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Infinite Swapping Algorithm for Training Restricted
Boltzmann Machines

Henrik Hult, Pierre Nyquist, and Carl Ringqvist

Abstract Given the important role latent variable models play, for example in
statistical learning, there is currently a growing need for efficient Monte Carlo
methods for conducting inference on the latent variables given data. Recently,
Desjardins et al. (2010) explored the use of the parallel tempering algorithm for
training restricted Boltzmann machines, showing considerable improvement over
the previous state-of-the-art. In this paper we continue their efforts by comparing
previous methods, including parallel tempering, with the infinite swapping algo-
rithm, an MCMC method first conceived when attempting to optimise performance
of parallel tempering (Dupuis et al. (2012)), for the training task. We implement a
Gibbs-sampling version of infinite swapping and evaluate its performance on a
number of test cases, concluding that the algorithm enjoys better mixing properties
than both persistent contrastive divergence and parallel tempering for complex
energy landscapes associated with restricted Boltzmann machines.

1 Introduction

Consider a latent variable model with probability density of the form

p(v) =
1

Z(θ)∑
h

exp{−Eθ (v,h)}, (1)

where v represent visible units and h hidden units, Z(θ) is an unknown normalising
constant, and θ an unknown parameter. The function Eθ is referred to as the energy
function. Training such models by maximum likelihood through, e.g., Stochastic
Gradient Descent (SGD) using a training set of independent samples of visible
units often requires Markov chain Monte Carlo (MCMC) methods. When the
energy landscape is complex, convergence to the desired stationary distribution
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may be slow because the Markov chain tends to get stuck near local minima.
In the context of training in machine learning, this phenomenon might result in
significant gradient estimation error.

A simple, yet interesting model of the form (1) is the Restricted Boltzmann
Machine (see Section 2), which is prominent in statistical learning and used in
various deep architectures. It is particularly successful in collaborative filtering,
for instance in assigning ratings of movies to users, see [28]. Training of restricted
Boltzmann machines have been gradually improved from contrastive divergence
[16, 17], to persistent contrastive divergence [32] and most recently parallel
tempering [3]. In a sense this paper continues the effort initiated in [3] by proposing
the infinite swapping (INS) algorithm, designed to overcome rare-event sampling
issues, for training restricted Boltzmann machines. Moreover, we investigate via
an empirical study the impact the choice of training algorithm has on classification.
This partially answers a question posed in [3], namely what impact the use of
parallel tempering, and more generally extended ensemble Monte Carlo methods,
may have on classification tasks.

Parallel tempering (PT) [9, 12, 31] has become a standard tool for molecular
dynamics simulations, see for example [9, 13, 19, 22, 26, 30] and the references
therein. The idea is that for models where there is a parameter acting like a
temperature - the canonical case is a Gibbs measure and the associated (inverse)
temperature, similar to (1) - one runs multiple Markov chains, each with a different
“temperature”, and couple them via swaps of the particle locations at random times
according to a given intensity, see Section 3 for further details.

The infinite swapping algorithm was introduced in [8] as an improvement
of parallel tempering, with documented success in a variety of chemical and
biological physics settings. Consequently, it serves as a natural candidate for
potentially improving training of machine learning models. It can be viewed as the
limit of PT when the swap rate is sent to infinity; in [8] the corresponding sampling
scheme is shown to be optimal from a large deviations perspective and in [5] a
more in-depth analysis of PT and INS is carried out in the setting of continuous-
time jump Markov processes. Recently [23] studied the ergodicity properties
of INS at low temperature, deriving Eyring-Kramers formulae for the spectral
gap and the log-Sobolev constant, showing superiority of infinite swapping over
overdamped Langevin dynamics.

In addition to the theoretical results of [8, 5, 23] on the properties of PT and
INS, recent empirical studies show superior performance of INS compared to PT
and other Monte Carlo methods for a range of common performance measures [24,
7, 4]. So far the main application area for INS has been chemical and biological
physics and adjacent areas, see for example [6, 21, 34, 25]. However, as extended
ensemble methods, such as PT, are becoming increasingly popular for MCMC
simulations in a wide range of areas, it is natural to consider INS in the same
settings. Statistical learning and latent variable models is one such example where
metastability is often a hindrance in the training phase.
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In this paper we propose to use the INS algorithm in the training phase of a
restricted Boltzmann machine to improve mixing of the underlying Markov chain
and to facilitate accurate estimation of gradients. The contributions of this paper
include

• an implementation of a Gibbs sampling version of the infinite swapping algo-
rithm for latent variable models,

• details on the infinite swapping algorithm for training restricted Boltzmann
machines,

• empirical comparison of the performance of training restricted Boltzmann
machines using infinite swapping, parallel tempering, and persistent contrastive
divergence.

