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Abstract 

The future of healthcare is personalized medicine, in which disease 
treatments are tailored based on the individual characteristics of each 
patient. To reach that objective, we need to obtain a better understanding 
of diseases. The main facilitator of personalized medicine is systems and 
data-driven biology, which makes omics data a top commodity in this era. 
Coupled with computational and biological expertise, omics data can be a 
useful asset for obtaining mechanistic insights into the biological 
conundrum, particularly in disease-related contexts. This thesis describes 
systems biology approaches and their applications in disease-specific 
contexts. Systems biology assists us in systematically and comprehensively 
understanding complex biological systems as a whole interconnected 
system. 

The first part of the thesis describes the generation of more than 100 
biological networks based on personalized data originated from several 
different omics, usually referred to as multiomics data, including clinical 
data and metabolomics, proteomics, and metagenomics data collected 
from the same individuals. Moreover, we present a web-based multiomics 
biological network database and visualization platform called iNetModels. 

In the second part of the thesis, we describe systems biology frameworks 
and their applications to the study of various biological questions in disease 
contexts using single- and multiomics data. First, we present our findings 
on the integrative view of metabolic activities from multiple tissues after 
myocardial infarction using transcriptomics data from the heart and other 
metabolically active tissues. Second, we used transcriptomics data to 
describe the mechanistic effect of lifelong training on skeletal muscle in 
both men and women and the role of short-term training in reversing 
damage from metabolic-related diseases. Third, we deciphered the 
molecular mechanism of nonalcoholic fatty liver disease (NAFLD) based 
on clinical data, plasma metabolomics, plasma inflammatory proteomics, 
and oral and gut metagenomics data. Finally, we elucidated the mechanism 
of action of CMA supplementation, a potential treatment for NAFLD, 
based on proteomics and metabolomics data. 

In summary, this thesis presents a novel platform for biological network 
analysis and proven systems biology frameworks to provide mechanistic 
and systematic understandings of specific diseases using single- and 
multiomics data.  
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Sammanfattning 

Framtiden för hälsovård är precisionsmedicin; behandling av sjukdom 
skräddarsys baserat på de individualla egenskaper hos varje enskild 
patient. För att nå detta mål behöver vi öka vår kunskap om sjukdomar. 
Det främsta hjälpmedlet för att utveckla precisionsmedicin är system- och 
datadriven biologi, vilket i sin tur gör omikdata till en viktig resurs i 
samtiden.  Omikdata kan kombineras med expertis inom 
beräkningsbiologi för att på så vis vara en värdeful tillgång för att få insyn 
i biologiska mekanismer, särskilt inom sjukdomskontext. Denna 
avhandling beskriver strategier inom systembiologi, och deras applicering 
för specifika sjukdomar. 

Den första delen av avhandlingen beskriver utvecklandet av mer än 100 
biologiska nätverk baserade på personaliserad multiomik-data, inklusive 
klinisk data samt metabolomik-, proteomik-, och metagenomikdata, 
insamlat från samma individer. Dessutom presenterar vi en webb-baserad 
databas innehållande biologiska nätverk byggda från multiomik-data, 
samt en visualiseringsplatform vid namn iNetModels. 

I den andra delen av avhandlingen beskriver vi systembiologiska ramverk 
och deras applicering för studier av olika sorters biologiska frågor inom 
sjukdomskontext, genom att använda en eller flera sorters omikdata. Först 
presenterar vi våra fynd om den integrativa vyn av metaboliska aktiviteter 
från flertalet vävnader efter hjärtinfarkt, genom att använda 
transkriptomikdata både från hjärtat och andra metaboliskt aktiva 
vävnader. Sedan använde vi transkriptomikdata för att beskriva den 
mekanistiska effekten av livslång träning av skelettmuskel i både män och 
kvinnor, samt vilken roll kortsiktig träning har i att läka skador från 
metabolismrelaterade sjukdomar. Efter det dechiffrerade vi den 
molekylära mekanismen bakom nonalcoholic fatty liver disease (NAFLD), 
eller fettlever, baserat på kliniska data, plasma-metabolomik, 
inflammatorisk plasma-proteomik, samt metagenomikdata från månhåla 
och tarmkanal. Till sist tydliggjorde vi mekanismen  av CMA-
supplementrering, en potentiell behandling av NAFLD, baserat på 
proteomik- och metabolomikdata.  

Sammanfattningsvis beskriver denna avhandling en ny plattform för 
biologisk nätverksanalys och bevisade systembiologiska ramverk för att 
utröna mekanistisk och systematisk förståelse för specifika sjukdomar, 
genom att använda singel- eller multiomikdata.  
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Chapter I:  Introduction 

Since its introduction in the early 2000s, systems biology1,2 has 
continuously gained increasing traction in the field of biology. Systems 
biology is a multidisciplinary field that attempts to solve complex biological 
problems in a holistic manner by interpreting biology at the systems level 
rather than using the traditional mindset of focusing on a specific 
biological part or issue. The rise of systems biology has also been propelled 
by the exponentially increasing number of large-scale biological data, 
usually called omics data, generated in the past decade. 

Omics Data 

Omics data always involves the simultaneous measurements of a large 
number of analytes3, which makes these data superior to other molecular 
measurements. The emergence of omics data has hugely helped 
researchers understand the complexity of living cells4. The term “omics 
data” has become a blanket term for data related to studies of molecular 
biology, ranging from data related to DNA, RNA, protein, and metabolites 
to data from the gut and oral microbiomes. “Omics” has also been used to 
refer to a field of study, but in this thesis, the term refers to the data. 

 

Figure 1 Analytes and their omics. 
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The use of omics has gained increasing momentum (Figure 2) since the 
completion of the draft sequence of the human genome was announced by 
US President Bill Clinton and British Prime Minister Tony Blair in June 
20005. This increase is driven mainly by reductions in the costs of next-
generation sequencing technology and improvements in the quality of the 
related tools6,7. This development has opened countless new opportunities 
for studying complex biology in a comprehensive manner at high levels. 
Here, we discuss the five most popular omics types (Figure 1) and examples 
of their applications. 

 

Figure 2 Omics Trend and Decreasing Costs 
The decrease in sequencing costs is followed by an increase in the use of omics in biological 

research (based on a PubMed query, accessed 31-01-2021). 

The first omics is genomics, which involves the study of the whole 
genome. These data originate from DNA and consist of DNA profiles and 
features. Using genomics data, one can retrieve DNA sequences, discover 
variations in DNA structures or single-nucleotide polymorphisms (SNPs, 
variations in nucleotides between individuals) between individuals or 
conditions, identify regulatory factors, and conduct many other analyses. 
Genomics data have been used to find associations between genetic factors, 
particularly their variations, and diseases, for example, cardiovascular 
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diseases8 and diabetes9. Many databases for pre-analyzed genomic 
variations and their association with diseases are currently available, and 
these include the 1000 Genomes Project database10 and DisGeNET11. 

Transcriptomics refers to the study of the expression of RNA 
transcripts, including protein-coding RNA (messenger RNA or mRNA) 
and noncoding RNA, such as transfer RNA, ribosomal RNA, and 
microRNA. Instead of retrieving DNA structures, transcriptomics data 
quantify RNA expression and often focus on protein-coding mRNA 
transcripts. One can then calculate the significantly differentially 
expressed transcripts or genes between different conditions (the methods 
for these analyses are discussed in the next section). This omics approach 
can successfully be applied to understand the mechanism of action or to 
the identification of signatures and possible therapeutic targets of diseases, 
such as myocardial infarction12 and prostate cancer13. The Pathology 
Atlas14 is another outstanding example of the utilization of large-scale 
transcriptomics data and provides a database of prognostic gene markers 
for 17 different cancer types. 

Genomics and transcriptomics data are most commonly generated by two 
popular high-throughput sequencing (HTS) methods: microarray and 
next-generation sequencing (NGS). In a microarray, the cDNA of the 
sample is prepared in a chip with a large array of predefined probes to 
detect the relative abundance of RNA transcripts15. Transcripts can only be 
detected if they are included in the probe set. In contrast, in NGS, the DNA 
or RNA samples are fragmented, sequenced, and aligned, and mapped to a 
reference genome using bioinformatics tools16. Even though microarrays 
are more cost-effective, their transcript detection range is limited by the 
probes. In contrast, NGS detects all transcripts in a sample without the 
need to set probes or have any prior knowledge of the system and thus 
exhibits a larger detection range. 

The next omics is proteomics, which involves the study of proteins on a 
large scale. Proteomics data are employed to observe protein behaviors, 
such as their synthesis, degradation, and modification. Proteomics data 
can be used to extract protein sequences and quantify protein abundances. 
Subsequently, one can investigate changes in protein abundance between 
different conditions through differential expression analysis (the methods 
are discussed in the next section). There are two popular paradigms in 
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proteomics17 based on the methods used for data collection: mass 
spectrometry (MS)-based and affinity-based proteomics. Similar to NGS, 
MS-based methods detect all available protein signals in a sample, whereas 
affinity-based methods are limited to the available antibodies in the assay. 
Based on a search of PubMed, proteomics data are the most popular omics 
data after genomics data due to their significance and large spectrum of 
usage. Some examples of the use of proteomics data are the identification 
of protein biomarkers in Alzheimer’s disease18, the exploration of 
proteomics changes during aging19, and the discovery of novel plasma 
proteins associated with nonalcoholic fatty liver disease20. 

A small set of metabolites, intermediary or end products of metabolic 
processes, has been used as disease diagnostic tools for a long time 21, but 
in the omics era, this set has been expanded into a larger set of metabolites 
to be analyzed, including lipids, amino acids, and fatty acids. The study of 
metabolites is referred to as metabolomics. Based on the methodology 
used to acquire these data, metabolomics can be divided into two types: 
untargeted and targeted metabolomics. In untargeted metabolomics, all 
metabolites, including unknown metabolites, are measured, whereas in 
targeted metabolites, only characterized and annotated metabolites are 
measured. In both types of metabolomics, the metabolites are measured by 
MS. The Human Metabolome Database (HMDB)22 includes 114,100 
metabolites (18,609 metabolites have been detected and quantified), 
including endogenous, food, microbial, and other metabolites. 
Metabolomics has been positioned to bridge other omics to the actual 
phenotype23. Naturally, metabolomics has also been popularly used for 
studies of diseases, particularly metabolic diseases, such as the 
characterization of fat depots in NAFLD24 and their association with 
multiple cardiovascular diseases25. 

Metagenomics refers to the study of the microbiome (also known as our 
second fingerprint26) that lives in the body of the host. The microbiome 
usually originates from the feces (gut microbiome) or saliva (oral 
microbiome). Two popular HTS approaches are used to generate 
metagenomics data: shotgun and 16S sequencing. The shotgun method 
provides a larger and less focused spectrum of the microbiome, whereas 
16S sequencing focuses on the 16S ribosomal RNA gene and is hence 
restricted to bacteria and archaea27. Metagenomics analyses generally start 
by comparing the taxonomic structure and diversity in response to 
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different perturbations, and functional analyses can then be performed 
using metabolic modeling or marker genes from the microbial gene 
catalog. In the past decade, metagenomics has gained popularity in disease 
research because the microbiome is highly associated with the host 
conditions28. The Human Microbiome Atlas 
(https://www.microbiomeatlas.org) is a comprehensive database that 
provides information on human microbiome samples from all over the 
world, including their association with diseases. 

Other types of omics, including fluxomics, interactomics, and 
phenomics, have been proven to be useful in biological research, 
particularly research in diseases29. However, the amount of data generated 
can be overwhelming and can blind us to the fact that these types of data 
are connected. The paradigm of systems biology helps us look at and 
think of a biological system not as singular and detached subsystems but 
rather as one large interconnected system. 

Systems Biology Paradigm 

For a long time, biological research, including molecular biology, has been 
limited by the complexity of the matter itself, which has resulted in the 
development of simplified approaches to problems. Moreover, exploration 
of an entire biological system has been impractical due to methodological 
limitations. Nevertheless, despite these limitations, researchers have been 
able to unearth amazing insights about life and, more importantly, 
discover life-saving drugs or therapies for diseases. Due to the -omics data 
boom, biology has become a data-rich field, which has triggered the 
emergence of a new field, systems biology. There are multiple definitions 
of systems biology, but the definition I will use in my thesis stems from the 
Institute for Systems Biology (http://isbscience.org), which defines 
systems biology using three main keywords: holistic (understanding 
biological systems as a whole interconnected system), collaborative 
(teaming multidisciplinary experts, including biology, physics, computer 
science, etc.), and predictive (predicting changes in the systems due to 
different conditions). 

In contrast to the conventional paradigm that considers a biological system 
as an aggregation of its subsystems, systems biology considers biological 
systems as one whole system by building an interconnected model to 
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simulate the complex interaction between different components in 
molecular biology. These components might include but are not limited to 
different omics analytes (Figure 1), such as genes, proteins, and 
metabolites. To build the model accurately, a large amount of data, 
including multiple subjects, a large number of different analytes (from 
single- or multiomics), and different perturbations, are naturally required, 
and as a result, solid computational algorithms and, most definitely, strong 
computational power are needed for data analysis and model simulation. 
These requirements tightly couple biology with the field of computer 
science as well as other supporting disciplines, such as statistics, physics, 
and chemistry, which makes systems biology a multidisciplinary field. In 
addition to understanding a system, the objective of building a system-
level biological model is to envisage the changes in the system due to 
variation in conditions. Variation in conditions might translate to the study 
of different time points to understand the progression of a disease, the 
comparison of control versus disease samples to elucidate disease 
mechanisms, the exploration of different therapeutic strategies to find the 
most suitable treatment for a disease, or other variations. These 
explorations, comparisons, and predictions are typically approached using 
three main approaches, namely, statistical inference, machine learning, 
and network analysis (Figure 3), and these are discussed in more detail in 
the next chapter. 

