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H I G H L I G H T S

• Battery state of charge profiles are affected by the suppressed demand effect.

• In small rural systems the suppressed demand effect impacts directly to reliability.

• Considering the suppressed effect demand lead to more sustainable systems design.
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A B S T R A C T

Rural electrification programs usually do not consider the impact that the increment of demand has on the
reliability of off-grid photovoltaic (PV)/battery systems. Based on meteorological data and electricity con-
sumption profiles from the highlands of Bolivian Altiplano, this paper presents a modelling and simulation
framework for analysing the performance and reliability of such systems. Reliability, as loss of power supply
probability (LPSP), and cost were calculated using simulated PV power output and battery state of charge
profiles. The effect of increasing the suppressed demand (SD) by 20% and 50% was studied to determine how
reliable and resilient the system designs are. Simulations were performed for three rural application scenarios: a
household, a school, and a health centre. Results for the household and school scenarios indicate that, to
overcome the SD effect, it is more cost-effective to increase the PV power rather than to increase the battery
capacity. However, with an increased PV-size, the battery ageing rate would be higher since the cycles are
performed at high state of charge (SOC). For the health centre application, on the other hand, an increase in
battery capacity prevents the risk of electricity blackouts while increasing the energy reliability of the system.
These results provide important insights for the application design of off-grid PV-battery systems in rural
electrification projects, enabling a more efficient and reliable source of electricity.

1. Introduction

During the last two decades, access to electricity has had deep im-
pacts on the wellbeing of rural families through significant socio-eco-
nomic development in Bolivia [1]. However, 34% of the total rural
population in the country still have no access to electricity [2]. De-
veloping countries have implemented rural electrification programs to
reduce poverty and improve the socio-economic situations of the

affected population [3,4]. The Bolivian government has set the goal to
achieve 100% access to electricity by the year 2025 as a part of the
strategy called “Agenda Patriotica 2025” [5]. Despite the continuous but
slow expansion of the national electricity grid to rural areas, some are
still inaccessible and disperse, requiring off-grid electrification solu-
tions.

Off-grid renewable electrification systems such as micro hydro-
power, small wind generators, and solar photovoltaic (PV) are widely
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used among rural electrification programs [6]. Off-grid PV systems rely
on energy storage to supply power when the sun is not shining, and
batteries are the most common energy storage devices used in rural
electrification programs [7].

Particular operation characteristics have significant impacts on the
battery performance, such as variable power charge rate, depth of
discharge (DOD), partial cycling, and remaining at high state of charge
(SOC) [8]. The battery performance and SOC profile behaviour in off-
grid PV applications have been studied in [9–11]. In these studies, the
solar PV charging effect on the battery lifetime is evaluated by pre-
senting various SOC profiles as cycling procedures and reproducing
conditions which are believed to increase the degradation rate of the
battery. In the work presented by Krieger et al. [9], the effect of vari-
able charging rate and incomplete charging was studied by comparing
two different storage technologies (lead-acid and lithium ion batteries),
finally concluding that lithium ion batteries perform better for off-grid
applications due to less degradation and better voltage performance.
Consequently, as the price is decreasing by the year [12], the trend is
moving towards the use of lithium-ion batteries [7,13]. Further works
on lithium ion batteries have studied the impact of stress factors such as
current, ΔSOC, SOC, and temperature on the cell capacity and im-
pedance [14,15]. In [16], Käbitz et al. studied the effect of SOC and
temperature on capacity fade and therefore the lifetime of NMC cells
was studied, revealing that the cells stored at a 100% SOC show a
higher rate of degradation as compared to those stored at lower SOCs.

Although the use of lead-acid batteries in off-grid PV systems is
common among electrification programs, factors such as short life and
challenging final disposal, have driven stakeholders to use lithium ion
batteries. Moreover, technologies such as sodium-sulphur, redox flow
and nickel-cadmium are widely applied as electricity storage [17].

