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Abstract
Boundary integral methods are highly suited for problems with complicated
geometries, but require special quadrature methods to accurately compute the
singular and nearly singular layer potentials that appear in them. This article
presents a boundary integral method that can be used to study the motion of
rigid particles in three-dimensional periodic Stokes flow with confining walls.
A centerpiece of our method is the highly accurate special quadrature method,
which is based on a combination of upsampled quadrature and quadrature by
expansion, accelerated using a precomputation scheme. The method is demon-
strated for rodlike and spheroidal particles, with the confining geometry given
by a pipe or a pair of flat walls. A parameter selection strategy for the special
quadrature method is presented and tested. Periodic interactions are computed
using the spectral Ewald fast summation method, which allows our method
to run in O(n log n) time for n grid points in the primary cell, assuming the
number of geometrical objects grows while the grid point concentration is
kept fixed.

K E Y W O R D S

boundary integral equations, fast Ewald summation, quadrature by expansion, rigid particle
suspensions, Stokes flow, streamline computation

1 INTRODUCTION

Microhydrodynamics is the study of fluid flow at low Reynolds numbers, also known as Stokes flow or creeping flow.
Applications are found in biology, for example in the swimming of microorganisms1 and in blood flow,2 as well as in the
field of microfluidics, which concerns the design and construction of miniaturized fluid devices.3 Suspensions of rigid
particles in Stokes flow are important both in various applications and in fundamental fluid mechanics.4-7 In this article,
we describe a boundary integral method that can be used to study the motion of rigid particles of different shapes in Stokes
flow. The particle suspension may also be confined in a container geometry, such as a pipe or a pair of flat walls. The flow
in the fluid domain (i.e., within the container but outside the particles) is governed by the Stokes equations, which for an
incompressible Newtonian fluid take the form

∇p − 𝜇∇2u = f, (1)

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. International Journal for Numerical Methods in Fluids published by John Wiley & Sons, Ltd.

Int J Numer Meth Fluids. 2021;93:2175–2224. wileyonlinelibrary.com/journal/fld 2175

https://orcid.org/0000-0002-6953-8058
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Ffld.4970&domain=pdf&date_stamp=2021-03-23


2176 BAGGE and TORNBERG

∇ ⋅ u = 0. (2)

Here, p is the pressure, u is the flow velocity, f is the body force per unit volume, and 𝜇 is the viscosity of the fluid. The
Stokes equations arise as a linearization of the Navier–Stokes equations in the case where fluid inertia can be neglected,
that is, when the Reynolds number is much less than 1.

On the surfaces of the particles and walls, no-slip boundary conditions are prescribed. A problem of physical interest
is the resistance problem: given the velocities of all particles, compute the forces and torques (caused by viscous resistance)
acting on them by the fluid. The inverse problem is called the mobility problem: given the forces and torques acting on all
particles by the fluid, compute the particle velocities. The mobility problem is useful in the case of noninertial particles,
since then the net force on each particle must be zero, so any external forces (such as gravity) must be balanced by viscous
forces from the fluid; given external forces and torques, one can then compute the motion of the particles.

Since the governing equations (1)–(2) are linear, boundary integral methods can be used to solve them. In these meth-
ods, the flow is expressed in terms of layer potentials, which are integrals over the boundary of the fluid domain (i.e., over
the container walls and particle surfaces). This reduces the dimensionality of the problem from three to two, and leads to
a smaller linear system compared with methods that must discretize the whole volume (such as the finite difference or
finite element methods). If the meshed surfaces are rigid, as is the case here, it is also easy to move the particles without
any need for remeshing. For a detailed discussion on the properties of boundary integral methods, we refer to the books
by Pozrikidis,8 Atkinson,9 and Kress.10 Of special importance are Fredholm integral equations of the second kind, which
when discretized, for example using the Nyström method [ 9, ch. 4, 10, sec. 12.2], are known to remain well-conditioned
as the system size increases [ 9, p. 113, 10, p. 282].

The linear system resulting from the discretization of a boundary integral equation is dense, and thus naive Gaussian
elimination would require O(N3) operations to solve a system of N unknowns. Using an iterative solution method such as
the generalized minimal residual method (GMRES),11 the complexity is reduced to O(N2) since the condition number and
thus the number of iterations are independent of the system size (but may depend on the geometry). For a large system,
this complexity is still prohibitive. This can be overcome by using a fast summation method such as the fast multipole
method (FMM)12,13 or a fast Ewald summation method,14-16 which reduce the complexity further to O(N) or O(N log N),
respectively.

One of the challenges of boundary integral methods is the need for accurate special quadrature methods for singular
and nearly singular integrands. These are necessary when evaluating the layer potentials at a point on the boundary
(where the integral kernel is singular) or close to the boundary (where the kernel is nearly singular, that is, hard to resolve
using a quadrature rule designed for smooth integrands). Such special quadrature methods are the main focus of this
article.

1.1 Overview of related work

Volume discretization methods for particulate Stokes flow, based for example on finite elements or finite differ-
ences, can be divided into conforming and nonconforming methods. In conforming methods (e.g., the arbitrary
Lagrangian–Eulerian method17), the mesh conforms to the particle geometry and moves with the particles. In non-
conforming methods (e.g., the immersed boundary method18 and the distributed Lagrange multiplier/fictitious domain
method19), the mesh is fixed and cuts through the particles. The lattice-Boltzmann method20,21 also has a fixed computa-
tional grid, and can be combined with the immersed boundary method.22 For specific particle shapes, such as spherical or
spheroidal particles, methods based on approximations such as Stokesian dynamics23,24 or force-coupling25 are available.
For a more detailed overview, we refer to Liu et al.25 and Wu and Shu,22 and references therein. Many of these methods
are limited by difficulties to enforce boundary conditions to high accuracy at the particle surface, especially for moving
particles, which reduces the accuracy of the method as a whole. Boundary integral methods,26,27 by contrast, have no
volume grid but only a fixed grid on the surface of each particle, and allow boundary conditions to be set so that high
accuracy can be achieved. Furthermore, boundary integral methods also allow unbounded domains to be treated natu-
rally without truncation, for example when studying particle dynamics without confinement. As mentioned above, the
accuracy of boundary integral methods hinges on the availability of an accurate special quadrature method.

In two dimensions, there are excellent special quadrature methods available, such as the one introduced by
Helsing and Ojala,28 which has been adapted to simulations of clean29 and surfactant-covered30 drops in Stokes flow, as
well as vesicles.31 However, this method is based on a complex variable formulation and not easy to generalize to three
dimensions.
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In three dimensions, the development of an accurate and efficient special quadrature method is still an active research
problem, especially in the nearly singular case. For an overview of methods that have been used, we refer to Klöckner
et al. [ 32, sec. 1] and Rahimian et al. [ 33, sec. 1]. One of the most promising methods which is still under development is
quadrature by expansion (QBX), first introduced by Klöckner et al.32 and Barnett34 and applied to the Helmholtz equation
in two dimensions. This method is based on the observation that the layer potentials are smooth all the way up to the
boundary, and can therefore be locally expanded around a point away from the boundary. The expansions can be evaluated
at a point closer to the boundary, or even on the boundary itself. The convergence theory of QBX was developed by Epstein
et al.,35 while af Klinteberg and Tornberg36 analyzed the error from the underlying quadrature rule used to compute the
expansion coefficients. A strength of QBX is that it separates source points and target points; the source points enter
only in the computation of the expansion coefficients, which can then be used to evaluate the layer potential in all target
points within a ball of convergence. QBX has been applied to spheroidal particles in three-dimensional Stokes flow by
af Klinteberg and Tornberg,37 using a geometry-specific precomputation scheme to accelerate the computation of the
coefficients.

A different approach that has been taken to accelerate QBX is to couple it to a customized FMM, which has been done
in two dimensions38-40 and more recently in three dimensions.41,42 This coupling is a natural step to take since the FMM
uses expansions of the same kind as QBX, but it requires nontrivial modifications to the FMM. The resulting method has
complexity O(N) and works for any smooth geometry. The work published so far has been for the Laplace and Helmholtz
equations, but it is likely to be extended to more kernels, including the ones needed for Stokes flow.

The QBX-FMM methods above all use global QBX, in which all source points are included in forming the local expan-
sion. An alternative is local QBX, in which only source points that are close to the expansion center are included. Yet
another variant is found in Reference 37, where all source points on a single particle is used when forming expansions
close to that particle; we call this variant particle-global. Local QBX is typically combined with a patch-based discretiza-
tion of the geometry. While it reduces the cost of the method, it also poses a challenge since the local layer potential from
a single patch may not be as smooth as the global layer potential from the whole geometry (or a whole particle). Differ-
ent versions of local QBX have been described in two dimensions34,38 and three dimensions.43 The latter article also uses
target-specific expansions, which need only O(p) terms to obtain the same accuracy as a QBX expansion based on spher-
ical harmonics with O(p2) terms. However, they sacrifice the separation of source and target that is otherwise present
in QBX. This separation is necessary in the QBX-FMM methods, although target-specific expansions can also be used in
QBX-FMM methods to lower the computational cost.42

Some of the recent work have focused on automating the parameter selection based on a given error tolerance, result-
ing in the adaptive QBX method.44 The results have so far not been generalized to three dimensions. There has also been
work on a kernel-independent version of QBX, called quadrature by kernel-independent expansion33 and meant to be
combined with the kernel-independent FMM. The published work is in two dimensions, but a generalization to three
dimensions is expected to follow.

Other methods, which are not based on QBX, have also been used successfully as special quadrature methods in
three dimensions. One example is the “line interpolation method” introduced by Ying et al..45 In this method, a line is
constructed through the target point, which is close to the boundary, and its projection onto the boundary. The layer
potential is evaluated at points further away from the boundary along this line, and also at the projection point where the
line intersects the boundary if a separate singular integration method is available. The value at the target point is then
computed using interpolation along the line (or extrapolation if no singular integration method is available). Like QBX, the
success of this method hinges on the fact that the layer potential is smooth in the domain, so that it can be well interpolated
(or extrapolated). It has been applied to surfactant-covered drops46 and vesicles47 in three-dimensional Stokes flow. The
extrapolatory method used by Lu et al.2 falls into the same category. Other types of methods are based on regularizing the
kernel and adding corrections,48-51 density interpolation techniques,52 coordinate rotations and a subtraction method,53

asymptotic approximations,54 analytical expressions available only for spheres55 or floating partitions of unity.56-58 Many
of these methods are target-specific, and their cost grows rapidly if there are many nearly singular target points.

1.2 Scope of this article

In this article, we present a boundary integral method based on the Stokes double layer potential, which can be used to
solve the mobility and resistance problems for a system of rigid particles in incompressible three-dimensional Stokes flow,
possibly confined within a container geometry. Our formulation leads to a Fredholm integral equation of the second kind.
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We use QBX for singular integration, and a combination of QBX and upsampled quadrature for nearly singular integration.
Our QBX implementation is based on the work by af Klinteberg and Tornberg,37 which we have extended to rodlike
particles, plane walls and pipes (using particle-global QBX for the particles and local QBX for the two wall geometries). A
precomputation scheme is used to greatly accelerate the QBX computations for all geometries. For this precomputation
scheme to be feasible, we require that each particle or wall is rigid and has some degree of symmetry, such as axisymmetry
or reflective symmetry. Nonetheless, we have chosen this route since the implementation is relatively simple compared
with for example, a QBX-FMM method. When container walls are present, we restrict ourselves to periodicity in all
three spatial directions and use a fast Ewald summation method called the spectral Ewald (SE) method58-60 to accelerate
computations.* In this situation our method scales as O(N log N) in the number of unknowns N, assuming fixed grid point
concentration.

The main focus of this article is on the application of the previously developed QBX and SE methods to rigid particle
suspensions with the confining geometry of a periodic straight pipe or a pair of periodic plane walls. Our contributions
include:

• The combined special quadrature method based on QBX and upsampling, which we have implemented for spheroidal
and rodlike particles, plane walls and pipes. (The QBX implementation for spheroids is reused from Reference 37. Our
initial work on QBX for plane walls is published in the conference proceedings.62)

• A strategy for experimentally selecting the parameters of the special quadrature method to meet a given error tolerance.
We also demonstrate that the boundary integral method in full meets the given error tolerance and scales as O(N log N).

• Construction of fully smooth rodlike particles. We demonstrate the effect of smoothness on the convergence of the
local expansions in this particular case.

• Derivation of a stresslet identity for an infinite pipe and a pair of infinite plane walls. This is used as an exact solution
to test the special quadrature method.

• An outline of how streamlines can be efficiently computed for periodic problems using the SE method, by reusing data.
(This idea was used, but not explicitly described, in Reference 37.)

• The so-called completion sources that appear in our formulation are distributed along the axis of symmetry of rodlike
particles, and we have studied how the number of completion sources influences the accuracy.

1.3 Organization of the article

In Section 2, we introduce the mathematical formulation of the problem, including the boundary integral formulation
and the boundary integral equations for the resistance and mobility problems. In Section 3, we describe the discretization
of the geometry and the quadrature method, including the combined special quadrature. The details on our QBX method
are then given in Section 4, including the precomputation scheme. In Section 5, we describe how periodicity is treated and
how the special quadrature is combined with the SE method. Then, in Section 6, our parameter selection strategy for the
special quadrature is described and demonstrated. Numerical results are given in Section 7, to demonstrate the accuracy
and scaling of our method. Finally, in Section 8, we demonstrate the effect of nonsmooth geometries on the convergence.
The appendices include a derivation of the stresslet identity for plane walls and pipes, details on the construction of the
smooth rodlike particles, and a note on streamline computation.

2 MATHEMATICAL FORMULATION

We consider two different kinds of problems: free-space problems and fully periodic problems. In a free-space problem,
M particles (spheroids or rods) are located in a fluid extending to infinity. We denote the fluid domain by Ω and its
boundary, that is, the union of all particle surfaces, by Γ. The Stokes equations (1)–(2) with f = 0 hold in Ω, while no-slip
boundary conditions are imposed on Γ. The unit normal vector n of Γ is defined to point into the fluid domain Ω, as
shown in Figure 1(A).

A fully periodic problem, on the other hand, is periodic in all three spatial directions. The primary cell is a box with
side lengths B = (B1,B2,B3), which is considered to be replicated periodically in all three spatial directions, as shown in

*The implementation of the SE method that we use is publicly available at Reference 61.
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F I G U R E 1 The geometry
for (A) a free-space problem, and
(B) a fully periodic problem. In
(B), the primary cell is marked
with a darker outline than the
other cells. The geometry is
shown only in the primary cell.
The lattice of periodic cells fills
the whole space; only a small
part is shown here [Colour
figure can be viewed at
wileyonlinelibrary.com]

(A) Free-space problem (B) Fully periodic problem

Figure 1(B). Let the number of particles in the primary cell be M. In this case we also allow a container consisting either
of a pair of plane walls or a pipe. Only the geometry inside the primary cell is discretized, which means that Γ consists of
the union of the M particle surfaces and the parts of the wall surfaces that lie in the primary cell.† The fluid domain Ω lies
within the container but outside the particles; the flow is thus external to the particles, but internal to the surrounding
walls. The unit normal vector n of Γ is always defined to point into Ω.

Below, we introduce our boundary integral formulation in the free-space setting, or for the primary cell without
periodicity. Full treatment of the periodic problem is deferred to Section 5.

2.1 Boundary integral formulation

Any flow field u that satisfies the Stokes equations (1)–(2) with f = 0 can be expressed in terms of integrals over the
boundary of the fluid domain Ω, as described for example by Pozrikidis [8, ch. 4] and Kim and Karrila [66, ch. 14–16]. The
boundary integral formulation that we use is based on the Stokes double layer potential , which in free space is given by ‡

i[Γ,q](x) = ∫Γ
Tijk(x − y)qj(y)nk(y) dS(y), Tijk(r) = −6

rirjrk|r|5 . (3)

Here, Γ and n are as in Figure 1, and the double layer density q is a continuous vector field defined on Γ. The tensor
kernel T in (3) is known as the stresslet. The potential  has a jump discontinuity as x passes over Γ. More specifically,
for x ∈ Γ it holds that [8, p. 110]

lim
𝜀→0+

[Γ,q](x ± 𝜀n) = [Γ,q](x) ∓ 4𝜋q(x). (4)

For any closed Lyapunov surface Γ̃ ⊆ Γ and any constant vector q̃, the stresslet identity [8, p. 28]

[Γ̃, q̃](x) =
⎧⎪⎨⎪⎩

0, if x is outside the domain enclosed by Γ̃,
4𝜋q̃, if x ∈ Γ̃,
8𝜋q̃, if x is inside the domain enclosed by Γ̃,

(5)

†For a single infinitely large plane wall, the method of images can be used,63-65 which has the advantage that the wall itself does not need to be
discretized. However, that method does not work when there are more than one wall, or when the wall is curved, which are the cases we consider
here. Therefore, we must discretize the walls.
‡The Einstein summation convention is used in this article, meaning that indices appearing twice in the same term are to be summed over the set
{1, 2, 3}. The remaining free indices take values in the same set.

http://wileyonlinelibrary.com
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holds. We will use this identity as a test case for the special quadrature method in Sections 6 and 7.1. In Appendix A we
show that a variant of (5) holds also for the wall geometries that we consider, despite them not being closed surfaces.

The double layer potential u(x) = [Γ,q](x) is a solution to (1)–(2) in Ω for any continuous vector field q. How-
ever, not every solution to (1)–(2) can be represented by a double layer potential alone; for instance, as noted in
References [67, 8, p. 119], the force and torque exerted on any particle by the flow from a double layer potential will always
be zero, whereas a Stokes flow in general can exert a nonzero force and torque on the particles (which is a central point
of the resistance and mobility problems mentioned in Section 1). This is related to the presence of a nontrivial nullspace
of the operator q → [Γ,q] for external flows, which can be immediately seen from the stresslet identity (5).