The application of systems biology and big data has become a norm 
because this information can help accelerate research processes and 
ultimately reduce the cost of research30. Moreover, it provides broader 
insights into the disease, its pathophysiological responses, and its 
molecular mechanisms31. Systems biology has been broadly used in this 
context, including for the discovery of new therapeutic approaches, the 
repositioning of known drugs to the treatment of multiple diseases13,32-34, 
the identification of novel biomarkers, and patient characterization35-37. 
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Chapter II:  Systems Biology and Biological 
Networks 

In this chapter, three systems biology approaches and their examples are 
discussed: (1) statistical inference, (2) machine learning, and (3) network 
analysis, which is our main focus. Moreover, we discuss several biological 
network types and their components. Finally, at the end of the chapter, we 
discuss the applications of systems biology using one or combinations of 
the discussed methods in the context of human diseases. 

Statistical Inference and Functional Analysis 

The first and most common approach is to perform a side-by-side 
comparison between different conditions and find significantly different 
analytes between the conditions. This approach involves the application of 
inferential statistics methods, ranging from frequentist methods 
(Student’s t-test, Wilcoxon test, ANOVA, and MANOVA) to improved 
and/or specialized statistical inference methods (LIMMA and DESeq2). 
Because the comparisons are performed for a large number of analytes, 
multiple hypothesis testing methods (Bonferroni correction and 
Benjamini/Hochberg FDR) are often needed to minimize inaccurate 
inference in the analyses. This approach has been proven to help 
researchers identify significantly altered analytes, for example, in drug 
repositioning using transcriptomics data12 and in metagenomics analysis 
of asthma patients38. 

Looking at just significantly differentially altered analytes often does not 
yield a complete systematic view of the changes. Typically, such analyses 
are followed by a functional analysis to provide more context, such as 
mapping the data to biochemical pathways, biological functions, disease 
association, and phenotypes. Many databases, such as KEGG Pathway39, 
Gene Ontology40,41, MetaboAnalyst42, DisGeNet43 (for disease association), 
and Cancer Cell Line Encyclopedia44, provide contextual annotation for 
analytes. Further statistical analysis, such as Fisher’s exact test, reporter 
analysis, and overrepresentation analysis, has been employed to show 
significant changes in the functional context. The combination of statistical 
inference and functional analysis helps researchers develop hypotheses or 
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find new insights at both the molecular and functional levels, such as 
finding the therapeutic effect of inhibiting a pathway in cancer45. 

Machine Learning 

Machine learning (ML) is described as a data analysis technique where 
computer algorithms are developed to learn from the data and find 
hidden insights from it without being specifically programmed to 
look for them46. It is a proven tool for the analysis of large and complex 
data, including biological data47. There are two main objectives in the use 
of ML in biological data: discovery and prediction. First, ML is used to 
discover patterns in the data and find important features that 
discriminate two or more conditions. Second, the discovered patterns and 
important features are used by the ML algorithm to build a model to 
represent the data that can further be used to predict conditions or 
analyte levels of independent sets of data.  

There are two main methods in ML: supervised and unsupervised learning. 
Supervised learning is a method where the discovery and prediction 
objectives require a known label for the samples or a dependent variable, 
such as the metadata or phenotypes. There are two subtypes of supervised 
learning: classification (prediction of discrete variables, e.g. 
stratification of subject conditions) and regression (prediction of 
continuous variables, e.g. prediction of analytes levels). Several examples 
of supervised learning are support vector machine, decision tree, random 
forest, and neural network. The opposite is unsupervised learning, 
where the identification of patterns in high-dimension omics data is 
performed without any prior labeling or known dependent variables. 
Unsupervised learning includes clustering methods (hierarchical, K-
means, and spectral clustering) and dimensionality reduction (PCA, T-
SNE, and UMAP). Typically, the latter approach is used in the exploratory 
stage during data analysis to control the quality of the data and obtain 
unbiased insights from the data. 

There are many examples of successful biological and disease research 
studies using machine learning. Loomba et al. found a metagenomics 
signature in NAFLD using random forest48, and combinations of multiple 
machine learning algorithms have been used to improve the top-down 
proteomics data analysis approach49. 
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Network Analysis 

Networks are often used as a tool to untangle the complexity of biology50 
by understanding the relationships, mainly functional relationships and 
physical interactions, between the analytes within and/or between 
different omics. Networks can be inferred using computational 
calculations and/or experimental data. Before discussing biological 
networks and their role in systems biology, we first discuss networks and 
their attributes in general. 

A network is constructed with two main components: nodes (or vertices) 
and edges (or links). The individual points in a network are referred to as 
nodes, which might represent any type of omics component, such as genes, 
proteins, and metabolites. The relationships between nodes are called 
edges, and multiple types of edges are used depending on the embedded 
relationship information (Figure 4). 

First, two types of edges are based on directionality: undirected and 
directed edges. An undirected edge contains no information on the 
movement of information in the network; it shows only the presence of a 
relationship between the connected nodes. In contrast, directed edges 
show the direction of information flow between the connected nodes. For 
example, an undirected edge connecting A to B indicates that “nodes A and 
B have a relationship”, whereas a directed edge between these nodes, i.e., 
AàB or BàA, indicates that information flows from A to B or B to A, 
respectively. The other types of edges are unweighted and weighted 
edges. Unweighted edges indicate the availability of a relationship, 
whereas weighted edges provide quantitative values for the relationships. 
Examples of these quantitative measures are correlation scores51, evidence 
scores52, and experimental or empirical measures53. 

Computationally and mathematically, the topology of networks is 
represented as a square matrix called an adjacency matrix, in which the 
rows and columns are the nodes in the network. The matrix contains 
numerical representations of the edges and can be symmetric or 
asymmetric (to represent an undirected or directed network, respectively) 
and binary or nonbinary (to represent an unweighted or weighted network, 
respectively). Using the adjacency matrix, topological analyses can be 
performed easily with relatively simple matrix operations. Topological 
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analyses include analyses of the topological distance, centrality, and 
community and often reveal more insights than those obtained from an 
analysis of individual network nodes/edges. 

𝐴!,# 	= 	
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⎢
⎢
⎡
𝐴$,$ 𝐴$,%
𝐴%,$ 𝐴%,%
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Equation 1 Adjacency matrix of a network with n nodes. 
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Figure 4 Network types and their adjacency matrices. 

Topological Distance 

The interactions between nodes within a specific network are calculated by 
their topological distance in the network. The topological distance also 
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represents the available path for information flow from one node to 
another. For example, information can flow between node 1 and node 4 in 
Figure 5A via two paths, which are represented by red and green edges 
and have lengths of 2 and 3, respectively. The red edge can be referred to 
as the shortest path, which refers to the path with the minimum number 
of edges between two nodes (denoted as 𝑑!,#; in this case, between nodes 1 
and 4 (𝑑$,')). In an undirected network, the shortest paths between nodes 
𝑖 and 𝑗 and between 𝑗 and 𝑖 (𝑑!,# = 𝑑#,!) are equal, but this is not always the 
case in a directed network. The maximum shortest path in a network is 
called the network diameter (𝐷). As shown in Figure 5B, the diameter 
of the network illustrated in Figure 5A is D = 3. 

A 

 

B 
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Figure 5 Shortest Path 
(A) Two paths exist between nodes 1 and 4, and these are denoted by red and green paths. 

(B) Distance matrix of the shortest path and its sum. 

1

2

6
5

3

4



28 | Systems Biology and Biological Networks 

 

Centrality Analysis 

Centrality analysis aims to show the importance of the nodes within a 
network. Many metrics can be used to measure node importance. The most 
common parameter used to rank nodes is degree centrality, which 
represents the number of edges that connect the node of interest to other 
nodes. In undirected networks, the node degree is calculated by the sum of 
the column or row of the adjacency matrix of that specific node. A directed 
network has two types of degrees: in-degree and out-degree (both are the 
same in undirected networks). The in-degree is calculated based on the 
edges that arrive at the node, and the out-degree is calculated based on the 
outgoing edges from the node. In other words, the in-degree and out-
degree are the sum of the columns and rows of the adjacency matrix, 
respectively. Using the example from Figure 4, node 1 has a degree of 3 
(undirected network) as well as an in-degree of 1 and an out-degree of 2 
(directed network). 

Degree information can also be used to identify whether a network is 
random or scale-free. In a random network, the degree distribution of the 
nodes follows a uniform distribution, whereas in a scale-free network, 
this distribution follows a power law. Due to this power-law degree 
distribution, a scale-free network tends to have several nodes with 
significantly high degrees (called hubs), whereas the rest of the nodes have 
low degrees. Many real-world networks, including biological networks54-57, 
have been shown to exhibit scale-free characteristics. In scale-free 
networks, hubs are considered important in the network because their 
removal might cause network dissociation or affect a large number of other 
nodes. As an example, the deletion of or a pathogenic attack to a hub in a 
protein-protein interaction network (PPIN) can disrupt the network58,59 
and even cause a lethal phenotype60,61. 

The clustering coefficient (CC) or transitivity is another centrality 
parameter. In contrast to degree centrality, which focuses on the edges 
connecting a node to its neighbors, CC assesses the edges connecting the 
neighbors of a node. Formally, CC is defined as the fraction of the 
connected degree of a node’s direct neighbors to one another50. If 𝑘( is the 
degree of a specific node 𝑥 and 𝑁( is the number of edges between the direct 
neighbors of 𝑥, then the CC of node 𝑥 is defined as 
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𝐶𝐶( =	
2𝑁(	

𝑘((𝑘( − 1)
 

For example, for the undirected network shown in Figure 4, the CC of 
node 5 is based on the fraction of edges connecting its direct neighbors 
(nodes 1, 4, and 6). In this case, 𝑘) = 3 and 𝑁) = 1 (only edge between node 
4 and 6), hence 

𝐶𝐶) =	
2	 × 	1	
3(3 − 1) = 	

2
6 =

1
3 

The pattern of CC has also been found in biological networks, such as 
networks of disease genes62, and has been used to define key communities 
in large integrated biological networks63 (community analysis is discussed 
in the next subchapter). 

Another important parameter in centrality analysis is betweenness 
centrality. Unlike the previous metrics, which measure the physical 
connections between nodes, betweenness64 is calculated by the number of 
shortest paths passing a specific node. Conceptually, this variable 
measures the importance of a node to the flow of information in a network. 
In the undirected network shown in Figure 4, node 1 has the highest 
betweenness score in the network because it is located inside the seven 
shortest paths in the network (2-3, 2-5, 2-4, 2-6, 3-5, 3-4, and 3-6), 
whereas node 5 has a centrality score of 6 (1-4, 1-6, 2-4, 2-6, 3-4, and 3-6). 
Other nodes have a betweenness score of 0. Nodes with high betweenness 
scores tend to act as bridges between two otherwise separated parts of a 
network. The deletion of notes with high betweenness scores might cause 
the network to split into smaller networks. As an example, if we remove 
node 1 from the network shown in Figure 4 (undirected), nodes 2 and 3 
will be separated from the rest of the network, whereas the removal of 
nodes 2 or 3 will not affect the network structure. In more modular 
networks, such as a PPIN, this metric has been found to be essential65. In 
transcriptional regulatory networks (TRNs), the betweenness centrality 
exhibits a positive correlation with the node degrees66. 

Based on the shortest path concept, another centrality metric, called 
closeness centrality, can be calculated. Closeness is calculated by 
averaging the shortest path from a node to other nodes in a network and is 
calculated by dividing the number of neighboring nodes (N-1, where N is 
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the number of nodes in the network) by the sum of the shortest path ∑𝑑!#. 
For the network shown in Figure 5A, the closeness scores for nodes 1-6 
are 0.714, 0.455, 0.455, 0.5, 0.714, and 0.5, respectively. A node with a 
higher closeness indicates that the node is closer to the other nodes in the 
network, and hence, the node has a more central role in the network. The 
closeness values of genes in a gene coexpression network (GCN), together 
with their betweenness and degree values, varies more in hepatocellular 
carcinoma (HCC) samples than in noncancerous samples67. Another study 
showed that central metabolites in a metabolic network can be identified 
by comparing their closeness centrality scores55. 

Additional centrality metrics that can be used to define the importance of 
network nodes are not discussed in this thesis. Some examples that have 
been popularly used in biological contexts are 
eigencentrality/eigenvector centrality68,69 and eccentricity69, 
which have been found to be highly positively correlated in several PPINs 
and TRNs69. 

Centrality analyses have revealed many hidden and novel biological 
insights. A previous study70 showed distinct centrality and betweenness 
patterns in a PPIN of Mendelian and complex disease genes. Another 
study71 showed that in three eukaryotic PPINs, proteins with high degree, 
betweenness, and closeness values are likely to be essential in organisms. 
A combination of multiple centrality metrics can increase the power of 
network analysis. Rio et al72 employed 16 centrality metrics to analyze 18 
metabolic networks of Saccharomyces cerevisiae with the aim of 
identifying the essential genes. These researchers concluded that the 
combination of at least two metrics can accurately predict the essential 
genes in the network, whereas none of the metrics alone were able to do 
identify these genes. Similarly, Wang et al.73 combined seven centrality 
metrics to successfully predict structurally dominant proteins in a yeast 
PPIN. These examples, together with the other above-mentioned 
examples, show the importance of centrality analysis in the assessment of 
biological networks, including for the discovery of novel biomarkers and, 
possibly, candidate therapy targets in diseases. 
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Community Analysis 

Because biological networks are built based on the relationships among 
analytes and molecules, their networks become very complex. Gene 
coexpression networks (GCNs) can have >10000 gene nodes51 within a 
network, PPINs might have >9000 nodes (>64000 edges)53, and metabolic 
networks can have >3500 genes, >4000 metabolites, and >13000 
reactions74. Analyzing the entire network at once can result in dilution of 
information or accidentally missing important findings due to the 
overwhelming complexity. To avoid those problems, it is always a good 
idea to partition a network into smaller subnetworks. This partitioning can 
also help the elucidation of structural or functional similarities within the 
subnetworks75-78. These subnetworks are called network communities 
or clusters. 