However, due to their complexity and relatively high cost, they are not
part of this study. In addition to this, Bolivia is developing the lithium
ion battery industry and one of the main goals is to use those batteries
in stationary applications [18]. Therefore, in the present study, the
battery technology of choice is lithium ion.

Reliability (based on energy supply interruption frequency) and cost
analysis have been used as optimization criteria for designing off-grid
PV-systems [19–22]. The reliability is estimated over a long period of
time, typically one year, based on a simulation model using radiation
and electricity consumption data as inputs. The comparison of different
systems operating under the same conditions was found useful to
choose an optimal design.

In order to design reliable systems, off-grid applications in remote
and disperse areas with high solar irradiation need to be evaluated. This
not only guarantees the sustainability of rural electrification projects
but also has great significance on the adoption of renewable power
technologies as reliable alternatives to traditional ones.

This study discusses and evaluates the effect of suppressed demand
(SD) on the system reliability for three different remote and disperse
rural scenarios: a household, a school and a health centre.

The SD effect arises when an installed system’s power is insufficient
to meet the basic needs of the user. This can be due to low incomes,
inadequate infrastructure, high cost of technologies, or a combination
of these [23]. Moreover, the SD effect also represents the forecasted
increase of user demand due to the expected improvement of economic
situations, which is an inherent objective of electrification programs
[24]. This effect is typically observed when the user is provided with a
system which delivers enough electrical power supply for their basic
needs such as lightning and communication. Hence, the electrical
power demand is expected to increase due to the acquisition of more
appliances such as TVs or refrigerators in the following operating years.

The PV-battery system power output was simulated based on cli-
matic and geographical data from the Bolivian highlands. Moreover,
annual SOC profiles data were obtained from simulations performed in
Matlab® software, which are further used to evaluate the impact of SD
on the system reliability using the open-source code OptiCE [25].

The paper is organized as follows: the methodology section starts by
estimating the electrical load profile (consumption) for three scenarios;
then, the power output from the PV was calculated using weather and
geographical data from the Patacamaya region; finally, the procedure
for calculating loss of power supply probability (LPSP) was presented.
The results and discussion section compares the obtained PV/battery

Nomenclature

DOD depth of discharge
GA genetic algorithm
IL initial load
LPSP loss of power supply probability
MPPT maximal power point tracker
PV photovoltaic
SD suppressed demand
SOC state of charge

PV module Inverter DC/AC

Battery 
charger

Battery
Set of appliances

Fig. 1. Schematic diagram of a rural off-grid PV-battery system.
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system design for a household, a school and a health centre, to analyse
their reliability when considering the SD effect. Moreover, a detailed
analysis of the calculated SOC curves was performed at annual base.
Finally, the conclusions are presented.

2. Methodology

This study used computer-aided simulation of mathematical models
as the representation of a PV/battery system, generating synthetic load
profiles to analyse the resulting SOC profiles through sensitivity ana-
lysis and optimization methods such as genetic algorithm (GA).

Sections 2.1–2.4 describe the component models that are employed
in the system. Section 2.5 describes the methodology used for evalua-
tion of parameters such as reliability and cost.

2.1. System configuration description

The system is designed for operating in the region of the Bolivian
rural highlands, Colquencha’s municipality. In the case of the Bolivian
remote highlands, off-grid PV-battery systems are often used since the
grid is too expensive to expand. High solar radiation in the region, up to
6 kWh/m2/day, provides an practical and economic advantage of using
PV technology [26]. As shown in Fig. 1, the system includes a PV
module, an inverter, a battery charger and a battery pack. The PV
module generates electricity which is used to charge the battery
through a battery charger. Finally, the battery current goes through an
inverter to meet the load requirements.