So far infinite swapping has mainly been considered for Langevin and Glauber
dynamics [8, 21, 5] in continuous time. The paper [8] also contains discrete-time
large deviations results and discusses the corresponding sampling schemes. For
the application to restricted Boltzmann machines, the large size of the state space
under consideration, although discrete, renders Glauber dynamics unsuitable
because of the need to compute the full transition matrix. To the best of our
knowledge this paper is the first to implement a Gibbs sampling version of INS
that circumvents this computational issue. Although the present study is limited to
restricted Boltzmann machines, it is plausible that this Gibbs sampling version
of the infinite swapping algorithm can be further generalised to more complex
latent variable models. In [2] the authors introduce Hamiltonian Monte Carlo in
the setting of variational auto-encoders, another prominent latent variable model,
to obtain unbiased estimators of gradients with low variance.

The remainder of the paper is organised as follows: In Section 2 the restricted
Boltzmann machine is introduced. The parallel tempering and infinite swapping
algorithms are presented in Section 3. An empirical study of INS performance is
provided in Section 4 and the conclusions are summarised in Section 5.

2 Restricted Boltzmann machines

The Restricted Boltzmann Machine (RBM) [29, 11, 17, 33] is a probability distri-
bution over an N-dimensional boolean space {0,1}N . Let v∈ {0,1}N , h∈ {0,1}M

be row vectors and set x = (v,h) ∈ {0,1}N+M. Let W be a real-valued parameter
matrix of dimension N×M, and let b ∈RN , c ∈RM be real-valued bias parameter
row vectors. The RBM probability function is defined as

p(v) = Z−1
∑
h

e−E(v,h), (2)

E(v,h) =−vWhT −vbT −hcT , (3)
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An observed data point enters the RBM model as a vector of visible units v ∈
{0,1}N , while h ∈ {0,1}M denotes accompanying hidden units, i.e., the latent
variables. The combined vector x = (v,h) ∈ {0,1}N+M is referred to as a particle.

The latent structure facilitates simulation from the joint distribution through
block Gibbs sampling, as block conditional probabilities p(v|h) and p(h|v) are
available in explicit form and are easy to sample from. Indeed, letting e(n) denote
the nth coordinate of any vector e, it holds that

p(v|h) ∝

N

∏
n=1

exp{v(n)(WhT +bT )(n)}.

Let sigm be the sigmoid function sigm(x) = (1+e−x)−1. The probability function
factorises and straightforward algebra gives

p(v(n) = 1|h) = sigm[(WhT +bT )(n)], (4)

p(h(m) = 1|v) = sigm[(vW+ c)(m)]. (5)

Hence, sampling from the conditional distributions p(v|h), p(h|v) amounts to
sampling independent Bernoulli variables, with probabilities extracted from
the sigmoid forms (4) and (5). Samples from the joint distribution p(v,h) ∝

exp{−E(v,h)} can thus be obtained by running a block Gibbs Markov chain [18].
Inference for the parameters in a RBM, for a particular data point v, is often

conducted via maximum likelihood, by minimising the negative log-likelihood,
− log p(v), with respect to the parameters W,b,c. This is usually achieved with
gradient descent methods, for which an estimate of the gradient ∇p(v) is needed.

A calculation of the gradient coordinate corresponding to the partial derivative
w.r.t the parameter wn,m at row n and column m in the matrix W yields (see [10]
for details)

∇wn,m (− log p(v)) = . . .=−v(n)p(h(m) = 1|v)+E[v(n)p(h(m) = 1|v)]. (6)

The first and second term on the right-hand side of (6) are often referred to as
the positive phase and the negative phase, respectively. The negative phase is the
problematic term as it amounts to taking expectation under the joint distribution
of (v,h). However estimates of this part of the gradient can be obtained via the
Gibbs sampling procedure.

