
IMPROVED STEP-SIZE SCHEDULES FOR NOISY GRADIENT METHODS

Sarit Khirirat1, Xiaoyu Wang1, Sindri Magnússon2, Mikael Johansson1
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ABSTRACT
Noise is inherited in many optimization methods such as
stochastic gradient methods, zeroth-order methods and com-
pressed gradient methods. For such methods to converge
toward a global optimum, it is intuitive to use large step-
sizes in the initial iterations when the noise is typically small
compared to the algorithm-steps, and reduce the step-sizes
as the algorithm progresses. This intuition has been con-
firmed in theory and practice for stochastic gradient methods,
but similar results are lacking for other methods using ap-
proximate gradients. This paper shows that the diminishing
step-size strategies can indeed be applied for a broad class of
noisy gradient methods. Unlike previous works, our analysis
framework shows that such step-size schedules enable these
methods to enjoy an optimal O(1/k) rate. We exemplify our
results on zeroth-order methods and stochastic compression
methods. Our experiments validate fast convergence of these
methods with the step decay schedules.

Index Terms— Optimization, machine learning, dis-
tributed algorithms, zeroth-order algorithms, quantization.

1. INTRODUCTION

Many problems in signal processing and machine learning
can be cast as convex optimization problems. These prob-
lems are often solved by first-order methods such as (stochas-
tic) gradient descent. It is well-known that gradient descent
with a constant step-size enjoys a linear rate toward the opti-
mal solution for strongly convex problems. However, we can
only access noisy gradients for several applications. For ex-
ample, in machine learning we often approximate the gradient
from a few samples. In other scenarios, we approximate the
gradient using zeroth-order information [1, 2]. In distributed
optimization, we compress gradients so that they can be com-
municated efficiently over a digital channel [3, 4, 5, 6, 7, 8].
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If we can only access noisy gradients then gradient methods
with a constant step-size will converge to sub-optimal solu-
tion. To improve solution accuracy, we need to decrease the
constant step-size, which leads to slower convergence.

To improve the convergence, we might use large step-
sizes initially and then decrease the step-sizes as the algo-
rithm progresses/converges. Such step-size schedules have
been shown to improve the convergence of stochastic gradi-
ent methods in both theory and practice. These ideas were
elegantly analyzed by Polyak (see [9, chapter 4]), and have
been polished by many recent works, e.g., [10, 9, 11, 12,
13, 14, 15, 16]. However, most existing analysis usually con-
siders the diminishing step-sizes only for stochastic gradient
methods. Intuitively, these decaying schedules benefit noisy
gradient methods in general. In this paper, we provide a uni-
fied theoretical justification that shows the benefit of using
decreasing step-sizes for popular noisy gradient methods.

Contributions: We provide general step-size schedules
for optimization methods with noise. In particular, we con-
sider general Lyapunov functions that can be used to analyze
many noisy optimization algorithms. For these algorithms,
we show how to tune the step-sizes to ensure O(1/k) con-
vergence rate. We illustrate how these results can be used to
improve the convergence for a) zeroth-order methods and b)
compressed gradient methods in both theory and practice.

Notation: We let N,N0,Z be the set of natural numbers,
the set of natural numbers including zero, and the set of in-
tegers, respectively. For x 2 Rd, kxk is its `2 norm, while
x
i is its i

th element. Finally, g(k) = O(h(k)) implies that
g(k)  Mh(k) for all k 2 N and some M 2 R, while
g(k) = o(h(k)) means that

lim
k!1

g(k)

h(k)
= 0,

or, in other words, that g(k) decreases much faster than h(k).

2. CENTRAL LEMMAS: STEP-SIZE SCHEDULES
FOR A NOISY LYAPUNOV FUNCTION

Many optimization algorithms can be analyzed by consider-
ing Lyapunov functions that satisfy a recursion on the follow-
ing form (see Section 3):

Vk+1  (1�A�k)Vk + �
2
kB. (1)
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Here, Vk is the Lyapunov function, and �k is the step-
size/learning rate of the optimization algorithms. The main
goal is to provide a general analysis for algorithms with given
Lyapunov functions and show how to tune step-sizes to get
improved convergence rate.

In an idealized setting, where A and B are known, and Vk

can be monitored at each step, it would be natural to select �k
to minimize the right-hand side of (1). This corresponds to
letting �k = AVk/(2B). A short calculation reveals that Vk

would then satisfy

Vk 
4B

A2k
(2)

indicating that

�k =
2A�1

k

would be a good step-size choice. The next result validates
that this is indeed the case.

