal_lang.kvmlang.test;

import core.Attacker;
import core.AttackStep;
import org.junit.jupiter.api.Test;

public class InstanceExploitTest extends KVMLangTest {

private static class InstanceExploitModel {

/**First model has no defenses active.
*

*

* */
J** First model */
public final Instance instancel = new Instance("instancel");

public final QemuKVM hypervisorl = new QemuKVM ("hypervisorl", false);
public final Data datal = new Data("datal", false);
public final Data data2 = new Data("data2", false);

/**Application*/
public final Application applicationl =

new Application("applicationl");

public InstanceExploitModel () {

74

APPENDIX D. TESTMODEL 75

hypervisorl.addSysExecutedInstances (instancel) ;
instancel.addContainedData (datal) ;
instancel.addGuestSysExecutedApps (applicationl) ;
applicationl.addContainedData (data2) ;
}
public void addAttacker (Attacker attacker,
AttackStep attackpoint) {
attacker.addAttackPoint (attackpoint) ;
}
}

@Test

public void testApplicationDenialVia_Instancel_TC12 () {

printTestName (Thread.currentThread () .getStackTrace () [1]
.getMethodName ()) ;

var model = new InstanceExploitModel () ;

var attacker = new Attacker();

model .addAttacker (attacker, model.instancel.connect) ;
model.addAttacker (attacker, model.instancel.authenticate) ;
attacker.attack () ;

//Access to instance

model.instancel.authenticatedAccess.
assertCompromisedInstantaneously () ;

model.instancel.fullAccess.assertCompromisedInstantaneously() ;
//Attempt DOS on application via instance
model.instancel.deny.assertCompromisedInstantaneously () ;
model.applicationl.deny.assertCompromisedInstantaneously () ;
model.data2.deny.assertCompromisedInstantaneously () ;

}

D.2 test2

public class InstanceBreakOutTest extends KVMLangTest{

private static class InstanceBreakOutModel ({

76 APPENDIX D. TESTMODEL

/**Instances & Hypervisor */

public final Instance instancel = new Instance ("instancel");

public final Instance instance?2 = new Instance("instance2");

public final QemuKVM hypervisor = new QemuKVM("hypervisor", false);
/**DATA */

public final Data encdatal = new Data("encDatal", false);

public final Data encdataZ2 = new Data("encData2", false);

public final Data data3 = new Data("data3", false);

/**Applications*/
public final Application applicationl =
new Application("applicationl");
public final Application application2 =
new Application("application2");

/**System*/
public final System system = new System("system") ;
public final NovaService novaCLI = new NovaService ("novaCLI");
public final HardwareMemoryEncryption datacredsl = new

HardwareMemoryEncryption ("datacredsl") ;

public final HardwareMemoryEncryption datacreds?2 new

HardwareMemoryEncryption ("datacreds2") ;
public InstanceBreakOutModel () {

/**-—-First model with activated memory encryption-
——x/
/**SYSTEM */
system.addHypervisor (hypervisor) ;

/**Instances & Hypervisor */
hypervisor.addSysExecutedInstances (instancel) ;
hypervisor.addSysExecutedInstances (instance?2) ;

APPENDIX D. TESTMODEL 77

/**DATA */
encdatal.addSecureVirtualization (datacredsl) ;
encdataZ?.addSecureVirtualization (datacreds?2) ;
instancel.addContainedData (encdatal) ;
instance2.addContainedData (encdataZ2) ;

//To show that the data of the instance could
reside on the host.
system.addSysData (encdataZ?) ;

/**Applications tied to instances*/
instancel.addGuestSyskExecutedApps (applicationl) ;
instance?2.addGuestSyskExecutedApps (application?) ;

// Instance mgmt
hypervisor.addInstanceMGMT (novaCLI) ;
}
public void addAttacker (Attacker attacker,
AttackStep attackpoint) {
attacker.addAttackPoint (attackpoint) ;

