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A B S T R A C T   

Literature shows that reinforcement learning (RL) and the well-known optimization algorithms derived from it 
have been applied to assembly sequence planning (ASP); however, the way this is done, as an offline process, 
ends up generating optimization methods that are not exploiting the full potential of RL. Today’s assembly lines 
need to be adaptive to changes, resilient to errors and attentive to the operators’ skills and needs. If all of these 
aspects need to evolve towards a new paradigm, called Industry 4.0, the way RL is applied to ASP needs to 
change as well: the RL phase has to be part of the assembly execution phase and be optimized with time and 
several repetitions of the process. This article presents an agile exploratory experiment in ASP to prove the 
effectiveness of RL techniques to execute ASP as an adaptive, online and experience-driven optimization process, 
directly at assembly time. The human-assembly interaction is modelled through the input-outputs of an assembly 
guidance system built as an assembly digital twin. Experimental assemblies are executed without pre-established 
assembly sequence plans and adapted to the operators’ needs. The experiments show that precedence and 
transition matrices for an assembly can be generated from the statistical knowledge of several different assembly 
executions. When the frequency of a given subassembly reinforces its importance, statistical results obtained 
from the experiments prove that online RL applications are not only possible but also effective for learning, 
teaching, executing and improving assembly tasks at the same time. This article paves the way towards the 
application of online RL algorithms to ASP.   

1. Introduction 

Sometimes good things have to be broken in order to be rebuilt even 
better, a process referred as disruption. Assembly sequence planning 
(ASP) seems to require it because of the recent introduction of the 
paradigms of Industry 4.0 and smart manufacturing [1] that ask for 
manufacturing systems and, specifically, assembly lines to be adaptive 
to changes [2–5], flexible [6], evolvable [7,8], resilient to errors [9] and 
attentive to the more knowledgeable operators’ skills and needs [10,11]. 
All these characteristics cannot be expressed by a static execution of a 
predetermined ASP that is produced offline, before that the assembly 
takes place in the real-life industrial environment. Relying on fixed in-
structions can certainly enforce the strength of an almost-optimal solu-
tion that neglects small but known deviations from the most common 
procedure; however, a self-adaptable execution based on a strong plan is 
in line with what required by Industry 4.0 [12]. As shown in this article, 
the latter can address those exceptions too, leading towards higher 

success rates in assembly. 
Reinforcement learning (RL) is a machine learning method [13] that 

deviates from the idea of training learning algorithms only on all the 
available data, by accepting the possibility that the training could 
continue over the execution phase, when the algorithm is applied. The 
application of such an algorithm to an unforeseen case generates new 
learning data. The interaction with the changing environment makes 
these algorithms more resilient; however, it is often the case that for 
environments that are well-modelled, such as experiments in physics, 
the RL algorithm – be that an ant colony, a particle swarm, a genetic 
algorithm, etc. – is applied to the simulated environment to generate an 
optimal solution [14,15]. This is indeed a good method because both the 
simulation and the RL algorithm can be run hundreds or thousands of 
times per second. Even though RL adaptable systems have been suc-
cessfully developed for other manufacturing purposes [16], the 
approach is not yet feasible in assembly, as simulating the overall 
complexity of an assembly line and the interaction with humans is still 
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an open challenge, i.e. having entire factories that are digital and 
simulated. Today, ASP simulations can only rely on fixed parameters 
such as data extracted from the assembly CAD models or relevant in-
sights in the topic. An example are all the criteria-based optimizations 
present in literature [17–20]. Luckily, not all the good aspects intro-
duced by RL are lost in manufacturing. This article makes use of the 
basic step-by-step learning paradigm of RL and a statistical approach to 
prove that RL algorithms can be successfully applied in online ASP, at 
assembly time, when the number of assembly executions is limited to the 
possibilities of the real environment. The experiment is planned, 
developed and executed as an agile process, with incremental hypoth-
eses. The experimental setup is built around a manufacturing course 
Tillverkningsteknik (MG1026) at KTH Royal Institute of Technology in 
which circa 150 students assemble a metal locomotive toy. 

The approach of this article that introduces ASP variations at as-
sembly time is in accordance with Marton’s phenomenographic theory 
[21] that affirms that “there is no learning without discernment, and 
there is no discernment without variation”. Both the assembly operators 
and the assembly environment introduce a great deal of variation that 
needs to be captured and exploited at the right time, i.e. during as-
sembly, to generate better assembly sequences. Furthermore, the as-
sembly system presented enforces the human-centered view of the 
operator 4.0 [22] for improvements in their physical ergonomics and the 
creation of useful mental models of the assembly for the operator, when 
these are not provided by the assembly design [23]. 

Among the preliminary results of the agile experiment, it emerges the 
need to digitalize the assembly-operator interaction at assembly time, 
which is solved by introducing digital twins of the operator’s cognitive 
process and the assembly [24]. The gamification of the user experience 
has also proven a successful technique in manufacturing [25]. Thus, it 
can be integrated into an assembly guidance system (AGS). It follows 
that the article presents an agile-developed version of such AGS and the 
data collected over trial and error attempts to generate ASP online with 
it. 

The aim of this article is to pave the way towards the introduction of 
online RL statistical techniques to model the ASP at runtime, instead of 
the common offline use of RL techniques for creating pre-determined 
and fixed ASP to run at assembly time. 

This article is structured in the following way. Section 2 contains 
additional literature review on the topics touched by this introduction. 
Section 3 explains the research methodology applied to find innovative 
solutions to an old problem, i.e. ASP. Section 4 is the core of the paper 
and it is divided into several subsections corresponding to the various 
phases of the agile experiment and their partial results. Section 5 pre-
sents and discusses the overall results in applying RL for ASP. Section 6 
presents the conclusions and outlines some future work. 