To remove the nontrivial nullspace and allow for nonzero forces and torques on the particles, we add a completion
flow  , first introduced by Power and Miranda.67 The completion flow is also a solution to (1)–(2) and can be identified
as the flow from a point force F and a point torque 𝝉 located at y. It is given by

i[F, 𝝉 , y](x) =
1

8𝜋𝜇
(

Sij(x − y)Fj + Rij(x − y)𝜏j
)
, x ∈ Ω, (6)

where the stokeslet S and the rotlet R are given by §

Sij(r) =
𝛿ij|r| + rirj|r|3 and Rij(r) = 𝜖ijk

rk|r|3 , (7)

respectively. We call a pair (F, 𝝉) a completion source. Such completion sources are placed in the interior of every particle.
Mathematically, one completion source per particle is sufficient, but this may lead to numerical problems in some cases.
In this article, we allow for multiple completion sources to be distributed along a line segment within the particle; as we
show in Section 7.2.1, this is important for elongated particles. For the particle with index 𝛼, let F(𝛼) and 𝝉

(𝛼) be the net
force and torque, respectively, exerted on the fluid by the particle, and let y(𝛼)

c be the center of mass of the particle. (For a
noninertial particle, F(𝛼) and 𝝉

(𝛼) would be equal to the net external force and torque, respectively, acting on the particle.)
The completion flow associated with particle 𝛼 is then given by


(𝛼)[F(𝛼), 𝝉 (𝛼)](x) = 1

Nsrc

Nsrc∑
s=1

[F(𝛼), 𝝉 (𝛼), y(𝛼)
c + C(s,Nsrc)a(𝛼)](x), (8)

where Nsrc is the number of completion sources per particle,  is given by (6), and a(𝛼) is a vector specifying the line
segment along which completion sources are placed. The function C is given by

C(s,Nsrc) =
⎧⎪⎨⎪⎩

0, if Nsrc = 1,
−1 + 2 s−1

Nsrc−1
, if Nsrc > 1.

(9)

Both the double layer potential  and the completion flow  have the property that they decay to zero as x → ∞.
To be able to represent flows which do not decay, we add a background flow ubg, which is a known solution to (1)–(2) in
the whole physical space, ignoring all particles and walls. The total flow u in the presence of particles and walls is thus
written as

u(x) = ubg(x) + ud(x), (10)

where ud is a disturbance flow which is responsible for enforcing the no-slip boundary conditions on the solid boundary
Γ. As x moves away from Γ, the disturbance flow ud should decay to zero, and the total flow should therefore approach
the background flow ubg. The disturbance flow is written as

ud(x) = [Γ,q](x) +
M∑
𝛼=1


(𝛼)[F(𝛼), 𝝉 (𝛼)](x), (11)

§Here, 𝛿ij denotes the Kronecker delta, and 𝜖ijk is the Levi-Civita symbol.
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where  (𝛼) is as in (8), and the double layer density q must be determined through the boundary conditions. Note that ud
as given by (11) decays as x → ∞, and by the superposition principle it satisfies (1)–(2). Also note that completion sources
are placed inside the particles since the flow is external to the particles, but not inside the walls since the flow is internal
to the walls (for details we refer to Pozrikidis [8, sec. 4.5]). On the other hand, the double layer density q is defined on the
surfaces of both the particles and walls. The formulation (11) is complete, meaning that any flow which satisfies (1)–(2)
and decays as x → ∞ can be represented in this way.

To derive the fundamental boundary integral equation, which is used to determine the double layer density q in (11),
we insert (11) into (10) and then let x ∈ Ω approach the solid boundary Γ. Enforcing no-slip boundary conditions on Γ
yields, recalling the jump condition (4),

u(x) = ubg(x) +[Γ,q](x) − 4𝜋q(x) +
M∑
𝛼=1


(𝛼)[F(𝛼), 𝝉 (𝛼)](x) = UΓ(x), x ∈ Γ. (12)

The presence of the term −4𝜋q(x), which is due to the jump condition, makes the boundary integral equation (12) a
Fredholm integral equation of the second kind. The right-hand side UΓ is the pointwise velocity of the boundary Γ. We
assume the walls to be stationary and the particles to move as rigid bodies. This means that, if we let Γw be the union of
all wall surfaces and Γ(𝛼)

p the surface of particle 𝛼,

UΓ(x) =

{
0, x ∈ Γw,

U(𝛼)
RBM +𝛀(𝛼)

RBM × (x − y(𝛼)
c ), x ∈ Γ(𝛼)

p ,
(13)

where U(𝛼)
RBM and 𝛀(𝛼)

RBM are the translational and angular velocity, respectively, of particle 𝛼 (with RBM denoting rigid
body motion).

As mentioned in Section 1, the viscous resistance that the particles experience from the fluid is related to their veloci-
ties. In the resistance problem, the velocities (i.e., U(𝛼)

RBM and 𝛀(𝛼)
RBM for each particle) are specified in (12)–(13), while in the

mobility problem, the viscous forces and torques (i.e., F(𝛼) and 𝝉
(𝛼) for each particle) are specified [8, p. 129]. The bound-

ary integral equations resulting from these two problems are described in more detail below. In both cases, the resulting
integral equation is discretized using the Nyström method, as described in Section 3.

2.1.1 The resistance problem

In this case, the velocities U(𝛼)
RBM and 𝛀(𝛼)

RBM of all particles are known, while the corresponding forces F(𝛼) and torques 𝝉 (𝛼)
are to be computed. Following Pozrikidis [8, p. 130], the forces and torques are related to the unknown double layer
density q by stipulating

F(𝛼)[q] = ∫Γ(𝛼)
p

q(y) dSy and 𝝉
(𝛼)[q] = ∫Γ(𝛼)

p

(y − y(𝛼)
c ) × q(y) dSy. (14)

These relations are inserted into (12), which can then be rearranged as

[Γ,q](x) − 4𝜋q(x) +
M∑
𝛼=1


(𝛼)[F(𝛼)[q], 𝝉 (𝛼)[q]](x) = UΓ(x) − ubg(x), x ∈ Γ. (15)

After solving this integral equation for q, the forces and torques can be computed using (14), and the flow field can
then be computed using (10)–(11).

2.1.2 The mobility problem

In this case, the force F(𝛼) and torque 𝝉
(𝛼) exerted on the fluid by each particle (which for a noninertial particle are equal

to the net external force and torque acting on the particle) are known, but not the particle velocities U(𝛼)
RBM and 𝛀(𝛼)

RBM.
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Following Pozrikidis [8, p. 135], the velocities are related to the double layer density q by

U(𝛼)
RBM[q] = − 4𝜋|Γ(𝛼)

p |∫Γ(𝛼)
p

q(y) dSy, (16)

𝛀(𝛼)
RBM[q] = −4𝜋

3∑
n=1

𝝎
(𝛼)
n

A(𝛼)
n

(
𝝎
(𝛼)
n ⋅ ∫Γ(𝛼)

p

(y − y(𝛼)
c ) × q(y) dSy

)
. (17)

Here, |Γ(𝛼)
p | is the surface area of Γ(𝛼)

p , and

A(𝛼)
n = ∫Γ(𝛼)

p

|||𝝎(𝛼)
n × (y − y(𝛼)

c )|||2 dSy, (18)

while 𝝎
(𝛼)
n are three linearly independent unit vectors which must satisfy

1√
A(𝛼)

m A(𝛼)
n

∫Γ(𝛼)
p

[
𝝎
(𝛼)
m × (y − y(𝛼)

c )
]
⋅
[
𝝎
(𝛼)
n × (y − y(𝛼)

c )
]

dSy = 𝛿mn, m,n = 1, 2, 3. (19)

The boundary integral Equation (12) can then be rearranged as

[Γ,q](x) − 4𝜋q(x) − UΓ[q](x) = −ubg(x) −
M∑
𝛼=1


(𝛼)[F(𝛼), 𝝉 (𝛼)](x), x ∈ Γ, (20)

where UΓ[q] is given by (13) but with U(𝛼)
RBM and 𝛀(𝛼)

RBM replaced by the expressions in (16) and (17), respectively. After
solving (20) for q, the velocities can be computed using (16)–(17), and the flow field can be computed using (10)–(11).

3 DISCRETIZATION AND QUADRATURE

In order to solve the boundary integral equation (15) associated with the resistance problem, or the boundary integral
Equation (20) associated with the mobility problem, the integral operators in these equations must be discretized. This
amounts to discretizing the double layer potential , as well as the integrals occurring in relation (14) for the resis-
tance problem, or relation (16)–(17) for the mobility problem. Following af Klinteberg and Tornberg,37 we introduce
the notation

I[f ] = ∫Γ
f (y) dS(y) (21)

for the integral of the arbitrary function f over the surface Γ. We introduce a quadrature rule QN called the direct quadra-
ture rule, defined by a set of N nodes xi ∈ Γ and weights wi ∈ R, i= 1, … , N. The details of this quadrature rule is specified
in Sections 3.1 and 3.2. Using the direct quadrature rule QN , the integral in (21) can be approximated as

I[f ] ≈ QN[f ] =
N∑

i=1
f (xi)wi. (22)

Given a discretization of Γ, that is, a set of nodes {xi}, we define a grid spacing h (the exact definition of h is given
for particles by equation (31) and for walls by Equation (33) below). An integral quantity approximated by QN on this
discretization is then denoted by a superscript h; for example, the double layer potential

h
i [Γ,q](x) = QN[Tijk(x − ⋅)qj(⋅)nk(⋅)]. (23)
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We then discretize (15) or (20) using the Nyström method [9, ch. 4, 10, sec. 12.2], in which the integral equation is
enforced in the quadrature nodes. For the resistance problem, (15) then becomes


h[Γ,q](xi) − 4𝜋q(xi) +

M∑
𝛼=1


(𝛼),h[F(𝛼)[q], 𝝉 (𝛼)[q]](xi) = UΓ(xi) − ubg(xi), i = 1, … ,N. (24)

For the mobility problem, (20) becomes


h[Γ,q](xi) − 4𝜋q(xi) − Uh

Γ[q](xi) = −ubg(xi) −
M∑
𝛼=1


(𝛼)[F(𝛼), 𝝉 (𝛼)](xi), i = 1, … ,N. (25)

The superscript h on
(𝛼),h in (24) and Uh

Γ in (25) signifies that these quantities, while not integrals themselves, contain
integrals—namely, (14) or (16)–(17)— which are approximated using the direct quadrature rule QN . In both cases, the
resulting linear system is solved iteratively using the GMRES.

In this article, we consider two distinct types of geometrical objects, namely, particles and walls, as indicated by
Figure 2. Particles are mobile rigid bodies immersed in the fluid, while walls are stationary and surround the fluid domain.
We consider two types of particles: spheroids, which are given by a surface

x2
1 + x2

2

a2 +
x2

3

c2 = 1 (26)

in local coordinates; and rods, which consist of a cylinder with rounded caps, described in Appendix B. We also consider
two types of walls, namely, plane walls and pipes with circular cross-section. Both wall geometries extend to infinity in
the periodic setting, but we discretize only the part of each object that lies inside the primary cell.

The nature of the direct quadrature rule QN is different for particles and walls: for particles, it is a particle-global
quadrature rule described in Section 3.1, while for walls it is a local patch-based quadrature rule described in Section 3.2.
The special quadrature method for particles and walls is introduced in Section 3.3.

It should be noted that all geometrical objects shown in Figure 2 are smooth, that is, of class C∞. The construction of
the smooth rod particles is described in Appendix B. In Section 8, we consider the effect that a nonsmooth object would
have on the convergence of the special quadrature method.

3.1 Direct quadrature for particles

The discretization and direct quadrature rule of the spheroids are exactly the same as in Reference 37, while for the rods
they are a slight variation of the former. Both kinds of particles are axisymmetric, and their parametrizations take this into

F I G U R E 2 The geometrical objects
considered in this article are (A) particles
(spheroids and rods) and (B) walls (plane walls
and pipes). The quadrature rule is different for
particles and walls [Colour figure can be viewed
at wileyonlinelibrary.com]

Spheroid

Rod

(A) Particles
Particle-global quadrature

Plane wall

Pipe

(B) Walls
Local patch-based quadrature
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F I G U R E 3 The grid on the rods consists of three parts: Two caps and a middle cylinder
[Colour figure can be viewed at wileyonlinelibrary.com]

account, with one parameter 𝜑 ∈ [0, 2𝜋) varying in the azimuthal direction and the other parameter 𝜃 ∈ [0, 𝜋] varying in
the polar direction. For instance, the spheroid (26) is parametrized using spherical coordinates as

⎧⎪⎨⎪⎩
x1 = a sin 𝜃 cos𝜑,
x2 = a sin 𝜃 sin𝜑,
x3 = c cos 𝜃.

(27)

It is discretized using a tensorial grid with n𝜃 × n𝜑 grid points. For the polar direction, let (𝜃i, 𝜆𝜃i ), i = 1, … ,n𝜃 , be the
nodes and weights of an n𝜃-point Gauss–Legendre quadrature rule [68, sec.3.5(v)] on the interval [0, 𝜋]. For the azimuthal
direction, let (𝜑j, 𝜆

𝜑
j ), j= 1, … , n𝜑, be the nodes and weights of the trapezoidal rule on the interval [0, 2𝜋). Since the

integrand is periodic on this interval, the trapezoidal rule has spectral accuracy in this case.69 The resulting tensorial
quadrature rule, called the direct quadrature rule of the spheroid, is

Qn𝜃n𝜑[f ] =
n𝜃∑

i=1

n𝜑∑
j=1

f (x(𝜃i, 𝜑j))Wsph(𝜃i, 𝜑j)𝜆𝜃i 𝜆
𝜑
j , (28)

where Wsph(𝜃, 𝜑) is the area element associated with the parametrization (27).
The rod consists of a cylinder with rounded caps. While the surface is smooth everywhere, the grid is divided into

three parts as shown in Figure 3. The reason for this is to be able to set the resolution at the caps independently of the
resolution at the middle of the rod; the resolution may need to be higher at the caps than at the middle due to the larger
curvature.¶ This also makes it possible to increase the resolution locally at a cap which is very close to another surface.

The rod is parametrized as

⎧⎪⎨⎪⎩
x1 = 𝜚(𝜃;L,R) cos𝜑,
x2 = 𝜚(𝜃;L,R) sin𝜑,
x3 = 𝛽(𝜃;L,R),

(29)

where L is the length of the rod and R its radius. The shape functions 𝜚(⋅ ;L,R) ∶ [0, 𝜋] → [0,R] and 𝛽(⋅ ;L,R) ∶ [0, 𝜋] →
[− 1

2
L, 1

2
L] are described in Appendix B. They are chosen such that 𝜃 ∈ [0, 𝜋∕3] = I1 and 𝜃 ∈ [2𝜋∕3, 𝜋] = I3 correspond

to the two caps, while 𝜃 ∈ [𝜋∕3, 2𝜋∕3] = I2 corresponds to the middle part. Each cap is discretized using n1 ×n𝜑 grid
points, and the middle cylinder is discretized using n2 ×n𝜑 grid points, so the total grid has (2n1 +n2)×n𝜑 grid points. The
trapezoidal rule is again used in the azimuthal direction. In the polar direction, a separate Gauss–Legendre quadrature
rule is used for each of the three parts. The tensorial direct quadrature rule of the rod is thus (with n3 =n1)

Q(2n1+n2)n𝜑[f ] =
3∑

k=1

nk∑
i=1

n𝜑∑
j=1

f (x(𝜃k
i , 𝜑j))Wrod(𝜃k

i , 𝜑j)𝜆k
i 𝜆

𝜑
j , (30)

where (𝜃k
i , 𝜆

k
i ), i= 1, … , nk, are the nodes and weights of an nk-point Gauss–Legendre quadrature on the interval Ik, and

Wrod(𝜃, 𝜑) is the area element associated with (29).
For both spheroids and rods, we define the grid spacing h as the distance between adjacent grid points in the azimuthal

direction at the equator of the particle, that is,

h = 2𝜋R
n𝜑

for rods, h = 2𝜋a
n𝜑

for spheroids, (31)

¶We also tested a discretization of the rod using a grid spanning the whole rod without dividing it into parts. We did not find any significant
improvement in the quadrature error or computational cost from using such a grid rather than the one shown in Figure 3.

http://wileyonlinelibrary.com
https://dlmf.nist.gov/3.5.v


BAGGE and TORNBERG 2185

where n𝜑 is the number of grid points in the azimuthal direction, R is the radius of the rod and a is the equatorial semiaxis
of the spheroid; c.f. (27) and (29), respectively.

The direct quadrature rules (28) and (30) are both particle-global in the sense that each particle is treated as a single
unit, and the quadrature rule is applied to the particle as a whole. The quadrature rules has spectral accuracy for smooth
integrands, that is, it converges exponentially as the number of grid points increases.