When the number of data points |D| = d is large, the standard technique for
minimising the average negative log-likelihood is (mini-batch) stochastic gradient
descent (SGD). In the SGD method, a subset D′ ⊂ D of size |D′| = d′ < d is
chosen at random and the gradient coordinate w.r.t. wn,m at current parameter state
is estimated by

1
d′ ∑v∈D′

−v(n)p(h(m) = 1|v)+E[v(n)p(h(m) = 1|v)]. (7)
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Here the expectation is taken w.r.t to p(v). Similar to standard gradient descent,
the estimate of the gradient is used to update the parameter vector in step n+1
through

(W,b,c)n+1 = (W,b,c)n−η(∇̃W, ∇̃b, ∇̃c)

where η is a scalar learning rate, and where ∇̃x denotes the estimated gradient
coordinates for the matrix/vector x.

For RBMs, where the negative phase is estimated using Gibbs sampling, SGD
requires simulations to be run for each training step. Usually, a Gibbs chain of size
d′ is run for a fixed number of κ steps before an average is formed with the end
samples. Starting the Gibbs chain anew at sampled data points in each gradient
step is referred to as the contrastive divergence (CD-κ) training method. Since
long burn-in periods might be expected with this approach, the Gibbs chain for a
certain training step is typically started at the last samples of the previous training
step. This method is referred to as persistent contrastive divergence (PCD-κ).
Current state-of-the-art method for training RBMs is arguably a combination of
PCD-1 and PT.

3 Parallel tempering and infinite swapping for Gibbs samplers

Consider the setting of Section 2, that is a RBM trained with SGD with batch size
d′. Parallel tempering amounts to multiple Gibbs chains of size d′ being run at
different temperatures and particles being exchanged according to a Metropolis-
Hastings rule. In the case of two temperatures, in addition to the original model
(2) with temperature τ1 = 1, an additional RBM with a higher temperature τ2 > 1
is introduced:

pτ2(v) = Z−1
τ2 ∑

h
e−

1
τ2

E(v,h)
.

It is easy to check that all calculations above for τ1 = 1 carry over in a straight-
forward manner to a RBM with τ2 > 1. The PT method proceeds by running two
Gibbs chains C1,C2, at respective temperature, each of size d′. Let x1,1, ...,x1,d′ ,
x2,1, ...,x2,d′ denote the particles in C1,C2 respectively. After κ Gibbs steps, parti-
cles x1,i,x2,i i = 1, ...,d′ are swapped with probability

1∧
exp{− 1

τ1
E(x2,i)− 1

τ2
E(x1,i}

exp{− 1
τ1

E(x1,i)− 1
τ2

E(x2,i)}
.

Swaps of this kind are attempted according to the so-called swap rate (the jump
intensity) of the algorithm. The process then starts anew with running C1,C2, at
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their respective temperatures for another κ Gibbs steps. The resulting process is
ergodic with the product measure pτ1⊗ pτ2 as stationary distribution. Thus, the
chain C1 converges in distribution to pτ1 , the distribution of interest.

There are several ways of extending PT to additional temperatures. Here, we
follow the common approach of only attempting swaps between neighbouring
particles, see [20]. For K chains with respective temperatures τ1 < ...,< τK , all
swaps of the form [xk,i,xk+1,i]→ [xk+1,i,xk,i] are attempted after every κ Gibbs
step, starting at k = 1 and working upward to k =K−1. The swapping probabilities
used are thus

1∧
exp{− 1

τk
E(xk+1,i)− 1

τk+1
E(xk,i)}

exp{− 1
τk

E(xk,i)− 1
τk+1

E(xk+1,i)}
.

The swapping mechanism limits the degree of dependency between samples and
forces quicker mixing of samples, thus speeding up the convergence of C1.

Compared to parallel tempering, the infinite swapping algorithm proposes a dif-
ferent mechanism for exchanging information between the tempered Gibbs chains.
In PT, the particle exchange probabilities are given but the proposed changes
(only neighbouring particles, etc.) can be chosen. In INS the full mechanism for
exchange is used; in a sense, all possible swaps are attempted.

Consider K chains C1, ...,CK with temperatures τ1 < τ2 < ... < τK and as-
sume each chain contains only one particle (extending to the case of d′ par-
ticles is straightforward). Denote by xk = (vk,hk) the particle in chain k and
let X = (x1, ...,xK) denote the vector of particles. Let σ j, j = 1, ...,K! denote
a permutation of the temperature indices [1, ...,K], for some ordering of the
K! permutations. Write the RBM probability function of temperature τk as
pk(x) = Z−1

k exp{−E(x)/τk}. Define the symmetrised distribution p̄ and the joint
probability distribution pσ j across the chains for permutation σ j as

p̄(X) =
1

K!

K!