2. Related works 

Claeys et al. [26] introduce a generic model for managing context 
aware assembly instructions, i.e. the assembly instructions are 
pre-generated and stored to be retrieved when most useful, depending 
on the assembly environment. Their system, however, does not present 
learning capabilities at assembly execution time. In general, there are 
algorithms for solving and optimizing ASP problems based on known 
variations [17–20,27,28], computer aided geometric feasibility and 
optimization ASP algorithms [29–32]. None of these considers changing 
the assembly sequence at assembly time. 

A literature review from Rashid et al. [33] reports several articles 
applying soft computing methods for ASP, including many that belong to 
the RL class, such as twenty-two using genetic algorithms, three using ant 
colony optimization, five using particle swarm optimization. There have 
been a few attempts to determine an optimal assembly sequence using 
reinforcement learning [34] and at least an attempt using deep rein-
forcement learning from Zhao et al. [35]; however, these methods focus 
on reinforcing policies, i.e. converging towards an optimal solution, on 

assembly states and conditions that are not directly acquired in an in-
dustrial environment but generated from a knowledge base. This 
approach has been flagged as partially wrong by Kaelbling et al. [36] for 
two main reasons: Firstly, because mapping an environment in advance, 
e.g. with a knowledge base, requires a huge effort than compared to 
acquiring data while operating in the environment. Secondly, because 
the environment is often subject to changes that can be better handled by 
an adaptable system that learns during its execution. Thus, the ability of 
an assembly planning system to learn during the assembly execution 
based on human decisions and real-time issues is fundamental. A work 
from Watanabe & Inada [37] seems to go in this direction, though it 
focuses on acquiring historical performance data from a robotic assembly 
and use reinforcement learning to improve the assembly task. As a 
confirmation that reinforcement learning is much more applied in ro-
botics than in manufacturing problems, further joint robotic-assembly 
works are hereby reported: Yu et al. [38] proposed a case study using 
reinforcement learning to solve the scheduling problem in a human-robot 
collaborative assembly task. Martinez et al. [39] focused on reinforce-
ment learning of robotic manipulations as part of an assembly task. All 
the reviewed scientific literature seems to neglect the possibility of 
applying reinforcement learning directly to human behavior during as-
sembly tasks. An operation that holds the potential to elicit dynamic 
environmental knowledge and personal knowledge from the operators. 

It is fair to say that a standard aspect left untouched by this article is 
the use of liaison matrices to represent assemblies [40–42]. The RL 
approach hereby presented is based on the aforementioned mathemat-
ical tool that has become common practice for computer-based assembly 
representation; however, an innovation comes from using the liaison 
matrix as a mathematical base for the RL statistical algorithms. 

3. Research goal and methodology 

The aim of this research is to introduce the use of reinforcement 
learning (RL) to produce an optimal assembly sequence plan during 
assembly execution. RL is a class of powerful machine learning (ML) 
algorithms able to learn during the execution of a process. They repre-
sent an alternative to the traditional learning methods where, firstly, a 
process is executed and its data collected, secondly, the process data is 
learned by an ML algorithm. The traditional ML methods are in line with 
and used by the common assembly sequence planning (ASP) strategies 
adopted by industry. Usually, an engineer plans the optimal ASP by 
studying the product features with some support software, often based 
on ML algorithms, and then the optimal ASP is implemented in form of 
assembly instruction manuals or any kind of non-adaptive guidance 
systems for the assembly execution. This approach (see Fig. 1) requires 
the assembly operators to give feedback only when it is too late to apply 
changes to the established ASP and a major change requires the original 
engineer to run the whole optimization process again with the new 
parameters acquired from the feedback, often after the review of the 
assembly design. Several operations that require time and effort, other 
than a distributed workload over ASP engineers, operators and other 
parties involved in the product design. 

An ideal RL strategy could introduce an additional and faster feed-
back cycle (see Fig. 2) between the ASP generation and execution. The 
ability of RL algorithms to find optimal solutions while maintaining a 
degree of adaptability to new scenarios is exactly what can enable a new 
framework for ASP and become the ultimate goal of this research; 
however, there is no straightforward way to achieve this, as such a goal 

Fig. 1. Traditional feedback cycle in ASP.  
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requires to assess the effects of changing different aspects of traditional 
ASP and RL methods. RL algorithms are based on the possibility to 
simulate large number of executions in modelled environments, char-
acteristic that is missing in the ASP process. The number of executions is 
limited to those happening in the real factory and the RL method needs 
to converge faster than its computational counterparts do. Note that the 
RL feedback cycle is faster because it can be executed at each assembly 
step. The traditional feedback flow is longer because it requires the 
entire assembly to be ended before that any data can be fed back to the 
assembly designer or to the assembly planner. 

There are five aspects of traditional RL that have to be mapped to 
ASP: environment, agent, states, rewards and actions (see Fig. 3). The 
environment is clearly the assembly process. One would rather think of 
the assembly station as a production environment, but be aware that this 
computer science terminology refers to the process that is modelled as 
an ML algorithm rather than a real environment where the process is 
executed. The agent is somehow a bit more complex to define. An agent 
can be both the operator executing the assembly and the assembly 
guidance system taking a certain decision for the operator. States and 
actions are connected to how an assembly plan can be represented in 
form of computational knowledge. Finally, rewards are connected to the 
optimization strategy and are of two kinds: the feelings perceived by 
operators in satisfactory assembly steps and the numerical score 
attributed to the execution of certain actions in answer to certain states. 
The former reward is perhaps the most complex aspect to model, espe-
cially when the optimality of a step becomes subjective because of the 
choice of the particular operator executing the assembly. A more 
objective way to consider the rewards is by looking at aggregated 
choices from different operators. 