3.2 Direct quadrature for walls

The wall geometries are present only in the periodic setting, and then only the part inside the primary cell needs to
be discretized. For the plane wall, this part consists of a flat rectangle of size L1 ×L2, which is divided into P1 ×P2 flat
subrectangles, called patches. Each patch is discretized using a tensorial grid with n1 ×n2 Gauss–Legendre grid points,
as shown in Figure 4(A). In each direction of the patch, an nd-point Gauss–Legendre quadrature rule is used with nodes
and weights (sd

i , 𝜆
d
i ), i= 1, … , nd, d= 1, 2. The resulting tensorial direct quadrature rule of the patch is

Qn1n2[f ] =
n1∑

i=1

n2∑
j=1

f (x(s1
i , s

2
j ))Wwall(s1

i , s
2
j )𝜆

1
i 𝜆

2
j , (32)

where Wwall(s1, s2) is the area element of the wall.
The part of the pipe in the primary cell consists of a cylinder with radius Rc and length Lc. Like the plane wall, it

is divided into rectangular patches, but these are curved, as seen in Figure 4(B). Apart from that, the discretization and
quadrature rule are the same as for the plane wall. The direct quadrature rule of the pipe is thus also given by (32), the
only difference compared with the plane wall being the area element Wwall and the parametrization (s1, s2) → x.

For both plane walls and pipes, we define the grid spacing h as

h = max(h1, h2), (33)

where h1 and h2 are the largest spacings between adjacent grid points in each of the two tensorial directions of the patches.
The direct quadrature rule (32) is local in the sense that the wall is subdivided into smaller patches, and the quadrature

rule is applied to each patch separately. The grid can be refined in two different ways: by adding more grid points to each
patch (which we call n-refinement), or by reducing the size of the patches and thus increasing their number (which we
call P-refinement). Under n-refinement, the quadrature rule has spectral accuracy like the direct quadrature rule of the
particles, while under P-refinement the quadrature rule is polynomially accurate with order determined by n1 and n2.

3.3 Special quadrature: upsampled quadrature and QBX

The double layer potential  given by (3) is challenging to compute using direct quadrature in two different situations, in
both cases due to its kernel T. First, when the evaluation point x is on Γ itself, T becomes singular at the point y = x (we

F I G U R E 4 (A) A plane wall divided into 3× 3
patches, each patch discretized using 6× 4 grid points.
(B) A pipe divided into 3× 10 patches, each patch
discretized using 4× 3 grid points [Colour figure can be
viewed at wileyonlinelibrary.com] (A) Plane wall (B) Pipe
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refer to this as the singular case or the onsurface evaluation case). The integral exists as an improper integral as long as
Γ is a Lyapunov surface [8, p. 37], but clearly a special quadrature method of some sort is needed to compute it. Second,
when x ∈ Ω is close to Γ, but not on Γ, T becomes very peaked and thus hard to resolve using the direct quadrature rule
(we refer to this as the nearly singular case or the offsurface evaluation case).

The singular case is always present when solving the boundary integral Equation (12), while the nearly singular case
occurs when particles are close to each other or close to a wall, and also if the flow field (10)–(11) is to be computed close
to a particle or wall. The latter situation is shown in Figure 5(A), where the error grows exponentially as the evaluation
point x approaches the boundaryΓ. This behavior is well-known, and in two dimensions there are error estimates available
for the Laplace and Helmholtz potentials36 and for the Stokes potential.30 To compute the double layer potential accurately
close to a particle or wall, special quadrature is needed. Here, we consider two types of special quadrature: upsampled
quadrature and QBX.

Assuming that the density q itself is well-resolved on the grid, upsampled quadrature provides a partial solution for
the nearly singular case. In upsampled quadrature, the double layer density q is interpolated onto a grid refined by a fac-
tor 𝜅 in both directions, and the integral is then evaluated using direct quadrature on the finer grid. For the particle-global
quadrature rules in Section 3.1, the grid of the whole particle is refined (increasing the number of grid points of each indi-
vidual quadrature rule). The density is interpolated onto the finer grid using trigonometric interpolation in the azimuthal
direction and barycentric Lagrange interpolation70 in the polar direction. For the local patch-based quadrature rules in
Section 3.2, only the NP patches closest to the evaluation point x are refined, using n-refinement (thus increasing the
number of grid points on them); other patches are sufficiently far away from the singularity that direct quadrature can
be used. This is shown in Figure 6 for NP = 9. The refinement has spectral accuracy for both particles and walls. Since all
geometrical objects are rigid, interpolation matrices can be precomputed.

As Figure 5(B) shows, upsampled quadrature pushes the region where the error is large closer to the boundary Γ.
However, the error will always be large very close to Γ no matter how large the upsampling factor 𝜅 is. To be able to
achieve small errors arbitrarily close to Γ, we use a special quadrature rule specifically designed for layer potentials with

(A) Direct quadrature error (B) Upsampled quadrature error, = 2

10−2

10−4

10−6

10−8

10−10

10−12

10−14

F I G U R E 5 Relative error in the center plane when evaluating the stresslet identity (5) for two rod particles between a pair of parallel
horizontal plane walls in a periodic setting, using the direct quadrature rule in (A) and the upsampled quadrature rule with upsampling factor
𝜅 = 2 in (B). Note that the error is still large very close to the particles and walls in (B). The density q is constant in this example, so the error
in (A) and (B) comes entirely from the nearly singular behavior of the stresslet T [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 6 Upsampled quadrature for a plane wall: The NP patches closest to the
evaluation point (marked with ×) are refined, here for NP = 9. The other patches are treated using
direct quadrature without refinement [Colour figure can be viewed at wileyonlinelibrary.com]
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singular kernels, namely, QBX.32,34 The idea behind QBX is to make a local series expansion of the potential  in the fluid
domain, which converges rapidly since  is smooth all the way up to the boundary Γ. The expansion is made around a
point c, called the expansion center, which is inside the fluid domain (i.e., not on Γ), and it can be used to evaluate the
potential inside a ball around c called the ball of convergence, as shown in Figure 7. The expansion is valid even at the
point where the ball touches Γ, and can therefore be used in the singular case as well as the nearly singular case.35 The
application of QBX to the Stokes double layer potential  will be described in detail in Section 4.

In this article, we use a combined quadrature strategy, where direct quadrature is used far away from the boundary,
upsampled quadrature is used in an intermediate region, and QBX is used in a small region closest to the boundary, as
shown in Figure 8. For each particle and wall in the geometry, the evaluation point x is classified into one of these three
regions, and the contribution to the double layer potential  from that particle or wall is computed as follows:

• If x is in the direct quadrature region, the double layer potential (3) is computed using direct quadrature (23) over the
whole particle or wall, as described in Sections 3.1 and 3.2.

• If x is in the upsampled quadrature region, the behavior is different for particles and walls, as described above. For a
particle, the density is upsampled globally on the whole particle surface and then integrated using direct quadrature on
the fine grid. For a wall, the density is upsampled only on the NP patches closest to the evaluation point, while direct
quadrature without upsampling is used on the other patches (as in Figure 6).

• If x is in the QBX region, the behavior is similar to the upsampled quadrature region. For a particle, the density on
the whole particle surface is used when computing the coefficients of the local expansion which is then used at the
evaluation point (particle-global QBX). For a wall, only the density on the NP patches closest to the expansion center
c is used to compute the expansion (local QBX), while the contribution from other patches is computed using direct
quadrature. In other words, the expansion is computed using a truncated wall, with NP determining the number of
patches in the truncated wall. The difference between particle-global and local QBX is described in more detail in
Section 4.2.

The total double layer potential at x is then retrieved using superposition, that is, by summing the contributions from
all particles and walls.

When using local QBX, the convergence rate of the local expansion will depend on the ratio between the distance from
c to the wall and the distance from c to the edge of the truncated wall.43 We have observed that NP = 1 is too low for the
wall QBX region in our case, since the expansion center may then be too close to the edge of the truncated wall. Setting

F I G U R E 7 The idea behind quadrature by expansion is to make a
series expansion of the potential close to a particle (A) or wall (B), valid
inside a ball of convergence shown as a blue disc. The expansion is also
valid at the point where the ball of convergence touches the boundary
[Colour figure can be viewed at wileyonlinelibrary.com] (A) (B)

F I G U R E 8 The regions of the combined
quadrature strategy, shown here for a rod particle
in (A) and a plane wall in (B). Depending on the
location of the evaluation point x, it is treated
using direct quadrature, upsampled quadrature
or quadrature by expansion [Colour figure can
be viewed at wileyonlinelibrary.com] (A) (B)
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NP = 9 seems to be sufficient to remedy this, and increasing NP further has no effect. We therefore fix NP = 9 both for the
QBX region and the upsampled quadrature region of plane walls and pipes, for the rest of this article.

The distances from the surface at which to switch from one quadrature region to the next (i.e., direct quadrature,
upsampled quadrature, QBX) are parameters to be set, and these will be discussed in Section 6.

4 QBX FOR THE STOKES DOUBLE LAYER POTENTIAL

In order to apply QBX to the Stokes double layer potential  given by (3), we need to be able to write down a local expan-
sion of the potential. We use the same approach as in Reference 37, which is summarized in Section 4.1. The differences
between particles (for which particle-global QBX is used) and walls (for which local QBX is used) are summarized in
Section 4.2. Finally, the precomputation scheme which is crucial for accelerating the method is described in Section 4.3.

4.1 Local expansion of the double layer potential

Instead of expanding the double layer potential  itself directly, we use the fact that  can be expressed in terms of the
so-called dipole potential  using the relation37,71

i[Γ̃,q](x) =
(

xj
𝜕
𝜕xi

− 𝛿ij

)
[Γ̃, qjn + njq](x) −

𝜕
𝜕xi

[Γ̃, ykqkn + yknkq](x), (34)

where Γ̃ is any subset of Γ. The dipole potential is the double layer potential of the Laplace equation and is defined as

[Γ̃,𝝆](x) = ∫Γ̃
𝝆(y) ⋅ ∇y

1|x − y| dS(y). (35)

The kernel of the dipole potential has a natural expansion based on the so-called Laplace expansion

1|x − y| = ∞∑
l=0

4𝜋
2l + 1

l∑
m=−l

rl
xY−m

l (𝜃x, 𝜑x)
1

rl+1
y

Y m
l (𝜃y, 𝜑y), (36)

where Y m
l is the spherical harmonics function of degree l and order m (defined as in [35, eq. (3.5)]), while (rx, 𝜃x, 𝜑x) and

(ry, 𝜃y, 𝜑y) are spherical coordinates of the points x and y, respectively, with respect to a chosen expansion center c, as
shown in Figure 9. The expansion (36) is valid as long as rx < ry, that is, it can be used for all x within the ball of radius
rQBX = miny∈Γ̃ry centered at c.

Inserting (36) into (35) leads to the expansion

[Γ̃,𝝆](x) =
∞∑

l=0

l∑
m=−l

rl
xY−m

l (𝜃x, 𝜑x)zlm[𝝆] (37)

of the dipole potential, where the coefficients zlm[𝝆] are given by

zlm[𝝆] =
4𝜋

2l + 1∫Γ̃
𝝆(y) ⋅ ∇y

1
rl+1

y
Y m

l (𝜃y, 𝜑y) dS(y). (38)

F I G U R E 9 Illustration of the points x, y, and c, and the ball of convergence of (36) [Colour figure
can be viewed at wileyonlinelibrary.com]
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These coefficients are complex-valued due to Y m
l , but the dipole potential  itself is real. Since the spherical har-

monics functions satisfy Y−m
l = (Y m

l )∗, the coefficients also satisfy zl,−m = (zlm)*, where the asterisk denotes the complex
conjugate. It is therefore enough to compute the coefficients for m≥ 0. The expansion (37) is in fact valid also at the
point where the ball in Figure 9 touches Γ̃ (where rx = rQBX), as established in Reference 35. This means that the
expansion can be used both for offsurface evaluation (in the interior of the ball, where the double layer potential
is nearly singular) as well as onsurface evaluation (at the point on Γ̃ closest to c, where the double layer potential
is singular).

Relation (34) allows us to express  using four dipole potentials with densities

𝝆
(j) = qjn + njq, j = 1, 2, 3,

𝝆
(4) = ykqkn + yknkq. (39)

Each of the four dipole potentials is expanded using (37), with coefficients given by (38), which together with (34)
provides a local expansion of the Stokes double layer potential.

In practice, the expansion (37) must be truncated, which is done at l= lmax = pQBX. This results in the approximation

[Γ̃,𝝆(j)](x) ≈ QBX[Γ̃,𝝆(j)](x) =
pQBX∑
l=0

l∑
m=−l

rl
xY−m

l (𝜃x, 𝜑x)zh
lm,j, j = 1, 2, 3, 4. (40)

The coefficients zh
lm,j = zh

lm[𝝆
(j)] are here computed using the upsampled quadrature rule introduced in Section 3.3,

with upsampling factor 𝜅 = 𝜅QBX. Upsampling is needed since the integrand in (38) becomes quite peaked for large l.
However, the cost of upsampling can be entirely hidden in a precomputation step, as explained in Section 4.3. The number
of coefficients that needs to be computed in (40) for each j is

NQBX =
(pQBX + 1)(pQBX + 2)

2
, (41)

which takes into account that only coefficients with m≥ 0 need to be computed directly.
If the expansion (37) is absolutely convergent, the terms must decay in magnitude as l→∞. The size of the terms can

be estimated using the bound

||||||
l∑

m=−l
rl

xY−m
l (𝜃x, 𝜑x)zlm

|||||| ≤ rl
QBX

√
2l + 1

4𝜋

( l∑
m=−l

|zlm|2)1∕2

, (42)

where we have used the fact that [35, eq. (3.36)]

l∑
m=−l

|Y m
l (𝜃, 𝜑)|2 = 2l + 1

4𝜋
. (43)

For a single dipole expansion such as (40) with a fixed j, the bound (42) with zlm = zh
lm,j provides a way to estimate

the decay of the terms and thus the truncation error of the truncated expansion. It is however not directly applicable to
the Stokes double layer potential, which involves derivatives of dipole potentials as seen in (34). To estimate the trunca-
tion error for the Stokes double layer potential, we instead evaluate the error directly in the grid points, as explained in
Section 6.1.2.

In summary, to compute [Γ̃,q](x) using QBX, the density q is first upsampled to a finer grid with upsampling factor
𝜅QBX and then converted into four dipole densities using (39). From these, four sets of dipole coefficients zh

lm,j are computed
using the direct quadrature rule on the refined grid. The coefficients are used to evaluate the dipole potentials (40), from
which the Stokes double layer potential  can be computed using (34). Note that the derivatives with respect to x in (34)
can be computed analytically.

Since QBX can be used for both onsurface and offsurface evaluation, it is useful to introduce one expansion for each
grid point. For each grid point xi on the boundary, an expansion center c+i is thus placed at a distance rQBX away from the
boundary in the normal direction (i.e., in the fluid domain). This expansion center can be used to evaluate the double



2190 BAGGE and TORNBERG

F I G U R E 10 The two expansion centers c+i and c−i used for onsurface evaluation in a grid point xi

[Colour figure can be viewed at wileyonlinelibrary.com]

layer potential in a ball touching that grid point. In practice the balls of convergence of neighboring expansion centers
will overlap, and for a given evaluation point the closest expansion center is used to evaluate the QBX potential.

For onsurface evaluation (but not offsurface evaluation), we also use a second expansion center c−i for each grid point,
placed at a distance rQBX away from the boundary in the negative normal direction (i.e., outside the fluid domain), as shown
by Figure 10. The reason for this is that it significantly improves the convergence when solving the boundary integral
equation using GMRES, since the spectrum of the discrete operator better matches that of the continuous operator, as
was noted in References 32,33,37. Note that due to the jump condition (4), the correct value of the potential on Γ̃ is the
average of the values from the two sides:

[Γ̃,q](xi) =


+[Γ̃,q](xi) +
−[Γ̃,q](xi)

2
, (44)

where + is the limit from the fluid domain and 
− is the limit from the other side of Γ̃. While using two expansions may

seem to double the computational cost, the extra cost appears only in the precomputation step, as described in Section 4.3,
and thus does not affect the cost of evaluation itself.

There are two sources of error in the QBX approximation: the truncation error due to the fact that the expansion in
(40) is truncated at l= pQBX, and the coefficient error (called the “quadrature error” in References 35-37) due to the fact
that the coefficients (38) are computed using a quadrature rule with finite precision. These two errors are controlled by
the following three QBX parameters:

• The expansion radius rQBX, which is the distance from the expansion center to Γ̃ and also the radius of the ball in which
the expansion is valid. Increasing rQBX makes the truncation error grow since the ball of convergence (and hence rx)
becomes larger, but the coefficient error decreases since the integrand in (38) becomes easier to resolve as ry becomes
larger.

• The expansion order pQBX, which governs the number of terms to be included in the sum in (40). Increasing pQBX makes
the truncation error decrease since more terms are included, but the coefficient error grows since the integrand in (38)
is harder to resolve for larger l.

• The upsampling factor𝜅QBX, which governs the amount of grid refinement when computing the dipole coefficients (38).
Increasing 𝜅QBX makes the coefficient error decrease since the resolution of the underlying quadrature rule increases.

A simple way to decrease both the truncation error and coefficient error is to increase pQBX and 𝜅QBX simultaneously
while keeping rQBX fixed. We will continue to discuss how the QBX parameters should be selected to achieve a small
overall error in Section 6. For a more in-depth analysis, we refer to Epstein et al.35 for the truncation error, af Klinteberg
and Tornberg36 for the coefficient error, as well as the summary in [37, sec. 3.5].

4.2 Global and local QBX

As was mentioned in Section 1.1, a QBX method can be either (fully) global, particle-global or local, the difference
being which part of the boundary (i.e., which source points) to include when forming the local expansion. Here, we use
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particle-global QBX for particles and local QBX for walls. In essence, the difference between the three variants is what Γ̃
in Section 4.1 is taken to be:

• For a fully global QBX method, all grid points on the whole boundary are used to form the local expansion, that is, Γ̃ = Γ.
• For a particle-global QBX method, all grid points on a single particle are used to form the expansion, that is, Γ̃ = Γ(𝛼)

p ,
where Γ(𝛼)

p is the surface of the particle with index 𝛼.
• For a local QBX method, only the grid points which are close to the expansion center are used to form the expansion. In

our case, we choose Γ̃ to be the NP patches of the wall which are closest to the expansion center, as shown in Figure 6.
(The contribution from patches further away is not included in the expansion but computed using direct quadrature.)