2.2. Electrical load profile modelling

As rural electrification aims to supply electricity to residents who
currently do not have electricity connection, there is no historical re-
cord of electricity consumption. No detailed information of electrical
load profiles is available in this region, and only monthly electrical bills
were gathered and used as Ref. [27]. Consequently, a synthetic elec-
trical load profile was generated for a household, a school and a health
centre respectively using a bottom-up model. The bottom-up model is

based on data from three main factors: (i) the types of appliances de-
manding electricity; (ii) the electricity demand of each appliance during
usage; and (iii) the usage patterns of each appliance [28]. By employing
the statistical energy usage data and time resolved user-behaviour, a
representative profile can be developed [29]. A schematic flow-chart of
the implemented methods is shown in Fig. 2.

The first stage is the selection of appliances and aggregation of their
respective hourly loads. The load is defined according to the hourly user
behaviour along the day in a stochastic manner. Therefore, to add the
stochastic component, these limits are defined as the maximum ex-
pected peak and the frequency at which the appliance is used, for the
daily variation and the time-to-time variation respectively. The second
stage combines daily load profiles into a yearly load profile while in-
cluding the SD and seasonal effect (SD, i.e. 0%, 20%, 50% increased
demand), thus obtaining three yearly electrical load profiles for each SD
value. Moreover, as technology costs go down and energy efficiencies
go up, households may start using more services.

Electricity consumption in rural households is restricted to basic
needs such as lighting, communication (radio and TV) and phone
charging. Meier et al. [30] describes the most commonly used appli-
ances by rural users and their hourly usage profiles in the Altiplanic
region. Furthermore, for the case of school and health centre, the type
and number of appliances were determined from reports of rural elec-
trification projects previously executed in Bolivia [31]. The power
consumption and usage time for a household, a school and a health
centre are shown in Table 1.

2.3. Climatic data and photovoltaic module simulation

Climatic data for the south-west highlands region in Bolivia was
obtained from a global climatic database, Meteonorm [32], which in-
cludes global horizontal radiation (W/m2), diffuse horizontal radiation
(W/m2) and ambient temperature (°C).

The PV module power output was simulated by assuming a surface
facing north, and the tilt angle correction was performed according to
[33]. The yearly total radiation flux profile used is shown in Fig. 3.

Simulation of the solar module power output was performed using

Time use

Users
characteristics

Appliances
data

Household, School, Health center

Hourly electric
energy usage profile

Time-to-time
randomness

+ daily
randomness

(peaks)

Seasonal
variation with
temperature

Aggregate load
profile for all

appliances and all
users into a yearly

profile

Finished
yearly load

profile

Suppressed
demand

Fig. 2. Schematic flow-chart for generating the load profile using the bottom-up model.
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the single diode model described in [33]. The I-V curve for the PV
module was obtained using Eq. (1):
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where, IPH is the photocurrent (A), I0 is the diode reverse saturation
current (A), a is the ideality factor (V), Rsh is the shunt resistance (Ω),
and Rs is the series resistance (Ω). The calculation methodology is de-
scribed with more details in a previous work [34].

Maximum power point tracking (MPPT) procedure was used to
ensure maximum power output from the PV module. Eq. (2) was used
to calculate MPPT, which was extracted from [35].

=P I Vmax( · )PV mpp PV PV, (2)

The PV module characteristics used in the model were from
BlueSolar® polycrystalline panels [36], which are described in Table 2.

2.4. Battery state of charge calculation

The battery SOC profile was calculated for an entire year with an
hourly interval, following the scheme given in Fig. 4. Eqs. (3) and (4)
were used in the energy balance procedure for discharge and charge
respectively:
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where −P t P t( 1), ( )b represent the battery energy at the beginning and

the end of the interval t, respectively, P t( )l is the load demand at the
time t, P t( )PV is the energy generated by the PV module at the time t, σ
is the self-discharge factor and ηb, ηi represent the battery charging and
inverter efficiency, respectively, as presented in [37]. Battery operation
values are presented in Table 3.