As mentioned earlier, there is a duality of the agent in the real world 
as human operator and as its digital twin embedded in the AGS. A 
human is digitally represented by the inputs and outputs of a set of 
sensors and interfaces enabling for a direct translation of the human 
perception, intention and actions to the simulated environment where 
RL is enforced. This constitutes a central point for this research. Namely, 
exploring how assembly knowledge is transferred from an AGS to an 
operator and vice versa. 

The overall system is presented in Fig. 4. An operator Oi produces an 
assembly plan Pi during the assembly Ai. The current plan and the past 
ones P1, …, Pi are used for online RL of the AGS instructions to the next 
operators. 

All the aspects of this system, previously described, become sub- 
goals for this research. Therefore, an agile approach is required to 
explore and meet as many sub-goals as possible and pave the way to-
wards the ultimate goal that is using RL in ASP. A series of experiments 
are planned and executed one at a time before knowing what the next 
one will be. Each experiment acts as an observation environment, useful 
to produce new research hypotheses and test them within the next 

experiment. This adaptive methodology has an advantage when the 
intermediate goals are clear, but there is no clear understanding about 
the overall process to investigate and there does not exist an established 
experiment to directly achieve and test the ultimate goal. 

Each experiment is carried out with the following cycle of operations 
(see Fig. 5): 

• analysis of results from prior experiments and next research hy-
potheses generation;  

• setup and test of new experimental equipment;  
• assembly under experimental conditions;  
• collection of results. 

Each experiment cycle is performed several times. The agile principle 
allows testing an experimental setup for errors and possible issues, other 
than collecting significant statistical data before proceeding to the next 
experiment; however, for clarity, results presented in this paper do not 
mention how many times a cycle is executed prior to the obtainment of 
definitive results. Issues encountered in some of the test runs might be 
presented as general results of one particular experiment and omitted in 
the others. This does not indicate a discontinuity of issues, but rather a 
shift in the focus of the experiments. 

4. Experimental setups and partial results 

The experimental setup consists of an assembly station for a metal 
toy locomotive, as shown in Fig. 6. The assembly station is minimal, as it 
is part of a university course and not an industrial line. There is a wide 
table, with assembly tools and components. A group of students, further 
referred as novice operators, performs the assembly task. The peculiarity 
of this assembly station is that the product is stably invariant, while the 
operators change at every experiment. The academic course Till-
verkningsteknik (MG1026) at KTH Royal Institute of Technology is 
structured so that circa 150 students take part every semester to several 
applied tasks. One of these involves circa 50 locomotive assemblies, 
done in groups of one to four students. The same students who perform 
the final assembly produce the locomotive components during the 
course; however, the course objective is teaching how to manufacture 
the parts, rather than assembling them. Thus, altering the assembly does 
not alter the learning outcomes of the course and this allows the 
experimental setups to be independent from any educational needs. 

Each experiment is, as much as possible for this article, reported as a 
standalone execution. This is explained in the scientific methodology 
section; however, the overall scientific progress is part of a unique 
experimental setup that evolves in an agile way towards the interesting 
findings. Thus, sometimes the lines are a bit blurred and some common 
details are only explained in the section corresponding to the experiment 
where they are mainly relevant. 

4.1. Setup of the first experiment 

The first experiment consists of placing a camera over the assembly 
station where the metal toy locomotive is assembled. The novice oper-
ators follow the assembly instructions provided by three paper sheets 
present on the table. The instructions consist of an exploded view of the 
assembly, a list of screws and their manufacturing data and labels 
associated with a certain CAD component in the drawings and an 
operation list that goes as follows:  

• Assemble the boiler and front cover.  
• Mount the boiler on the frame. Use dome nut and chimney as nuts. 

Do not overtighten.  
• Insert the roof into the cabin. The roof is a black plastic plug.  
• Mount the cabin to the boiler.  
• Mount a wheel on each axle. Push the shoulders into the frame.  
• Fit the remaining wheels. 

Fig. 2. Traditional and fast feedback cycles, when the ASP is generated at as-
sembly time with RL. 

Fig. 3. Traditional RL architecture.  
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In this experiment, the observing researcher does not interact at all 
with the operators. Nine videos are thus recorded and analyzed. 

4.2. Results of the first experiment 

This setup consists of the original course assembly task and it is al-
ways successfully completed by the students/operators, with the 

optional assistance of the course instructors. 
Nine assembly videos, recorded with this setup, are watched several 

times to qualitatively and quantitatively grasp several aspects of the 
assembly scenario, as seen from different operators. This is in line with 
Marton’s phenomenographic approach [21]. Among the observations, a 
few issues that are relevant to the development of a human-machine 
interaction system are identified. 

Issue 1. Parallel assembly. Having 2–5 operators per assembly 
station means that at some point a bit of parallel assembly is inevitable. 
Further experiments need to handle this issue in order to capture a 
proper assembly sequence. 

Issue 2. Product quality. A few times during an assembly task, a 
subassembly operation is suspended because a component has not been 
properly machined and needs some further adjustments. The total as-
sembly time should exclude eventual delays due to quality issues. If 
quality issues arise, there are no other manufactured components that 
can be used to replace the originals. Thus, a quality check needs to be 
run prior to assembly. 