Note that Γ̃ may depend on the location of the expansion center to be used, which in turn depends on the evaluation
point. In principle, it is sufficient to let Γ̃ consist of the grid points close to the expansion center (i.e., local QBX), since that
is where the integrand becomes nearly singular; for grid points further away, direct quadrature can be used. The reason to
extend Γ̃ further is to improve the regularity of the layer potential that is being expanded, so that the expansion converges
more rapidly. Indeed, in local QBX, the expanded layer potential consists of the contribution from a truncated part of the
boundary, and may not be very smooth since Γ̃ ends abruptly. However, the larger Γ̃ is, the further away from the ball
of convergence will the edge of Γ̃ be, and the less will it affect the convergence of the expansion. We have observed that
NP = 9 is sufficient for Γ̃ for the walls.

In particle-global QBX, the expanded layer potential has the contribution from a whole particle, which consists of a
closed and smooth surface, so the potential from it should be smooth. In a fully global QBX, the expanded layer potential is
the global potential, which is smooth if Γ is regular enough. Unlike the particle-global QBX, the fully global QBX quickly
becomes expensive unless a fast method (such as the FMM) is used to compute the far-field contribution. Therefore, the
fully global QBX variant is not used in this article.

An advantage of the local and particle-global QBX variants over the fully global QBX is that, if the individual particles
and walls are rigid, Γ̃ is the same (in local coordinates) for all particles or patches of the same shape, even if they have
different orientations. This makes precomputation possible, which we shall return to in Section 4.3. Another advantage
is that expansion centers can be placed without regards to other particles or walls, since each expansion contains only
the contribution from a single particle or wall segment. In a fully global QBX method, each ball of convergence must be
completely outside all particles and walls, which would complicate the placement of the expansion centers.

4.3 Precomputation for QBX

The mapping given by (39) and the discrete version of (38), which takes the double layer density q on Γ̃ and returns
the dipole coefficients zh

lm,j for a single expansion center ci, is a linear function of q and can therefore be represented by
a matrix Mi. This matrix is of size 4NQBX × 3Ñ, where NQBX is given by (41) and Ñ is the number of grid points on Γ̃
(before upsampling). There is one such matrix Mi for every expansion center, and it depends only on the geometry Γ̃, its
discretization and the location of the expansion center in the local coordinates of Γ̃. For a rigid geometry Γ̃, such as in our
case, the matrix Mi can therefore be precomputed and stored.

Note that the upsampling factor 𝜅QBX is effectively “hidden” in this precomputation step: upsampling influences the
computation of Mi since q is upsampled before being inserted into (39), but it has no effect on the size of Mi, which is
set by the discretization of Γ̃ prior to upsampling. Therefore, upsampling does not affect the computational complexity of
the method once Mi has been precomputed.

The matrix Mi which computes the coefficients zh
lm,j is used for offsurface evaluation, when the evaluation point is not

known beforehand; the coefficients can then be used to evaluate the expansion at any evaluation point within the ball of
convergence. For onsurface evaluation, that is, evaluation at one of the grid points of the boundary, the evaluation point
itself is known beforehand and precomputation can be taken even further. In fact, the mapping that takes the expansion
coefficients to the value of the potential [Γ̃,q](xi), given by (40) and (34), is also linear and can therefore be represented
by a matrix Si. This allows us to compute a matrix Ri = SiMi which maps the density q on Γ̃ directly to the value of the
double layer potential  at one of the grid points – effectively representing a set of target-specific quadrature weights
for every grid point. The matrix Ri is of size 3 × 3Ñ and there is one such matrix for each grid point xi on the boundary.
Precomputing the Ri matrix hides not only 𝜅QBX but also pQBX.
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F I G U R E 11 The matrices Mi and Ri need only be stored for the
grid points along half a line of longitude, here indicated with red dots
[Colour figure can be viewed at wileyonlinelibrary.com]

Since two expansion centers are used for onsurface evaluation, as the reader may recall from Figure 10, there are
actually two Ri matrices for each grid point: R+

i and R−
i , associated with c+i and c−i , respectively. From (44), it is clear that

these matrices can be combined as

Ri =
R+

i + R−
i

2
(45)

to form a single matrix Ri for each grid point. This way, the extra cost of using two expansions is completely hidden in the
precomputation step.

For the particles, the axisymmetry can be used to vastly reduce the amount of computations and storage needed to
precompute the matrices Mi and Ri. In fact, due to reflective symmetry, it suffices to compute Ri for the n𝜃∕2 grid points
(n1 +n2/2 grid points for rod particles) shown in Figure 11, and Mi for the corresponding expansion centers. The matrices
for all other grid points and their expansion centers are then calculated using rotations and reflections, as in Reference
37. Note that if several particles of the same shape appear in a simulation, the precomputation only needs to be done for
one such particle. This is true even if particles are scaled up or down by a constant factor, as the precomputed matrices
can be scaled via homogeneity; if a particle (or wall) is scaled by a factor 𝜆 and rQBX is scaled by the same factor, then the
matrices Ri do not change while the matrices Mi which compute zh

lm,j are multiplied by 𝜆−l for j= 1, 2, 3 and 𝜆−l+1 for j= 4,
which can be seen from (38) and (39).

For a wall geometry with uniform patch size, as in our case, the geometry has a discrete translational symmetry
for offsets equal to the patch size, due to periodicity. This means that the geometry “looks” exactly the same seen from
any patch of the wall, and it is therefore enough to precompute the Mi and Ri matrices for the n1n2 grid points and
corresponding expansion centers of a single patch of the wall. In this case Γ̃ consists of that patch and its NP − 1 closest
neighbors, as indicated in Figure 6 for NP = 9.

5 PERIODICITY AND FAST METHODS

Up to this point we have not taken periodicity into account in the description of the mathematical formulation and its dis-
cretization; it is now time to remedy this. We will here give the details of the periodic formulation indicated in Figure 1(B),
and in particular focus on how the special quadrature methods are combined with the fast summation method used for
the periodic problem.

Consider a primary cell with side lengths B = (B1,B2,B3)which is replicated periodically in all three spatial directions.
The flow field is then periodic, that is, u(x) = u(x + k◦B) for any k ∈ Z3, where ◦ denotes the Hadamard (element-
wise) product. This changes the boundary integral formulation introduced in Section 2.1 in the following way: The layer
potential  and completion flow 

(𝛼) which appear in the flow field (11) and in the fundamental boundary integral
Equation (12) are replaced by their periodic counterparts 

3P and 
(𝛼),3P. These are defined as infinite sums over the

periodic lattice, that is,


3P[Γ,q](x) =

∑
k∈Z3

[Γ,q](x + k◦B), 
(𝛼),3P[F, 𝝉](x) =

∑
k∈Z3


(𝛼)[F, 𝝉](x + k◦B). (46)

These sums converge slowly, and their value depends on the order of summation, so they cannot be computed using
direct summation. We compute them using the SE method,15,59 a fast Ewald summation method based on the fast Fourier
transform (FFT). The SE method is described in detail for the stokeslet in Reference 59, for the stresslet in Reference 58
and for the rotlet in Reference 60, and has been combined with QBX previously in Reference 37. In the SE method, each
of the periodic sums in (46) is split into two parts: the real-space part, which decays fast and can therefore be summed
directly in real space; and the Fourier-space part, which is smooth and therefore decays fast in Fourier space.

No special treatment is needed for the completion flow 
(𝛼),3P since the evaluation point is never close to the singular

points (which are inside the particle), so the SE method as described in References 59,60 is used without modification.
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For the double layer potential 3P, special quadrature is needed so SE must be combined with QBX and the upsampled
quadrature rule. How this is done is described below.

The periodic sum for the double layer potential can be written explicitly as

3P
i [Γ,q](x) =

∑
k∈Z3

∫Γ
Tijl(x + k◦B − y)qj(y)nl(y) dS(y). (47)

The stresslet T is split into two parts

Tijl(r) = TR
ijl(r; 𝜉) + TF

ijl(r; 𝜉), (48)

where TR is the real-space part and TF is the Fourier-space part. The Ewald parameter 𝜉 is a positive number which is
used to balance the decay of TR in real space and the decay of the Fourier coefficients of TF (a larger value of 𝜉 makes
the real-space part decay faster and the Fourier-space part decay slower, thus shifting computational work into Fourier
space). In the split that we use, TR is given by References 37,58

TR
ijl(r; 𝜉) = − 2

r4

(
3
r

erfc(𝜉r) + 2𝜉√
𝜋
(3 + 2𝜉2r2 − 4𝜉4r4)e−𝜉2r2

)
rirjrl

+ 8𝜉3√
𝜋
(2 − 𝜉2r2)e−𝜉2r2(𝛿ijrl + 𝛿jlri + 𝛿lirj), (49)

where r = |r|. The Fourier-space part is simply given by TF = T − TR. Inserting (48) into (47) splits the periodic double
layer potential into two parts 3P = 

3P,R +
3P,F, where

3P,R
i [Γ,q](x; 𝜉) =

∑
k∈Z3

∫Γ
TR

ijl(x + k◦B − y; 𝜉)qj(y)nl(y) dS(y), (50)

3P,F
i [Γ,q](x; 𝜉) =

∑
k∈Z3

∫Γ
TF

ijl(x + k◦B − y; 𝜉)qj(y)nl(y) dS(y). (51)

The singularity of the stresslet is completely transferred to TR, while TF is nonsingular.37 The Fourier-space part (51)
is computed using FFTs as described in Appendix D and Reference 58. The real-space potential (50) is evaluated in real
space, and requires special quadrature due to the singularity of TR, much as in the free-space setting. Note that since
TR(r; 𝜉) decays fast as |r| → ∞ it can be neglected for |r| > rc, where rc is called the cutoff radius. We can thus change the
integration domain in (50) to Γ⋆ = Γ⋆(x,k; rc) = {y ∈ Γ ∶ |x + k◦B − y| ≤ rc} and approximate

3P,R
i [Γ,q](x; 𝜉) ≈ 3P,R⋆

i [Γ,q](x; 𝜉) =
∑

k∈Z3
∫Γ⋆

TR
ijl(x + k◦B − y; 𝜉)qj(y)nl(y) dS(y). (52)

The error of this approximation is determined by the product 𝜉rc as described in Reference 58. Rather than deriving
a new QBX expansion from scratch for the real-space part 3P,R⋆, we reuse the expansion of the total layer potential 
from Section 4. To be able to do this, we insert TR = T − TF into (52) to get

3P,R⋆
i [Γ,q](x; 𝜉) =

∑
k∈Z3

∫Γ⋆
Tijl(x + k◦B − y; 𝜉)qj(y)nl(y) dS(y) (53)

−
∑

k∈Z3
∫Γ⋆

TF
ijl(x + k◦B − y; 𝜉)qj(y)nl(y) dS(y). (54)

Note that the integration domainΓ⋆ ensures that both of these sums have few terms since rc should be small – typically
smaller than the size of the periodic cell. The integral in (53) represents the total layer potential from Γ⋆ and can thus be
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computed using the combined special quadrature method from Section 3.3, with truncation at rc. The integral in (54) is
computed using direct quadrature, which is possible since TF is nonsingular.

As in the free-space setting in Section 3.3, the evaluation point x is classified into one of three regions (see Figure 8).
The potential is evaluated using (52) in the direct quadrature region and (53)–(54) in the other two regions. The reader
may wonder why we in the upsampled quadrature region do not simply evaluate (52) using upsampled quadrature. The
reason is that (54) evaluated using the same quadrature method as in the Fourier-space part—that is, direct quadrature—is
needed to cancel discretization errors in the latter.# These discretization errors may be larger than the SE error tolerance
and are caused by the fact that TF(r; 𝜉), while nonsingular, tends to become slightly peaked for small |r|, that is, close to
Γ⋆. Cancellation prevents these errors from influencing the error of the full method.

Another important point to note is that rc must be chosen large enough so that no special quadrature is needed for the
total potential when |r| > rc. This is because, for |r| > rc, the total potential is equal to the Fourier-space part, which is
always computed using direct quadrature. Thus, rc must be at least as large as the distance from Γ to the direct quadrature
region.

6 PARAMETER SELECTION

In this section, we develop our strategy for selecting the parameters of the combined special quadrature, that is, upsampled
quadrature and QBX, when evaluating the Stokes double layer potential . We assume that a discretization of the geom-
etry is given, with sufficient resolution for the density to be well-resolved and the direct quadrature to achieve a given
error tolerance 𝜀tol at a given distance (sufficiently far away) from all surfaces. The goal is to select quadrature param-
eters for each particle and wall so that the error tolerance 𝜀tol is achieved also in the upsampled quadrature region and
QBX region. Of course, there are many different ways to choose the parameters, some resulting in higher computational
efficiency than others. Here, we do not aim to optimize the efficiency; instead, our focus is on achieving the given error
tolerance at an acceptable (albeit not optimal) computational cost.

The parameters that must be selected are shown in Figure 12. Note that we allow for multiple upsampled quadrature
regions with different upsampling factors 𝜅Ui, in order to gradually increase the upsampling closer to the surface. Due
to the precomputation scheme for QBX, using QBX may in fact be faster than using upsampled quadrature with the
same upsampling factor. Therefore, the QBX region may extend further away from the surface than the expansion center
(i.e., dQBX may be larger than rQBX, but of course not larger than 2rQBX).

The parameters to be selected are as follows:

• The threshold distances dUi for the upsampled quadrature regions, i= 1, 2, … , NU, and the threshold distance dQBX
for the QBX region. These determine at what distance from the surface each region starts. If dΓ(x) is the distance from
the evaluation point x to the surface Γ, then x belongs to the ith upsampled quadrature region if

dUi ≥ dΓ(x) ≥
{

dU(i+1) if i < NU

dQBX if i = NU,
(55)

and x belongs to the QBX region if dQBX ≥ dΓ(x) ≥ 0. Each of these distances should be chosen so that the error does
not exceed the tolerance in the region further away from the surface (e.g., dU1 is selected based on the direct quadrature
error).

• The upsampling factors 𝜅Ui for the upsampled quadrature regions, i= 1, 2, … , NU. These should be increasing, that
is, 𝜅U1 < 𝜅U2 < … < 𝜅UNU . The upsampling factor 𝜅Ui determines the distance dU(i+ 1) at which the next region must
begin, which we will come back to in Section 6.1.

• The QBX upsampling factor 𝜅QBX, which controls the amount of upsampling used when computing the coefficients
in (38), and thus the QBX coefficient error as mentioned in Section 4.1. It should be chosen large enough so that the

#Due to the nonlocal nature of the Fourier transform, the Fourier-space part must be computed using the same quadrature method everywhere; here
we use direct quadrature. Another possibility would be to use upsampled quadrature, but then upsampling would need to be done for all evaluation
points, not only those in the upsampled quadrature region. In that case one might want to remove the direct quadrature region altogether and use
only upsampled quadrature and QBX.
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F I G U R E 12 Parameters of the combined special quadrature, here
for a rod with NU = 3 upsampled quadrature regions (each geometrical
object has its own set of corresponding parameters). Note that while the
ball of convergence for QBX can be larger than the QBX region, the
expansion is used only inside the QBX region. QBX, quadrature by
expansion [Colour figure can be viewed at wileyonlinelibrary.com]

coefficient error and the truncation error are balanced. The upsampling factor influences the QBX precomputation
time (which grows like O(𝜅2

QBX)), but not the size of the precomputed Mi and Ri matrices, and thus not the evaluation
time.

• The QBX expansion order pQBX, which controls the number of terms included in the expansion in (40), and thus the
QBX truncation error as mentioned in Section 4.1. It should be chosen so that the truncation error is below the error
tolerance everywhere in the QBX region. The expansion order affects the size of the Mi matrix used for offsurface
evaluation (which grows like O(p2

QBX)), but not that of the Ri matrix used for onsurface evaluation. It should be noted
that as pQBX increases, the upsampling factor 𝜅QBX must also increase since higher-order coefficients are harder to
resolve.

• The QBX expansion radius rQBX, which affects both the coefficient error and the truncation error, but neither the
precomputation time nor the evaluation time directly. It should typically be chosen as small as possible, since
this speeds up the convergence of the expansion in (40) so that pQBX can be chosen small. On the other hand, a
very small rQBX means that the upsampling factor 𝜅QBX must be large, since the expansion center moves closer to
the surface.

However, in our implementation the primary restriction on rQBX is that it must be large enough for the balls of
convergence to cover the QBX region sufficiently well. In general, rQBX should not be smaller than the distance from
one expansion center to the next, to ensure a good coverage. Since we have one expansion center per grid point, we
require that rQBX be not smaller than the grid spacing h (defined by (31) and (33) for particles and walls, respec-
tively).|| Given h, it is useful to consider the ratio rQBX/h when selecting parameters. As noted in Reference 37, this
has the advantage that if rQBX/h is kept fixed during refinement of the original grid, then the coefficient error is con-
stant, assuming that the upsampling factor 𝜅QBX is also fixed. We will therefore consider rQBX/h in the rest of this
section.