2.5. Reliability indicator

Off-grid PV systems are intermittent sources of power, and therefore
the reliability is considered as an important design factor. The system’s
reliability is expressed in terms of loss of power supply probability
(LPSP), which is the ratio of the loss of power supply (LPS) to that
required by the load during a defined time period [38]. LPSP is ob-
tained from Eq. (5).
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Table 1
Power consumption for altiplanic rural users in Bolivia.

Final use Description Power (W) Quantity Hours/day Total power (W) Wh/day

Household Compact Fluorescent Lamp 11 3 5 33 165
TV 90 1 4 90 360
Radio 20 1 4 20 80
Phone Charger 10 2 3 20 60

School Compact Fluorescent Lamp 11 4 4 44 176
TV 90 2 4 180 720
Computer 180 1 4 130 520
DVD player 10 1 4 10 40

Health centre Compact Fluorescent lamp 11 4 8 180 1440
Computer 180 1 8 44 352
Refrigerator 130 1 24 130 3120

Fig. 3. Total solar radiation yearly flux in the highlands region of Bolivia.

Table 2
Parameters used in PV single diode model.

GSTC (W/m2) Irradiance at Standard Test Condition (STC) 1000.00
TSTC (K) STC Temperature (Cell Temperature) 298.15
IPH, STC (A) Photocurrent at STC 8.73
µISC (A/K) Short current temperature coefficient 0.04
I0, STC (A) Diode reverse saturation current 4.41×10-10

Eg, STC (eV) Material band gap energy at STC 1.12
aSTC (V) Ideality factor at STC 1.58
Rsh, STC (Ω) Shunt Resistance at STC 1519.11
Rs (Ω) Series Resistance 0.23
NOCT (°C) Nominal Operating Cell Temperature 43.70
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Three scenarios for each application were proposed for LPSP ana-
lysis. The first scenario represents the obtained synthetic base-case load
profile. The second and third scenarios represent 20% and 50% incre-
ment on load demand respectively, which is the suppressed demand
(SD) effect.

According to the regulation for electrification programs in Bolivia,
rural stand-alone storage systems should store enough energy to supply
the user electricity consumption for at least two continuous days
without charging [39]. Moreover, a sensitivity analysis was performed
as the criterion to achieve the optimal design under restrictions of
minimum LPSP and minimum cost.

2.6. System cost

The cost of the PV system hardware was set at 2.5 USD/Wp, which
includes PV module, inverter, structural and electrical components, but
excludes the battery. The considered cost is an averaged value and does
not include installation labour and indirect cost such as business
overhead, profits, supply-chain cost and regulatory cost, all of which
vary by location and market [40].

There is no standard accepted benchmark cost for lithium ion bat-
teries. The price we show here is a part of the breakdown for residential
PV systems performed by [41]. The battery cost (battery charger in-
cluded) is set at 0.90 USD/Wh.

2.7. Genetic algorithm

Genetic Algorithm (GA), as a well-suited meta-heuristic tool, is
employed in this study to carry out multi-objective optimization. The
objective functions are LPSP and system investment cost. The decision
variables are the PV size and battery capacity. The optimization results
are presented in the form of near-optimal Pareto-front and “tourna-
ment” selection function which chooses the better-fitted individual out
of that set to be a parent [34]. The optimization procedure was con-
ducted using Matlab® software, and the set of options used are listed in
Table 4.

3. Results and discussion

The system’s reliability and cost for a household, a school and a
health centre were evaluated by considering the effect of suppressed
demand (SD). Reliability limits were set at 2% for the household and
the school and 1% for the health centre.

3.1. Electrical load profile modelling

In order to estimate the electrical load profile used to perform the
system’s energy balance, an hourly profile of one year is required. The
included randomness factor helps to obtain a more realistic profile,
which also includes a seasonal variation observed in the real monthly
profiles obtained through surveys of the region. The profiles obtained
after the simulation are shown in Fig. 5. The household profile is the
only application which includes the seasonal variation, whereas the
school and health centre profiles only include the daily and time-to-
time variation. The load profile of the school considers weekends as
periods with no academic activities, and therefore no electricity usage.
The health centre presents a more cyclic and predictable profile with a
high background consumption, which is caused mainly by the usage of
the refrigerator to store vaccines and other medicaments.