 

Figure 6 Network communities. 
Each node color represents a community/cluster. 

A network community is a group of nodes that are highly connected to one 
another and have fewer connections to nodes from the other group or the 
rest of the network (Figure 6)79,80. In 2002, Ravasz et. al.81 introduced one 
of the first proofs about the existence of communities in biological 
networks. These researchers proved that metabolic networks of 43 
organisms are hierarchically constructed of smaller, but dense, 
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subnetworks (communities). Since then, community analysis has evolved 
to be a powerful tool in biological network analysis, such as for the 
discovery of disease/tissue-specific genes in gene coexpression networks63 
or for the identification of analytes associated with physical conditions and 
diseases in multiomics longitudinal networks82. 

Another similar concept that we do not discuss in depth in this thesis is the 
notion of a clique. A clique is a subnetwork in which all the nodes are 
connected to each other (fully connected subnetwork). The network shown 
in Figure 4 has seven cliques: six of these cliques have a size of 2 (1-2, 1-3, 
1-5, 4-5, 4-6, and 5-6), and the other clique has a size of 3 (4-5-6). The term 
clique is different from network community, but in some cases, a clique can 
be synonymous to or part of a community. In a network community, there 
is no requirement that the subnetworks have to be fully connected. Another 
main difference between clique and community (in the context of this 
thesis) is the exclusivity of the membership. A node can be a member of 
multiple cliques but can only be a member of a single community. 

One of the classical approaches for detecting communities within a 
network is hierarchical clustering83, which finds the similarities among the 
nodes based on the network structure (possibly derived from the adjacency 
matrix). Two main approaches are used for hierarchical clustering: 
bottom-up (agglomerative or Ravasz algorithm)81 and top-bottom 
approaches (divisive or Newman-Girvan algorithm)84. The agglomerative 
approach starts by assigning each node to a group, and this step is followed 
by the joining of two groups with the highest similarity. The process is 
iterated until all nodes are combined into one large group. Multiple 
approaches have been developed for measuring the similarity between 
groups: minimum distance (single linkage), minimum distance (complete 
linkage), and the average distance between the nodes in different groups. 
In contrast, the divisive approach starts by including all the nodes in one 
group and then iteratively splits the group into two groups with the lowest 
similarity. The iteration ends when the preferred number of communities 
is found. Hierarchical clustering has been popularly used in biological 
contexts, such as for the identification of tissue similarities based on their 
transcriptomics profiles85, and the agglomerative approach has been 
shown to perform well in detecting communities in gene expression data86. 
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During its iterative process, the hierarchical clustering algorithm creates 
multiple sets of communities. The next question is which set of 
communities best represents the network. As discussed earlier, we know 
that a good community is a community with dense connectivity within but 
sparse connectivity with the rest of the network. In 2006, Newman87 
introduced a concept called modularity to define the goodness of a 
community structure. The modularity of a community 𝑐 (𝑀*) is calculated 
by comparing the actual edge density in the community to the expected 
edges in a random network with the same degree distribution. The edge 
density in a community (𝑚*) is the actual number of edges in the 
community, 𝐿+, divided by the total possible edges in the same community. 

𝑚* 	= 	
𝐿*

𝐸(𝐿*)
=

𝐿*
𝑛*(𝑛* − 1)/2

 

𝑀* 	= 	 L𝑚* − 𝐸(𝑚*)M 

where 𝑛* is the number of nodes in community 𝑐. Because generating 
multiple random networks and calculating its edge density to obtain 𝐸(𝑚*) 
can take considerable computational power and time, the formula can be 
simplified50 using information from the network adjacency matrix 𝐴!# as 
follows: 
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1
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where 𝐿 represents the edges in the entire network and 𝑘 represents the 
degree of a specific node. Finally, the network modularity score can be 
calculated as the sum of all community modularity values 𝑀*, 

𝑀 =	;𝑀*

+

*/	$

 

where C is the total number of communities in the network. Naturally, a 
higher modularity score indicates better network partitioning. For 
example, to define the best set of communities from the hierarchical 
cluster, one can calculate the network modularity scores of all sets and 
obtain the set with the highest modularity score. 
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Many other community detection algorithms, such as random walk 
(walktrap)88, infomap, and spinglass algorithms, have been developed. 
One of the most popular community detection algorithms is called the 
Leiden algorithm89, which was built based on network modularity score 
optimization. The Leiden algorithm takes the basic steps from its 
predecessor, the Louvain algorithm90: (1) local node movement and (2) 
network aggregation. In the first step, a node is moved around to different 
communities and stays in the community that yields in the highest increase 
in the network modularity score. Next, communities are aggregated into 
larger subnetworks, and the network modularity score is recalculated. 
These steps are repeated until the network modularity score cannot be 
further improved. The problem with the original algorithm is that it often 
results in badly interconnected communities89. The Leiden algorithm 
integrates the smart local move algorithm91 to give the algorithm the ability 
to also split, and not only merge, the communities. This improvement was 
shown to not only increase the modularity score but also eliminate the 
badly connected communities. Moreover, despite its increased complexity, 
the new algorithm also increases the calculation speed. The Leiden 
algorithm (and Louvain) also provides another community quality 
measure called the constant Potts model (CPM)92, which is supposed to 
resolve the resolution limit problem93. The resolution limit is the inability 
of the modularity to detect small communities, which results in the 
existence of subcommunities. 

The Leiden algorithm has been used widely in biological contexts, such as 
for the identification of microbiota clusters in a multiomics network that 
respond to vaccination94. In single-cell transcriptomics analysis (scRNA-
seq), the algorithm plays an integral role in cell cluster identification. This 
algorithm is embedded as the main clustering algorithm in many famous 
analysis tools, such as SCANpy95 and Seurat96, and has been used in many 
contexts, such as for understanding the mechanism of action of 
Alzheimer’s disease97 and COVID-1998. 

Biological Networks 

There are many well-known biological networks depending on the type of 
omics included and how the relationships are inferred. In this section, 
several networks are discussed, and the discussion includes their omics, 
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how they can be leveraged in biological research (focusing on disease 
research), and examples of their applications. 

Based on Figure 7, the most popular network in biology is the metabolic 
network. Metabolic networks represent the metabolic reactions and 
processes in specific organisms. In this thesis, we narrowed the definition 
of metabolic networks to genome-scale metabolic models (GEMs)74, which 
are curated networks based on the combination of all metabolic pathways 
in an organism. GEMs consist of four main components: metabolic 
reactions, genes, and proteins as the connecting edges and metabolites as 
the nodes. Many databases, such as Metabolic Atlas 
(https://metabolicatlas.org) and Virtual Metabolic Human 
(https://www.vmh.life/), provide well-curated GEMs for different 
organisms and tissues. 

 

Figure 7 Network Popularity 
Network popularity based on a PubMed query (accessed 05-02-2021). 

Many analyses can be performed using GEMs, and these include metabolic 
flux prediction, essentiality analysis, and reporter metabolite analysis. Two 
well-known approaches have been developed for the prediction of 
metabolic fluxes: flux balance analysis (FBA)99 and flux variability analysis 
(FVA)100. FBA predicts metabolic fluxes by using linear programming (LP) 
optimization to minimize or maximize an objective function, such as 
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biomass growth or ATP production or consumption101, based on mass-
balanced constraints (in-fluxes are equal to out-fluxes). FVA performs both 
maximization and minimization (double LP problem) to obtain the range 
of metabolic fluxes that will maintain the mass balance in the model. In 
addition to flux prediction, we can also perform essentiality analysis to 
determine the importance of each gene, metabolite, or reaction by blocking 
them one by one from the model and observing the resulting changes in 
the objective functional flux. Essentiality analysis has been used for many 
applications, such as the discovery of antimetabolites that can inhibit the 
growth of HCC102 and the prediction of essential genes in renal cell 
carcinoma103. Finally, reporter metabolite (RM)104 refers to an integration 
of a network with transcriptomics data. This analysis identifies metabolite 
alterations based on transcriptional changes among different conditions. 
Lee et al.105 successfully employed RM to identify the association between 
mannose and insulin resistance. Overall, the applications of GEMs have 
shown that these networks are a proven and powerful tool for simulating 
metabolic processes106. 

The second network is the protein-protein interaction network 
(PPIN). A PPIN represents the physical and functional interactions 
between proteins and consists of proteins as the nodes and their 
interactions as the edges. Protein interactions are crucial for the proper 
function of organisms107; hence, understanding a PPIN is important. PPIN 
analysis has been used in many applications, including analyses of the 
similarity and repositioning of drugs for NAFLD and Alzheimer’s disease108 
and, together with differential gene expression analysis, the identification 
of novel therapeutic targets for lung squamous cell carcinoma109. 
Performing community analysis with a PPIN has also proven to be 
beneficial for finding biomarkers110,111. One of the most comprehensive 
references of human PPIN is The Human Reference Interactome53, which 
has systematically tested up to 17500 proteins, including 9094 proteins 
and 64006 physical interactions that have been curated in the database. 
Another important database for PPINs is StringDB52, which derives 
interactions from multiple other databases, pathway information, and 
coexpression networks. 

Another important and well-known network is the transcriptional 
regulatory network (TRN), which represents the relationships 
between transcription factors (TFs) and their regulated genes. TRNs are 
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generally reconstructed using genomics data112, such as ATAC-seq, ChIP-
seq, and DNase-seq data105. TRNs are important for understanding the 
dysregulation of genes that can lead to diseases113, such as for the 
identification of master regulators that can be used as targets for 
glioblastoma therapy114. In most cases, TRNs are used together with other 
types of networks to amplify their information115,116. In 2016, Lee et al.105 
introduced a concept called an integrated network (IN) that combines 
GEMs, PPINs, and TRNs. By combining transcriptomics and RM analyses, 
these researchers were able to discover that plasma mannose exhibits good 
insulin resistance, regardless of the subjects’ BMI. 

Finally, a gene coexpression network (GCN) is a network that shows 
correlations among gene expression based on transcriptomics data. The 
edges represent the correlation scores between two nodes (genes). 
WGCNA117 (weighted gene correlation network analysis) is a popular 
method for generating and analyzing GCNs, and other researchers63,118 
have used basic correlation analyses to generate GCNs. Similar to the 
PPIN, the community analysis of a GCN is beneficial for untangling the 
complexity of the network, such as for the functional annotation of 
unknown and noncoding genes119 and the identification of key clusters 
associated with diseases63,120. Because an increasing amount of large 
multiomics data have been generated in the past few years, the same 
approaches used with GCNs have been adopted for multiomics 
biological networks (MOBNs), which represent the omics analytes as 
the nodes and have been used to decipher the complexity of human 
physiology121 and diseases82. 

Systems Biology of Complex Diseases 

Personalized Medicine 

One of the futures of healthcare is P4 (predictive, personalized, preventive, 
and participatory) medicine122, which is often called precision or 
personalized medicine. Personalized medicine is aiming at tailoring 
treatments of disease to each patient characteristic, as opposed to treating 
the patients based on the general disease attributes. Rather than using the 
mindset of “one treatment fits all” for all patients, they are monitored 
continuously to capture the most accurate disease characteristics and their 
treatment can also be continuously optimized based on their current 
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state123. Not only that this will be more beneficial for the patients, but also 
be predicted to decrease drug prices and healthcare-related expenses123-125. 
One of the most successful examples of personalized medicine is the 
discovery of HER2-positive breast cancer type and its targeted therapy that 
is detected in around 20% of the patients126. 

To facilitate better and suitable individual treatment, more advance and 
precise patient characterization are required. Coupled with large number 
of generated omics data, systems biology plays an integral role in 
accelerating personalized medicine by disentangling the complexity of 
diseases systematically and holistically. In the next section, we will discuss 
several examples of systems biology applications that drive the 
advancement of personalized medicine.  

Application of Systems Biology Tools in Personalized Medicine 

Before the omics era, patient characterization was mostly performed using 
patient and family history, imaging (e.g., MRI and ultrasound), electrical 
signals (e.g., ECG), invasive surgery (e.g., biopsy), and/or molecular data 
from the blood. Omics and systems biology have contributed significantly 
in this context by adding further resolutions and layers of information, 
which might also lead to the discovery of novel disease mechanisms 
of action29. 

Bidkhori et al.67 discovered new subtypes of HCC tumors based on 
metabolic networks. These researchers used clinical and transcriptomics 
data from a publicly available cancer database, The Cancer Genome Atlas 
(TCGA), and combined these data with an HCC-specific GEM to generate 
functional gene-gene networks. Based on the network, these researchers 
identified three HCC subtypes with significantly different molecular and 
functional signatures that affect patient survival. Benfeitas et al.127 used a 
similar approach involving focusing on network analysis and multiomics 
data integration to stratify HCC into two subtypes based on their redox 
behavior. Bailey et al.120 retrieved DNA and RNA data from 382 pancreatic 
cancer (PC) subjects (and added 74 published samples). Using genomics 
and gene coexpression network analysis, these researchers discovered four 
novel PC subtypes with novel gene and pathway signatures for each 
subtype that could be used as candidate novel biomarkers for PC. 
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Mardinoglu et al.128 built personalized GEMs of 86 subjects with hepatic 
steatosis (HS) to explore the molecular mechanisms of NAFLD. These 
researchers found alterations in NAD+ and glutathione and negative 
correlations between glycine and serine in the model. Furthermore, these 
researchers generated metabolomics data from the same subjects and 
performed supplementation experiments using mice to validate their 
findings. They also performed a serine supplementation study with six 
human subjects and found a decrease in HS. This finding became the basis 
of a follow-up supplementation study with serine and other metabolic 
cofactors129. Through the integration of GEM, metabolomics, and 
proteomics data from plasma, these researchers were able to show 
alterations in lipid, amino acid, and antioxidant metabolism in the 
subjects, and these findings strengthen the hypothesis that the supplement 
can be used for NAFLD treatment. 