Unfortunately, no general error estimates are available in three dimensions for the quadrature rules that we use here.
The parameters must therefore be selected based on numerical experiments, and we present a strategy for doing so here.
The idea is to start from the outermost upsampled quadrature region (U1) and then proceed inwards towards the surface
of the particle or wall, determining the parameters in the following order:

1. Threshold distances and upsampling factors for the upsampled quadrature regions,
2. The QBX parameters rQBX/h and dQBX,
3. The QBX parameters pQBX and 𝜅QBX.

||An alternative would be to introduce more expansion centers to maintain the coverage of the QBX region as rQBX decreases below the grid spacing.
Doing so would also increase the amount of work and storage needed in the precomputation step.
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(A) Direct quadrature error, slice 1 (B) Direct quadrature error, slice 2
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F I G U R E 13 Error in two
perpendicular slices (A) and (B)
through the rod particle, when
evaluating the stresslet
identity (5) using direct
quadrature in free space [Colour
figure can be viewed at
wileyonlinelibrary.com]

The process must be repeated for each type of particle and wall to be used. We develop the strategy in the context
of a specific rod particle in Section 6.1; a summary of the parameter selection strategy in the general case follows in
Section 6.2. In Sections 6.3 and 6.4, we apply the strategy to two more examples (a rod with a higher aspect ratio and a
plane wall).

In order to estimate the error during the parameter selection process, we apply a constant density q̃ such that |q̃| = 1
to the surface and evaluate the stresslet identity (5).** This may seem like an overly simple test case since both the density
and the solution are constant. However, the QBX expansions are not of the constant double layer potential  itself, but of
the four dipole potentials defined by (34), and these are not constant. In practice, the stresslet identity seems to provide a
decent test case for both direct quadrature, upsampled quadrature and QBX, as shown by the results in Section 7.2 where
the density is not constant.

The SE parameters 𝜉 and rc will not be discussed at length here, but we note that the requirement that no special
quadrature be needed for |r| > rc implies that rc must be at least as large as dU1. The SE error is determined by the product
𝜉rc in real space and 𝜉hF in Fourier space, where hF is the grid spacing of the uniform grid used for the Fourier-space part
(see Appendix D). Given a tolerance 𝜀tol, the parameters 𝜉, rc and hF must satisfy the system 𝜉rc = A(𝜀tol), 𝜉hF = B(𝜀tol),
where A and B are known functions. This leaves one degree of freedom which can be used to minimize the computational
cost, albeit under the constraint rc ≥ dU1. For a general discussion on the selection of SE parameters, including the func-
tions A and B, we refer to af Klinteberg and Tornberg58 for the stresslet, Lindbo and Tornberg59 for the stokeslet, and af
Klinteberg60 for the rotlet.

6.1 Introductory example: A rod particle with low aspect ratio

In this first example, we consider a rod particle of length L= 2 and radius R= 0.5 (i.e., aspect ratio 2), shown in Figure 13.
The grid used for the direct quadrature has parameters n1 = 40, n2 = 10 and n𝜑 = 25 (introduced in Section 3.1), for a total
of 2250 grid points. To give an idea of the error associated with the direct quadrature, we apply the constant density q̃ =
(1, 1, 1)∕

√
3 to the particle surface and compute the stresslet identity (5) using direct quadrature in two planes intersecting

the particle. The absolute error in these planes is shown in Figure 13.
To determine how the error varies with the distance to the surface, we evaluate (5) along several normal lines cen-

tered on grid points of the particle; due to the symmetry of the error it is enough to consider the n1 +n2/2= 45 lines
shown in Figure 14(A). The error along these lines is shown in Figure 14(B). Given an error tolerance 𝜀tol, the small-
est distance at which the error does not exceed 𝜀tol can be determined numerically. This distance is taken as dU1.
In this example, we will use the error tolerance 𝜀tol = 10−10. As indicated in Figure 14(B), the error reaches 10−10 at
dU1 = 1.061; special quadrature must be used within this distance to the surface. Having established the first thresh-
old distance dU1, we now proceed to determine the rest of the parameters for the upsampled quadrature regions, in
Section 6.1.1.

**Since the computation of the layer potential is a linear function of q, the error will scale with Q = maxx∈Γ|q(x)|. In particular, if the maximum error
is 𝜀tol when Q= 1, the maximum error will be 𝛼𝜀tol when the density is multiplied by a constant 𝛼.
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(A) Lines along which the error is plotted (B) Direct quadrature error along the lines

F I G U R E 14 Error of the direct quadrature along 45 normal lines centered on grid points of the particle surface. In (A), the normal
lines are shown colored in groups of 10. In (B), the error along each line is shown with the same colors (here, the blue and purple curves are
obscured by the red curve). The line with the greatest error is colored red; the error along this line reaches the value 10−10 at distance 1.061
from the surface (The smallest distance to surface included here is 0.01)

6.1.1 Parameters for the upsampled quadrature regions

For the sake of simplicity we will always choose the upsampling factors to be 𝜅Ui = i + 1, meaning that the first upsam-
pling factor will be 𝜅U1 = 2, the next will be 𝜅U2 = 3 and so forth (this may not be the optimal strategy with regard to
computational cost, but recall that our goal is not to optimize for computational efficiency). In order to determine the
threshold distance dUi of every upsampled quadrature region, we repeat the investigation from Figure 14 for different
upsampling factors 𝜅 = 1, 2, 3, … , computing the stresslet identity error as a function of the distance to the surface for
each upsampling factor. The maximal error at each distance is shown in Figure 15 (𝜅 = 1 corresponds to Figure 14). The
threshold distance dU(i+ 1) is now taken as the distance at which the error curve corresponding to 𝜅 = 𝜅Ui intersects the
error tolerance 𝜀tol (i= 1, 2, … ). For instance, in this case the curve corresponding to 𝜅 = 𝜅U1 = 2 intersects 𝜀tol = 10−10

around 0.391= dU2.
This procedure sets all of the parameters for the upsampled quadrature, as shown in Table 1. However, at some point

we must switch from upsampled quadrature to QBX, which is determined by the QBX threshold distance dQBX. Selecting

F I G U R E 15 Maximal stresslet identity error along any of the lines
shown in Figure 14(A), for upsampled quadrature with different upsampling
factors 𝜅 (The smallest distance to surface included here is 0.01) [Colour
figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 Parameters for the upsampled
quadrature regions, tolerance 10−10

i 1 2 3 4 5 6 …

𝜅Ui 2 3 4 5 6 7 …

dUi 1.061 0.391 0.237 0.169 0.132 0.108 …
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10−2

10−4

10−6

10−8

10−10

10−12

10−14

(A) Offsurface error from a single QBX
expansion

(B) Onsurface error

F I G U R E 16 Error when evaluating the stresslet identity (5) using QBX with the parameters rQBX = h = 𝜋∕25, pQBX = 18 and 𝜅QBX = 15:
(A) in a slice through the particle center (i.e., offsurface), using a single QBX expansion center and direct quadrature outside the ball of
convergence; (B) in the grid points of the particle (i.e., onsurface). Note in (B) that the error seems to be related to the curvature of the
boundary; in particular the error is larger in areas where the curvature changes, namely, in the smooth transition from cylinder to cap
(Similar observations related to the convexity of the boundary have been previously reported32,34). QBX, quadrature by expansion [Colour
figure can be viewed at wileyonlinelibrary.com]

dQBX will also fix the number of upsampled quadrature regions NU. We will determine dQBX together with the other QBX
parameters in Section 6.1.2.

6.1.2 Parameters for the QBX region

To understand how the QBX error behaves, we plot the offsurface error from a single expansion in Figure 16(A). Note that
the QBX parameters used in this figure are not yet selected to achieve the error tolerance, but meant only to demonstrate
the general behavior of the error. Since the QBX error is the largest at the boundary of the ball of convergence (outside this
ball the direct quadrature error is shown in Figure 16(A)), it is sufficient to measure the error at a point on this boundary,
for example at the point where the ball touches the particle. Thus, we measure the QBX error at all the grid points of the
rod—the onsurface error—shown in Figure 16(B) for these particular QBX parameters.

Recall that for the rod considered in this example, R= 0.5 and n𝜑 = 25; thus, by Equation (31), the grid spacing is
h = 𝜋∕25 ≈ 0.1257. We now focus on selecting the parameters rQBX/h, pQBX and 𝜅QBX such that the error is bounded by 𝜀tol
in the whole ball of convergence, for all QBX expansions of the particle. To do this, we consider the maximal onsurface
error as we vary these three parameters, shown in Figure 17. As seen in Figure 17(A), rQBX/h should be chosen as small
as possible since this improves the decay of the truncation error as pQBX grows; if rQBX/h is small, pQBX can also be chosen
small, which is important since the offsurface evaluation time for QBX grows as O(p2

QBX). On the other hand, as Figure 18
shows, rQBX must not be too small compared with h, since then the balls of convergence would not overlap properly, and
large areas of the QBX region would not be covered by any ball of convergence.†† For this reason we require that rQBX ≥ h.
In fact, since rQBX should be as small as possible, we will always set rQBX = h, so that rQBX/h= 1.

To select pQBX and 𝜅QBX, we use the data shown in Figure 17(B), which is for rQBX/h= 1. As can be seen there, the
truncation error is independent of 𝜅QBX and depends only on pQBX, so we simply select the smallest pQBX such that the
truncation error is below the tolerance.‡‡ Then we select the smallest 𝜅QBX (restricted to multiples of five for convenience)

††Some areas of the QBX region will inevitably fall outside every ball of convergence no matter how large rQBX is. However, these areas are mainly very
close to the surface but not at the grid points, where it is typically not necessary to evaluate the layer potential.
‡‡The dashed curves in Figure 17 indicate the experimental truncation error estimate

etrunc ≈ max
(
13(0.245 log(𝜌) + 0.43)pQBX , 0.07(𝜌 − 0.63)(0.175 log(𝜌) + 0.602)pQBX

)
, (56)

where 𝜌 = rQBX∕h. This estimate was constructed for the rod particle in this particular example by applying curve fitting to data from a parameter
study similar to that shown in Figure 17 itself. Unfortunately, this experimental estimate is of limited use in the parameter selection process since it
would have to be reconstructed for every new geometrical object (such as a rod with a different aspect ratio), while the data used to construct it can
just as well be used directly to select pQBX.
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(A) (B)

F I G U R E 17 Maximal onsurface error on the rod when evaluating the stresslet identity using QBX. In (A) for different rQBX/h with
𝜅QBX = 15 fixed, and in (B) for different 𝜅QBX with rQBX/h= 1 fixed. Note that each curve has a minimum, which is where the truncation error
(which decreases as pQBX grows) and the coefficient error (which increases as pQBX grows) balance. The dashed lines indicate the
experimental truncation error estimate (56). QBX, quadrature by expansion [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 18 Balls of convergence with the parameters rQBX and dQBX

and the grid spacing h marked. QBX, quadrature by expansion [Colour
figure can be viewed at wileyonlinelibrary.com]

such that the coefficient error is no larger than the truncation error (i.e., such that the minimum point of the error curve
is to the right of the selected pQBX). For example, for 𝜀tol = 10−10, we must choose pQBX = 40 and 𝜅QBX = 20.

It remains to choose the threshold distance dQBX, which determines the extent of the QBX region as shown in Figure 18.
Clearly dQBX cannot be larger than 2rQBX since then the balls of convergence would not reach the edge of the QBX
region. Even with dQBX = 2rQBX, there would be areas in the QBX region, close to its edge, that would not be inside
any ball of convergence. To mitigate this problem, we introduce a safety factor 𝛾 , derived in Appendix C, and require
that

dQBX ≤ 2𝛾rQBX, (57)

where 𝛾 = 0.85. As long as dQBX satisfies (57), it can be chosen arbitrarily, in the sense that its value will not affect
the conformance to the error tolerance, only the computational cost. We introduce the somewhat arbitrary addi-
tional constraint that dQBX ≥ rQBX, and then select dQBX as follows: If the interval [rQBX, 2𝛾rQBX] contains any threshold
distance dUi for the upsampled quadrature regions, set dQBX equal to the largest dUi in the interval (i.e., the one
with the smallest i). Otherwise, set dQBX = rQBX. In any case, this also sets the number of upsampled quadrature
regions NU since the last upsampled quadrature region ends where the QBX region begins. Our choices here are
motivated by keeping NU as low as possible since this reduces the computational cost, which we will return to in
Section 6.1.4.

In our current example, dQBX should be in the interval [rQBX, 2𝛾rQBX] ≈ [0.1257, 0.2136]. As seen in Table 1, dU4 = 0.169
is the largest threshold distance in this interval, and thus we select dQBX = 0.169 which means that NU = 3 upsampled
quadrature regions are used.

6.1.3 Verification of selected parameters

To summarize, the parameters that were selected above for the rod in this example was, with error tolerance 10−10,
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rQBX∕h = 1, NU = 3,
dQBX = 0.169, dU1 = 1.061, 𝜅U1 = 2,
pQBX = 40, dU2 = 0.391, 𝜅U2 = 3,
𝜅QBX = 20, dU3 = 0.237, 𝜅U3 = 4.

(58)

If the selected QBX upsampling factor 𝜅QBX seems large, recall that this parameter is completely hidden in the QBX
precomputation step, as explained in Section 4.3. To verify that the selected parameters keep the error below the tolerance,
we plot in Figure 19(A) the maximum error along the 45 lines that were used earlier (shown in Figure 14(A)). We also
plot the error in two slices in Figure 20. The fact that the error slightly exceeds the tolerance at some points in (B) should
come as no surprise, since we have used the error only along certain lines to select the parameters, not in the whole space.
All the points where the tolerance is exceeded are close to the boundary between different quadrature regions and could
thus be eliminated by adjusting the threshold distances slightly upwards (which we will however not do here).

(A) (B)

F I G U R E 19 Maximal stresslet identity error along any of the lines shown in Figure 14(A) as a function of the distance to the surface
(for 1000 equispaced distances in [0, 2]), using the combined special quadrature with (A) tolerance 10−10 and (B) tolerance 10−6. The different
quadrature regions are marked. The largest error is 9.709× 10−11 in (A), and 9.995× 10−7 in (B) [Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

F I G U R E 20 Error in two perpendicular slices (A) and (B) through the rod particle, when evaluating the stresslet identity (5) using
combined special quadrature with tolerance 10−10 in free space. Each slice consists of 500× 500 evaluation points. All points in (A) are below
the tolerance, but 166 points in (B), marked red, are above the tolerance. The largest error is 9.768× 10−11 in (A) and 1.074× 10−10 in (B)
[Colour figure can be viewed at wileyonlinelibrary.com]
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The parameter selection procedure is repeated for the same rod with the looser error tolerance 10−6. The parameters
for tolerance 10−6 are

rQBX∕h = 1, NU = 2,
dQBX = 0.149, dU1 = 0.575, 𝜅U1 = 2,
pQBX = 21, dU2 = 0.238, 𝜅U2 = 3,
𝜅QBX = 15,

(59)

and the error is shown in Figures 19(B) and 21.

6.1.4 A note on the computational cost

While our parameter selection strategy does not try to optimize the computational cost, we naturally strive for a reasonably
low cost. We therefore comment on the computational cost for the different quadrature methods considered here. The

(A) (B)

F I G U R E 21 Error in two perpendicular slices (A) and (B) through the rod particle, when evaluating the stresslet identity (5) using
combined special quadrature with tolerance 10−6 in free space. Each slice consists of 500× 500 evaluation points. All points in (A) are below
the tolerance, but 90 points in (B), marked red, are above the tolerance. The largest error is 9.214× 10−7 in (A) and 1.079× 10−6 in (B) [Colour
figure can be viewed at wileyonlinelibrary.com]

T A B L E 2 Computational complexities for the different
quadrature methods Direct quadrature

Evaluate TDE =O(NgridNeval,D)

Upsampled quadrature

Interpolate density TUI,i = O(𝜅2
UiN

2
grid)

Evaluate TUE,i = O(𝜅2
UiNgridNeval,Ui)

QBX

Compute coefficients TQC = O(p2
QBXNgridNexp)

Evaluate expansion TQE = O(p2
QBXNeval,QBX)

Note: Time complexities for evaluating the double layer potential , excluding
precomputation time. Here, Ngrid is the total number of grid points on the part of
the surface included in the special quadrature method (i.e., Γ̃ as defined in
Section 4.2); Neval,D, Neval,Ui, and Neval,QBX are the number of evaluation points in
the direct quadrature region, the ith upsampled quadrature region and the QBX
region, respectively; and Nexp is the number of expansion centers that are to be
used for the evaluation points in the QBX region.
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computational complexity for evaluating the layer potential using each quadrature method is shown in Table 2. The
precomputation time (for constructing the interpolation matrices and QBX matrices), which is naturally independent of
the number of evaluation points, is not included (an example of how the precomputation time compares to the rest of the
algorithm is found in Section 7.3.1). Note that the total evaluation time depends on the number of evaluation points in
each quadrature region, and also on the number of expansions that are used for the evaluation points in the QBX region
(recall that the closest expansion center is used for each evaluation point).

An example of evaluation times for a specific computer machine is given in Table 3, again excluding precomputation.
The time required to find the closest expansion center for each evaluation point in the QBX region has been omitted from
Tables 2 and 3 since it is negligible (around 10−8 ×Neval,QBX seconds).

For a particle, Ngrid is the number of grid points on the whole particle, that is, Ngrid = 2250 for the rod that we have
considered so far. Let us study the special case of a single evaluation point, relevant for example when computing a
streamline. Based on Table 3, the evaluation time for this single point can be computed, depending on which quadrature
region the point belongs to and the parameter 𝜅Ui or pQBX. This is shown in Table 4. From this, it can for example be seen
that the evaluation takes roughly 1000 times longer for a point in the upsampled quadrature region with 𝜅Ui = 2 compared
with the direct quadrature region. (The upsampled quadrature cost is in this case completely dominated by interpolating
the density, that is, multiplying it by the precomputed interpolation matrix.)