∑
j=1

pσ j(X), pσ j(X) =
K

∏
k=1

p
σ k

j
(xk),

where σ k
j denotes the kth component of the permutation σ j. The INS algorithm

consists of first running the Gibbs chains independently for κ Gibbs steps; each
Gibbs-step amounts to first sampling a point h from p(h|v) and then a point v from
p(v|h). In the next step temperatures are swapped between the chains according
to permutation σ j with probability

ρσ j(X) =
pσ j(X)

∑
K!
j=1 pσ j(X)

=
pσ j(X)

K! p̄(X)
.

The procedure is then repeated, resulting in a Markov chain sample genera-
tion scheme. The collective Markov chain (C1, ...,CK) with the INS temperature
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swapping mechanism is referred to as the INS-Gibbs Markov chain. The isolated
κ Gibbs steps together with one swapping operation will be referred to as an
INS-Gibbs step of the INS-Gibbs Markov chain. Note that for large K, since the
number of permutations is K!, the computational cost of INS can be too high for
practical purposes. One can then use so-called partial INS (PINS) [8], in which
temperatures are arranged into subgroups, swaps are attempted within one such
subgroup at a time and with a handoff-rule for changing between subgroups. This
reduces the computational cost of INS significantly. For example, in [4] K = 30
temperatures are used for a Lennard-Jones model of 55-atoms argon cluster. Sim-
ilarly, in [8] a collection of K = 45 temperatures are used for a Lennard-Jones
cluster of 38 atoms. In these complex potential energy landscape the partial infinite
swapping approach is appreciably more effective than conventional tempering
approaches; see [7] for an extensive numerical study.

To obtain an estimate of Ep1[ f (x)] for any real-valued function f , a weighted
average of the particles of each chain is formed:

∑
K
k=1 f (xk)

(
∑

σ ;σ k=1

ρσ (X)
)
, (8)

where {σ : σ k = 1} is the subset of permutations that have 1 as their kth component
(that is, that assign the kth chain temperature τ1). Proofs that the INS-Gibbs
Markov kernel has the symmetrised distribution p̄ as invariant distribution, and that
the estimate (8) has the desired expected value Ep1[ f (x)] if samples are generated
from p̄, are included in the Appendix as Proposition 1 and 2, respectively. The
proofs are similar to existing results and are included for completeness.

Because the sample space is finite and the Markov chains are irreducible,
Proposition 1 ensures that the empirical measures of the full chain converges to
the symmetrised distribution. Consequently, if the INS-Gibbs Markov chain is run
long enough, its empirical measure will approximate the symmetrised distribution.

Algorithm 1 is an outline of the INS algorithm for obtaining an estimate of
Ep1[ f (x)] in the setting of Gibbs-sampling. For training a RBM, the last step

Algorithm 1 INS-Gibbs Algorithm
1. Set number of chains K, temperature values [τ1, ...,τK ], number of Gibbs steps κ between swap attempts, number

of swap attempts q and initial data points.
2. Start chains with initial data points.
3. for i in 1 : q

a. Run each chain for κ Gibbs steps.
b. Draw permutation σ with probability ρσ

c. Permute the temperatures of the chains according to permutation σ

4. Form an estimate as

y = ∑
K
k=1 f (xk)

(
∑

σ ;σk=1

ρσ (X)
)
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of the algorithm corresponds to using the gradient negative phase estimate as
f and the tempered RBM joint distributions for forming the weights. While
obtaining an estimate as described in the algorithm, one can use the so-called
particle/temperature-associations as a diagnostic of non-convergence. These are
quantities than can be computed while running the algorithm and used to indicate
whether it is possible for the empirical measure to have converged; see [4, 5] for
details and an analysis of this diagnostic.

4 Numerical experiments

In order to evaluate the performance of INS for training RBMs a series of numerical
experiments are conducted. Two types of data sets, described in Section 4.3, are
considered. For the smaller data sets the exact likelihood and exact gradient can
both be computed, which enables comparison of the training algorithms. For larger
data sets neither the exact likelihood nor the exact gradient is tractable. Instead a
classification Boltzmann machine will be used to evaluate the training algorithms;
the quantity used for comparison is referred to as prediction accuracy.