Another successful application of systems biology that is important in the 
personalized medicine context is drug repositioning. Turanli et al.13 
developed a prostate cancer-specific GEM and integrated it with 
transcriptomics profiles from >1000 drugs. These researchers identified 
ifenprodil, among others, as a candidate drug for prostate cancer and 
validated their findings by performing in vitro experiments. Tian et al.12 
attempted to use valproic acid, a drug prescribed for seizures and bipolar 
disorder, to treat myocardial infarction. Their experiment in mice showed 
a successful 50% reduction of infarction. Moreover, by transcriptomics 
data analysis, these researchers revealed that Foxm1 is the mediator of the 
drug responsible for the heart-protective effect. Mannarino et al.130 
explored the mechanism of trabectedin, a drug for sarcoma and ovarian 
cancer, in leukemia cells by gene expression analysis, and found that MAFB 
is the main transcription factor affected by the drug. 

These examples show that omics and systems biology bring us closer to 
personalized medicine because the studies showed that the approaches can 
aid in patient characterization. Moreover, the researchers were able to 
identify novel disease mechanisms and molecular signatures that lead to a 
better understanding of the analyzed diseases and open doors to new 
treatment strategies. Furthermore, systems biology provides tools for drug 
repositioning that can not only decrease the financial requirements but 
also accelerate drug discovery processes131. 
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However, we remain a long way from an era of personalized medicine. 
Studies have proven that systems biology approaches can characterize 
patients into subtypes and reveal novel biomarkers. However, translating 
the results to clinical settings as either diagnostic tools or treatment 
strategies remains a major challenge, particularly due to unexpected 
individual variations in the real world that cannot be replicated in 
experimental settings. To overcome this challenge, we need more N-of-1 
studies, where it considers each individual as an observation unit132, 
particularly those with diseases34. 
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Chapter III:  Present Investigation 

As the title suggests, this thesis focuses on the development and 
application of systems biology to reveal the underlying mechanisms of 
human diseases and to discover novel biomarkers that can accelerate the 
discovery of better treatment strategies. The aim of the thesis is to build a 
general framework for big molecular data analysis that would assist in 
human disease-related research. In this thesis, we present the results from 
six research projects, including two papers on biological network platforms 
(Papers I-II, https://inetmodels.com) and four papers on the 
applications of systems biology in disease- and physiology-related research 
(Papers III-VI). The papers’ aims are summarized below, and the papers 
can be found in the Appendices. 

Paper I – This study aimed to build a database and web-based interactive 
visualization platform of biological networks for exploring functional 
relationships between genes and their functions. We generated gene 
coexpression networks (GCNs) and integrated networks (INs) for >60 
tissues and cancers. The platform is further developed in Paper II. 

Paper II – This study aimed to further develop and expand the platform 
generated in Paper I with multiomics data. We included multiomics 
biological networks (MOBNs) by including clinical variables and 
proteomics, metabolomics, and metagenomics data from multiple 
independent studies, including three longitudinal wellness profiling 
studies and three disease-related studies (including Paper V). 

Paper III – This study aimed to reveal the metabolic crosstalk between 
the heart and three metabolically active tissues (liver, skeletal muscle, and 
adipose tissues) after myocardial infarction (MI). We used 
transcriptomics data and applied systems biology approaches, including 
GCN analyses, to obtain an integrative view of the tissues. 

Paper IV – The study aimed to comprehend the effect of long-term 
training in both men and women. We analyzed transcriptomics data to 
reveal the shifts between trained and untrained subjects and the 
differences between both sexes. We further compared our results with 
publicly available data to predict the effect of short-term exercise in 
metabolic-related diseases. 
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Paper V – The study aimed to explain nonalcoholic fatty liver disease 
(NAFLD) pathogenesis using multiomics data. We integrated clinical 
variables, plasma metabolomics, plasma proteomics, and gut and 
oral metagenomics data to identify key features of NAFLD. We also 
developed a multiomics predictive model for the characterization of 
NAFLD patients. 

Paper VI – The study aimed to assess a potential NAFLD therapeutic 
strategy using metabolic cofactor supplementation. In this study, we 
performed metabolomics and proteomics analyses and integrated the 
data into GEMs to identify the acute effects of the supplementation. 

In this thesis, the investigation results are divided into four main areas: 
generation of biological networks followed by the application of 
systems biology to the heart, muscle, and liver. The focus of this 
chapter is the studies that the coauthors, collaborators, and myself have 
performed in these areas. The strong point of our work is the combination 
of strong biological knowledge with computational expertise. This 
combination results in (1) useful and important biological insights for 
understanding the diseases and (2) reliable computational methods that 
can be extended and reproduced by other researchers. 

Generation of Biological Networks (Papers I – III and V) 

Over the past 20 years, the number of research studies using omics data 
has risen exponentially (Figure 2). This has opened many new 
opportunities to explore the molecular mechanism of human diseases. 
However, we also know that the obtained data are enormous and complex 
due to, among others, their interconnection within the set. To comprehend 
these complex and interconnected data, we need the right tools for their 
appropriate analysis. Biological networks have become a popular tool of 
choice in the analysis of such data. In these studies, we generated gene 
coexpression networks (GCNs) and integrated networks (INs). We also 
generated multiomics biological networks (MOBNs) to show the interplay 
between clinical, anthropometric, proteomic, metabolomic, and oral and 
gut metagenomics data at the personalized level. 

In Paper I, we built the first version of TCSBN, a database of biological 
networks (https://inetmodels.com) with 63 tissue- and cancer-specific 
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GCNs and three INs from the liver, muscle, and adipose tissues (Figure 8). 
The goal of this study was to provide a platform for scientists with any level 
of bioinformatics background to explore the association and functional 
relationship between genes in a specific context. The GCNs were generated 
from publicly available datasets of normal and cancer transcriptomics 
data from The Genotype-Tissue Expression (GTEx)133 and The Cancer 
Genome Atlas (TCGA)134 projects, respectively. The normalized count files 
were filtered to remove genes with low expression (≤ 1	TPM/FPKM), and 
correlation analyses were performed. Only the top 100 positive and 
negative correlations (100 of each) were included in the platform. 
Moreover, INs were built through the integration of genome-scale 
metabolic models74, protein-protein interaction networks (PPINs)53, and 
transcriptional regulatory networks (TRNs)105 from each tissue. The 
relationships of the genes were derived from PPIN and TRN coregulation. 

We further improved the platform in Paper II (Figure 8). Specifically, we 
updated the platform from Paper I (https://inetmodels.com) with the 
latest GTEx and TCGA data, which resulted in 87 GCNs. The greatest 
improvement in the platform was the inclusion of MOBNs based on three 
N-of-1 independent longitudinal wellness studies82,121,135 and three in-
house disease-related studies* (COVID-19 and NAFLD supplementation 
and NAFLD baseline study in Paper V), and these networks included 
gender- and disease-specific networks. 

For the MOBNs, we included all available clinical, anthropometric, 
proteomics, metabolomics, and oral and gut metagenomics data 
from all studies. The data were corrected by age and gender† and matched 
at the personalized level, which makes this platform the first and only 
platform that provides MOBNs based on personalized data. We generated 
cross-sectional networks in all studies and delta networks for the wellness 
studies82. Cross-sectional networks show the analyte correlations 
throughout all visits and data points, whereas delta networks represent the 
correlation of the changes in the analytes between visits. For all the 
networks, we performed Spearman correlation analysis to define the 
relationships between genes, and only significant correlations (FDR 
<0.05) were included in the platform. In Paper I and Paper II, we used 

 
* Under review by the time of the thesis writing 
† Except gender-specific networks 
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examples from NAFLD-related studies with GCNs to validate the results 
from a study63 on fatty acid synthase (FASN) and MOBNs to validate the 
potential of combined metabolic activators (CMAs) as a treatment 
strategy129 (Paper V). 

 

Figure 8 Generation of biological networks in iNetModels. 

In Paper III, we generated tissue-specific GCNs from the heart and 
metabolically active tissues (liver, skeletal muscle, and adipose tissues). 
The same methodology as that described in Paper I and Paper II was 
used to build networks from the transcriptomics data generated from 
the mouse models presented in the paper. The aim was to obtain the unique 
and shared functional relationships between genes in different tissues, 
particularly to uncover their responses to MI. The networks were further 
analyzed by performing community analysis using the Leiden algorithm 
and functional analyses of each community to reveal the community-
specific functions. Moreover, we identified the key communities (the 
highest average clustering coefficient) and tissue-specific communities 
(based on the tissue-specific genes136) of each tissue. Through network 
analyses and other systems biology approaches, we were able to elucidate 
the alterations in biological functions and to develop a hypothesis 
regarding the metabolic crosstalk between the four tissues in this study as 
a result of MI. We discuss the findings in more detail in the section titled 
“Systems Biology of the Heart”. 
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Finally, we also generated multiomics data from NAFLD subjects with 
different degrees of hepatic steatosis (HS) in Paper V. A similar 
methodology as that presented in Paper II was used to generate the 
network, and the network is presented in https://inetmodels.com. The 
network included analytes from clinical data, plasma metabolomics, 
plasma inflammation proteomics, and gut and oral metagenomics that 
originated from the same subjects. Through the combination of statistical 
inference and network analysis, we were able to find key analytes and their 
relationships with other analytes that were significantly associated with 
hepatic steatosis. Moreover, through community and functional analyses, 
we were able to define the role of each community in NAFLD progression. 
We discuss the findings in more detail in the section titled “Systems 
Biology of the Liver”. 

Overall, we have generated >100 biological networks that are collected and 
presented in iNetModels, an easy-to-use web-based interactive platform 
(https://inetmodels.com). This platform can be used as an exploration, 
analysis, and validation tool by anyone, regardless of their bioinformatics 
background. We also developed a proven framework for biological network 
generation and a platform for interactive visualization that can be used by 
anyone. Moreover, we showed the applications of network analysis 
combined with other systems biology approaches in real disease-related 
research and show that these can reveal novel disease-related insights. In 
the next sections, we discuss the results of these applications in more 
detail. 

Systems Biology of the Heart (Paper III) 

One of the top causes of death in the world is myocardial infarction (MI)137, 
which is generally known by the term “heart attack”. Many studies on MI 
have been performed, and these have provided information on the effect of 
MI. One of the biggest caveats regarding these studies is that they were 
limited to a single tissue138, and as a result, the studies do not provide the 
best representation of the systemic problems caused by MI. In Paper III, 
we present our work on the integrative analysis of the heart and three 
metabolically active tissues (liver, skeletal muscle, and adipose tissues) 
using transcriptomics data generated from our MI mouse model (Figure 
9). The tissues were obtained 6 and 24 hours after MI or SHAM operation 
(control). 
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We performed the statistical analysis using DESeq2139 and the functional 
analysis (KEGG and Gene Ontology) using PIANO140. Naturally, the heart 
showed the highest number of differentially expressed genes (DEGs), and 
heart-specific functions were downregulated after MI. We further found 
that retinol metabolism was upregulated in the heart after MI. In addition, 
processes related to lipid metabolism and inflammatory responses were 
upregulated in the heart, muscle, and adipose tissue after MI, whereas 
processes related to mitochondrial functions were downregulated. 
Furthermore, we detected the inhibition of fatty acid metabolism in the 
heart and adipose tissue and the activation of oxidative stress in the heart 
and muscle after MI. Interestingly, the behavior of the liver was unique, as 
revealed by inhibition of the inflammatory response and enhancement of 
fatty acid beta-oxidation. Subsequently, we performed a metabolite 
analysis using GEMs and found that the results supported those obtained 
from the functional analysis. Interestingly, we found that metabolites 
related to retinol metabolism were inhibited after MI. 

As discussed previously, we generated GCNs for each tissue and performed 
a community analysis. We embedded the DEGs 24 hours after MI into the 
communities to obtain their trend. We also performed a functional analysis 
to determine the biological functions associated with the clusters. In all 
GCNs, the genes in their key clusters were mainly upregulated and 
associated with RNA-related functions (transport, processing, and 
metabolic processes). The heart-specific cluster in the heart GCN consisted 
of mostly downregulated genes and was associated with heart-specific and 
mitochondrial functions, whereas the genes in the liver-specific cluster in 
the liver GCN were connected to retinol and lipid metabolism, and adipose-
specific clusters were related to the cell cycle and mRNA processing. 
Interestingly, we found two muscle-specific clusters, both of which were 
associated with mitochondrial functions and muscle-specific functions. 
The genes were also highly linked to multiple metabolic processes and 
signaling pathways, such as glycolysis, propanoate metabolism, and MAPK 
signaling pathways. 

We also performed centrality analysis and identified several key genes 
from each tissue-specific cluster that were also identified as DEGs. The key 
genes in the heart-specific cluster were associated with cardiac muscle 
regulation and mitochondrial functions. In adipose tissue and skeletal 
muscle, the key genes were related to fatty acid and lipid metabolism. 
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Interestingly, the key genes in the liver-specific cluster were significantly 
associated with retinol metabolism. These findings were consistent with 
and strengthened the findings from the previous analyses. 