After television, radio and mobile phone charger, lighting is the
most used appliance among remote and disperse rural populations.
Moreover, for household and school load profiles, the power peaks
observed during the morning corresponds to the usage of TV and radio
principally, and during the evening to TV/DVD player and computer
usage, while lighting is the background load in both cases.

3.1.1. Household
Fig. 6 shows the dependency of LPSP on PV size. A minimum LPSP

value of 2% was set as the reliability limit (equivalent to 7.3 days of
blackout per year) [39]. In both cases, the battery capacity is fixed at
1.2 kWh and 1.8 kWh for (a) and (b) respectively. These values were

Fig. 4. State of charge simulation scheme.

Table 3
Parameters used for the battery.

σ (% per month) Self-discharge factor 2
ηb (%, charge) Battery charging efficiency 95
ηi (%) Inverter efficiency 85

Table 4
Optimization options for the genetic algorithm.

Options Value

Generations 300
Population size 700
Fraction tolerance 1E−3
Pareto fraction 0.5
Selection function Tournament
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obtained after evaluation of the daily household consumption con-
sidering the battery delivering energy for two days autonomously, and
then rounding off the calculated capacity to commercially available
sizes. Each point in Fig. 6 corresponds to a common commercial PV
module size and the corresponding LPSP value calculated from the si-
mulation. The PV module and battery sizes used here are the commonly
employed in electrification projects in Bolivia [42]. Under these con-
ditions, few PV module sizes can be considered as optimally reliable.

From Fig. 6a, using a 1.2 kWh battery, the initial load curve (in
blue) presents four points below the reliability limit, of which the one
closest to the reliability limit is the one with the smallest allowable PV
size (150 Wp), and thus the lowest cost. Using that point to design a PV/
Battery system would present an acceptable LPSP value of 1.9%
(7.3 days of blackout per year). However, once the SD effect is con-
sidered, the LPSP value for the same PV size will increase to 6.5%
(27 days of blackout per year) and 12.8% (47 days of blackout per year)

for 20% and 50% of SD effect, respectively. Therefore, to ensure a de-
sign within the reliability limit and resilient to the suppressed demand
effect, a larger PV size is selected (250 Wp) with a LPSP value of 2.4%
(8.7 days of blackout per year). Furthermore, Fig. 6b presents a case
where a larger battery capacity is used. The incremental increase in
battery capacity reduces the value of LPSP to 1.6% (5.8 days of blackout
per year) when considering initial load and 150 Wp PV size. Moreover,
for a 250 Wp PV size, the LPSP value considering 50% SD is reduced to
0.9% (3.2 days of blackout per year).

The results indicate that it is the PV size rather than the battery
capacity that influences the system’s reliability for the household ap-
plication, and therefore increasing the PV size is the lower investment
option. As observed in Table 5, by increasing the PV size from 150 Wp

to 250 Wp for a 1.2 kWh battery, the system’s cost is increased by 8.87%
and the LPSP values are reduced by 1.9%, 6.3% and 10.4% for the
initial case, 20% and 50% SD effect respectively. However, if we in-
crease the capacity of the battery from 1.2 kWh to 1.8 kWh for a PV size
of 150 Wp, we increase the system cost by 37% and reduce the LPSP
values by 0.3%, 0.5%, and 1.2% for the initial case, 20% and 50% SD
effect respectively.

The annual battery SOC profiles for the initial load, 20% SD and
50% SD cases are shown in Fig. 7a–c respectively. During the rainy
season from December to February, the battery is cycled in a wide SOC
range because the generated power is considerably less. During winter
from May to August, the battery is also cycled in a wide SOC range due
to the higher consumption of electricity. It can clearly be seen how the
increments in SD impact the SOC range over which the battery is cy-
cled.