}

}

@Test
public void testInstancelBreakOut_TC5() {
printTestName (Thread.currentThread () .getStackTrace () [1]
.getMethodName ()) ;
var model = new InstanceBreakOutModel () ;
var attacker = new Attacker();

model .addAttacker (attacker, model.instancel.connect) ;
model .addAttacker (attacker, model.instancel.authenticate) ;
model .addAttacker (attacker, model.datacredsl.use) ;
attacker.attack () ;

//Instance traverse
model.instancel.authenticatedAccess.
assertCompromisedInstantaneously () ;

model.instancel.fullAccess.
assertCompromisedInstantaneously

78 APPENDIX D. TESTMODEL

model .encdatal.read.
assertCompromisedInstantaneously () ;

model.instancel.deviceEmulationExploit.
assertCompromisedInstantaneously () ;

model.instancel.improperMemoryBounds.
assertCompromisedInstantaneously () ;

model.instancel.venomFDC.
assertCompromisedInstantaneously () ;
//Hypervisor traverse
model.hypervisor.attemptVenomEFDC.
assertCompromisedInstantaneously () ;

model.hypervisor.venomExploit
.assertCompromisedInstantaneously () ;

//SystemTraverse
model.system.fullAccess.
assertCompromisedInstantaneously () ;

model.system._machineAccess.
assertCompromisedInstantaneously () ;
/**Breakout Complete */

//Data from first instance is compromised(Access to instance,
however the data to the second instance is uncompromised) .
model.encdata2.read.assertUncompromised() ;

}

}

D.3 test3

public class SystemTakeOverTest extends KVMLangTest {

private static class SystemTakeOverModel {
/**———First model without activated defenses——-*/

APPENDIX D. TESTMODEL 79

/**Instances & Hypervisor */
public final Instance instancel = new Instance("instancel");
public final Instance instance2 = new Instance("instance2");

public final QemuKVM hypervisorl = new QemuKVM
("hypervisorl", false);

/**DATA */
public final Data datal
public final Data data2

new Data("datal", false);
new Data ("data2", false);

/**Applications*/
public final Application applicationl

new Application("applicationl");

public final Application application2 =
new Application("application2");

/**System*/
public final System systeml = new System("systeml") ;
public final NovaService novaCLI1l =
new NovaService ("novaCLI1l");

public SystemTakeOverModel () {
/**———First model without defenses———*/

/**SYSTEM */
systeml.addHypervisor (hypervisorl) ;

/**Instances & Hypervisor */
hypervisorl.addSysExecutedInstances (instancel) ;
hypervisorl.addSysExecutedInstances (instance?2) ;

/**DATA */
instancel.addContainedData (datal) ;
instanceZ.addContainedData (data2) ;

80 APPENDIX D. TESTMODEL

//To show that the data of the instance

could reside on the host.
systeml.addSysData (datal) ;
systeml.addSysData (data?2) ;

/**Applications tied to instances*/
instancel.addGuestSysExecutedApps (applicationl) ;
instance?2.addGuestSyskExecutedApps (application?) ;
hypervisorl.addInstanceMGMT (novaCLIl) ;

}
public void addAttacker (Attacker attacker,

AttackStep attackpoint) {
attacker.addAttackPoint (attackpoint) ;

}

}
@Test
public void testMODELl1HostTakeOverReadData_TC1 () {
printTestName (Thread.currentThread() .
getStackTrace () [1] .getMethodName ()) ;

var model = new SystemTakeOverModel () ;

var attacker = new Attacker();
model.addAttacker (attacker, model.systeml.connect) ;

model .addAttacker (attacker, model.systeml.authenticate);
model.addAttacker (attacker,model.systeml.fullAccess) ;
model.addAttacker (attacker, model.systeml._machineAccess) ;

attacker.attack () ;
model.systeml.fullAccess.
assertCompromisedInstantaneously () ;

model.systeml._machineAccess.
assertCompromisedInstantaneously () ;

APPENDIX D. TESTMODEL 81

model.systeml.denialOfService.
assertCompromisedInstantaneously () ;

model.datal.read.assertCompromisedInstantaneously () ;

model.dataZ.read.assertCompromisedInstantaneously () ;
}

}

TRITA-EECS-EX-2021:124