4.1 Prediction accuracy

To compare training algorithms using a classification Boltzmann machine, each
data point in the data set is concatenated with a vector c ∈C representing its class,
where C denotes the subspace of {0,1}dim(c) such that exactly one coordinate is
nonzero, and dim(c) is the number of classes. Such a vector is called a one-hot
vector in the machine learning literature. For a RBM defined on an extended
visible state space ṽ = (v,c), the conditional probability for class type c given v
can be computed explicitly: it holds that

p(c|v) = p̂(c,v)/Z
p̂(v)/Z

=
p̂(c,v)
p̂(v)

=
p̂(c,v)

∑
c∈C

p̂(c,v)
,

and the terms on the right-hand side can be computed with the marginalisation
trick (see the Appendix for a description). The above expression can be used for
classification, and for calculating classification error through comparing with the
actual class type for data points. The efficiency of the algorithms can be evaluated
by measuring the classification capabilities of each parameter state during training
on the extended data sets. More specifically, for each parameter state the prediction
accuracy,
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A = ∑
(vi,ci)∈D′

log
( p̂(ci,vi)

∑
c∈C

p̂(c,vi)

)
,

is calculated, where D′ is a randomised subset of data, for each state during
training.

4.2 Parameters and settings

This section describes the parameters involved in the training of RBMs and the
choices made for this work. The main objective of the numerical experiments is a
comparison with [3], where performance results for PT in the RBM setting are
presented. Parameters have therefore been selected accordingly, and no attempts
have been made to find optimal parameter settings for the sampling and training
tasks under consideration. Where possible, external recommendations have been
taken into account, as have empirical observations from experiments on the impact
of parameter changes.

4.2.1 Learning rate

The learning rate η can be chosen as a fixed constant or as a function of, e.g.,
the number of updates in SGD. A large learning rate increases the speed of
training but may result in inaccurate optima or degenerate behaviour, while a small
learning rate allows for greater accuracy at the cost of training speed. Numerical
experiments indicate that a learning rate of 0.1 yields satisfactory performance,
and this value is chosen throughout. This is also consistent with experiments in
[3].

4.2.2 Initialization

Throughout the experiments, the initial weights and biases are drawn randomly
from normal distributions of small variance (order of magnitude 0.01) and zero
expected value, in line with the recommendations in [15]. Empirically, different
draws do not yield different results, nor smaller changes in the variance parameter.

4.2.3 Training steps

The number of training steps are set to 10000 in all the numerical experiments,
as all the relevant effects seems to appear within this range. Furthermore, in the
examples of lower dimension, empirical observations suggest the likelihood is
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maximal after this number of steps. If the training rate is decreased or if the data
dimension is significantly increased, more training steps would likely be needed.

4.2.4 Batch size

We set the batch size to be 10 thoroughout. Empirical studies show that this batch
size is sufficient for non-degenerate behaviour of the likelihood. A larger batch
size yields a more precise gradient estimate, but causes longer computational time.
Therefore, for computational efficiency, a small batch size is preferred.

4.2.5 Temperatures

Both PT and INS run on temperatures {1, 2, 3, 4, 5}. Empirical studies show
no significant difference when adding more temperatures for the examples under
consideration. However, for certain parameter setups, fewer temperatures can
result in degenerate behaviour similar to what is observed for a single chain, see
Section 4.4. At five temperatures, no notable difference in running time between
INS and PT is present, allowing for a fair comparison of the algorithms. For
a large number of temperatures, the PT algorithm is considerably faster and a
fair comparison would then be with PINS rather than INS. Moreover, mixing
properties are satisfactory for the temperatures selection. This is also in line with
demonstrations in [3], where 5 temperatures are considered (of roughly the same
magnitude, however the exact temperature values are not disclosed).

4.2.6 Number of swaps

For PT, one swap is attempted for every step in the Markov chain. This choice
makes the experiments consistent with [3]. Moreover, it is experimentally observed
that an increase in the number of swap attempts per training step does not seem to
have any significant effect on the results.

4.3 Data sets

We use two types of data sets for empirical evaluation of the INS algorithm for
training a RBM. The first is a collection of toy data sets similar to that used in
[3]; by changing the size of the toy data sets we can move from cases where the
gradient can be computed exactly to those where this is not possible for either
gradients or likelihoods. The second type of data set we consider is the well-known
MNIST data (described in detail in a following subsection).
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Toy data

The toy data sets are generated according to a generalisation of the ”Toy Data”
generating mechanism in [3]. The procedure involves choosing the number of
modes µ , the distance between modes δ , the number of samples per modes ν and
a permutation probability π; we require the number of modes to be a power of 2.
The data is generated as follows:

1. Compute i = log2(µ), the number of binaries needed to encode the modes.
2. Create a list of the binary encoding of each mode.
3. Create a list of expanded mode encodings by expanding each encoding in 2.

with δ copies.
4. Generate ν copies of each expanded mode encoding from 3.
5. Flip every binary variable in 4. independently with probability π , to obtain the

explanatory data.
6. Add a one-hot vector representing mode type to get the joint explanatory and

response data.