Direct quadrature

Evaluate TDE = 5.6× 10−9 ×NgridNeval,D

Upsampled quadrature

Interpolate density TUI,i = 8.0 × 10−10 × 𝜅2
UiN

2
grid

Evaluate TUE,i = 5.7 × 10−9 × 𝜅2
UiNgridNeval,Ui

QBX

Compute coefficients TQC = 5.3 × 10−8 × (0.071p2
QBX + 0.56pQBX + 1)NgridNexp

Evaluate expansion TQE = 2.2 × 10−5 × (0.0053p2
QBX − 0.0027pQBX + 1)Neval,QBX

Note: These times are for a modern workstation with a 6-core Intel Core i7-8700 CPU (4.6 GHz).
Abbreviation: QBX, quadrature by expansion.

T A B L E 3 Example of actual
evaluation times (seconds)

Direct quadrature

Time (s)

1.3× 10−5

Upsampled quadrature

𝜿Ui Time (s)

2 1.6× 10−2

3 3.7× 10−2

4 6.5× 10−2

5 1.0× 10−1

6 1.5× 10−1

QBX (with Nexp = 1)

pQBX Time (s)

10 1.7× 10−3

20 4.9× 10−3

30 9.9× 10−3

40 1.7× 10−2

50 2.5× 10−2

T A B L E 4 Evaluation times for Ngrid = 2250 and a single evaluation point (seconds)
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It can also be seen in Table 4 that QBX is often faster than upsampled quadrature. For instance, QBX with pQBX = 40
takes about as much time as upsampled quadrature with 𝜅Ui = 2 and is faster than any 𝜅Ui ≥ 3. However, note that this
conclusion may not hold when there are more than one evaluation point, since the evaluation time depends in an intricate
way on both the number of evaluation points in each region and the number of expansions needed for QBX. In particular,
if many expansions are needed (large Nexp) and there are few evaluation points per expansion, QBX will tend to be slower
than upsampled quadrature due to the large cost of computing coefficients.

6.2 Summary of the parameter selection strategy

The parameter selection strategy can, in the general case, be summarized as follows. In all steps, the stresslet identity (5)
is used to estimate the error.

Input: Discretization of the geometry, error tolerance 𝜀tol.

Output: Parameters NU, (dUi, 𝜅Ui)
NU
i=1, dQBX, rQBX, pQBX, 𝜅QBX for the special quadrature.

For each distinct geometrical object:

1. Put 𝜅Ui = i + 1. Numerically determine the threshold distances dUi to keep the error below 𝜀tol, as in Figure 15 and Table 1, up
to the first i such that dUi ≤ 2𝛾h, where 𝛾 = 0.85 and h is the grid spacing (defined for particles in Equation (31) and for walls
in Equation (33)).

2. Put rQBX = h. If the last (smallest) dUi computed in step 1 lies in the interval [h, 2𝛾h], put dQBX equal to it. Otherwise, put
dQBX = h. This also sets NU, the number of upsampled quadrature regions.

3. Choose pQBX such that the truncation error is below 𝜀tol, based on a parameter study such as in Figure 17(B). Choose 𝜅QBX

such that the coefficient error is no larger than the truncation error.

This strategy is designed to keep the error relative to maxΓ|q| below 𝜀tol when evaluating the layer potential, provided
that the density q is well-resolved by the discretization. While there is no guarantee that the error stays strictly below 𝜀tol,
empirical evidence in Sections 6.1.3, 6.3, 6.4, 7.1, and 7.2 indicates that the error is typically close to the tolerance, and in
any case of the correct order of magnitude. Note that the procedure, including the parameter studies, must be repeated
every time a new geometrical object, such as a rod particle with a different aspect ratio, is used. We will now apply the
procedure to two additional examples.

6.3 Example II: A rod particle with higher aspect ratio

For the second example, we consider a more slender rod particle, namely, the rod of length L= 10 and radius R= 0.5
(aspect ratio 10) shown in Figure 22. The grid has parameters n1 = 35, n2 = 60, and n𝜑 = 18, in total 2340 grid points. The
grid spacing as defined by (31) is h = 𝜋∕18 ≈ 0.1745. It should be noted that while h is based only on the grid resolution in
the azimuthal direction, the resolution in the polar direction must not be much coarser. Otherwise, the distance between
QBX expansion centers would be too large in the polar direction, and the balls of convergence would not cover the QBX
region. (This limitation is due to having one expansion center per grid point.)

Applying the same constant density q̃ = (1, 1, 1)∕
√

3, the direct quadrature error is shown in Figure 22(A). The spe-
cial quadrature parameters are selected as described in Section 6.2, with the error along the 65 lines shown in red in
Figure 22(A) used to select the threshold distances. The parameters for error tolerance 10−6 are

rQBX∕h = 1, NU = 2,
dQBX = 0.234, dU1 = 0.930, 𝜅U1 = 2,
pQBX = 28, dU2 = 0.355, 𝜅U2 = 3.
𝜅QBX = 20,

(60)

The error when using these parameters is shown in Figure 22(B). As before, the tolerance is not strictly enforced, but
the error stays within a factor 2 of the tolerance.
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10−2
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10−8

10−10

10−12

10−14

(A) Direct quadrature error (B) Special quadrature error,
tolerance 10−6

F I G U R E 22 Error in a slice
through the rod particle, when
evaluating the stresslet identity (5) in
free space using (A) direct quadrature,
and (B) combined special quadrature
with tolerance 10−6. In (B), the tolerance
is exceeded in 148 points, marked red;
the evaluation grid consists of 500× 500
points and the largest error is
1.455× 10−6. In (A), the 65 lines used to
select parameters are shown in red
[Colour figure can be viewed at
wileyonlinelibrary.com]

The parameters (60) for the slender rod can be compared with the parameters (59) for the less slender rod with the
same tolerance; the threshold distances are relative to the diameter of the cylindrical part of the rod in both cases. Note
that the slender rod (60) has larger threshold distances than the other rod (59). This reflects the fact that the error of
the underlying direct quadrature at a fixed distance from the rod is higher for the slender rod, since it has lower over-
all resolution (grid points per surface area). The slender rod also requires a higher pQBX since rQBX = h is larger for the
slender rod.

6.4 Example III: A pair of plane walls

In this third example, we select parameters for a plane wall. Since we always consider walls in a periodic setting, we will
do so here as well, and use the SE method described in Section 5. We will here select the SE parameters such that the error
from SE is completely negligible compared with the quadrature errors which we strive to control here.§§ Since the problem
is periodic in all three spatial directions, we must have a pair of walls so that the fluid domain can be confined between
them. The periodic cell is here of size B = (1, 1, 1) and the two walls are placed at a distance of 0.6 from each other. The
walls are discretized using 11× 11 patches each, with 8× 8 grid points on each patch (as described in Section 3.2), in total
7744 grid points per wall. The grid spacing is h≈ 0.01668, as defined by (33). The constant density q̃ = (0, 0, 1) is applied
in the direction of the normal of the lower wall (pointing into the fluid domain). The direct quadrature error is shown in
Figure 23(A).

We follow the procedure in Section 6.2. The threshold distances of the upsampled quadrature regions are computed
by evaluating the stresslet identity error along normal lines of the walls, with each line centered at a grid point. The error
is plotted in Figure 23(B), and the resulting threshold distances for error tolerance 10−6 are dU1 = 0.0687, dU2 = 0.0304,
and dQBX = 0.0198.

To determine pQBX and 𝜅QBX, we do a parameter study, shown in Figure 24(A). Note that the plane wall needs a
significantly lower pQBX than the rod particles to reach a given error. The error curves in Figure 24(A) level out at around
10−12 due to other errors not controlled by the QBX parameters. In order to reach the tolerance 10−6 it is sufficient to
choose pQBX = 7 and 𝜅QBX = 10. The selected parameters are thus

rQBX∕h = 1, NU = 2,
dQBX = 0.0198, dU1 = 0.0687, 𝜅U1 = 2,
pQBX = 7, dU2 = 0.0304, 𝜅U2 = 3.
𝜅QBX = 10,

(61)

The error when using these parameters is shown in Figure 24(B).

§§Specifically, the SE parameters used here are 𝜉 = 15.245, rc = 0.4, P= 24, and the uniform grid used for the Fourier-space part has 64× 64× 64 grid
points (see Section 5 and Appendix D for an explanation). These parameters should keep the SE error around 10−15 according to Reference 58.
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F I G U R E 23 Errors when evaluating the stresslet identity (5) in the periodic setting. (A) Error in the center plane for direct quadrature.
(B) Largest error for upsampled quadrature with different upsampling factors 𝜅, as a function of the distance to the lower wall [Colour figure
can be viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 24 (A) Maximal onsurface error when evaluating the stresslet identity using QBX, for different 𝜅QBX with rQBX/h= 1 fixed.
(B) Maximal stresslet identity error as a function of the distance to the lower wall (for 1000 equispaced distances in [0, 0.2]), using the
combined special quadrature with tolerance 10−6. The largest error is 9.812× 10−7. QBX, quadrature by expansion [Colour figure can be
viewed at wileyonlinelibrary.com]

7 NUMERICAL RESULTS

Our numerical method can be summarized as follows:

1. The geometry is discretized as in Section 3. Parameters for the combined special quadrature method are selected as
in Section 6.2. Parameter selection is done in free space for particles, but the same parameters can also be used in the
periodic setting. For walls, parameter selection is done in the periodic setting.

2. The matrices Mi and Ri for offsurface QBX and onsurface QBX, respectively, are precomputed as in Section 4.3. Inter-
polation matrices for the upsampled quadrature regions are also precomputed. At this point, the special quadrature is
ready to be used to evaluate the layer potential.

3. The boundary integral equation for either a resistance problem or a mobility problem is solved iteratively for q using
GMRES. The SE method is used for periodic problems, as described in Section 5. A preconditioner is used in all cases,
as described below.
• For a resistance problem, velocities are given for all particles and the boundary integral equation is given by

Equation (24).
• For a mobility problem, forces and torques are applied to all particles and the boundary integral equation is given

by Equation (25).
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4. The flow field in the fluid domain may be computed in a postprocessing step using q from step 3. For a resistance
problem, the forces and torques acting on all particles may also be computed here, while for a mobility problem, the
particle velocities may be computed.

To improve the convergence of GMRES in step 3, we use a block-diagonal preconditioner similar to the one used by
af Klinteberg and Tornberg.37 The preconditioner is constructed by computing the explicit inverse of a single-particle
system as well as a system consisting of a single wall patch (if walls are present in the simulation). These two types of
blocks are then placed along the diagonal and rotated according to the geometry. This preconditioner has been seen to
reduce the number of GMRES iterations by as much as a factor 17 for some systems with many particles, such as the ones
in Section 7.3.

In this section, we test some aspects of our numerical method, with focus on the special quadrature. First, in
Section 7.1, we test the quadrature on its own (i.e., steps 1–2 above) with geometries containing both particles and walls.
This serves as a continuation of the tests in Section 6, where geometrical objects were considered only separately. In
Section 7.2, we test the special quadrature in the context of the full numerical method (steps 1–4 above) and in particular
how the quadrature tolerance influences the accuracy. Finally, in Section 7.3, we test the computational complexity of the
method on a more complicated problem, and compute streamlines.

7.1 Special quadrature with composite geometries

We consider two geometrical setups, shown in Figures 25 and 27. Both problems are periodic with a periodic cell of size
B = (1, 1, 1), and the Spectral Ewald parameters are as in Section 6.4. As in Section 6, we use the stresslet identity (5) to
estimate the error. This is the same test used to select the parameters, so it mainly serves as a consistency check (tests
with nonconstant densities will follow in Section 7.2).

7.1.1 Geometry 1: Two rods between a pair of plane walls

The first geometry consists of two plane walls discretized as in Section 6.4, at a distance 0.6 from each other. Between
these walls are two rod particles of length L= 0.5 and radius R=L/20 (aspect ratio 10), discretized as in Section 6.3 (but
scaled down a factor 20), oriented such that their axes lie in the center plane.

The stresslet identity error is shown for two different quadrature tolerances 𝜀tol in Figure 25. In (A), 𝜀tol = 10−6,
the quadrature parameters for the walls are as in Section 6.4, that is, given by (61); for the rods, the parameters are
as in Section 6.3 but with all distances scaled by 1/20 to account for the difference in size. Thus, the parameters for
𝜀tol = 10−6 for the rods are dQBX = 0.0117, pQBX = 28, 𝜅QBX = 20 and NU = 2, dU1 = 0.0465, dU2 = 0.0178. In (B), for tolerance
𝜀tol = 10−8, the parameters selected according to Section 6.2 are, for the walls dQBX = 0.0248, pQBX = 10, 𝜅QBX = 10
and NU = 2, dU1 = 0.0944, dU2 = 0.0386; and for the rods dQBX = 0.0146, pQBX = 40, 𝜅QBX = 25 and NU = 2, dU1 = 0.0676,

(A) Special quadrature error, tolerance 10−6 (B) Special quadrature error, tolerance 10−8
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10−8

10−10

10−12

10−14

F I G U R E 25 Stresslet identity error in the center plane, for geometry 1, in (A) for tolerance 10−6 and in (B) for tolerance 10−8. The
largest error is 1.205× 10−6 in (A) and 9.389× 10−9 in (B). In (A), the error exceeds the tolerance in two points (the evaluation grid has
500× 500 points), marked red [Colour figure can be viewed at wileyonlinelibrary.com]
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dU2 = 0.0237. The maximal error in the center plane is plotted for varying quadrature tolerance in Figure 26. This shows
that the error more or less follows the tolerance, as expected.

7.1.2 Geometry 2: Two spheroids in a pipe

The second geometry consists of a pipe of radius 0.3, discretized using 5× 10 patches with 6× 6 grid points each. Inside
the pipe are two spheroids with semiaxes a= 0.05 and c= 0.1, discretized with parameters n𝜃 = 36 and n𝜑 = 25 (900 grid
points per spheroid).

We select the error tolerance 𝜀tol = 10−6. The parameters selected according to Section 6.2 are, for the pipe
dQBX = 0.0614, pQBX = 12, 𝜅QBX = 10 and NU = 2, dU1 = 0.222, dU2 = 0.0888; and for the spheroids dQBX = 0.0153, pQBX = 27,
𝜅QBX = 15 and NU = 2, dU1 = 0.0568, dU2 = 0.0235. The error when using these parameters is shown in Figure 27(B),
together with the direct quadrature error in Figure 27(A). Note that we have selected a much lower resolution for the pipe
in comparison to the walls in geometry 1 (Section 7.1.1), which is reflected in the larger threshold distances compared
with (61).

7.2 Solving the boundary integral equation

Here, we investigate how the special quadrature tolerance influences the accuracy of the numerical method, that is, when
solving the boundary integral equation. We will use the mobility problem as our model problem, and apply the force
F = (0, 0,−1) to all particles, with zero torque and no background flow. In order to get the expected accuracy when solving
the boundary integral equation, the double layer density must be well-resolved by the geometry discretization. It turns
out that for elongated particles, the density and how easy it is to resolve depends heavily on the number of completion
sources Nsrc (defined in Section 2.1). Therefore, we begin in Section 7.2.1 by investigating how large Nsrc must be to ensure

F I G U R E 26 Maximal and root-mean-square (RMS) stresslet identity error in
the center plane as a function of the special quadrature tolerance, for geometry 1.
As observed already in Section 6, the tolerance is sometimes exceeded slightly at the
threshold distances, which causes the max error curve to lie above the identity line
Error = Tolerance (dashed) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 27 Stresslet identity error in the center plane, for geometry 2, in (A) using direct quadrature and in (B) using combined
special quadrature with tolerance 10−6. In (B), the tolerance is exceeded in five points (the evaluation grid has 500× 500 points), marked red;
the largest error in the slice is 1.323× 10−6 [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 28 The magnitude of the completion flow 
(𝛼=1)[F, 0](x) on the surface of the rod, for a few different values of Nsrc. Since the

background flow is zero, this is exactly the right-hand side of the boundary integral Equation (20). Note that the color scale is different for
Nsrc = 1 compared with the other values [Colour figure can be viewed at wileyonlinelibrary.com]

that the density is well-resolved for a given discretization. Then, in Section 7.2.2, we study how the special quadrature
tolerance influences the accuracy of the method.

7.2.1 Selecting the number of completion sources

To study the influence of Nsrc, we consider a single rod particle with length L= 0.5 and radius R=L/20 (aspect ratio 10)
in free space, shown in Figure 29(A) together with the flow field resulting from the force F = (0, 0,−1). We now solve this
mobility problem for varying Nsrc, with the special quadrature error tolerance fixed to 10−9 here.¶¶

The completion flow 
(𝛼), which appears in the right-hand side of the boundary integral Equation (20), will change

drastically as Nsrc grows from small values, as shown in Figure 28; the completion flow becomes increasingly smoother
as Nsrc increases. Naturally, this means that the density q itself will change as Nsrc grows. However, the real physical
quantities—the particle velocity and the flow field—should not change since the net force and torque on the particle
does not change. Thus, these physical quantities can be used to gauge how Nsrc affects the accuracy of the solution. As
Figure 29(B) shows, the effect is quite large, and most pronounced in the fluid flow velocity (the blue curve). (For this
problem, the magnitude of the fluid flow velocity and particle velocity URBM are both around 0.6, while the angular
velocity 𝛀RBM is zero.)