3.1.2. School
A small rural school in Bolivia works 5 days per week during the

morning. In most of the cases, the teachers live in a room inside the
school, contributing to a small consumption during the evening and
weekends. However, the main peak is due to academic activities.

Fig. 5. Electrical load profiles for a household, school and health centre in a rural village in Bolivia.
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Fig. 6. LPSP vs PV module size for initial load, 20% and 50% increment of the
baseline demand due to suppressed demand effect in a rural household. (a)
1.2 kWh battery; (b) 1.8 kWh battery.

Table 5
Cost and LPSP values for a household with different battery and PV sizes.

Case PV size,
Wp

System cost,
USD

LPSP
(IL), %

LPSP (20%
SD), %

LPSP (50%
SD), %

1.2 kWh Battery 150 1273 1.9 6.5 12.8
250 1386 0.0 0.2 2.4
320 1465 0.0 0.0 1.3

1.8 kWh Battery 150 1743 1.6 6.0 11.6
250 1855 0.0 0.0 0.9
320 1934 0.0 0.0 0.1
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From Fig. 8a, using a 1.2 kWh battery, the initial load curve (blue
line) presents four points below the reliability limit (dashed red), of
which the one closest to the reliability limit is the one with the smallest
acceptable PV size (500 Wp), and thus the least costly option. Using that
point to design a PV/Battery system would present an acceptable LPSP
value of 0.9% (3 days of blackout per year). However, the LPSP value
for the same PV size (500 Wp) will increase to 3.0% (11 days of blackout
per year) and 6.75% (24 days of blackout per year) for 20% and 50% of
SD effect, respectively. Therefore, to ensure a design that is below the
reliability limit and resilient to the SD effect, a larger PV size is selected
(960 Wp) with an LPSP value of 1.4% (5 days of blackout per year)
when considering 50% SD effect. Furthermore, Fig. 8b presents a case
where a 1.8 kWh battery capacity is used. Considering the PV size of
500 Wp, this increment in battery capacity reduces the LPSP value to
1.0% (4 days of blackout per year), and 3.61% (13 days of blackout per
year) for 20% and 50% SD effect, respectively. Moreover, by only in-
creasing the PV size to 640 Wp, the LPSP value reduces to 1.75% (6 days
of blackout per year) when 50% SD is considered.

From an optimal design point of view, to achieve an LPSP value
below the reliability limit at the lowest cost, we have two possible
options. As observed in Table 6, from the first scenario, for a 960 Wp PV
size and 1.2 kWh battery capacity, we obtain a cost of USD 2185. From
the second scenario, for a 640 Wp PV size and 1.8 KWh battery capacity,
the cost of the system is USD 2294. Although the price of the second
option is 5% higher, the surface area used by the panels, usually
rooftop, is smaller than the first option.

The school battery SOC profiles (Fig. 9) show a weekly dependence
on the annual irradiation profile and the system can almost fully re-
charge during the weekends. Although this helps to keep the reliability
indicator within limits, SD will affect the LPSP values, especially during
winter from May to August, when we can observe a higher concentra-
tion of blackout hours.

The battery behaviour of Fig. 9 shows frequent cycling between
80% and 100% SOC. By cycling between high SOC values and resting at
high SOC values, the battery is subject to accelerated deterioration,
reducing its lifetime and available capacity [13,16,43].

3.1.3. Health centre
The health centre is a small building that offers basic health services

and stores essential medicine. The reason why no major equipment is
used in this type of facility is that for more complex medical inter-
ventions, the patient is transferred to a first level hospital which usually
is connected to the grid. Usually two persons are in service the whole
week, including weekends. Due to the large size of the system, a genetic

algorithm (GA) was used to optimize the LPSP and cost values of the
system.