Lemma 1. Choose the step-size

�k = min

⇢
�,

↵

k + 1

�
,

where ↵ > 0, � 2 (0, 1/A), and A↵ > 1. If we set set k⇤ =
max {0,↵/� � 1} and k > k

⇤ then we have the following
convergence rate:

Vk 
B↵

2
⌫

(A↵� 1)

1

(k + 1)
+

V
⇤
0

(k + 1)A↵
+

B↵
2
⌫

(k + 1)2
,

where V
⇤
0 = (k⇤ + 2)A↵((1 � A�)(k

⇤+1)
V0 + B�/A) and

⌫ = (1 + 1/(k⇤ + 2))2. Moreover, if we set ↵ = 2/A we get

Vk 
4B

A2(k + 1)
+

V
⇤
0 + 2 ln(k + 1) + 2

(k + 1)2
. (3)

Proof. Let k⇤ = max {0,↵/� � 1}. For 0  k  k
⇤, the

step-size �k = �. For k > k
⇤, we have �k = ↵/(k + 1).

Recursively applying the step size �k = � for 0  k  k
⇤ in

Eq. (1) gives

Vk⇤+1  (1�A�)(k
⇤+1)

V0 +
B�

A
. (4)

For k > k
⇤, plugging the step-size �k = ↵/(k + 1) into

Eq. (1) yields

Vk+1 

✓
1�

A↵

k + 1

◆
Vk +

B↵
2

(k + 1)2
.

By recursively applying the inequality and utilizing 1 + x 

exp(x) for x 2 R, we get

Vk+1  exp

 
�A↵

kX

l=k⇤+1

1

l + 1

!
Vk⇤+1

+B↵
2

kX

l=k⇤+1

1

(l + 1)2
exp

 
�A↵

kX

i=l+1

1

i+1

!
. (5)

Since 1/(s+ 1) is decreasing in s, we get

kX

i=l+1

1

i+ 1
�

Z k+1

i=l+1

di

i+ 1
= ln(k + 2)� ln(l + 2).

By applying these inequalities in Eq. (5), we get

Vk+1 
(k⇤ + 2)A↵

Vk⇤+1

(k + 2)A↵
+

B↵
2

(k + 2)A↵

kX

l=k⇤+1

(l + 2)A↵

(l + 1)2
.

By Eq. (4) and the above inequality, for k > k
⇤

Vk+1 
V

⇤
0

(k + 2)A↵
+

B↵
2

(k + 2)A↵

kX

l=k⇤+1

(l + 2)A↵

(l + 1)2
, (6)

where V ⇤
0 = (k⇤+2)A↵((1�A�)(k

⇤+1)
V0+B�/A). Hence,

for A↵ > 1

kX

l=k⇤+1

(l + 2)A↵

(l + 1)2
 ⌫

kX

l=k⇤+1

(l + 2)A↵�2

 ⌫

Z k

l=k⇤+1
(l+2)A↵�2

dl + ⌫(k+2)A↵�2


⌫(k + 2)A↵�1

A↵� 1
+ ⌫(k + 2)A↵�2

,

where ⌫ = (1 + 1/(k⇤ + 2))2. Incorporating the above in-
equality into Eq. (6), we have

Vk+1 
V

⇤
0

(k + 2)A↵
+

B↵
2
⌫

(A↵� 1)

1

(k + 2)
+

B↵
2
⌫

(k + 2)2
.

Finally, if we choose ↵ = 2/A, then Eq. (6) can be im-
proved by the follow procedure:

Vk+1 
V

⇤
0

(k+2)2
+

B↵
2

(k+2)2

kX

l=k⇤+1

✓
1+

2

l+1
+

1

(l+1)2

◆


V

⇤
0

(k + 2)2

+
B↵

2

(k + 2)2

 
k�k

⇤+3+2

Z k+1

l=k⇤+1

dl

l
+

Z k+1

l=k⇤+1

dl

l2

!


V

⇤
0

(k + 2)2
+

B↵
2(k+3+2 ln(k+1)+ 1

k⇤+1�k
⇤)

(k + 2)2


V

⇤
0 + 2 ln(k + 1) + 2

(k + 2)2
+

B↵
2

k + 2
.

We complete the proof.