Our hypothesis based on the results was that the exchange of fatty acids 
between adipose tissue, the liver, and skeletal muscle caused the 
downregulation of fatty acid metabolism in adipose tissue. Moreover, we 
observed the inhibition of retinol metabolites in the liver. We speculated 
that this finding was due to the rapid transport of retinol to the heart 
during MI141. These systemic changes caused by MI lead to the 
deterioration of mitochondrial function and decreased energy production 
in the heart and skeletal muscle. Our final results from this study revealed 
several genes with important responses to MI in multiple tissues: Flnc, 
Prkaca, Lgals3, and Pprc1. All of these genes have been previously 
observed to exhibit strong associations with cardiovascular diseases142-148, 
with the exception of Pprc1, which is a regulator of mitochondrial 
biogenesis149. We successfully validated all our findings using two 
independent publicly available mouse datasets. 

Overall, we performed a systematic analysis of multi-tissue 
transcriptomics data from MI mouse models to elucidate the mechanism 
of MI in the heart and metabolically active tissues. We demonstrated the 
application of several systems biology approaches (discussed in Chapter 
II), such as DEGs, functional analysis, and GCNs, to explore the systemic 
effect of MI. We were able to integrate the results and speculate on the 
metabolic crosstalk between the analyzed tissues. 

Systems Biology of Muscle (Paper IV) 

Physical activity has been linked to multiple health benefits. This activity 
not only increases physical wellness and fitness but also reduces the risk of 
diseases150, such as heart problems and metabolic-related diseases. 
Moreover, it has been used as a treatment strategy for many diseases and 
conditions, including NAFLD151 and neurological diseases152. In Paper IV, 
we performed an in-depth analysis using transcriptomics data from 
skeletal muscle to obtain more in-depth molecular insights into the effect 
of lifelong training. We also compared trained and untrained women and 
men to identify and understand the sex differences. Furthermore, we 
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compared our results with publicly available datasets to understand the 
effect of exercises on the recovery of metabolic-related diseases. 

In this study, we collected muscle biopsies from 40 samples, which were 
obtained from seven to nine subjects in the control (untrained), 
endurance-trained, and strength-trained groups of both sexes. The 
subjects were separated based on very robust phenotypic criteria. First, we 
performed an exploratory analysis of the data using PCA and found that 
the male control (MC) and female control (FC) groups were clustered 
together with the male strength (MS) group. Interestingly, the male 
endurance (ME) group was clustered very tightly with the female 
endurance (FE) group. 

 

Figure 10 Overview of Paper IV. 

Subsequently, we performed a differential expression analysis between 
groups and identified >1000 DEGs in each FE and ME group compared 
with their respective controls. These genes were associated with many 
processes and pathways, including cellular respiration and the TCA cycle, 
in both sexes. Moreover, the FE group showed unique alterations in 
processes related to protein ubiquitination that were not observed in the 
ME group. Interestingly, we identified very few DEGs from the comparison 
of the MS vs MC groups, and we still observed upregulation in cellular 
respiration in the MS group. Furthermore, we compared male and female 
subjects to identify the sex differences. The comparison of the control 
groups (MC vs FC) revealed upregulation of processes related to protein 
metabolic processes in the MC group, whereas processes related to lipid 
metabolism and wound healing were found to be upregulated in the FC 
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group. Interestingly, the DEGs obtained from the comparison of the two 
endurance groups (ME vs FE) were markedly reduced to only 30% of those 
identified from the MC vs FC comparison. The DEGs identified from the 
ME vs FE comparison were significantly associated with an increase in 
mitochondrial functions. We also integrated the transcriptomics data with 
GEMs by performing RM analysis. The findings emphasized significant 
upregulation of the TCA cycle as well as BCAA regulation and fatty acid 
oxidation in both the ME and FE groups. 

We then acquired two publicly available transcriptomics datasets of male 
subjects with type 2 diabetes and women with metabolic syndrome. The 
data from the subjects were obtained before and after 6-12 months of 
training. First, we performed hierarchical clustering to obtain the overall 
view of the data compared with ours. We observed that the pretraining data 
were highly correlated with our control data. Interestingly, their data after 
training was more closely correlated to our endurance-trained data than to 
the other groups. Subsequently, we performed an analysis similar to that 
performed with our data and retrieved the DEGs in both datasets 
compared with their respective controls. We found many genes that were 
altered in opposite directions compared with those identified from the 
comparison of the ME and FE groups with their respective controls. After 
training, the number of opposite-direction DEGs decreased significantly, 
and the change in expression even flipped to the same direction as that 
found in the endurance-trained group. These flipped genes were related to 
blood glucose consumption and insulin sensitivity. 

In this study, we used systems biology approaches, in collaboration with 
experts in exercise physiology, to unravel the mechanistic effect of lifelong 
training in both males and females. We focused on transcriptional changes 
observed in trained compared with untrained individuals. We then 
compared our results with the transcriptomic profiles of individuals with 
metabolic-related diseases and found that short-term training reversed the 
damage caused by the disease in skeletal muscle. 

Systems Biology of the Liver (Papers V-VI) 

NAFLD has been labeled “the silent epidemic”153. It is one of the most 
prevalent diseases in the world, affecting approximately 25% of the world’s 
population153. NAFLD accounts for hepatic steatosis (HS) and nonalcoholic 
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steatohepatitis (NASH), among other clinical conditions29, and can 
progress to irreversible injuries, such as cirrhosis and hepatocellular 
carcinoma (HCC). Unfortunately, there is currently no approved treatment 
for this disease. Thus, it is of the utmost importance to understand the 
characteristics of NAFLD and, ultimately, to develop a potential treatment 
strategy. 

Paper V 

In Paper V, we generated plasma metabolomics, inflammatory 
proteomics, and oral and gut metagenomics data as well as clinical 
data to characterize NAFLD. The data were collected from 56 obese 
subjects with NAFLD who were grouped based on the severity of their HS 
(none, mild, moderate, and severe) based on MRI results. We also excluded 
subjects with genetic variants related to NAFLD. We further collected data 
from a subset of the subjects (22 subjects) 2-3 months after the first visit 
and used these data for validation. As mentioned in the “Generation of 
Biological Networks” section, we generated a MOBN for this study and 
deposited it on the iNetModels platform. 

The clinical data were analyzed by comparing subjects with mild, 
moderate, and severe HS with subjects without NAFLD. We observed 
higher uric acid levels and higher liver enzyme (ALT, AST, and GGT) levels 
in the severe and moderate groups. These findings were consistent with 
those obtained in a preceding study128. Moreover, higher levels of albumin, 
creatinine, and creatine kinase were detected in the severe group. 

The same comparisons were performed for each omics dataset separately. 
We analyzed the oral (saliva) and gut (feces) metagenomics data. 
Particularly in the severe group, we found reductions in the abundance of 
several gut microbiome species belonging to Actinobacteria (e.g., Slackia 
isoflavoniconvertens), Bacteroidetes, Firmicutes (e.g., Dorea longicatena 
and Ruminococcus bromii), and Proteobacteria (Bilophila wadsworthia). 
In the saliva, we observed decreased abundances of several species 
belonging to Bacteroidetes (e.g., Porphyromonas endodontalis) and an 
increase in the Actinobacteria (Actinomyces johnsonii) abundance. In the 
metabolomics analysis, we found that the majority of the altered 
metabolites were related to lipid metabolism, which was expected. When 
focusing on non-lipid-related metabolites, we found that serine- and 
glycine-related metabolites, which are important in glutathione 
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metabolism, as well as cysteine-glutathione disulfide, were decreased in 
the severe group. In contrast, the levels of several metabolites related to 
tryptophan branched-chain amino acids (BCAAs), lysine, uric acid, and the 
urea cycle were increased. Moreover, a proteomics analysis showed that 
the majority of the proteins, including LIF-R, CCL20, and CDCP1, were 
upregulated, particularly in the severe group. The majority of the findings 
are consistent with those of the previous studies24,128,129,154-156. 

Interestingly, the findings from the single omics analysis were confirmed 
and can be retrieved from the MOBN. Moreover, with the MOBN, we were 
able to obtain the functional relationships between different omics data. 
For example, most glutathione-related metabolites were directly 
correlated with the liver enzyme GGT but not with other enzymes. 
Furthermore, we discovered negative correlations between liver fat and the 
oral microbe Porphyromonas endodontalis and several gut microbes, 
including Slackia isoflavoniconvertens and Bilophila wadsworthia. 

We also observed negative correlations for the NAFLD-associated gut 
microbe48 Dorea longicatena with AST and ALT and a known protagonist 
gut microbe157, Ruminococcus bromii, with ALT and uric acid. We also 
extended our network analysis to centrality and community analyses. The 
centrality analysis revealed that the hubs were, unsurprisingly, known 
lipid-associated metabolites and clinical variables, such as ceramide, 
sphingomyelin, phospholipid, triglyceride, and LDL. The top protein hubs 
were linked to cytokine-cytokine receptor interactions and several 
signaling pathways (NF-kappa B, TNF, and IL-17). The community 
analysis also identified four clusters inside the network. The largest cluster, 
cluster-0, was associated with amino acid metabolism, whereas cluster-1 
was dominated by phospholipid, carbohydrate, and taurine metabolites 
and the top protein hubs. Cluster-2, the key cluster, was associated with 
lipid metabolism, whereas the smallest cluster, cluster-3, consisted of 
analytes related to fatty acid metabolism. All clusters, with the exception 
of cluster-0 and cluster-1, tended to be positively correlated. These findings 
show the strength of community and network analyses in general to 
elucidate the functional relationships of analytes within and between 
omics types. 
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Figure 11 Network of Liver Fat, Enzymes, and Uric Acid 
Top and significantly altered neighbors of liver fat, liver enzymes, and uric acid based on the 

NAFLD baseline MOBN in iNetModels. 

Finally, we developed a multiomics classification model to predict the 
severity of HS based on multiomics data using random forest. First, we 
performed a random forest analysis of each omics type and clinical data. 
We gathered the top features from each of the data types and constructed 
a combined multiomics predictive model that showed >80% accuracy with 
both bootstrapped training data and validation data obtained from 22 
samples from the validation cohort. Interestingly, removal of the gut and 
oral metagenomics features from the model decreased the predictive 
accuracy to ~60%. 

In summary, we implemented a wide range of systems biology approaches, 
which were discussed in the previous chapter, to analyze multiomics data 
from subjects with NAFLD and varying HS severity. We showed the 
importance of oral and gut metagenomics data for NAFLD diagnosis and 
were able to show the biological function alterations due to NAFLD 
progression and to identify candidate biomarkers. 
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Paper VI 

In Paper VI, we performed a calibration study of a candidate therapeutic 
supplement for NAFLD, which was later named CMA (Combined 
Metabolic Activator). CMA consists of four natural substances: L-serine, L-
carnitine, nicotinamide riboside (NR), and N-acetyl-cysteine (NAC). We 
generated plasma metabolomics and plasma inflammatory 
proteomics data as well as clinical variables from 10 and nine male 
subjects, which comprised the control and supplemented groups, 
respectively. The study was controlled to minimize confounding factors: 
diets were controlled throughout the day, the subjects were provided a 
similar breakfast and then fasted until the end of the study. The data were 
collected on average every hour for 8 hours. No significant changes in the 
clinical data were detected before and after supplementation. 

We generated targeted metabolomics data for the CMA substances and 
naturally found increases in their levels in blood. We also generated full-
panel untargeted plasma metabolomics data and, as expected, found a high 
correlation between the targeted and untargeted plasma levels of CMA 
substances. We found significant downregulation of BCAAs before and 
after CMA supplementation, and similar findings were obtained with 
kynurenine, kynurenate, and pyruvate. These alterations contrasted our 
findings in Paper V, where we found upregulation of BCAA metabolites in 
severe HS. To rule out an effect of fasting, we performed a similar analysis 
of the control group and found no changes in these metabolites. We also 
compared the control and supplemented groups at each time point to 
systematically determine the effect of the supplementation. We found that 
CMA components and their derivatives, citrulline, and amino acid 
metabolites showed significant alteration in at least three subsequent time 
points in the supplemented group. The proteomics analysis revealed that 
several proteins associated with cytokine receptors and TNF signaling were 
downregulated. 

Finally, we integrated metabolomics data with GEMs to simulate the effect 
of the supplements in the liver and found increases in fatty acid oxidation, 
glutathione synthesis and catabolism of BCAAs, and downregulation of 
glucose consumption. These findings are the exact opposite of our findings 
in Paper V and thus show that CMA supplementation can reduce the 
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severity of HS. Furthermore, we applied pharmacokinetic modeling to 
calibrate the dosage of each substance. 

 

Figure 12 CMA and Microbiome 

CMA substances and their top 15 oral and gut microbiome neighbors. 

In the use case section presented in Paper II, we used a MOBN from an 
independent wellness study to validate the findings of this study. We found 
that the available CMA substances were positively associated with BCAA 
metabolites and negatively correlated with glucose levels. Moreover, we 
found negative correlations for L-serine with cholesterol-related clinical 
variables and inflammation markers. We can also use the network 
generated in Paper V to enrich our results and thereby observe the 
association of the gut and oral metagenomics with CMA components 
(Figure 12) because their dysbiosis is associated with NAFLD. The results 
showed that serine is positively correlated with Bilophila wadsworthia 
(gut) and negatively correlated with Actinomyces johnsonii (oral), which 
were found to be correlated with HS in Paper V. Carnitine was negatively 
correlated with Bacteroides caccae (gut), whereas cysteine was positively 
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correlated with Faecalibacterium prausnitzii (gut). Both of these factors 
have been previously associated with NAFLD48,158. 