The generated Pareto frontier curves are presented in Fig. 10. Three
scenarios were evaluated: initial load, 20% SD and 50% SD. A reliability
limit was set at 1% LPSP (up to 3.6 days of blackout per year) as a
tolerable limit for the operation of a health centre. As observed, the
points marked with crosses indicate the optimal points within the re-
liability limit. These points show an LPSP value below 1% and the
corresponding cost of the PV–battery system. The red cross indicates a
reliable system size for the initial load case only. The yellow ones in-
dicate optimal size for initial load and 20% SD case. Finally, the green
cross indicates optimal system size in which the three scenarios are
within the desired reliability limit.

The optimal values are correlated to the corresponding PV size and

Fig. 7. Annual SOC profiles for a household system of 250 Wp PV module and 1.2 kWh battery: (a) Initial load, (b) 20% SD, and (c) 50% SD.
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F. Benavente et al. Applied Energy 235 (2019) 519–528

525



battery capacity. Therefore, for the optimal point (the top green cross)
with 0.99% LPSP and a cost of 6703 USD, the corresponding PV and
battery sizes are 2.4 kWp and 4.9 kWh, respectively. By rounding off to
available commercial sizes, a system with 2.5 kWp PV module and a
battery with 4.8 kWh capacity would be sufficient.

Table 7 presents selected values from the Pareto front. This results
indicates that GA results vary with PV power instead of battery capa-
city, which was also observed as a way to achieve reliability for the
household application.

The health centre does not consider seasonal effect in the electricity
consumption, and therefore the load profile is symmetrical along the
year. This is represented in the battery SOC profiles shown in Fig. 11.
Several consecutive cloudy days can cause blackout periods since the
battery reaches 20% SOC. As mentioned at the beginning of this section,
the reliability limit was set at 1%. This value can be easily reduced to
0% if a demand management strategy is implemented, thereby guar-
anteeing electrical power supply 365 days per year.

3.2. Battery ageing

Ageing of the battery components is an inevitable phenomenon.
Although it is impossible to avoid, it is possible to reduce. Two types of
ageing are most commonly found (i) due to the cycling processes, full
and partial cycling; and (ii) due to calendar ageing. Ageing due to cy-
cling processes depends on the current rate at which the battery is
operated, temperature and the depth of discharge (DOD) of the cycles.
Moreover, the active components will also impact the lifetime of the
battery. Higher DOD leads to shorter life. Capacity fade due to calendar
ageing is caused by parasitic reactions in the electrodes and is depen-
dent on SOC, temperature and active components of the battery. Higher
SOC leads to shorter life.

Although keeping the battery operating at high SOC will guarantee

the system reliability, the low anode potential accelerates the loss of
cyclable lithium [44], resulting in early capacity fade. By quantifying
the time at which the battery remains at 100% SOC, it is possible to
predict the capacity fade rate.

The household battery SOC profiles, presented in Fig. 7a–c, show us
that the battery will spend most of the time cycling between an upper
limit of 100% and lower limits of 60%, 50% and 40%, respectively.
Therefore, the SD will impact the battery ageing. When the battery
cycles at a wider SOC range, there will be less time to remain at high
potentials and therefore the degradation rate will be decreased [45].
However, when the battery cycles within shorter SOC ranges at higher
SOC, the impedance increases and capacity fade will diminish the
battery lifetime [46].

An even narrower cycling range is observed in the school battery
SOC profiles. In Fig. 8a–c, we observe the battery is cycling around

Table 6
Cost and LPSP values for school with different battery and PV sizes.

Case PV size,
Wp

System cost,
USD

LPSP
(IL), %

LPSP (20%
SD), %

LPSP (50%
SD), %

1.2 kWh battery 500 1668 0.95 3.03 6.75
640 1825 0.37 1.45 4.63
960 2185 0.11 0.38 1.40

1.8 kWh battery 500 2137 0.2 1.03 3.61
640 2294 0.11 0.34 1.75
960 2654 0.02 0.09 0.37

Fig. 9. Annual SOC profiles for a school system of 640 Wp PV module and 1.8 kWh battery: (a) Initial Load, (b) 20% SD, and (c) 50% SD.
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Fig. 10. Pareto plot for LPSP and system cost for a health centre.