Issue 3. Camera perspective. About half the videos are recorded 
from a side perspective and another half are recorded from a top 
perspective. Both camera positions present advantages. A side perspec-
tive works best for showing the action from a human perspective. A top 
view is better to avoid occlusions due to objects or humans in the scene. 
Ideally, a camera can be positioned 45 degrees towards the table, 
halfway between top and side view. 

Issue 4. Operators’ intentions. Verbal communication is used to 
exchange intentions among operators while performing the assembly; 
however, it is hard to define when a certain intention arises, before it is 
communicated to the other operators and/or it is concretized into an 
assembly action. 

Fig. 4. System overview.  

Fig. 5. Agile approach to experiments. Each experiment consists of a set of steps, from analysis of previous results and research hypotheses generation (HG), to the 
preparation of a next experimental setup, assembly and collection of results. 

Fig. 6. A rendering of the locomotive from its CAD parts.  
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4.3. Hypotheses generation and setup of the second experiment 

In order to create more variability, according to Marton’s proposal 
[21], in the second experiment the operators are asked to perform the 
assembly with the sole exploded view, without reading the written in-
structions. Course assistants are asked to refrain from helping the stu-
dents and assistance is only provided in case of major problems, such as 
quality issues. 

The research hypotheses for this experiment are the following: 

Hypothesis 1. When lacking the assembly instructions, the operators 
have to apply their own understanding of the assembly task, consisting 
of limited knowledge due to prior personal experience or education. 

Hypothesis 2. The assembly process can be successfully completed 
without the assembly instructions. 

The experiment should be useful to learn what kind of knowledge an 
AGS needs to provide in order to obtain a successful assembly of the 
product. 

4.4. Results of the second experiment 

The results of this experiment are of a qualitative nature and based 
on a number of experiments that can give intuitive answers to the two 
hypotheses made. About ten assemblies are executed without providing 
the written instructions to the operators, but the sole exploded view and 
screws/nuts tables. All the operators indeed tried to perform the as-
sembly, even with missing instructions. In a few cases, the intervention 
of the researcher has prevented the sub assembly of parts that would 
have jeopardized the completion of the assembly. Thus hypothesis 1 
(H1) is confirmed but hypothesis 2 (H2) is false because at least one 
exception was found, i.e. an assembly was not properly completed 
without instructions. The operators would use their knowledge in spite 
of the missing written instructions, as in H1, but the completion of the 
assembly relies on the ability of the observing researcher to steer the 
operators away from the wrong assembly sequences once the intention 
of the operators is manifested. This last point is a key issue for the 
generation of new hypotheses and their testing. 

It follows, from a positive H1 and a negative H2, that an AGS is 
needed. The guidance system has to prevent the operators from doing 
something wrong while allowing them to exploit their personal knowl-
edge of the assembly. Ideally, for optimal communication, such a system 
is only required to provide instructions based on the manifested in-
tentions of the operators. Two engineering techniques are introduced to 
the experimental setup and used to the develop a guidance system for 
this purpose: liaison matrices and soft constraints. Liaison matrices are a 
way to mathematically encode if two assembly components are to be 
assembled together. In particular, an adjacency matrix lists all the 
neighbor components and the liaison matrix does that; but it also ex-
cludes components that do not have a stable assembly operation be-
tween them. The limitation to this matrix is that it is not possible to 
define if more than two liaison components are part of the same sub-
assembly or separate ones. 

In order to encode the subassembly order, there are two main ap-
proaches. One considers the assembly steps and defines which compo-
nents belong to each step. The other is based on precedence constraints. 
For each component to be assembled a precedence matrix indicates 
which other components must have been assembled before. An operator 
start assembling the components that have no requirements and pro-
ceeds with those that are allowed by the assembled components, until 
the assembly is finished. These two approaches are supported by several 
ASP methods that rely more on one or the other. For example, AND/OR 
graphs or any winning assembly sequences from ASP based on genetic 
algorithms show all the alternatives available for each step, while the 
assembly precedence graphs constrain the sequences to those that can 
satisfy the precedence constraints. In any case, the aim of ASP is to 

generate as many sequences that are feasible and select the best 
sequence for the final assembly and relative instructions. For a guidance 
system to allow an operator to freely select the next assembly step, while 
checking that such step is not preventing the execution of the whole 
assembly, the method that provides the more adaptable solution is an 
AND/OR graph which lists all the possible solutions; however, an AND/ 
OR graph is not easy to produce for every assembly and embed into 
matrices for automatic execution in an AGS. Methods that come up with 
few assembly plans are not generic enough to evaluate assemblies that 
are freely defined by an operator. Instead, precedence constraints are 
widely used. Because precedence matrices are easy to define and deploy 
for many assemblies. The only issue with precedence constraints is that 
they do not leave much choice to the operators unless they can be 
violated. Thus, soft constraints are preferable for the next experimental 
setups, i.e. some precedence constraints that are not mandatory. The 
starting point is testing the ability of the operators to complete the as-
sembly without introducing any soft or hard constraints. 

An AGS – in its version 1 (v1) - is developed as a touch screen 
interface that shows the exploded locomotive assembly and allows an 
operator to pick two by two components that have a liaison, i.e. a value 
of one between them in the liaison matrix (see Figs. 7 and 8). The 
resulting interface is presented in Fig. 9. The soft constraints are 
imposed visually, in form of a green/gray map (see Fig. 10) that shows 
components that can be picked up. The exploded view blinks with the 
green/gray map to show that components are selectable. Once a 
component is selected this becomes blue. Two selected components are 
automatically confirmed as assembled in real time. An “undo” button 
appears to cancel the latest operation. See Fig. 9 for more details. 