Lemma 1 provides a step-size schedule ensuring an
O(1/k) convergence rate for algorithms with a Lyapunov
function on the form of (1). To apply this step-size sched-
ule we do not need to know B or to monitor Vk from (1).
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Nevertheless, as shown in Eq. (3), for ↵ = 2/A we get the
convergence rate

Vk+1 
4B

A2(k + 1)
+ o

✓
1

k

◆
,

which is comparable to what we would get if we knew B and
could monitor Vk, see discussion around Eq. (2) above.

We can apply Lemma 1 directly to stochastic gradient iter-
ations on strongly convex problems. This will give us a sim-
ple convergence proof with guarantees on par with the best
known results, e.g., section 3 in [12], [16] or chapter 4 in [9].
However, Lemma 1 also allows us to apply similar step-size
schedules to more general noisy gradient methods.

3. APPLICATIONS: STRONGLY CONVEX
OPTIMIZATION WITH NOISE

We now illustrate how our step-size in the previous section
can be used to improve complexity bounds of two popular
noisy gradient methods. We consider problems on the form:

minimize
x2Rd

F (x) =
1

n

nX

i=1

fi(x), (7)

where each function fi(·) satisfies the following assumptions.

Assumption 1. fi(·) is L-smooth, i.e. for all x, y 2 Rd

krfi(x)�rfi(y)k  Lkx� yk.

Assumption 2. F (·) is strongly convex with a positive pa-
rameter µ, i.e. for all x, y 2 Rd

F (y) � F (x) + hrF (x), y � xi+
µ

2
ky � xk

2
.

3.1. Zeroth-order Methods

In real-life applications, it is common that we want to perform
optimization but it is expensive or even impossible to access
gradients. This is for example the case when the objective
function is computed from simulations or in control systems
where we only observe the objective function value for the
actions that we take. In these applications it is common to
use zeroth-order optimization, where a directional derivative
(in a random direction) is estimated based on finite difference.
We illustrate here the zeroth-order method in [1], which pro-
gresses as follows:

xk+1 = xk � �kgk, for k 2 N (8)

for a given initialization x0 where

gk =
F (xk + ⌧kuk)� F (xk)

⌧k
uk, (9)

is a finite difference estimation of the directional derivative
in the direction uk 2 Rd. Here ⌧k > 0 is a smoothness pa-
rameter, as ⌧k converges to 0, gk converges to the directional
derivative of F (·) in the direction uk. Moreover, we assume
here that uk is a random direction, in particular, a zero-mean
and unit-variance Gaussian noise. We have the following re-
sult from [1, Lemma 3]

kgk �rF (xk)k
2
 ⌧

2
kL

2(d+ 3)3/4. (10)

We can show that if ⌧k = �k, then Algorithm (8) is shown
to satisfy the central lemmas with the associated parameters
shown next:

Theorem 1. Consider the optimization problem (7). Sup-
pose that {xk}k2N is generated by the zeroth-order method
(8) with �k 2 (0, 1/L] and set

Vk = F (xk)� F (x?), A = µ, B = L(d+ 3)3/8.

Then Vk progresses according to Eq. (1).

3.2. Compressed Gradient Methods

In distributed optimization, gradients are often communicated
to enable a descent update. It is often desirable to compress
these gradients, since communicating full-precision gradient
is expensive for large dimensional problems. For example, we
need 80 MB to communicate a d = 107 dimensional gradient,
which is not an uncommon problem size for machine learn-
ing problems. We can formulate such compressed gradient
algorithms with the following iterations

xk+1 = xk � �k
1

n

nX

i=1

Q(rfi(xk)), for k 2 N, (11)

where Q(·) is a stochastic compression satisfying the unbi-
ased and variance-bounded properties, i.e. for x 2 Rd and
q 2 R

E[Q(x)] = x, and EkQ(x)k2  qkxk
2
. (12)

This means that stochastic compression has high accuracy
when q is close to 1. Examples of compressions that satisfy
these properties are stochastic sparsification:

[Qp(v)]
i = (vi/pi)⇠i, 8i 2 {1, 2, . . . , d} (13)

where ⇠
i

⇠ Bernouli(pi). There are many heuristics to
choose p

i. For instance, if we set pi = |v
i
|/kvkq with q = 2,

q = 1 and q 2 (0,1], then we get, respectively, QSGD in
[3] with s = 1, the TernGrad in [6], and the `q-quantizer in
[17]. The probabilities pi can also be fine-tuned adaptively to
minimize the variance [17], or to maximize the communica-
tion efficiency [18].