Overall, the study used metabolomics and proteomics data to obtain 
mechanistic insights into potential treatment supplements for NAFLD. 
Furthermore, we showed how biological networks can be used to validate 
and enrich our study. Once again, we also showed the strengths of systems 
biology approaches for disentangling a complex biological problem. 
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Chapter IV:  Concluding Remarks and Future 
Perspectives 

Personalized medicine is the future, and in this era, every treatment will be 
tailored to each patient’s characteristics. To achieve this goal, we need to 
obtain a better understanding of diseases, and systems biology can be the 
main enabler of this information159. The rise of systems and data-driven 
biology has opened and continues to open many new opportunities and 
approaches in disease-related research, particularly by employing robust 
algorithms together with strong computational power. With systems 
biology, we can attempt to decipher the complexity of molecular biological 
data. Moreover, by coupling these tools with strong biological expertise, we 
can unravel the mystery of human diseases at the molecular level. One key 
step to successfully achieve this goal is to understand the interconnection 
between analytes from one or more omics types, such as genes, proteins, 
metabolites, and our second fingerprint, the microbiome, to understand 
their relationships. 

This thesis focused on the development and application of systems biology 
approaches to obtain mechanistic and systematic views of human diseases. 
In Papers I and II, we introduced a web-based biological network 
database, which we envision will be a valuable platform for researchers. 
Moreover, we developed working frameworks to answer important 
biological questions related to specific diseases and conditions using 
single- and multiomics data. In Paper III, we integrated transcriptomics 
data from the heart and other metabolically active tissues to reveal 
metabolic crosstalk after myocardial infarction, which is associated with 
one of the highest mortality rates in the world. In Paper IV, we analyzed 
transcriptomics data from skeletal muscle to investigate transcriptional 
alterations due to lifelong training, including gender differences, and their 
association with metabolic diseases. In Paper V, we used multiomics data 
to understand the molecular mechanism of NAFLD and build a model that 
can predict the severity of hepatic steatosis. Furthermore, in Paper VI, we 
used proteomics and metabolomics data to reveal the mechanism of action 
of potential treatment supplements for NAFLD. During this process, we 
also generated important datasets and biological networks that can be used 
for further research. I hope that this thesis can contribute to the realization 
of personalized medicine. 
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Moving forward, I believe that we need more N-of-1 studies with 
multiomics data, particularly studies that focus on the diseased population. 
These studies will expand our view not only to the differences between the 
disease vs healthy group but also to the individual variations in the disease 
group. These individual variations are often not considered in the current 
models, including those generated in the studies described in this thesis. 
Moreover, the multiomics data will provide significantly more information 
and a broader view of the disease, which can lead to more specific patient 
characterization and a greater opportunity of discovering novel 
biomarkers. Moreover, having a general framework for both data 
collections and data analysis is of the utmost importance for maintaining 
consistency and, more importantly, a high research quality. In my personal 
opinion, network analysis will play a crucial role in this field. In addition 
to capturing functional relationships, communities and hubs in a network 
are likely to be associated with phenotype variations82. In contrast, it is 
impossible to derive a mechanistic understanding from a network alone 
because “correlation is not causality”. Therefore, the incorporation of prior 
knowledge160-162 (e.g., pathway and regulatory information) into a network 
will be beneficial for deriving the causality of the data, which would shorten 
the analysis cycle. It is exciting to see how this field will advance in the next 
10-20 years, and I hope to play a big part in this advancement. 

Finally, to reach the ultimate goal of personalized medicine, I believe that 
we first need to have robust disease models. This goal can only be achieved 
with a strong data foundation. Thus, I am advocating for more data sharing 
and collaboration among researchers in disease fields.  



Acknowledgments | 59 

 

Acknowledgments 

There are so many people that have helped to make this journey an 
interesting, very pleasant, and unforgettable one. I’m very grateful to 
everyone that has made it possible.  

First of all, I would like to thank my supervisor, Adil Mardinoglu, for 
giving me the opportunity to join his amazing group. In mid-2016, you gave 
me a piece of paper with your information (Figure 13), and who would’ve 
thought that it would be the beginning of this amazing journey. Your 
constant support and non-stop encouragement have made this experience 
very positive. Thank you for giving me freedom during my study and for 
always be available (as a supervisor and friend) for discussions at any time. 
I would also like to thank my co-supervisor, Mathias Uhlén, for his 
support, advice, and amazing ideas and vision throughout my PhD. It was 
a great pleasure to learn from a great and experienced scientist like you.  

 

Figure 13 The “paper” 

This journey will not succeed without our great collaborators. I would like 
to thank all collaborators and co-authors that made this research possible. 
I would like to specifically thank Prof. Dr. Jan Boren for the interesting 
projects and collaborations. Thanks also to everyone at the Human 
Protein Atlas, Bash Biotech Inc., and KTH CBH (including the 
administrative staff that has been very patient with me) for the help and 
supports.  Special thanks to Dr. Abdellah Tebani for all the 
encouragement, discussions, and great friendship, including the weekly 
trip to the mosque every Friday. 



60 | Acknowledgments 

 

I would also like to thank all current and ex-members of the Sysmedicine 
family (Stockholm and London). Sunjae and Cheng for welcoming me to 
the group and for the guidance. Kemal, Reza, Zhengtao, Mohamed, 
Natasa, Dorines, Feride, Beste, Kajetan, Xiangyu, Woonghee, 
Ozlem, and others for all the good times at work and outside. I met two of 
my closest friends in this group: Rui Benfeitas and Alen Lovric. Rui, 
thanks for being patient with me all the time. I really appreciate all your 
help and our discussions, about work, life, and random stuff (97.59% of the 
time).  You are definitely one of the most important people that made this 
possible. Alen, thanks for always being really helpful in stressful projects, 
and good luck with your study! The witty repartee, meme, gif, and video 
sharing with you both definitely help me to relax, so please keep on sending 
them. Thanks for the comradery and great times!  

Finally, I will never reach this point if it’s not because of the hard work of 
two people that I love the most in the world: my father and mother. I 
saw with my own eyes how hard they worked to make sure that we could 
get the best life and education, and I am eternally grateful for that. Now, 
it’s time for you to relax and let us take care of everything. Thanks also to 
my brothers for all the support, jokes, and helps. I would also like to 
thank my extended family and in-laws, especially my grandparents, 
for all the prayers and encouragement. I would like to also thank my 
Indonesian family in Stockholm, including PPI Stockholm and Futsal 
Barokah, for all the fun times, great foods, and for bringing home closer 
to me. There are many names that I cannot write one-by-one in here, but 
thanks for everything!  

Saving the best for the last, I would like to mention the most special person 
that has been always on my side and being supportive and understanding 
throughout this journey: Fira. You were always there with your 
unwavering supports and patients, regardless of how annoying I was 
especially during stressful times (or all the time?), no questions asked. And 
thanks for giving me the best thing in the world, the little man Athif. This 
thesis is as much as yours as it is mine.



References | 61 

 

References 

1 Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: 
systems biology. Annual review of genomics and human genetics 
2, 343-372 (2001). 

2 Kitano, H. Systems biology: a brief overview. science 295, 1662-
1664 (2002). 

3 Lay Jr, J. O., Liyanage, R., Borgmann, S. & Wilkins, C. L. Problems 
with the “omics”. TrAC Trends in Analytical Chemistry 25, 1046-
1056 (2006). 

4 Palsson, B. In silico biology through “omics”. Nature 
biotechnology 20, 649-650 (2002). 

5 Ward, D. C. & White, D. C.     (Elsevier Current Trends, 2002). 

6 Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: 
ten years of next-generation sequencing technologies. Nature 
Reviews Genetics 17, 333 (2016). 

7 Wetterstrand, K. DNA Sequencing Costs: Data from the NHGRI 
Genome Sequencing Program (GSP) Available at 
www.genome.gov/sequencingcostsdata Accessed. 

8 Shah, S. et al. Genome-wide association and Mendelian 
randomisation analysis provide insights into the pathogenesis of 
heart failure. Nat Commun 11, 163, doi:10.1038/s41467-019-
13690-5 (2020). 

9 Xue, A. et al. Genome-wide association analyses identify 143 risk 
variants and putative regulatory mechanisms for type 2 diabetes. 
Nat Commun 9, 2941, doi:10.1038/s41467-018-04951-w (2018). 

10 Clarke, L. et al. The international Genome sample resource 
(IGSR): A worldwide collection of genome variation incorporating 
the 1000 Genomes Project data. Nucleic Acids Res 45, D854-
D859, doi:10.1093/nar/gkw829 (2017). 

11 Pinero, J. et al. DisGeNET: a discovery platform for the dynamical 
exploration of human diseases and their genes. Database (Oxford) 
2015, bav028, doi:10.1093/database/bav028 (2015). 

12 Tian, S. et al. HDAC inhibitor valproic acid protects heart function 
through Foxm1 pathway after acute myocardial infarction. 
EBioMedicine 39, 83-94, doi:10.1016/j.ebiom.2018.12.003 
(2019). 



62 | References 

 

13 Turanli, B. et al. Discovery of therapeutic agents for prostate 
cancer using genome-scale metabolic modeling and drug 
repositioning. EBioMedicine 42, 386-396 (2019). 

14 Uhlen, M. et al. A pathology atlas of the human cancer 
transcriptome. Science 357, doi:10.1126/science.aan2507 (2017). 

15 Govindarajan, R., Duraiyan, J., Kaliyappan, K. & Palanisamy, M. 
Microarray and its applications. J Pharm Bioallied Sci 4, S310-312, 
doi:10.4103/0975-7406.100283 (2012). 

16 Behjati, S. & Tarpey, P. S. What is next generation sequencing? 
Arch Dis Child Educ Pract Ed 98, 236-238, 
doi:10.1136/archdischild-2013-304340 (2013). 

17 Timp, W. & Timp, G. Beyond mass spectrometry, the next step in 
proteomics. Sci Adv 6, eaax8978, doi:10.1126/sciadv.aax8978 
(2020). 

18 Higginbotham, L. et al. Integrated proteomics reveals brain-based 
cerebrospinal fluid biomarkers in asymptomatic and symptomatic 
Alzheimer's disease. Sci Adv 6, doi:10.1126/sciadv.aaz9360 
(2020). 

19 Lehallier, B. et al. Undulating changes in human plasma proteome 
profiles across the lifespan. Nat Med 25, 1843-1850, 
doi:10.1038/s41591-019-0673-2 (2019). 

20 Niu, L. et al. Plasma proteome profiling discovers novel proteins 
associated with non-alcoholic fatty liver disease. Mol Syst Biol 15, 
e8793, doi:10.15252/msb.20188793 (2019). 

21 Clish, C. B. Metabolomics: an emerging but powerful tool for 
precision medicine. Cold Spring Harb Mol Case Stud 1, a000588, 
doi:10.1101/mcs.a000588 (2015). 

22 Wishart, D. S. et al. HMDB 4.0: the human metabolome database 
for 2018. Nucleic Acids Res 46, D608-D617, 
doi:10.1093/nar/gkx1089 (2018). 

23 Zampieri, M. & Sauer, U. Metabolomics-driven understanding of 
genotype-phenotype relations in model organisms. Current 
Opinion in Systems Biology 6, 28-36 (2017). 

24 Lovric, A. et al. Characterization of different fat depots in NAFLD 
using inflammation-associated proteome, lipidome and 
metabolome. Sci Rep 8, 14200, doi:10.1038/s41598-018-31865-w 
(2018). 



References | 63 

 

25 Tzoulaki, I. et al. Serum metabolic signatures of coronary and 
carotid atherosclerosis and subsequent cardiovascular disease. 
Eur Heart J 40, 2883-2896, doi:10.1093/eurheartj/ehz235 
(2019). 

26 Franzosa, E. A. et al. Identifying personal microbiomes using 
metagenomic codes. Proc Natl Acad Sci U S A 112, E2930-2938, 
doi:10.1073/pnas.1423854112 (2015). 

27 Jovel, J. et al. Characterization of the Gut Microbiome Using 16S 
or Shotgun Metagenomics. Front Microbiol 7, 459, 
doi:10.3389/fmicb.2016.00459 (2016). 

28 Wang, J. & Jia, H. Metagenome-wide association studies: fine-
mining the microbiome. Nat Rev Microbiol 14, 508-522, 
doi:10.1038/nrmicro.2016.83 (2016). 

29 Mardinoglu, A., Boren, J., Smith, U., Uhlen, M. & Nielsen, J. 
Systems biology in hepatology: approaches and applications. Nat 
Rev Gastroenterol Hepatol 15, 365-377, doi:10.1038/s41575-018-
0007-8 (2018). 

30 Xia, X. Bioinformatics and drug discovery. Current topics in 
medicinal chemistry 17, 1709-1726 (2017). 

31 Mardinoglu, A., Boren, J., Smith, U., Uhlen, M. & Nielsen, J. 
Systems biology in hepatology: approaches and applications. 
Nature Reviews Gastroenterology & Hepatology 15, 365-377 
(2018). 

32 Mardinoglu, A., Boren, J., Smith, U., Uhlen, M. & Nielsen, J. The 
employment of systems biology in gastroenterology and 
hepatology. Nat. Rev. Gastroenterol. Hepatol (2017). 

33 Mardinoglu, A. & Nielsen, J. New paradigms for metabolic 
modeling of human cells. Current Opinion in Biotechnology 34, 
91-97 (2015). 

34 Nielsen, J. Systems biology of metabolism: a driver for developing 
personalized and precision medicine. Cell metabolism 25, 572-579 
(2017). 

35 Benfeitas, R. et al. Characterization of heterogeneous redox 
responses in hepatocellular carcinoma patients using network 
analysis. EBioMedicine 40, 471-487 (2019). 

36 Bidkhori, G. et al. Metabolic network-based stratification of 
hepatocellular carcinoma reveals three distinct tumor subtypes. 



64 | References 

 

Proceedings of the National Academy of Sciences 115, E11874-
E11883 (2018). 

37 Lee, S. et al. Integrated network analysis reveals an association 
between plasma mannose levels and insulin resistance. Cell 
metabolism 24, 172-184 (2016). 

38 Wang, Q. et al. A metagenome-wide association study of gut 
microbiota in asthma in UK adults. BMC Microbiol 18, 114, 
doi:10.1186/s12866-018-1257-x (2018). 