Thus, it is important to select Nsrc high enough for the error in Figure 29(B) to satisfy the error tolerance. The effect
of Nsrc on the accuracy is stronger the more elongated the particle is; for particles with low aspect ratio, Nsrc = 1 may be
sufficient. The effect is very similar for the resistance problem, to the degree that the max flow error in Figure 29(B) can
be used to determine Nsrc for both the mobility problem and resistance problem. Note that Nsrc does not affect the size of
the linear system, that is, (24) or (25).

Our results here are consistent with work by Keaveny and Shelley,27 where it was found that distributing the comple-
tion sources along the centerline of a spheroid leads to better accuracy and a more well-conditioned matrix for spheroids
with high aspect ratios, compared with placing the completion source in a single point.

7.2.2 Effect of the special quadrature on the accuracy

We continue to study the mobility problem, but now add another rod particle and a pair of plane walls, as shown in
Figure 30. We fix Nsrc = 65, which was enough to get the error below 10−9 in the previous problem. The walls are discretized
using 22× 22 patches with 8× 8 grid points each (30,976 grid points per wall), and the rod particles are discretized as in
Section 7.1. We set the special quadrature tolerance to different values between 10−1 and 10−8, solve the mobility problem,
and compute the flow field and particle velocities. The errors in the flow field, density and particle velocities are estimated

¶¶The rod particle is discretized as in Section 7.1, and the special quadrature parameters for 𝜀tol = 10−9 are rQBX/h= 1, dQBX = 0.0119, pQBX = 45,
𝜅QBX = 25, and NU = 3, dU1 = 0.0810, dU2 = 0.0271, dU3 = 0.0164.
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F I G U R E 29 (A) Flow field resulting from the mobility problem for a single rod in free space (color indicates velocity magnitude, small
black arrows indicate velocity direction). The large red arrow indicates the applied force, and the large black arrow indicates the velocity of
the rod (not to scale with the small arrows). (B) Contribution to the absolute error from the way the completion sources are distributed, as a
function of Nsrc (for a rod particle of aspect ratio 10). The error is estimated as the difference to a reference solution with Nsrc = 135. Note that
the max flow error flattens out around 10−9, the special quadrature error tolerance [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 30 (A) Flow field from the periodic mobility problem with force F = (0, 0,−1) applied to both particles (color indicates
velocity magnitude, arrows indicate velocity direction). (B) Maximal and root-mean-square (RMS) flow field error in the center plane
(estimated using a reference solution with tolerance 10−9), scaled by the maximal density magnitude max |q| ≈ 5.4. The dashed line
indicates Scaled error = Tolerance [Colour figure can be viewed at wileyonlinelibrary.com]

using a reference solution with special quadrature tolerance 10−9; these are shown in Figures 30(B) and 31(A,B). Note
that the tolerance sets the flow field error relative to max |q| quite accurately; the density and particle velocity errors are
even smaller. We would like to point out that the value of the scale factor max |q| is not known a priori, but it is of course
known after having solved the boundary integral equation.

It should be noted that the error cannot be expected to follow the tolerance unless the density is well-resolved by
the geometry discretization, since otherwise the interpolated density will be inaccurate. It has been observed that the
density becomes hard to resolve, with either sharp peaks or high-frequency oscillations, when particles come very close
to each other or the walls (where “very close” means that the distance from one surface to the other is of the same order
of magnitude as the grid spacing, or smaller). Thus, one may be forced to increase the grid resolution in these cases. This
may happen for example in suspensions with high volume fraction or in time-dependent simulations where particles may
come arbitrarily close to each other.
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(A) Layer density error (B) Particle velocity error

F I G U R E 31 (A) Maximal
absolute error of the layer density on
each geometrical object (colors as in
Figure 30(A)), estimated using a
reference solution with tolerance
10−9. (B) Absolute error of the particle
velocities [Colour figure can be
viewed at wileyonlinelibrary.com]

For elongated particles, the set of matrices Mi, i = 1, … ,n𝜃∕2, which are precomputed for offsurface QBX tends to
become quite large for strict quadrature tolerances. The reason for this is that with particle-global QBX, the whole set of
matrices consists of

3n𝜑n2
𝜃(pQBX + 1)(pQBX + 2) (62)

complex numbers, that is, it is quadratic in both pQBX and n𝜃 (where n𝜃 is the number of grid points in the axial direction,
which we define as 2n1 +n2 for rod particles). For elongated particles, n𝜃 tends to be large; for example, for the rods
considered in this section (aspect ratio 10), n𝜃 = 130 and n𝜑 = 18. The set of matrices for tolerance 10−8 (pQBX = 40) then
takes up around 25 gigabytes when stored in double precision, while for tolerance 10−6 (pQBX = 28) the matrices take up
around 13 gigabytes. We emphasize that these storage sizes are determined by the discretization of the particle and pQBX
according to (62), but independent of the number of particles in the simulation (as long as all particles have the same
shape). To reduce the size of the matrices for elongated particles, a local patch-based discretization could be used also for
the particles, in the same way it is already used for the walls. This would reduce the number of grid points included in
the special quadrature and thus the size of the matrices.

7.3 Computational complexity and computation of streamlines

7.3.1 Computational complexity of the method

The computational cost of our special quadrature method is quadratic in the number of grid points per particle (or patch),
but linear in the number of particles (patches) if their discretization is kept fixed. For the SE method, the computational
cost scales like O(N log N), where N is the number of unknowns in the system (i.e., three times the number of grid points
in the primary cell), assuming that the number of grid points within a ball of radius rc does not change. In other words,
for fixed grid resolution and particle concentration, the time required per GMRES iteration when solving the boundary
integral equation is expected to scale like O(N log N).

To test this scaling, we consider a problem with many rod particles confined in a pipe, shown in Figure 32: one segment
(A) consists of a pipe segment of radius 0.3 and length 0.2 confined in a periodic cell of size B = (0.2, 1, 1), with 20 rods
of length L= 0.25 and radius R=L/12 (aspect ratio 6) inside the pipe.## This segment is replicated to create a longer pipe,
up to 12 times the original length (shown in (B)), with the same grid point concentration as the original segment. For
1, 2, 3, … , 12 segments, we solve a resistance problem in which all particles are stationary and a quadratic background
flow

##The discretization, special quadrature parameters and Spectral Ewald parameters are fixed as follows. Each pipe patch has 6× 6 grid points, and
each rod is discretized using n1 = 16, n2 = 40 and n𝜑 = 18 (1296 grid points per rod). The special quadrature parameters are selected for tolerance
𝜀tol = 10−4, and they are for the pipe dQBX = 0.0319, pQBX = 8, 𝜅QBX = 10, and NU = 1, dU1 = 0.0720; and for the rods dQBX = 0.0110, pQBX = 19, 𝜅QBX = 10
and NU = 1, dU1 = 0.0254. The SE parameters are 𝜉 = 52.954, rc = 0.0897, P= 16, and the uniform grid for the Fourier-space part has 32ns × 160× 160
grid points, where ns is the number of segments. Furthermore, we use Nsrc = 45 completion sources per rod.
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(A) 1 segment (B) 12 segments

F I G U R E 32 The geometry in Section 7.3.1 is made up of stacked identical segments, where each segment contains 20 rods and 2× 20
pipe patches. In total, there are 27,360 grid points and 82,080 unknowns in each segment

ubg(x) =

(
A2 − x2

2 − x2
3

A2 , 0, 0

)
(63)

is applied, where A= 0.3 is the radius of the pipe and (x2, x3)= (0, 0) is its center line.
As seen in Figure 33(A), the time per GMRES iteration follows the expected scaling O(N log N). Since the

structure of the linear system changes as the number of segments ns grows, the number of GMRES itera-
tions grows slightly with ns. However, this growth is slow enough for the total solving time to also follow the
scalingO(N log N), as shown in Figure 33(B). The runtimes in this figure are measured on a machine with a
6-core Intel Core i7-8700 CPU running at 4.6 GHz. The time required for precomputation (cf. Section 4.3) is not
included in this figure; precomputation is independent of the number of segments and takes around 8 min for this
problem.

(A) Time per GMRES iteration (B) Total solving time

F I G U R E 33 Time required to solve the resistance problem for the geometry in Figure 32 with GMRES tolerance 10−6 in MATLAB, (A)
per GMRES iteration and (B) in total. With 82,080 unknowns per segment, the number of unknowns ranges from 82,080 to 984,960. The
dashed curves are least-squares fits of T = A ns log ns + B ns + C to the data, where ns is the number of segments. In (A), A= 5.8, B=−2.4,
C = 12.2 (s), and in (B), A= 9.0, B=−8.7, C = 18.6 (min). Thus, the time scales as O(ns log ns). Precomputation time (8 min) is not included.
GMRES, generalized minimal residual method [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 34 Streamlines for the
resistance problem (color indicate velocity
magnitude) [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 35 Flow field shown in a slice at streamwise position x = 2/3 [Colour figure can be viewed at wileyonlinelibrary.com]

7.3.2 Streamline computation

In the postprocessing step (step 4 of the method summary), streamlines may be computed to visualize the flow field.
When using the SE method, the Fourier-space part on the uniform grid can be reused to reduce the computation time, as
described in Appendix D. Here, we compute streamlines for a periodic resistance problem with 100 rods in a pipe segment
of length 1, otherwise identical to the problem in Section 7.3.1 (including all parameters). Figure 34 shows 95 streamlines;
a typical streamline consists of around 3000 points and takes around 2 min to compute (i.e., around 0.04 s per time step).
A slice of the same flow field is shown in Figure 35.

8 EFFECTS OF NONSMOOTH GEOMETRIES

So far, all geometrical objects considered in this article have been smooth. In fact, special care has been taken to ensure
that the rod particles, constructed in Appendix B, are everywhere smooth. The reason is that, as noted by Epstein et al.,35

the convergence of the local expansions used in QBX depends on the smoothness of the boundary close to the expansion
center. In this section, we demonstrate this using two different rod particles: one smooth and one nonsmooth, shown
in Figure 36(A). The rods are both of length L and radius R, but the smooth rod is constructed as in Appendix B, while
the nonsmooth rod consists of a cylinder of radius R and length L− 2R joined to two half-spherical caps of radius R. The
nonsmooth rod is thus of class C1, since the curvature is discontinuous where the cylinder meets the spherical caps.

To illustrate the convergence of QBX, consider rods with L/R= 20 (aspect ratio 10), discretized using n1 = 35, n2 = 60,
n𝜑 = 18 as described in Section 3.1. In Figure 36(B), the onsurface QBX stresslet identity error is plotted as a function
of pQBX, in the same way as in Section 6.3 (where this was done for the smooth rod). Clearly, the convergence with
respect to pQBX is much worse for the nonsmooth rod compared with the smooth one. The reason for this can be seen in
Figure 37: the error decays extremely slowly close to the boundary between the cylinder and the caps, where the curvature
is discontinuous. This is clearly a local effect, since the convergence is fine a little bit away from the discontinuity.
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Smooth
rod

Nonsmooth
rod

(A) Rod geometries (B) QBX onsurface error

F I G U R E 36 (A) A smooth and a nonsmooth rod, both of length L and radius R. Note that each cap of the smooth rod (marked with red
lines) has length 1.5R, while each cap of the nonsmooth rod has length R. (B) Maximal onsurface QBX stresslet identity error for the smooth
and nonsmooth rod, with expansion radius rQBX = h = 2𝜋R∕n𝜑 fixed [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 37 (A) The QBX stresslet identity error shown in a slice through selected balls of convergence, for rQBX = h, pQBX = 25, and
𝜅QBX = 15. (B) The onsurface QBX error on the rods, with the same parameters as in (A). QBX, quadrature by expansion [Colour figure can
be viewed at wileyonlinelibrary.com]

It should be noted that it is entirely possible to use QBX on a nonsmooth geometry, but it requires special measures
to be taken. Klöckner et al.32 applied QBX to a geometry with a corner. In that example, the discretization was dyadically
refined around the corner, to ensure that the layer potential appears locally smooth on the scale of the discretization. The
same approach could likely be taken also for the nonsmooth rod particle, that is, refining the grid dyadically around the
discontinuity. However, constructing the rod to be smooth in the first place has a clear advantage in this case, since no
grid refinement is needed.

9 CONCLUSIONS

We have presented a numerical method based on a boundary integral formulation that can be used to simulate rigid
particles in Stokes flow with confining walls. A parameter selection strategy has also been presented for the combined
special quadrature used in this method. We have demonstrated that the error of the method is controlled by the special
quadrature tolerance as long as the layer density is well-resolved, and that the method scales as O(N log N) in the number
of unknowns N (where N is three times the number of grid points in the primary cell) for fixed grid point concentration.
This makes it possible to simulate systems with a large number of particles. The method can deal with particles and walls
of different shapes; we have here considered spheroids, rod particles, pipes and plane walls, but it is straightforward to
extend the method to any smooth geometry with sufficient symmetry.
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To reach the desired accuracy, our method requires the layer density to be well-resolved on the underlying discretiza-
tion grid, which may not be the case if the distance between particles is close to the grid spacing or smaller. Thus, in
time-dependent simulations where particles may come arbitrarily close, the grid resolution may need to be significantly
increased. How to avoid excessively high grid resolutions in cases like this is an open research question.

The method could be further improved for example by using local patch-based quadrature for elongated particles to
reduce the size of the QBX matrices, and allowing the size of the wall patches to be set adaptively so that the resolution
can be focused where particles are close to the wall. It could also be useful to allow parameters such as pQBX to vary along
the particle surface (in response to differences in the convergence rate of the local expansions, as seen for example in
Figure 37), and to allow the expansion centers for QBX to be placed independently of the grid points of the discretization,
so that the centers can be placed closer to the surface in order to decrease the expansion order pQBX. Furthermore, if ana-
lytical quadrature error estimates were available, these could replace the numerical experiments used to select threshold
distances and the QBX upsampling factor.
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APPENDIX A. THE STRESSLET IDENTITY FOR PLANE WALLS AND PIPES

Here, we show that a variant of the stresslet identity (5) holds for a pair of parallel infinite plane walls (in Section A.1)
and an infinitely long pipe (in Section A.2).

A.1 A pair of parallel plane walls
Let Γ1 and Γ2 be two parallel infinite planes oriented as shown in Figure A1, one wall placed at x3 = a and the other
at x3 =−a for some a> 0. Let the domain between the two walls (which we will think of as the fluid domain) be
denoted by Ω.

Let Γ̃ = Γ1 ∪ Γ2, and let q̃ ∈ R3 be any constant vector. We shall show that

[Γ̃, q̃](x) =
⎧⎪⎨⎪⎩
−8𝜋q̃, if x ∈ Ω,
−4𝜋q̃, if x ∈ Γ̃,
0, otherwise,

(A1)

where the double layer potential  is given by (3).
Since q̃ is constant and the normals are given by n1 = (0, 0,−1) and n2 = (0, 0, 1), we can write

i[Γ̃, q̃](x) = q̃j∫Γ̃
Tijk(x − y)nk(y) dS(y) (A2)

= −q̃j∫Γ1

Tij3(x − y) dS(y)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
J1

ij(x)

+ q̃j∫Γ2

Tij3(x − y) dS(y)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
J2

ij(x)

. (A3)

The two integrals which we have called J1
ij and J2

ij can both be expressed in terms of the integral

J0
ij(x) = ∫Γ0

Tij3(x − y) dS(y), (A4)

where Γ0 = {x ∈ R3 ∶ x3 = 0}. The integrals are related through J0
ij(x) = J1

ij(x + ae3) = J2
ij(x − ae3), with e3 = (0, 0, 1). In

fact, since Γ0 is infinite, the integral J0
ij(x) as given by (A4) depends only on x3, that is,

J0
ij(x) = J0

ij(x3) = ∫Γ0

Tij3(x3e3 − y) dS(y). (A5)

Inserting the expression for the stresslet T from (3) into (A5), we find

J0
ij(x3) = −6x3 ∫

∞

−∞ ∫
∞

−∞

(x3𝛿i3 − yi)(x3𝛿j3 − yj)
(y2

1 + y2
2 + x2

3)5∕2
dy1dy2, (A6)

where y3 = 0. This double integral can be computed analytically, and the result is

J0
ij(x3) = −4𝜋 sgn(x3)𝛿ij, (A7)

F I G U R E A1 Two parallel infinite planes Γ1

and Γ2 [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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where sgn(⋅) denotes the sign function. Using the relations J1
ij(x) = J0

ij(x3 − a) and J2
ij(x) = J0

ij(x3 + a) and inserting (A7)
into (A3), we get

i[Γ̃, q̃](x) = 4𝜋q̃i sgn(x3 − a) − 4𝜋q̃i sgn(x3 + a). (A8)

From this the result (A1) follows.

A.2 A pipe
Let now Γ̃ be an infinitely long pipe given by the equation x2

2 + x2
3 = a2 for some a> 0, as shown in Figure A2. Let the

domain inside the pipe be denoted by Ω. We shall show that for any constant vector q̃ ∈ R3, the identity (A1) holds.
Let us introduce cylindrical coordinates and write x = x1e1 + re𝜑 and y = y1e1 + ae𝜃 for the evaluation point and

integration variable, respectively. The unit vectors are given by

e1 = (1, 0, 0), e𝜑 = (0, cos𝜑, sin𝜑) and e𝜃 = (0, cos 𝜃, sin 𝜃), (A9)

and r ≥ 0. Using the fact that the normal vector is given by n(y) = −e𝜃 , we can write the double layer potential from (3) as

i[Γ̃, q̃](x) = −q̃j ∫
2𝜋

0 ∫
∞

−∞
Tijk(x1e1 + re𝜑 − y1e1 − ae𝜃)(e𝜃)k a dy1d𝜃, (A10)

where (e𝜃)k denotes the kth component of e𝜃 . Using the variable substitution y1 − x1 =u, we can eliminate x1. Writing out
the stresslet T from (3), and using a few trigonometric identities, the integral in (A10) can be written as

i[Γ̃, q̃](x) = 6q̃ja∫
2𝜋

0 ∫
∞

−∞

(re𝜑 − ue1 − ae𝜃)i(re𝜑 − ue1 − ae𝜃)j(r cos(𝜑 − 𝜃) − a)(
u2 + r2 + a2 − 2ra cos(𝜑 − 𝜃)

)5∕2 du d𝜃

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Iij(r,𝜑)

. (A11)

At this point it is not immediately apparent that the integral which we have called Iij(r,𝜑) is independent of 𝜑, but that
does indeed turn out to be the case. We expect the offdiagonal elements of Iij to be zero, which can be verified by first
integrating in u and then in 𝜃. It thus remains to compute the diagonal elements of Iij.