We now show that the compression methods (11) can be
analysed by Lyapunov functions on the form of Eq. (1).
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Theorem 2. Consider the optimization problem (7). Suppose
that {xk}k2N are generated by the compression method (11)
with �k 2 (0, 1/(2qL)] and set

Vk = Ekxk � x
?
k
2
, A = µ, B =

2q

n

nX

i=1

krfi(x
?)k2.

Then Vk progresses accroding to Eq. (1).

By Theorem 2 and Lemma 1, we can establish the itera-
tion complexity of the stochastic compression methods using
the diminishing step-size with ↵ = 2/A and � = 1/(2qL).
To reach the ✏-accuracy, the methods then need to run at least

max

 
16q�2

µ2
·
c1

✏
, (⌘ + 1)

r
2c2✏0 + �2/(µL)

✏

!
iterations,

where c1 = (⌘ + 2)2/(⌘ + 1)2, c2 = (1 � µ/(2qL))⌘ and
⌘ = 4qL/µ. On the other hand, the stochastic compression
methods with the fixed step-size �k = 0.5/(q(� + L)) where
� = 2�2

/(µ✏) in [18, Theorem 3] require at least

2qL

µ
log

✓
2✏0
✏

◆
+

4q�2

µ2
·
1

✏
log

✓
2✏0
✏

◆
iterations.

Clearly, the diminishing step-size achieves O(1/✏) iteration
complexity, while the fixed step-size in [18, Theorem 3] at-
tains O((1/✏) log(1/✏)) complexity. The stochastic compres-
sion methods with the decaying step-size policy hence con-
verge toward the optimum faster than those with the fixed
step-size. The benefit of using the step decay schedule is also
confirmed empirically in Section 4.

4. EXPERIMENTS

In this section we present numerical experiments for solv-
ing `2-regularized least-squares problems, i.e. minimization
problems on the form (7) with

F (x) =
mX

i=1

(aTi x� bi)
2 +

µ

2
kxk

2
,

where µ is a positive regularization parameter and (a1, b1),
. . . , (am, bm) represent the n training samples. Here, ai 2 Rd

is the i
th training input and bi 2 R is the associated output.

We implemented zeroth-order methods and compressed gra-
dient methods using QSGD with s = 1 and 10 workers in
Julia, and generated each training example ai and bi, respec-
tively, according to the uniform distribution in the range [0, 1)
and to the normal distribution with zero mean and unit vari-
ance. Throughout the experiments, we normalized each ai by
its Euclidean norm, and set m = 8, 000, d = 100, µ = 1,
and also x0 ⇠ N (0, 1). The results are averaged over three
Monte Carlo runs.

(a) Zeroth-order Methods

(b) Compressed Gradient Methods

Fig. 1: Performance of noisy gradient methods.

From Figure 1(a), zeroth-order methods with the step-size
in Lemma 1 outperform those with existing step-size strate-
gies, in terms of both convergence rate and accuracy. At
k = 40, 000, the step-size in Lemma 1 has attained an ac-
curacy improvement of more than six orders of magnitude
compared to �k = 1/(L · k) from [9, Theorem 3] and �k =
0.25/((d + 4)L) from [1, Theorem 8]. Figure 1(b) similarly
shows fast convergence of stochastic compression methods
with the step-size in Lemma 1, compared to existing poli-
cies. To reach E(F (xk)� F

?)  10, the step-size in Lemma
1 leads to a roughly tenfold decrease in required iteration
counts, compared to �k = 0.01/L in [19].

5. CONCLUSIONS

Decaying step-size schedules were shown extensively on
stochastic gradient methods to enjoy convergence toward the
global optimum. However, these results are lacking for other
methods operating on noisy gradients. This paper provides
a unified theoretical analysis which shows the benefit of di-
minishing step-sizes on general noisy gradient methods. In
essence, we prove the O(1/k) rate of many popular methods
using these step-sizes such as zeroth-order methods and com-
pressed gradient methods. We exemplify these methods in
numerical experiments, highlighting that our decreasing step-
size choices have superior practical performance over existing
strategies in both convergence rate and solution accuracy.
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“SGD: General analysis and improved rates,” in In-
ternational Conference on Machine Learning, 2019, pp.
5200–5209.

[16] Lam Nguyen, Phuong Ha Nguyen, Marten Dijk, Peter
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