The AGS records all the assembly operations in a. mat file containing 
the assembly transitions or actions (from previous component to next 
component) specified over the liaison matrix as increasing values from 1 
to N. This file is easily importable in Matlab®, where all the results are 
collected and analyzed. At any time, the. mat file contains all the in-
formation from the previous successful assemblies and it is reloaded and 
updated by the AGS for each new successful assembly. Thus, each as-
sembly is guided by the partial results obtained by all the previous as-
semblies plus the values for the current one. This enables a 
reinforcement learning approach to detect and enforce soft constraints. 
It becomes the objective of the following experiments to record through 
the AGS and statistically analyze in Matlab® the assembly behavior of 
the operators. 

Fig. 7. Component IDs for the locomotive assembly.  
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4.5. Hypotheses generation and setup of the third experiment 

Given the results of the second experiment and the development of 
the AGS v1, hypotheses 3, 4 and 5 (H3, H4 and H5) are made: 

Hypothesis 3. The AGS provides the needed assembly guidance to 
complete the assembly when the assembly instructions are missing. 

Hypothesis 4. The AGS solves the parallel assembly issue 1 by forcing 
the assembler to plan and execute operations serially. 

Hypothesis 5. The AGS solves issue 4 by framing an operator’s 
intention before they can execute it. 

The AGS v1 is deployed (see Fig. 9) for tests over another round of 
assemblies. At this stage, the hypotheses to be tested are H3, H4 and H5, 
all of them about the AGS. Thus, the setup is the same as in the second 
experiment, but the researcher does not interact with the operators for 
other reasons than to explain how to use the AGS itself or when fatal 
assembly operations are done. 

4.6. Results of the third experiment 

As said before, several assemblies are executed without providing the 
written instructions to the operators, but the sole exploded view and 
screws/nuts tables. The results of this experiment verify H3, because all 

the operators in 20 trials understood how to successfully complete the 
assembly, though in few executions they still required a little external 
help to spot the existence of some constraints. The use of an AGS also 
confirms the validity of H4, because no parallel assembly attempts arose 
when the operators had to stick to selection and execution steps with the 
AGS. It becomes rather difficult to understand if H5 can be confirmed or 
not, as the researcher’s observations captured another related issue 
preventing the demonstration of H5. Even if the AGS can elicit the 
intention of the operators, not all the operators are comfortable with the 
idea of selecting components to be assembled in two by two selections. 
In almost all cases, the explanation of the researcher that the system only 
takes two components at a time was not accepted or accepted with 
unfavorable comments. The problem found is formulated as: 

Issue 5. Subassemblies. Every operator expresses their assembly 
intention in form of new subassemblies made of several components, 
rather than adding one new component to the current assembly. 

4.7. Setup of the fourth experiment 

The results from the third experiments lead to issue 5 that can be 
addressed by adjusting the AGS structure in a way that reflects multi- 
component subassembly selections. Thus, a new AGS version 2 (v2) is 
developed. 

In this second version of the AGS, some soft constraints are 

Fig. 8. Liaison matrix for the metal locomotive assembly.  
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introduced. Initially based on the ASP presented in the paper assembly 
instructions, the constraints are imposed visually in form of a colored 
map (see Fig. 10 for the colormap and Fig. 11 for the AGS v2 interface) 
and updated after the execution of each assembly. This map shows 
components that are to be picked up later in time as more yellow than 
components that are to be picked up sooner in time, which are greener. 
The component colors are updated by recording the most frequent order 
of the selected components. Thus, they encode an ASP sequence in a less 
explicit – or fuzzy – language, using a simple action or transition fre-
quency matrix. 

The transition frequency matrix is based on the liaison matrix and it 
is expressed component by component with a range of increasing values 
from one to N over the liaisons used. Liaisons are set from the beginning 

to values -1. The matrix is, of course, symmetrical. 
While the colored ap does not solve a particular issue, it has the aim 

of reinforcing the idea that a standard ASP exists before that an operator 
can analyze the assembly state and make their decision. It is a method to 
elicit knowledge from the human operators while they are using the 
AGS. 

On the AGS interface, at first, the entire colored map blinks. After the 
selection of a first component that becomes blue, all the liaison-related 
component blink with the color map, while the rest of non-liaison- 
related components are gray and unselectable. On the bottom-left 
corner, an assembled locomotive rotates to give a preview of the final 
objective of the assembly process. On the top-left corner, a button allows 
to undo the last assembly operation. On the top-right corner, the selected 

Fig. 9. Assembly guidance system v1 with digital twin of the 
locomotive assembly. (a) The green/gray map allows selecting 
all the components that have available liaisons. (b) Component 
17 “threaded screw” is selected. (c) Component 8 “front cover” 
is selected and the subassembly {8,17} is automatically 
considered done. Components 8 has become gray in the green/ 
gray map because there are no other liaisons left for it, i.e. they 
cannot be further assembled. While component 17 still has one 
liaison left with component 9 “boiler”. On the top-left corner, a 
button allows to undo the last assembly step. On the bottom- 
right corner, the assembled locomotive is shown. (For inter-
pretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article).   
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subassembly is shown. The button “assemble components” confirms the 
subassembly operation done at the real station. When this is pressed, the 
selected assembly is moved to the bottom-right corner, where all the 
assembled components are shown as a preview of the current assembly 
state. A white ribbon on the bottom of the AGS interface describes the 
current state and the possible operations. See Fig. 11 for more details. 

The aim of the subsequent experiment is to test that the AGS v2 does 
not generate issues that are similar to issue 5. The experimental setup is 
kept as before, with the sole change of the guidance system deployed in 
its version 2 and the issue 5 test is formulated as a new hypothesis 6 
(H6): 

Hypothesis 6. If every operator can express their assembly intention 
in form of new subassemblies made of several components, rather than 
adding one new component to the current assembly, issue 5 disappears. 