39 Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and 
genomes. Nucleic Acids Res 28, 27-30, doi:10.1093/nar/28.1.27 
(2000). 

40 Gene Ontology, C. The Gene Ontology resource: enriching a GOld 
mine. Nucleic Acids Res 49, D325-D334, 
doi:10.1093/nar/gkaa1113 (2021). 

41 Ashburner, M. et al. Gene ontology: tool for the unification of 
biology. The Gene Ontology Consortium. Nat Genet 25, 25-29, 
doi:10.1038/75556 (2000). 

42 Chong, J. et al. MetaboAnalyst 4.0: towards more transparent and 
integrative metabolomics analysis. Nucleic Acids Res 46, W486-
W494, doi:10.1093/nar/gky310 (2018). 

43 Pinero, J. et al. The DisGeNET knowledge platform for disease 
genomics: 2019 update. Nucleic Acids Res 48, D845-D855, 
doi:10.1093/nar/gkz1021 (2020). 

44 Ghandi, M. et al. Next-generation characterization of the Cancer 
Cell Line Encyclopedia. Nature 569, 503-508, 
doi:10.1038/s41586-019-1186-3 (2019). 

45 Camarda, R. et al. Inhibition of fatty acid oxidation as a therapy for 
MYC-overexpressing triple-negative breast cancer. Nat Med 22, 
427-432, doi:10.1038/nm.4055 (2016). 

46 Lai, K., Twine, N., O’Brien, A., Guo, Y. & Bauer, D. in Encyclopedia 
of Bioinformatics and Computational Biology   (eds Shoba 
Ranganathan, Michael Gribskov, Kenta Nakai, & Christian 
Schönbach)  272-286 (Academic Press, 2019). 

47 Xu, C. & Jackson, S. A. Machine learning and complex biological 
data. Genome Biol 20, 76, doi:10.1186/s13059-019-1689-0 (2019). 

48 Loomba, R. et al. Gut Microbiome-Based Metagenomic Signature 
for Non-invasive Detection of Advanced Fibrosis in Human 



References | 65 

 

Nonalcoholic Fatty Liver Disease. Cell Metab 25, 1054-1062 e1055, 
doi:10.1016/j.cmet.2017.04.001 (2017). 

49 McIlwain, S. J. et al. Enhancing Top-Down Proteomics Data 
Analysis by Combining Deconvolution Results through a Machine 
Learning Strategy. J Am Soc Mass Spectrom 31, 1104-1113, 
doi:10.1021/jasms.0c00035 (2020). 

50 Barabási, A.-L. Network science. Philosophical Transactions of the 
Royal Society A: Mathematical, Physical and Engineering Sciences 
371, 20120375 (2013). 

51 Lee, S. et al. TCSBN: a database of tissue and cancer specific 
biological networks. Nucleic Acids Res 46, D595-D600, 
doi:10.1093/nar/gkx994 (2018). 

52 Szklarczyk, D. et al. STRING v11: protein-protein association 
networks with increased coverage, supporting functional 
discovery in genome-wide experimental datasets. Nucleic Acids 
Res 47, D607-D613, doi:10.1093/nar/gky1131 (2019). 

53 Luck, K. et al. A reference map of the human binary protein 
interactome. Nature 580, 402-408, doi:10.1038/s41586-020-
2188-x (2020). 

54 Tong, A. H. et al. Global mapping of the yeast genetic interaction 
network. Science 303, 808-813, doi:10.1126/science.1091317 
(2004). 

55 Ma, H. W. & Zeng, A. P. The connectivity structure, giant strong 
component and centrality of metabolic networks. Bioinformatics 
19, 1423-1430, doi:10.1093/bioinformatics/btg177 (2003). 

56 Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. 
The large-scale organization of metabolic networks. Nature 407, 
651-654, doi:10.1038/35036627 (2000). 

57 Ito, T. et al. Toward a protein-protein interaction map of the 
budding yeast: A comprehensive system to examine two-hybrid 
interactions in all possible combinations between the yeast 
proteins. Proc Natl Acad Sci U S A 97, 1143-1147, 
doi:10.1073/pnas.97.3.1143 (2000). 

58 Ota, M., Gonja, H., Koike, R. & Fukuchi, S. Multiple-Localization 
and Hub Proteins. PLoS One 11, e0156455, 
doi:10.1371/journal.pone.0156455 (2016). 

59 Wessling, R. et al. Convergent targeting of a common host protein-
network by pathogen effectors from three kingdoms of life. Cell 



66 | References 

 

Host Microbe 16, 364-375, doi:10.1016/j.chom.2014.08.004 
(2014). 

60 Peng, X., Wang, J., Wang, J., Wu, F. X. & Pan, Y. Rechecking the 
Centrality-Lethality Rule in the Scope of Protein Subcellular 
Localization Interaction Networks. PLoS One 10, e0130743, 
doi:10.1371/journal.pone.0130743 (2015). 

61 Jeong, H., Mason, S. P., Barabasi, A. L. & Oltvai, Z. N. Lethality 
and centrality in protein networks. Nature 411, 41-42, 
doi:10.1038/35075138 (2001). 

62 Feldman, I., Rzhetsky, A. & Vitkup, D. Network properties of genes 
harboring inherited disease mutations. Proc Natl Acad Sci U S A 
105, 4323-4328, doi:10.1073/pnas.0701722105 (2008). 

63 Lee, S. et al. Network analyses identify liver-specific targets for 
treating liver diseases. Mol Syst Biol 13, 938, 
doi:10.15252/msb.20177703 (2017). 

64 Golbeck, J. in Introduction to Social Media Investigation   (ed 
Jennifer Golbeck)  221-235 (Syngress, 2015). 

65 Joy, M. P., Brock, A., Ingber, D. E. & Huang, S. High-betweenness 
proteins in the yeast protein interaction network. J Biomed 
Biotechnol 2005, 96-103, doi:10.1155/JBB.2005.96 (2005). 

66 Potapov, A. P., Voss, N., Sasse, N. & Wingender, E. Topology of 
mammalian transcription networks. Genome Inform 16, 270-278 
(2005). 

67 Bidkhori, G. et al. Metabolic network-based stratification of 
hepatocellular carcinoma reveals three distinct tumor subtypes. 
Proc Natl Acad Sci U S A 115, E11874-E11883, 
doi:10.1073/pnas.1807305115 (2018). 

68 Negre, C. F. A. et al. Eigenvector centrality for characterization of 
protein allosteric pathways. Proc Natl Acad Sci U S A 115, E12201-
E12208, doi:10.1073/pnas.1810452115 (2018). 

69 Koschutzki, D. & Schreiber, F. Centrality analysis methods for 
biological networks and their application to gene regulatory 
networks. Gene Regul Syst Bio 2, 193-201, doi:10.4137/grsb.s702 
(2008). 

70 Cai, J. J., Borenstein, E. & Petrov, D. A. Broker Genes in Human 
Disease. Genome Biology and Evolution 2, 815-825, 
doi:10.1093/gbe/evq064 (2010). 



References | 67 

 

71 Hahn, M. W. & Kern, A. D. Comparative genomics of centrality and 
essentiality in three eukaryotic protein-interaction networks. Mol 
Biol Evol 22, 803-806, doi:10.1093/molbev/msi072 (2005). 

72 del Rio, G., Koschutzki, D. & Coello, G. How to identify essential 
genes from molecular networks? BMC Syst Biol 3, 102, 
doi:10.1186/1752-0509-3-102 (2009). 

73 Wang, P., Yu, X. & Lu, J. Identification and evolution of 
structurally dominant nodes in protein-protein interaction 
networks. IEEE Trans Biomed Circuits Syst 8, 87-97, 
doi:10.1109/TBCAS.2014.2303160 (2014). 

74 Robinson, J. L. et al. An atlas of human metabolism. Sci Signal 13, 
doi:10.1126/scisignal.aaz1482 (2020). 

75 Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a 
network-based approach to human disease. Nat Rev Genet 12, 56-
68, doi:10.1038/nrg2918 (2011). 

76 Han, J. D. et al. Evidence for dynamically organized modularity in 
the yeast protein-protein interaction network. Nature 430, 88-93, 
doi:10.1038/nature02555 (2004). 

77 Girvan, M. & Newman, M. E. Community structure in social and 
biological networks. Proc Natl Acad Sci U S A 99, 7821-7826, 
doi:10.1073/pnas.122653799 (2002). 

78 Maslov, S. & Sneppen, K. Specificity and stability in topology of 
protein networks. Science 296, 910-913, 
doi:10.1126/science.1065103 (2002). 

79 Clauset, A., Newman, M. E. & Moore, C. Finding community 
structure in very large networks. Phys Rev E Stat Nonlin Soft 
Matter Phys 70, 066111, doi:10.1103/PhysRevE.70.066111 (2004). 

80 Newman, M. E. J. Detecting community structure in networks. 
The European Physical Journal B 38, 321-330, 
doi:10.1140/epjb/e2004-00124-y (2004). 

81 Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabasi, 
A. L. Hierarchical organization of modularity in metabolic 
networks. Science 297, 1551-1555, doi:10.1126/science.1073374 
(2002). 

82 Price, N. D. et al. A wellness study of 108 individuals using 
personal, dense, dynamic data clouds. Nat Biotechnol 35, 747-756, 
doi:10.1038/nbt.3870 (2017). 



68 | References 

 

83 Newman, M. E. Fast algorithm for detecting community structure 
in networks. Phys Rev E Stat Nonlin Soft Matter Phys 69, 066133, 
doi:10.1103/PhysRevE.69.066133 (2004). 

84 Newman, M. E. & Girvan, M. Finding and evaluating community 
structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys 69, 
026113, doi:10.1103/PhysRevE.69.026113 (2004). 

85 Uhlen, M. et al. Proteomics. Tissue-based map of the human 
proteome. Science 347, 1260419, doi:10.1126/science.1260419 
(2015). 

86 Saelens, W., Cannoodt, R. & Saeys, Y. A comprehensive evaluation 
of module detection methods for gene expression data. Nat 
Commun 9, 1090, doi:10.1038/s41467-018-03424-4 (2018). 

87 Newman, M. E. Modularity and community structure in networks. 
Proc Natl Acad Sci U S A 103, 8577-8582, 
doi:10.1073/pnas.0601602103 (2006). 

88 Pons, P. & Latapy, M.   284-293 (Springer Berlin Heidelberg). 
89 Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: 

guaranteeing well-connected communities. Sci Rep 9, 5233, 
doi:10.1038/s41598-019-41695-z (2019). 

90 Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast 
unfolding of communities in large networks. Journal of Statistical 
Mechanics: Theory and Experiment 2008, P10008, 
doi:10.1088/1742-5468/2008/10/p10008 (2008). 

91 Waltman, L. & van Eck, N. J. A smart local moving algorithm for 
large-scale modularity-based community detection. The European 
Physical Journal B 86, 471, doi:10.1140/epjb/e2013-40829-0 
(2013). 

92 Traag, V. A., Van Dooren, P. & Nesterov, Y. Narrow scope for 
resolution-limit-free community detection. Phys Rev E Stat 
Nonlin Soft Matter Phys 84, 016114, 
doi:10.1103/PhysRevE.84.016114 (2011). 

93 Fortunato, S. & Barthelemy, M. Resolution limit in community 
detection. Proc Natl Acad Sci U S A 104, 36-41, 
doi:10.1073/pnas.0605965104 (2007). 

94 Hagan, T. et al. Antibiotics-Driven Gut Microbiome Perturbation 
Alters Immunity to Vaccines in Humans. Cell 178, 1313-1328 
e1313, doi:10.1016/j.cell.2019.08.010 (2019). 



References | 69 

 

95 Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-
cell gene expression data analysis. Genome Biol 19, 15, 
doi:10.1186/s13059-017-1382-0 (2018). 

96 Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. 
Integrating single-cell transcriptomic data across different 
conditions, technologies, and species. Nat Biotechnol 36, 411-420, 
doi:10.1038/nbt.4096 (2018). 

97 Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer's 
disease. Nature 570, 332-337, doi:10.1038/s41586-019-1195-2 
(2019). 

98 Ziegler, C. G. K. et al. SARS-CoV-2 Receptor ACE2 Is an 
Interferon-Stimulated Gene in Human Airway Epithelial Cells and 
Is Detected in Specific Cell Subsets across Tissues. Cell 181, 1016-
1035 e1019, doi:10.1016/j.cell.2020.04.035 (2020). 

99 Orth, J. D., Thiele, I. & Palsson, B. O. What is flux balance analysis? 
Nat Biotechnol 28, 245-248, doi:10.1038/nbt.1614 (2010). 

100 Gudmundsson, S. & Thiele, I. Computationally efficient flux 
variability analysis. BMC Bioinformatics 11, 489, 
doi:10.1186/1471-2105-11-489 (2010). 

101 Bidkhori, G. et al. Metabolic Network-Based Identification and 
Prioritization of Anticancer Targets Based on Expression Data in 
Hepatocellular Carcinoma. Front Physiol 9, 916, 
doi:10.3389/fphys.2018.00916 (2018). 

102 Agren, R. et al. Identification of anticancer drugs for 
hepatocellular carcinoma through personalized genome-scale 
metabolic modeling. Mol Syst Biol 10, 721, 
doi:10.1002/msb.145122 (2014). 

103 Gatto, F., Miess, H., Schulze, A. & Nielsen, J. Flux balance analysis 
predicts essential genes in clear cell renal cell carcinoma 
metabolism. Sci Rep 5, 10738, doi:10.1038/srep10738 (2015). 

104 Patil, K. R. & Nielsen, J. Uncovering transcriptional regulation of 
metabolism by using metabolic network topology. Proc Natl Acad 
Sci U S A 102, 2685-2689, doi:10.1073/pnas.0406811102 (2005). 