The following example is for (µ,δ ,ν ,π) = (4, 2, 2, 0.2) :

1. Let i = log2(4) = 2
2. (1,1), (1,0), (0,1), (0,0)
3. (1,1,1,1), (1,1,0,0), (0,0,1,1), (0,0,0,0)
4. (1,1,1,1), (1,1,1,1), (1,1,0,0), (1,1,0,0),

(0,0,1,1), (0,0,1,1), (0,0,0,0), (0,0,0,0)
5. (1,1,1,0), (1,1,1,1), (1,1,0,1), (1,1,1,0),

(0,0,1,0), (0,0,1,1), (0,0,0,0), (1,0,0,0)
6. (1,1,1,0,1,0,0,0), (1,1,1,1,1,0,0,0),

(1,1,0,1,0,1,0,0), (1,1,1,0,0,1,0,0),
(0,0,1,0,0,0,1,0), (0,0,1,1,0,0,1,0),
(0,0,0,0,0,0,0,1), (1,0,0,0,0,0,0,1)

In [3], π is varied over a toy data set without class type attached, with µ = 4,δ = 8,
and ν = 2500. This example is treated in Section 4.4.

MNIST

The MNIST data set is used as a benchmark for training and evaluating machine
learning algorithms1. It consists of 55000 pictures of handwritten images of
numbers 0, . . . ,9. One data point is a 28x28 matrix populated with grayscale pixel
numbers between 0 and 1; Figure 1 shows two examples from the data set. In this
work we round each pixel to 0 or 1 in order for the data to fit the binary RBM

1 The data set, and more information about it, is available on Yann LeCun’s webpage:
http://yann.lecun.com/exdb/mnist/.
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as described. Attached to each image is also a one-hot vector of dimension 10
representing number type.

Fig. 1 Two examples from the MNIST data set

4.4 Evaluating the INS algorithm for small toy data sets

Consider a small toy data set for which the likelihood can be computed exactly
and can be trained with exact SGD (exact gradient computed for a data subsample
in each step). We compare four algorithms:

• exact SGD
• SGD PCD-1
• SGD PCD-1 with Parallel Tempering
• SGD PCD-1 with INS-Gibbs

The exact likelihood and the prediction accuracy is computed for each parameter
state during each training algorithm. In addition, for every step in the respective
Markov chain for PT and INS, the Euclidean distance between the true gradient
and the gradient estimate is computed at two different fixed parameter states
(early and late in the training). This empirical evaluation provides insight into the
effectiveness of the INS-Gibbs algorithm. Moreover, it allows us to compare the
non-standard performance measure prediction accuracy with the likelihood.

The first toy data set was generated using the following parameters: (µ,δ ,ν ,π)=
(4,4,2500,0.2). That is, the number of visible units is 12 (including 4 dimensions
for class type one-hot vectors), and the number of data points is 10000 (see Section
4.3). For the RBM model, the number of hidden units was set to M = 4, the starting
points of the Markov chains were drawn uniformly and the training procedures
were repeated 20 times for each of the algorithms 2. The result of the experiment
is illustrated in Figures 2 and 3.

2 All stochastic behaviour (except the data generation) were run on updated seeds in every iteration.
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Fig. 2 Evaluation of different training algorithms on a small toy dataset. Upper: Euclidean distance from the
gradient estimate to the true gradient, for the initial parameter state, as function over Markov chain steps. Lower:
Euclidean distance from the gradient estimate to the true gradient, for the final parameter state, as function over
Markov chain steps.
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Fig. 3 Evaluation of different training algorithms on a small toy dataset. Upper: Average likelihood trajectory
and variation (parameter state likelihood variance estimate). Lower: Average prediction accuracy trajectory and
variation (parameter state prediction accuracy variance estimate).

Next, the experiments of [3] were recreated by using (µ,δ ,ν ,π)= (4,8,2500,0.2).
The number of hidden units was set to M = 6, all other parameters as in the previ-
ous experiment. The results are illustrated in Figures 4 and 5.
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Fig. 4 Evaluation of different training algorithms on a data set generated according to [3]. See Figure 1 and 2 for
subgraph description.