4.8. Results of the fourth experiment 

This round of assemblies verifies H6 because it quantitatively shows 
that operators can think in a quite wide range of subassemblies (see 
Table 1) and subsequent assembly sequences. It also shows that when 
the optimization criteria are not made explicit, people tend to follow any 
of their own ideas. Which can be formulated as: 

Issue 6. Optimization criteria. Operators with soft constraints and 
no instructions tend to favor their own personal optimization criteria, 
which are not explicit. 

This experiment confirms that, despite H6 stands, H5 is false. H5 was 
hard to prove or falsify with the previous experimental data, but this 
time it is falsified by the fact that there are no limitations to the in-
tentions that an operator could have. Thus, the AGS will always be 
limited by the programmer’s understanding of the operators’ way of 
thinking. 

4.9. Hypotheses generation and setup of the fifth experiment 

All the previous experiments have created a basis of hypotheses and 
issues that leads to a final experiment. This experimental setup makes 
again use of the successful AGS v2. The researcher illustrates its use by 
explicitly asking the operators to pick subassemblies that would be 
stable after the assembly operation (see Table 1), i.e. when the com-
ponents will hold together by gravity, friction or anything else than the 
operators’ ability to keep them together. This setup aims at verifying the 
following: 

Hypothesis 7. If optimization criteria are given, the choice of sub-
assemblies converges towards specific choices. 

In particular, this experiment should quantitatively verify hypothesis 
7 (H7) in terms of stability of the chosen subassemblies. It should also 
validate all the previously proposed solutions to tackle the issues found. 
For this purpose, a whole class of circa 150 students is dedicated to one 
final large experiment, able to generate a statistically relevant number of 
assembly executions with the proposed AGS in its final version v2 and 
stability criteria. 

4.10. Results of the fifth experiment 

An entire class of students corresponds to 47 assembly groups and 
relative locomotive assemblies. For each assembly, the selected sub-
assemblies and subassembly sequences are shown in Fig. 12. If these 
results are compared with those of the previous experiment, see Table 1, 
the choice of any subassemblies this time is limited to stable ones, thus 
numerically confirming H7. 

The statistical results offer insights on what are the most common 
subassemblies in both the fourth (limited to the stable ones) and fifth 
experiments, namely: {8,9,17}, {7,12}, {7,9,18}, {1,3,13}, {2,5,15}, 
{1,4,11,14}, {2,6,11,16}, {9,11,20,21} and {9,10,11,19}. The obser-
vation of such common subassemblies in different order from Fig. 12 
suggests that statistics of what subassembly at which step can also be 
extracted from the data and highlighted. The operation leads to Fig. 13, 
a statistical assembly step graph. Which is also a novel contribution to 
literature introduced by this article. This graph encodes the most sig-
nificant subassembly/step choices to complete the assembly and it 
represents a hybrid form between a general AND/OR graph and a fully 
defined assembly sequence. 

The order of selection of all the subassemblies is analyzed in Matlab® 
and it generates two relevant results shown in Figs. 14 and 15. The first 
one is a statistically reinforced subassembly transition matrix (Fig. 14) 
that is composed of all the values corresponding to a transition from one 
subassembly (column) to another (row). The diagonal shows the total 
count of each subassembly and it is in accordance with the gray boxes 
displaying the same information in Fig. 13. In orange and red, the matrix 
values that are respectively above two-third and one-third of the diag-
onal numbers for the row, used as conventional thresholds to highlight 
the information contained. A matrix similar to this, but listing each 
component instead of the subassemblies is the one used to generate the 
colormap of Fig. 10. This suggests how the same operation could be done 
by visually letting the operator chose an entire sequence of sub-
assemblies. The second result is a statistically reinforced subassembly 
precedence matrix (Fig. 15) that is generated by collecting all the values 
corresponding to a transition from any subassembly (column) to another 
(row), at any step. In other words, the past use of a subassembly is the 
value displayed by the column for each selected subassembly (row). If 
the column value is zero it means that the corresponding subassembly 
has never been assembled before the one indicated by the row. If the 
same conventional threshold as before is set for this matrix, considering 
two thirds of the diagonal number as a qualifying value, the cells above 
it are colored in red. They constitute precedence constraints that can be 
enforced to obtain an optimal ASP from the collective operators’ 
knowledge elicited by the AGS with a statistical reinforcement learning 
process. 

It is important to outline that the precedence/transition matrices in 
Figs. 14 and 15 did not numerically drive the assembly process in this 
research; however, they can be used to generate further colormaps that 
implicitly leave the choice to the operators, i.e. by showing colors 
instead of numbers. A similar operation was done on the statistical 
transitions applied over the liaison matrix to generate the AGS colormap 
shown in this article. Alternatively, in the application of online RL al-
gorithms, these thresholds can be tuned up as hyperparameters for the 
RL algorithms to make an informed choice instead of leaving it up to the 

Fig. 10. Colored map for the locomotive assembly. Green components should 
be assembled earlier than yellow components. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version 
of this article). 
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Fig. 11. Assembly guidance system v2 with digital twin of the locomotive 
assembly. On the bottom-left corner, an assembled locomotive rotates to 
give a preview of the final objective. On the top-left corner, a button al-
lows to undo the last assembly operation. On the top-right corner, the 
selected subassembly is shown. On the bottom-right corner, all the 
assembled components are shown as a preview of the current assembly 
state. The button “assemble components” confirms the subassembly 
operation done at the real station. (a) The colored map allows selecting all 
the components. (b) Component 17 “threaded screw” is selected. (c) 
Subassembly {8,9,17} is selected. (d) Subassembly {8,9,17} is assembled 
and components 8 and 17 have become gray in the colored map because 
they cannot be further assembled.   