Table 7
Values of the objective results from the genetic algorithm and its corresponding
input values.

Cross colour Cost, USD LPSP, % PV power, Wp Battery Capacity,
Wh

Red, Initial load 5499 0.97 1313 4890
Yellow, Initial load 5876 0.39 1656 4891
Yellow, 20% SD 5878 0.95 1693 4813
Green, Initial load 6696 0.00 2127 5454
Green, 20% SD 6706 0.23 2389 4935
Green, 50% SD 6703 0.99 2404 4901
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100% and 90% SOC in all cases. Although this helps to achieve high
reliability of the system, cycling and resting the battery at high SOC
could lead to accelerated capacity fade and impedance increase [14].
Finally, the health centre SOC profiles present a uniform cycling pattern
throughout the year. As observed in Fig. 11a–c, the system’s battery
SOC cycles between an upper limit of 100% and a lower limit of 60%,
55% and 45% for initial load, 20% SD and 50% SD respectively. If
cycling around middle voltages could be accomplished, the battery
would experience the lowest increase of internal resistance and de-
crease of capacity, as concluded in [46]. This could be achieved by
introducing forecasting and setting the upper SOC limit at a lower level,
except when a rainy period is forecasted.

4. Conclusions

The application of computational methods to design off-grid PV/
battery systems resilient to the suppressed demand (SD) effect was
analysed. The reliability of systems was improved using simulation
tools for three applications: a household, a school and a health centre.
Synthetic load profiles were utilized based on monthly data of energy
consumption of the region; however, real-life profiles can be uploaded
to the computational model once a diagnosis of the energy situation is
performed. Moreover, a qualitative battery ageing analysis shows the
impact of SD effect on the battery SOC profile and thus the degradation
due to cycling in certain SOC ranges. These findings indicate the im-
portance of considering SD in the design of PV/battery systems and also
provide a great opportunity to help policy makers and project managers
develop better electrification programs.

Although the reliability of the systems was achieved by increasing
the PV size rather than the battery size in the case of a household, we
also observed that the increase in battery size could result in less ageing
and therefore higher operation time due to cycling at middle SOC
ranges.

The school system analysis considers the weekends as a break in
academic activities, which has an impact in the reliability of the design.
In this case, by increasing the peak power of the PV modules, accep-
table reliability is achieved. However, increasing PV power means also
increasing physical space requirements, which could present a problem
in small rural schools. Furthermore, battery SOC profiles show that
most of the partial cycles are performed at high SOC ranges, between
80% and 100%, which can be detrimental to the battery capacity due to
ageing processes.

The health centre system was analysed using genetic algorithm (GA)
to obtain the PV and battery sizes with the minimized LPSP values and

initial cost. GA results show variation in PV sizes while maintaining the
battery size constant at a certain value. Although this results in optimal
PV and battery sizes, when considering space availability, a battery size
increment would be a better option. Furthermore, battery SOC profiles
present wider cycles than previous applications due to a uniform load
profile distribution, which consequently results in less calendar ageing
for the battery as a consequence of high SOC cycles.

As a result, the implementation of stand-alone PV systems in rural
areas should include a reliability assessment based on its SOC profile. In
other words, the lifetime of the battery under such operational condi-
tions needs to be evaluated through extensive laboratory and field
work.

Finally, it is important to point out that the use of efficient and
smart appliances, software and hardware for distributed systems in
rural electrification shows long-term benefits due to the rapid price
drop in hardware and advanced software. This enables greater control
and integration across the system components. Such components can be
used to store energy. For instance, during energy conversion surplus
periods, solar direct-drive vaccine refrigerators could cool down to
lower temperatures for longer periods. The energy saved allows the
battery to recharge more quickly, therefore avoiding blackouts.
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