Figures 1-4 show the INS algorithm generally outperforming PCD-1 and being
slightly superior to PT, consistent with previous studies in different contexts. Early
in the training phase gradient estimation is relatively easy and deviations from the
true gradient (as a function over Markov steps) is small. However, INS seems to
produce smaller estimation error and variance, resulting in a more stable behaviour
closer to the true gradient. Estimating the gradient becomes harder later in the
training phase and both algorithms needs to be run for a considerable number
of steps in order to converge. Again, we note that INS outperforms the other
algorithms, converging slightly faster towards 0 distance to the true gradient than
PT. The likelihood and prediction accuracy graphs paint a similar picture: both
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Fig. 5 Evaluation of different training algorithms on a data set generated according to [3]. See Figure 1 and 2 for
subgraph description.

show INS performing better, in terms of average behaviour as well as estimated
variance.

Remark 1. The distinction between algorithms regarding the gradient estimate
quality can be expected to increase with decreasing π , as the modes in the data
become more separated; this should increase the importance of good mixing.
However, for the prediction accuracy to be able to distinguish between algorithms,
the classification problem must be sufficiently difficult, motivating the choice
of π = 0.2. Indeed, if π is too small, mixing becomes harder but classification
simpler and the algorithms will all exhibit similar prediction accuracy.
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4.5 Evaluating the INS algorithm for a larger toy data set and MNIST

The performance of the training algorithm will now be evaluated on the MNIST
data and a larger toy data set. Neither the exact training gradients nor the exact
likelihood computations are now available. However, we can still use the pre-
diction accuracy to evaluate the training algorithms. For the toy data generation
the parameters were set to (µ,δ ,ν ,π) = (128,150,1000,0.2), i.e the number of
visible units is 1050, and the number of data points is 128000. Moreover, the
number of hidden units were set to M = 600 for the toy data set and M = 500
for MNIST, remaining parameters were set as in the previous experiments. The
outcome is illustrated in Figure 6.

Fig. 6 Average prediction accuracy trajectory and variation for each training algorithm on the MNIST data set
(upper) and the large toy dataset (lower).
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From Figure 6, for the MNIST data INS enjoys the smallest variance initially
but as the number of steps increase the differences between the algorithms have
all but disappeared. Similarly for the toy data set; interesting to note for the toy
data set is that PCD-1 does not display degenerate behaviour as in [3].

Remark 2. The results for MNIST, in particular when compared to those for like-
lihood estimation in [3], may be explained by the classification task being too
simple, the modes being too few and too distinguished. In the large toy data set
however, modes are greater in number and more similar. Here, we again observe a
small difference in performance, both in terms of average behavior and variance.
A reason might be that energy landscapes in higher dimensions tend to be less
equipped with poor (in terms of training) local minima, putting less demand on
gradient estimate quality [27].

5 Conclusions

We have presented the INS algorithm in a Gibbs-sampling setting for training
RBMs, and conducted an empirical study of the performance of INS compared
to persistent contrastive divergence and parallel tempering. The INS algorithm
performs at least as well as all other training algorithms, for the cases investigated;
the difference is most notable for smaller data sets. One possible explanation is
that the gradient becomes hard to estimate late in training as the energy landscape
becomes increasingly complex. A complex energy landscape prevents mixing,
resulting different performances between the algorithms, due to their different
mixing capabilities. As PT was developed to improve mixing over the PCD-1
method, and INS has been shown to be superior to PT in several models, the
results of the empirical study are in line with expectations. The PCD-1 method
even exhibits a degenerate behavior due to its poor mixing, as was also previously
observed in [3].

For MNIST and the larger toy data set the modes of the distribution are further
apart, which should prevent mixing to a stronger degree than for the other data
sets. Therefore, it is at first surprising that the different algorithms perform more
similarly here than for the toy data sets in Section 4.4. One possible explanation is
provided by [27]: even though the energy landscape is complex, the collection of
local minima that one is likely to end up in tends to promote good performance.
However this line of reasoning does not take into account how SGD moves around
in the energy landscape but instead looks at a static picture and “counts” the
number of critical points of different indices. Recent works suggest that this view
is too simplistic and that dynamics should be considered as well, see for example
[1].