A. de Giorgio et al.                                                                                                                                                                                                                             



Journal of Manufacturing Systems 60 (2021) 22–34

31

operators. 

5. General discussion of results 

Advancing from the first to the fifth agile experiments, the given 
paper instructions, illustrating a predefined fixed ASP, have been 
replaced by an adaptive AGS that learns an optimal ASP from the op-
erators. By comparing the ASP before and after, it can be seen from 
Table 2 that the instruction order is slightly changed. This is due to the 
understanding level of the operators and the proper codification of their 
true intentions provided by the AGS interface. For instance, separate 
instructions such as “Push the shoulders into the frame”, relative to 
subassembly {1,2,11}, and “Fit the remaining wheels”, relative to sub-
assemblies {1,4,14} and {2,6,16}, is replaced by a unique operation 
described by subassemblies {1,4,11,14} and {2,6,11,16}. This is because 
fitting the axel into the frame comes more natural for the operator when 
the operation is directly completed with the addition of the remaining 
wheel to it. In both cases, namely with paper instructions or AGS, the 
assembly is successful. Thus, the software approach objectively allows to 
structure and document the ASP process, together with the mental 
process of the operators, without interfering with them. 

Among the many issues encountered, all were solved either imme-
diately or by a following experiment. In particular, issues 1–4 are 
tackled at the beginning, providing the fundamental choices leading to 
the AGS, and issues 5 and 6 allow improving the AGS from its version 1 
to version 2. The working hypotheses generated by this process are all 
qualitatively or quantitatively verified or falsified and overall show that 
controlling the experimental design and its variables in such a high 
complex assembly task is not only possible, but also fruitful. The sta-
tistical results collected at the end of the fifth experiment provide a 
statistical basis to apply RL algorithms at assembly time, basing the 
optimization function not on preexisting criteria but on the informed 
decisions of knowledgeable operators in the era of Industry 4.0. The 
statistical step frequency graph (see Fig. 13) and the statistical hard and 
soft precedence constraints (see Figs. 14 and 15) generated by this work 

are in line with the outcomes of previous techniques, with the sole dif-
ference that they are dynamically generated at assembly execution time, 
as online RL methods would require. 

Table 1 
Frequency and stability of subassemblies selected with the assembly guidance 
system v2 in the fourth experiment (without the stability criteria) and in the fifth 
experiment (with the stability criteria).  

Subassembly Freq. 4th exp. Freq. 5th exp. Stability 

{8,9,17} 15 47 Stable 
{7,12} 15 47 Stable 
{7,9,18} 14 47 Stable 
{1,3,13} 13 35 Stable 
{2,5,15} 12 35 Stable 
{1,4,11,14} 9 33 Stable 
{2,6,11,16} 8 33 Stable 
{10,19} 8 0 Unstable 
{9,11,20,21} 8 47 Stable 
{9,10,11,19} 7 47 Stable 
{11,19,20} 6 0 Unstable 
{2,6,16} 6 3 Stable 
{2,11} 5 0 Unstable 
{9,19} 5 0 Unstable 
{20,21} 5 0 Unstable 
{1,11} 4 0 Unstable 
{1,4,14} 4 4 Stable 
{9,19,20} 3 0 Unstable 
{5,15} 2 0 Unstable 
{9,20} 2 0 Unstable 
{9,20,21} 2 0 Unstable 
{11,19} 2 0 Unstable 
{1,2,11} 1 4 Stable 
{1,3,11,13} 0 2 Stable 
{1,3,4,11,13,14} 1 8 Stable 
{1,3,4,13,14} 0 2 Stable 
{2,5,11,15} 1 1 Stable 
{2,5,6,11,15,16} 0 9 Stable 
{2,5,6,15,16} 0 2 Stable  

Fig. 12. Subassembly steps for each group.  

A. de Giorgio et al.                                                                                                                                                                                                                             



Journal of Manufacturing Systems 60 (2021) 22–34

32

6. Conclusions and future work 

This research shows that ASP can be done with statistical RL tech-
niques with a step optimization approach at assembly time. The ASP 
optimization policies are determined and driven by the competence of 
the Industry 4.0 skilled operators. Computers, in particular AGS, have to 
be the interface between the digital world that has computational power 
to support informed decisions, and the humans who operate in the real 
world. This is a new approach for an expert operator that can fully 
interact with the ASP algorithm, or rather be part of it, and drive the ASP 
optimization function, based on their personal experience on the 

assembly lines and of an inevitably complex world. The advantage is to 
be able to tackle any kind of unknown problems before they can arise 
and add a great deal of adaptiveness and resilience to the industrial 
operations. 

This research sheds light upon how an important peculiarity of RL 
algorithms is not exploited in industrial processes. This is the exploita-
tion vs exploration pattern – ironically human-inspired – corresponding 
to asking operators’ to either stick to their instructions or take initiative. 
This research has partly proven that, especially in the context of Industry 
4.0, giving options to knowledgeable operators is the way forward to 
truly take advantage of the online capabilities of RL algorithms in in-
dustrial applications, in particular with ASP. Moreover, the detailed 
approach allows coexistence with more elaborate schemes in which the 
assembly processes are defined through ontological work [43] or for 
semi-automated operations requiring high adaptability and 
self-configuration [44]. This is an added advantage as the production 
designers can create assembly systems that are gradually automated 
from manual to fully automated. 