105 Lee, S. et al. Integrated Network Analysis Reveals an Association 
between Plasma Mannose Levels and Insulin Resistance. Cell 
Metab 24, 172-184, doi:10.1016/j.cmet.2016.05.026 (2016). 



70 | References 

 

106 Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current 
status and applications of genome-scale metabolic models. 
Genome Biol 20, 121, doi:10.1186/s13059-019-1730-3 (2019). 

107 Kuzmanov, U. & Emili, A. Protein-protein interaction networks: 
probing disease mechanisms using model systems. Genome Med 
5, 37, doi:10.1186/gm441 (2013). 

108 Karbalaei, R., Allahyari, M., Rezaei-Tavirani, M., Asadzadeh-
Aghdaei, H. & Zali, M. R. Protein-protein interaction analysis of 
Alzheimer`s disease and NAFLD based on systems biology 
methods unhide common ancestor pathways. Gastroenterol 
Hepatol Bed Bench 11, 27-33 (2018). 

109 Li, S., Sun, X., Miao, S., Liu, J. & Jiao, W. Differential protein-
coding gene and long noncoding RNA expression in smoking-
related lung squamous cell carcinoma. Thorac Cancer 8, 672-681, 
doi:10.1111/1759-7714.12510 (2017). 

110 Li, Z., Qiao, Z., Zheng, W. & Ma, W. Network Cluster Analysis of 
Protein-Protein Interaction Network-Identified Biomarker for 
Type 2 Diabetes. Diabetes Technol Ther 17, 475-481, 
doi:10.1089/dia.2014.0204 (2015). 

111 Luo, T., Wu, S., Shen, X. & Li, L. Network cluster analysis of 
protein-protein interaction network identified biomarker for early 
onset colorectal cancer. Mol Biol Rep 40, 6561-6568, 
doi:10.1007/s11033-013-2694-0 (2013). 

112 Sun, N. & Zhao, H. Reconstructing transcriptional regulatory 
networks through genomics data. Stat Methods Med Res 18, 595-
617, doi:10.1177/0962280209351890 (2009). 

113 Jackson, C. A., Castro, D. M., Saldi, G. A., Bonneau, R. & Gresham, 
D. Gene regulatory network reconstruction using single-cell RNA 
sequencing of barcoded genotypes in diverse environments. Elife 
9, doi:10.7554/eLife.51254 (2020). 

114 Sa, J. K. et al. Transcriptional regulatory networks of tumor-
associated macrophages that drive malignancy in mesenchymal 
glioblastoma. Genome Biol 21, 216, doi:10.1186/s13059-020-
02140-x (2020). 

115 Padi, M. & Quackenbush, J. Integrating transcriptional and 
protein interaction networks to prioritize condition-specific 
master regulators. BMC Syst Biol 9, 80, doi:10.1186/s12918-015-
0228-1 (2015). 



References | 71 

 

116 Walhout, A. J. Unraveling transcription regulatory networks by 
protein-DNA and protein-protein interaction mapping. Genome 
Res 16, 1445-1454, doi:10.1101/gr.5321506 (2006). 

117 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted 
correlation network analysis. BMC Bioinformatics 9, 559, 
doi:10.1186/1471-2105-9-559 (2008). 

118 Anglani, R. et al. Loss of connectivity in cancer co-expression 
networks. PLoS One 9, e87075, 
doi:10.1371/journal.pone.0087075 (2014). 

119 van Dam, S., Vosa, U., van der Graaf, A., Franke, L. & de 
Magalhaes, J. P. Gene co-expression analysis for functional 
classification and gene-disease predictions. Brief Bioinform 19, 
575-592, doi:10.1093/bib/bbw139 (2018). 

120 Bailey, P. et al. Genomic analyses identify molecular subtypes of 
pancreatic cancer. Nature 531, 47-52, doi:10.1038/nature16965 
(2016). 

121 Tebani, A. et al. Integration of molecular profiles in a longitudinal 
wellness profiling cohort. Nat Commun 11, 4487, 
doi:10.1038/s41467-020-18148-7 (2020). 

122 Hood, L. & Friend, S. H. Predictive, personalized, preventive, 
participatory (P4) cancer medicine. Nat Rev Clin Oncol 8, 184-187, 
doi:10.1038/nrclinonc.2010.227 (2011). 

123 Ho, D. et al. Enabling Technologies for Personalized and Precision 
Medicine. Trends Biotechnol 38, 497-518, 
doi:10.1016/j.tibtech.2019.12.021 (2020). 

124 Gavan, S. P., Thompson, A. J. & Payne, K. The economic case for 
precision medicine. Expert Rev Precis Med Drug Dev 3, 1-9, 
doi:10.1080/23808993.2018.1421858 (2018). 

125 Nassar, S. F., Raddassi, K., Ubhi, B., Doktorski, J. & Abulaban, A. 
Precision Medicine: Steps along the Road to Combat Human 
Cancer. Cells 9, doi:10.3390/cells9092056 (2020). 

126 Goutsouliak, K. et al. Towards personalized treatment for early 
stage HER2-positive breast cancer. Nat Rev Clin Oncol 17, 233-
250, doi:10.1038/s41571-019-0299-9 (2020). 

127 Benfeitas, R. et al. Characterization of heterogeneous redox 
responses in hepatocellular carcinoma patients using network 
analysis. EBioMedicine 40, 471-487, 
doi:10.1016/j.ebiom.2018.12.057 (2019). 



72 | References 

 

128 Mardinoglu, A. et al. Personal model-assisted identification of 
NAD(+) and glutathione metabolism as intervention target in 
NAFLD. Mol Syst Biol 13, 916, doi:10.15252/msb.20167422 
(2017). 

129 Zhang, C. et al. The acute effect of metabolic cofactor 
supplementation: a potential therapeutic strategy against non-
alcoholic fatty liver disease. Mol Syst Biol 16, e9495, 
doi:10.15252/msb.209495 (2020). 

130 Mannarino, L. et al. A systems biology approach to investigate the 
mechanism of action of trabectedin in a model of myelomonocytic 
leukemia. Pharmacogenomics J 18, 56-63, 
doi:10.1038/tpj.2016.76 (2018). 

131 Mohammadi, E. et al. Applications of Genome-Wide Screening 
and Systems Biology Approaches in Drug Repositioning. Cancers 
(Basel) 12, doi:10.3390/cancers12092694 (2020). 

132 Lillie, E. O. et al. The n-of-1 clinical trial: the ultimate strategy for 
individualizing medicine? Per Med 8, 161-173, 
doi:10.2217/pme.11.7 (2011). 

133 Consortium, G. T. The GTEx Consortium atlas of genetic 
regulatory effects across human tissues. Science 369, 1318-1330, 
doi:10.1126/science.aaz1776 (2020). 

134 Cancer Genome Atlas Research, N. et al. The Cancer Genome Atlas 
Pan-Cancer analysis project. Nat Genet 45, 1113-1120, 
doi:10.1038/ng.2764 (2013). 

135 Piening, B. D. et al. Integrative Personal Omics Profiles during 
Periods of Weight Gain and Loss. Cell Syst 6, 157-170 e158, 
doi:10.1016/j.cels.2017.12.013 (2018). 

136 Su, A. I. et al. A gene atlas of the mouse and human protein-
encoding transcriptomes. Proc Natl Acad Sci U S A 101, 6062-
6067, doi:10.1073/pnas.0400782101 (2004). 

137 WHO. Cardiovascular diseases (CVDs) Fact sheets, Available at 
https://www.who.int/news-room/fact-
sheets/detail/cardiovascular-diseases-(cvds) Accessed. 

138 Priest, C. & Tontonoz, P. Inter-organ cross-talk in metabolic 
syndrome. Nat Metab 1, 1177-1188, doi:10.1038/s42255-019-
0145-5 (2019). 



References | 73 

 

139 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold 
change and dispersion for RNA-seq data with DESeq2. Genome 
Biol 15, 550, doi:10.1186/s13059-014-0550-8 (2014). 

140 Varemo, L., Nielsen, J. & Nookaew, I. Enriching the gene set 
analysis of genome-wide data by incorporating directionality of 
gene expression and combining statistical hypotheses and 
methods. Nucleic Acids Res 41, 4378-4391, 
doi:10.1093/nar/gkt111 (2013). 

141 Palace, V. P., Hill, M. F., Khaper, N. & Singal, P. K. Metabolism of 
vitamin A in the heart increases after a myocardial infarction. Free 
Radic Biol Med 26, 1501-1507, doi:10.1016/s0891-
5849(99)00013-1 (1999). 

142 Zhou, Y. et al. Loss of Filamin C Is Catastrophic for Heart 
Function. Circulation 141, 869-871, 
doi:10.1161/CIRCULATIONAHA.119.044061 (2020). 

143 Hall, C. L. et al. RNA sequencing-based transcriptome profiling of 
cardiac tissue implicates novel putative disease mechanisms in 
FLNC-associated arrhythmogenic cardiomyopathy. Int J Cardiol 
302, 124-130, doi:10.1016/j.ijcard.2019.12.002 (2020). 

144 Zhong, X., Qian, X., Chen, G. & Song, X. The role of galectin-3 in 
heart failure and cardiovascular disease. Clin Exp Pharmacol 
Physiol 46, 197-203, doi:10.1111/1440-1681.13048 (2019). 

145 Suthahar, N. et al. Galectin-3 Activation and Inhibition in Heart 
Failure and Cardiovascular Disease: An Update. Theranostics 8, 
593-609, doi:10.7150/thno.22196 (2018). 

146 Turnham, R. E. & Scott, J. D. Protein kinase A catalytic subunit 
isoform PRKACA; History, function and physiology. Gene 577, 
101-108, doi:10.1016/j.gene.2015.11.052 (2016). 

147 Diviani, D., Dodge-Kafka, K. L., Li, J. & Kapiloff, M. S. A-kinase 
anchoring proteins: scaffolding proteins in the heart. Am J Physiol 
Heart Circ Physiol 301, H1742-1753, 
doi:10.1152/ajpheart.00569.2011 (2011). 

148 Bers, D. M. Calcium cycling and signaling in cardiac myocytes. 
Annu Rev Physiol 70, 23-49, 
doi:10.1146/annurev.physiol.70.113006.100455 (2008). 

149 Ren, J., Pulakat, L., Whaley-Connell, A. & Sowers, J. R. 
Mitochondrial biogenesis in the metabolic syndrome and 
cardiovascular disease. J Mol Med (Berl) 88, 993-1001, 
doi:10.1007/s00109-010-0663-9 (2010). 



74 | References 

 

150 Garber, C. E. et al. American College of Sports Medicine position 
stand. Quantity and quality of exercise for developing and 
maintaining cardiorespiratory, musculoskeletal, and neuromotor 
fitness in apparently healthy adults: guidance for prescribing 
exercise. Med Sci Sports Exerc 43, 1334-1359, 
doi:10.1249/MSS.0b013e318213fefb (2011). 

151 van der Windt, D. J., Sud, V., Zhang, H., Tsung, A. & Huang, H. 
The Effects of Physical Exercise on Fatty Liver Disease. Gene Expr 
18, 89-101, doi:10.3727/105221617X15124844266408 (2018). 

152 Stranahan, A. M. & Mattson, M. P. Recruiting adaptive cellular 
stress responses for successful brain ageing. Nat Rev Neurosci 13, 
209-216, doi:10.1038/nrn3151 (2012). 

153 Lazarus, J. V. et al. NAFLD - sounding the alarm on a silent 
epidemic. Nat Rev Gastroenterol Hepatol 17, 377-379, 
doi:10.1038/s41575-020-0315-7 (2020). 

154 Chu, X. et al. CCL20 is up-regulated in non-alcoholic fatty liver 
disease fibrosis and is produced by hepatic stellate cells in 
response to fatty acid loading. J Transl Med 16, 108, 
doi:10.1186/s12967-018-1490-y (2018). 

155 Mardinoglu, A. et al. Genome-scale metabolic modelling of 
hepatocytes reveals serine deficiency in patients with non-
alcoholic fatty liver disease. Nat Commun 5, 3083, 
doi:10.1038/ncomms4083 (2014). 

156 Toye, A. A. et al. Subtle metabolic and liver gene transcriptional 
changes underlie diet-induced fatty liver susceptibility in insulin-
resistant mice. Diabetologia 50, 1867-1879, doi:10.1007/s00125-
007-0738-5 (2007). 

157 Lee, G. et al. Distinct signatures of gut microbiome and 
metabolites associated with significant fibrosis in non-obese 
NAFLD. Nat Commun 11, 4982, doi:10.1038/s41467-020-18754-5 
(2020). 

158 Grabherr, F., Grander, C., Effenberger, M., Adolph, T. E. & Tilg, H. 
Gut Dysfunction and Non-alcoholic Fatty Liver Disease. Front 
Endocrinol (Lausanne) 10, 611, doi:10.3389/fendo.2019.00611 
(2019). 

159 Chen, R. & Snyder, M. Systems biology: personalized medicine for 
the future? Curr Opin Pharmacol 12, 623-628, 
doi:10.1016/j.coph.2012.07.011 (2012). 



References | 75 

 

160 Dugourd, A. et al. Causal integration of multi-omics data with 
prior knowledge to generate mechanistic hypotheses. Mol Syst Biol 
17, e9730, doi:10.15252/msb.20209730 (2021). 

161 Dugourd, A. & Saez-Rodriguez, J. Footprint-based functional 
analysis of multiomic data. Curr Opin Syst Biol 15, 82-90, 
doi:10.1016/j.coisb.2019.04.002 (2019). 

162 Schubert, M. et al. Perturbation-response genes reveal signaling 
footprints in cancer gene expression. Nat Commun 9, 20, 
doi:10.1038/s41467-017-02391-6 (2018). 

 