Another potential explanation for the observations for MNIST and the larger
toy data set is that the performance measure, the prediction accuracy defined in
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Section 4.1, does not reflect the algorithms ability to mix at a fine enough level.
This is combined with the fact that the classification task might be too simple,
rendering the prediction accuracy incapable to distinguish between the different
algorithms for training; see the remarks in Sections 4.4-4.5. Indeed, the empirical
study in [3] suggest significant improvements of PT over PCD-1 also for MNIST
when likelihood is used to measure performance, whereas this is not observed
when considering the prediction accuracy for the Boltzmann classifiers. Still, also
for the toy data set in Section 4.5 and using the prediction accuracy, although
the PCD-1 method seems of best quality early in training, INS again has slightly
better classification capability later in training compared to the other methods.

Future work includes extending INS to variational auto-encoders, with an
aim similar to [2], together with more extensive empirical studies, including
both other data sets and comparing different performance measures (prediction
accuracy, likelihood). These studies will also consider the impact of different
hyperparameters in PT and INS (number of temperatures, choice of temperatures,
swap rate for PT etc.), and performance when equal computational time is allotted
to the different algorithms.

6 Appendix

6.1 The marginalisation trick

Let p̂(v,h) denote the unnormalised joint probability function for (v,h) and
p̂(v) denote the unnormalised probability function for v (suppressing parameter
dependence):

p̂(v,h) = exp{−E(v,h)}, p̂(v) = ∑
h

p̂(v,h).

For the unnormalised joint distribution, by Baye’s rule it holds that, for any h,

p̂(v) =
p̂(v,h)

p̂(v,h)/p̂(v)
=

p̂(v,h)
p(h|v)

.

The left-hand side is independent of h and can thus be computed by choosing
h arbitrarily, and inserting it in the computable operation on the right hand side.
Taking h≡ 1 yields

∑
h

e−E(v,h) =
e−E(v,1)

p(1|v)
=

e−E(v,1)

∏
M
m=1 sigm[(vW+ c)(m)]

.

In practice, h must be chosen with care in order to avoid numerical division by
zero. For the numerical experiments in this paper
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h = max
h

p(h|v) = (round(p(h(1) = 1|v)), ..., round(p(h(M) = 1|v))),

is used where round denotes the rounding operator.

6.2 Propositions

Proposition 1. The INS-Gibbs Markov kernel has the symmetrised distribution p̄
as invariant distribution.

Proof. Let Gκ,σ j(X|X′) be the probability distribution for X after κ Gibbs steps
when starting in X′ and temperatures are assigned according to σ j. Given values
X′, the following probability distribution holds for sample values X obtained after
one full INS-Gibbs step:

K!

∑
j=1

ρσ j(X
′)Gκ,σ j(X|X

′).

Integration w.r.t the symmetrised distribution yields

∑
X′

K!

∑
j=1

ρσ j(X
′)Gκ,σ j(X|X

′)p̄(X′)

=
1

K!

K!

∑
j=1

∑
X′

pσ j(X
′)Gκ,σ j(X|X

′)

=
1

K!

K!

∑
j=1

pσ j(X) = p̄(X).

In the first step the definition of ρσ j is used and in the second last step the fact that
the Gibbs kernel Gκ,σ j has the joint distribution pσ j as its invariant distribution.

ut

Proposition 2. Let Ep̄ and Ep1 denote expectation with respect to p̄ and p1, re-
spectively. Then,

Ep̄

[ K

∑
k=1

f (xk)
(

∑
σ ;σ k=1

ρσ (X)
)]

= Ep1[ f (x1)].

Proof. For any k = 1, ...,K, it holds that
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Ep̄

[
f (xk)

(
∑

σ ;σ k=1

ρσ (X)
)]

= ∑
X

f (xk)
(

∑
σ ;σ k=1

ρσ (X)
)

p̄(X)

= ∑
X

f (xk)
(

∑
σ ;σ k=1

pσ (X)

K!

)
=

1
K! ∑

X
f (xk)

(
∑

σ ;σ k=1

K

∏
i=1

pσ i(xi)
)

=
1

K! ∑
X

f (xk)
(

∑
σ ;σ k=1

pσ k(xk)
K

∏
i6=k

pσ i(xi)
)

=
1

K! ∑
xk

f (xk)p1(xk) ∑
xi,i 6=k

(
∑

σ ;σ k=1

K

∏
i6=k

pσ i(xi)
)

=
1

K! ∑
xk

f (xk)p1(xk)(K−1)!

=
1
K

Ep1 [ f (x1)].

Summing over k = 1, ...,K proves the claim. ut
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