The introduction of Marton’s variational approach to the ASP, 
together with the developed AGS, allows adding another couple of 
components of the Bloom’s Taxonomy [45] to the learning experience. 

Fig. 13. Subassembly step frequencies. The total can be read both as the sum of 
the step frequencies and the total frequency of each subassembly. On the side 
column, in gray, the subassemblies with the greatest frequencies, and in green, 
the relative step counts, with darker green for higher frequencies. (For inter-
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article). 

Fig. 14. Statistically reinforced subassembly transition matrix. Total times that 
each column subassembly is picked right before the row subassembly. The di-
agonal shows the overall subassembly usage. In orange (middle value) and red 
(high value), the hard constraints. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article). 

Fig. 15. Statistically reinforced subassembly precedence matrix. Total times 
that each column subassembly is picked at any step before the row subassem-
bly. The diagonal shows the overall subassembly usage. In red, the hard con-
straints. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article). 

Table 2 
Comparison of assembly instructions between the initial paper instruction ASP 
from the course instructor and the AGS-reinforced ASP recorded in the fifth 
experiment.  

Instructions Relative 
subassembly 

Order 

Instr. AGS 

Assemble the boiler and 
front cover 

{8,9,17} 1 1 

Mount the boiler on the 
frame 

{9,10,11,19} and 
{9,11,20,21} 

2 4 and 5 

Insert the roof into the cabin {7,12} 3 2 or 3 
Mount the cabin to the boiler {7,9,18} 4 2 or 3 
Mount a wheel on each axle {1,3,13} and 

{2,5,15} 
5 6 

Push the shoulders into the 
frame 

{1,2,11} 6 Almost 
never 

Fit the remaining wheels {1,4,14} and 
{2,6,16} 

7 Almost 
never 

Push the shoulders into the 
frame and fit the 
remaining wheels 

{1,4,11,14} and 
{2,6,11,16} 

No (already 
done in 6 and 
7) 

7  
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Namely, a trial and error or mechanical operation (depending on the 
operator’s knowledge) is translated in quality time for learning when the 
initial task of simply applying the operations described by the assembly 
instructions is replaced by the need for the operators to analyze the as-
sembly state, report it to the AGS and use it to evaluate the best strategy 
to operate. A change that highlights both the pedagogical success for 
such an application in the context of the manufacturing course that 
provides the use case described in this article, and the improved 
manufacturing outcome that is foreseen in real industrial environments, 
where operators can learn quickly and efficiently the assembly opera-
tions while working on a fully functional production line. 

The use of statistical RL methods provides insights on the type of 
knowledge that artificial intelligence systems can accumulate when 
interacting with human operators. One is the step frequency diagram, 
which shows the best statistical assembly sequence that emerges from 
the wisdom of a crowd of operators. Another is the precedence matrix 
that can be constructed by applying a conventional threshold to the 
statistical values obtained by counting the transitions among the ele-
ments of the liaison matrix. All these mathematical tools can be used as 
building blocks for RL algorithms that are meant to drive an online ASP. 

Future work should primarily focus on testing the AGS developed 
with this research on real assembly lines in industry. Firstly, because the 
results obtained in the experimental setup of this article need to be 
validated on several different assemblies and, secondly, because of the 
eventual limitations coming from the didactical assembly that has been 
chosen for this research that does not allow to optimize other industrial 
criteria, e.g. assembly execution time. A second line of research could be 
directed to understanding the reasons behind an operator’s choice of 
assembly sequence. While RL is generally proven to converge towards 
optimal solutions, it does not explain why a solution in ASP might be 
optimal. This is against the current line of thought in ASP, but it is in line 
with the direction taken by deep reinforcement learning, where unsu-
pervised algorithms solve problems without the necessary human 
understandability. 

Another focus of future work is to integrate the AGS into the oper-
ator’s equipment, with technology such as head mounted devices for 
augmented reality or any other devices that are operated by multimodal 
input such as sensors and cameras, other than the operator’s speech, 
gaze, hand gestures or movements in the assembly station. 

While online RL algorithms are good optimization tools, they are 
meant to be used for learning from small data, instead of big data. The 
latter approach is possible when the source of variation provides plenty 
of data. Such is the case for the offline approach to RL presented in the 
literature review of this article. An assembly of customized products 
might produce only a limited variation of data, therefore the statistical 
approach with online RL algorithms seems coherent with the industrial 
requirements but it needs to be verified for its consistency on small as-
sembly data. Can a few attempts to a correct assembly elicit the majority 
of issues? This is indeed a potential limitation and an important 
perspective to be addressed in future work. 

As this article is meant to pave the way to the application of online 
statistical RL algorithms to ASP, a major limitation consists in not 
applying and testing any specific and well-known RL algorithms to on-
line ASP for benchmarking purposes. This has to be done once it is 
assessed the validity of such approach, which remains the main aim of 
the research presented in this article and its future work. Since the 
statistical convergence aspect of online RL has been assessed as prom-
ising for ASP, it is indeed a needed future work to test standard RL al-
gorithms and list their pros and cons towards a full use of online RL ASP 
methods. In particular, strategies about how to give rewards to correct 
ASP or how and when to apply the exploitation vs exploration strategy, 
for example if the operator’s knowledge can be evaluated before as-
sembly and a threshold can be based on the result of this assessment. 
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[11] Kaasinen E, Schmalfuß F, Özturk C, Aromaa S, Boubekeur M, Heilala J, et al. 
Empowering and engaging industrial workers with operator 4.0 solutions. Comput 
Ind Eng 2020;139:105678. https://doi.org/10.1016/j.cie.2019.01.052. 
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