To compute I11, first integrate in u using the formula

∫
∞

−∞

u2

(u2 + C)5∕2 du = 2
3C
, C > 0. (A12)

The outer integral becomes

I11(r, 𝜑) =
2
3 ∫

2𝜋

0

r cos(𝜑 − 𝜃) − a
r2 + a2 − 2ra cos(𝜑 − 𝜃)

d𝜃. (A13)

The variable 𝜑 can now be eliminated using the substitution 𝜃 − 𝜑 = 𝜈 (and the limits shifted back to [0, 2𝜋] due to
periodicity). The value of the integral can then be calculated to be

I11(r, 𝜑) =
2𝜋
3a

(
sgn(r − a) − 1

)
, r ≥ 0, (A14)

where sgn(⋅) is the sign function.

F I G U R E A2 An infinite cylindrical pipe Γ̃
[Colour figure can be viewed at
wileyonlinelibrary.com]
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To compute I22, first integrate in u using the formula

∫
∞

−∞

1
(u2 + C)5∕2 du = 4

3C2 , C > 0, (A15)

to get

I22(r, 𝜑) =
4
3 ∫

2𝜋

0

(r cos𝜑 − a cos 𝜃)2 (r cos(𝜑 − 𝜃) − a)
(r2 + a2 − 2ra cos(𝜑 − 𝜃))2 d𝜃. (A16)

Using the substitution 𝜃 − 𝜑 = 𝜈 and shifting the limits back to [0, 2𝜋] yields the integral

I22(r, 𝜑) =
4
3 ∫

2𝜋

0

(r cos𝜑 − a cos 𝜈 cos𝜑 + a sin 𝜈 sin𝜑)2 (r cos 𝜈 − a)
(r2 + a2 − 2ra cos 𝜈)2 d𝜈, (A17)

which we compute by expanding the square in the numerator, thus splitting the integral into six terms, after which each
term can be integrated separately. The result is

I22(r, 𝜑) =
2𝜋
3a

(
sgn(r − a) − 1

)
, r ≥ 0. (A18)

Note that the dependence on 𝜑 disappears when summing the six terms to get the above result.
Finally, to compute I33, we again start by integrating in u using (A15), after which we use the substitution 𝜃 − 𝜑 = 𝜈

to get

I33(r, 𝜑) =
4
3 ∫

2𝜋

0

(r sin𝜑 − a cos 𝜈 sin𝜑 − a sin 𝜈 cos𝜑)2(r cos 𝜈 − a)
(r2 + a2 − 2ra cos 𝜈)2 d𝜈. (A19)

Comparing (A17) and (A19), note that I33(r, 𝜑 + 𝜋∕2) = I22(r, 𝜑). But as we saw in (A18), I22 does not depend on 𝜑, so
I33 = I22.

To summarize, we have shown that

Iij(r, 𝜑) =
2𝜋
3a

(
sgn(r − a) − 1

)
𝛿ij. (A20)

Inserting this into (A11), we find that

i[Γ̃, q̃](x) = 4𝜋q̃i
(
sgn(r − a) − 1

)
, (A21)

from which the result (A1) follows for the pipe.

APPENDIX B. CONSTRUCTION OF SMOOTH ROD PARTICLES

In this section, we describe how the rod particles are constructed to ensure that they are smooth everywhere. Recall from
Section 3.1 the parametrization

⎧⎪⎨⎪⎩
x1 = 𝜚(𝜃;L,R) cos𝜑,
x2 = 𝜚(𝜃;L,R) sin𝜑,
x3 = 𝛽(𝜃;L,R),

(B1)

of the rod, where 𝜑 ∈ [0, 2𝜋) and 𝜃 ∈ [0, 𝜋] are parameters, L is the length of the rod and R the radius. The goal here is to
derive the shape functions 𝜚(⋅ ;L,R) ∶ [0, 𝜋] → [0,R] and 𝛽(⋅ ;L,R) ∶ [0, 𝜋] → [− 1

2
L, 1

2
L] so that the rod has the smooth

shape shown in Figure B1. The rod consists of three smoothly joined parts: a top cap, corresponding to 𝜃 ∈ I1 = [0, 𝜋∕3];
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F I G U R E B1 The shape of the smooth rod, here with
L= 10 and R= 0.5 [Colour figure can be viewed at
wileyonlinelibrary.com]

a middle cylinder, corresponding to 𝜃 ∈ I2 = [𝜋∕3, 2𝜋∕3]; and a bottom cap, corresponding to 𝜃 ∈ I3 = [2𝜋∕3, 𝜋]. Let the
length of each cap be Lcap, as shown in Figure B1. The ratio Lcap/R determines the aspect ratio of the cap. Here, we fix this
ratio by setting Lcap to

Lcap = 1.5R, (B2)

which gives the cap a shape similar to a half-sphere. The length of the middle cylinder is then

Lmid = L − 3R. (B3)

However, note that the derivation below is valid for any value of Lcap ∈ (0, L/2), with Lmid =L− 2Lcap.
Let us for fixed L and R define g(𝜃) = (g1(𝜃), g2(𝜃)) = (𝜚(𝜃;L,R), 𝛽(𝜃;L,R)). For the middle cylinder, the parametriza-

tion is

g1(𝜃) = R, g2(𝜃) =
(

1 − 3
𝜋
𝜃
)

Lmid +
Lmid

2
, 𝜃 ∈ I2 = [𝜋∕3, 2𝜋∕3]. (B4)

Note that g2 is simply an affine function of 𝜃. At the endpoints of the interval I2 we have

g(𝜋∕3) = (R,Lmid∕2),
g′(𝜋∕3) = (0,−(3∕𝜋)Lmid),

g(n)(𝜋∕3) = (0, 0), n ≥ 2,

and
g(2𝜋∕3) = (R,−Lmid∕2),

g′(2𝜋∕3) = (0,−(3∕𝜋)Lmid),
g(n)(2𝜋∕3) = (0, 0), n ≥ 2.

(B5)

Our goal is now to extend the parametrization g(𝜃) to I1 and I3 in a way such that the unit tangent vector g′(𝜃)∕|g′(𝜃)|
and its higher derivatives are continuous everywhere. As an intermediate step we introduce an auxiliary function ĝ(t) =
(̂g1(t), ĝ2(t)) with a different parameter t ∈ [− 1, 1]. The function ĝ should trace the curve from C to B via A in Figure B1,
with C corresponding to t =−1, A corresponding to t = 0 and B corresponding to t = 1. We will later relate t ∈ [0, 1] to
𝜃 ∈ [0, 𝜋∕3] to get the final parametrization. At this point, note that to match (B5) we must require

ĝ(1) = (R,Lmid∕2),
ĝ′(1) = (0,−b),

ĝ(n)(1) = (0, 0), n ≥ 2,

and
ĝ(−1) = (−R,Lmid∕2),
ĝ′(−1) = (0, b),

ĝ(n)(−1) = (0, 0), n ≥ 2,

(B6)

where b is some positive constant. In order to construct ĝ(t) we will use a bump function 𝜓 ∶ R → R, which must satisfy
the following:
• 𝜓 must be infinitely differentiable on R,
• 𝜓 must have compact support in [− 1, 1], that is, 𝜓(t) = 0 if t> 1 or t<−1,
• 𝜓(t) must be positive for t ∈ (− 1, 1),
• 𝜓 must be even, that is, 𝜓(t) = 𝜓(−t) for all t ∈ R.

http://wileyonlinelibrary.com
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We also introduce its primitive function

Ψ(t) = ∫
t

0
𝜓(𝜏) d𝜏, t ∈ R, (B7)

which is an odd function since 𝜓 is even. We choose a specific bump function, namely,||||

𝜓(t) =
⎧⎪⎨⎪⎩

(t2+1) exp[4t∕(t2−1)]
[(t2−1)(1+exp[4t∕(t2−1)])]2 , if t ∈ (−1, 1),

0, otherwise.
(B8)

This function has the primitive function

Ψ(t) =
⎧⎪⎨⎪⎩
− 1

8
tanh

(
− 2t

1−t2

)
, if t ∈ (−1, 1),

− 1
8
, if t ≤ −1,

1
8
, if t ≥ 1.

(B9)

We now construct ĝ(t) as

ĝ1(t) = R Ψ(t)
Ψ(1)

, ĝ2(t) =
Lmid

2
− b∫

t

−1

Ψ(𝜏)
Ψ(1)

d𝜏, t ∈ [−1, 1], (B10)

which satisfies (B6). We can determine b by noting that we must have ĝ2(0) = L∕2 (at point A in Figure B1), which yields

b = Lcap
Ψ(1)

∫ 1
0 Ψ(𝜏) d𝜏

. (B11)

The integrals of Ψ in (B10) and (B11) are computed numerically using MATLAB’s integral function.
Finally, we go from the parameter t to the parameter 𝜃. We would like the discretization points to be distributed as

Gauss–Legendre points in the arclength, and so we must choose 𝜃 so that it is proportional to the arclength on the caps.
Consider the arclength

s(t) = ∫
t

0
|ĝ′(𝜏)| d𝜏, t ∈ [0, 1]. (B12)

Let us then define

𝜃 = G(t) = 𝜋
3

s(t)
s(1)

, t ∈ [0, 1], (B13)

and note that this defines 𝜃 ∈ I1 = [0, 𝜋∕3] as an invertible function of t ∈ [0, 1]. We can now define g(𝜃) = g(G(t)) = ĝ(t)
for t ∈ [0, 1], and thus

g(𝜃) = ĝ(G−1(𝜃)), 𝜃 ∈ I1 = [0, 𝜋∕3]. (B14)

The bottom cap should be the reflection of the top cap in the plane corresponding to 𝛽 = 0, so

g(𝜃) = (g1(𝜋 − 𝜃),−g2(𝜋 − 𝜃)), 𝜃 ∈ I3 = [2𝜋∕3, 𝜋]. (B15)

Now that we have defined g(𝜃) for all 𝜃 ∈ [0, 𝜋], its two components g1 and g2 correspond to the shape factors 𝜚(𝜃;L,R)
and 𝛽(𝜃;L,R), respectively, which are to be used in (B1).

||||This function was found at https://math.stackexchange.com/a/101484.

https://math.stackexchange.com/a/101484
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APPENDIX C. DERIVATION OF THE SAFETY FACTOR 𝜸

Recall from Section 6 that one may want to select dQBX larger than rQBX since QBX may be faster than the upsampled
quadrature due to the precomputation scheme. Let us call the set of points of the QBX region with distance to Γ greater
than rQBX the upper QBX region, and the set of points with distance to Γ smaller than rQBX the lower QBX region, as shown
in Figure C1(A). As noted in Section 6.1.2, putting dQBX = 2rQBX would lead to some areas of the upper QBX region not
falling within any ball of convergence. To avoid this, we introduce a safety factor 𝛾 and require that

dQBX ≤ 2𝛾rQBX. (C1)

The goal here is to derive the value of the safety factor 𝛾 . We assume for simplicity that Γ is a flat surface.
The key is to choose dQBX below the intersection of neighboring balls of convergence, marked by the point C in

Figure C1(A). Since the grid on Γ is two-dimensional, the largest distance between neighboring grid points is not h but√
2h, where h is as shown in Figure C1(B). The four balls of convergence of the expansion centers above the grid points

D–G in this figure intersect at distance

d⋆(h) = rQBX +

√√√√√r2
QBX −

(√
2h
2

)2

(C2)

from Γ. Thus, choosing dQBX ≤ d⋆(h) is sufficient to ensure that all points in the upper QBX region fall within a ball of
convergence. This restriction on dQBX can be simplified by minimizing d⋆(h) with respect to h, subject to the constraint
0< h≤ rQBX. The result is

d⋆⋆ = min
0<h≤rQBX

d⋆(h) = d⋆(rQBX) =

(
1 + 1√

2

)
rQBX. (C3)

It is thus sufficient to require that dQBX ≤ d⋆⋆. Comparing (C3) and (C1), we see that the safety factor should be

𝛾 = 1
2

(
1 + 1√

2

)
≈ 0.85. (C4)

This derivation holds when Γ is a flat surface, in which case the requirement (C1) with 𝛾 = 0.85 guarantees that all
points in the upper QBX region fall within a ball of convergence, as long as h≤ rQBX. If Γ is curved, this guarantee holds
on the concave side of Γ, but not necessarily on the convex side, where dQBX may have to be even smaller for the guarantee
to hold. Nonetheless, we use (C1) with 𝛾 = 0.85 also for convex surfaces such as rods and spheroids, and it seems to work

(A) (B)

F I G U R E C1 (A) Balls of convergence for a flat surface Γ (c.f. Figure 18), seen from the side. (B) Grid points of Γ, seen from above. The
grid spacing h is defined as in (33), that is, the largest spacing between grid points in each tensorial direction [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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well in practice. Of course, the parameter selection strategy (Section 6.2, step 2) will in most cases choose dQBX less than
the upper bound 2𝛾rQBX.

APPENDIX D. EFFICIENT COMPUTATION OF STREAMLINES IN PERIODIC FLOW

To compute streamlines in a periodic problem such as in Section 7.3, we must first solve the periodic boundary integral
equation as described in Section 5 to get the density q on Γ. We can then compute the flow field

u(xe) = ubg(xe) +
3P[Γ,q](xe) +

M∑
𝛼=1


(𝛼),3P[F(𝛼), 𝝉 (𝛼)](xe) (D1)

at any evaluation point xe in the fluid domain. To compute a streamline we pick any point x0 in the fluid domain and
then solve the differential equation

dxe

dt
= u(xe(t)), xe(0) = x0. (D2)

Of course, (D2) is discretized using some timestepping method, which must evaluate (D1) at every timestep. Recall
that the periodic double layer potential 3P is split into two parts


3P[Γ,q](xe) = 

3P,R[Γ,q](xe; 𝜉) +
3P,F[Γ,q](xe; 𝜉) (D3)

and similarly for  (𝛼),3P. The first part 3P,R decays fast and is treated according to Section 5. The second part 3P,F decays
slowly in real space, but since it is smooth its Fourier coefficients decay fast. In the Spectral Ewald method, 3P,F as given
by (51) is first discretized using the direct quadrature rule (22) to give

3P,F,h
i [Γ,q](xe; 𝜉) =

∑
k∈Z3

N∑
s=1

TF
ijl(xe + k◦B − xs; 𝜉)qj(xs)nl(xs)ws. (D4)

This is a periodic sum of point sources with strengths Zjl(xs) = qj(xs)nl(xs)ws. The SE method15,58,59 computes the
periodic sum (D4) in five steps:

1. Spreading point sources to a grid: A three-dimensional uniform grid is constructed over the primary cell. A window
function W(r) is convolved with the point sources in the primary cell to give

Hjl(x) =
N∑

s=1
Zjl(xs)W([x − xs]∗). (D5)

Here, [⋅]∗ denotes that the shortest periodic distance should be used, that is,

[r]∗ = r + B ◦ arg mink∈Z3 |r + B ◦ k|, (D6)

where B = (B1,B2,B3) is the size of the periodic cell. In this work the window function is a truncated Gaussian, given
by W(r) = w(r1)w(r2)w(r3), where

w(r) =

{
e−A(r∕rtrunc)2 , if |r| ≤ rtrunc = hFP∕2,
0, otherwise.

(D7)

Here, hF is the grid spacing of the uniform grid, P is the number of grid points within the support of w, and A =
0.92𝜋P∕2. The parameter P is chosen as discussed by af Klinteberg and Tornberg.58 It is also possible to use other
window functions than the Gaussian, as discussed for example by Saffar Shamshirgar and Tornberg.72

The function Hjl(x) as given by (D5) is evaluated on the uniform grid.



2224 BAGGE and TORNBERG

2. FFT: The three-dimensional Fourier transform Ĥjl(k) is computed using the FFT. This is possible since Hjl(x) is defined
on a uniform grid.

3. Scaling: The result is multiplied by the Fourier transform of TF, and divided by the Fourier transform of the window
function W to undo the convolution in step 1. Since we will convolve again in step 5, this division is done twice. Thus,
we here compute

̂̃Hi(k) = T̂F
ijl(k; 𝜉)

1
[Ŵ(k)]2

Ĥjl(k), (D8)

where

T̂F
ijl(k; 𝜉) =

√
−1 𝜋|k|2

[
(𝛿ijkl + 𝛿jlki + 𝛿likj) − 2

kikjkl|k|2
](

8 + 2
|k|2
𝜉2 + |k|4

𝜉4

)
e−|k|2∕(4𝜉2), (D9)

as given in Reference 58.
4. IFFT: An inverse FFT is applied to ̂̃Hi(k) to compute H̃i(x) on the uniform grid.
5. Gathering: In order to compute the final result at the evaluation point xe (which need not be on the uniform grid),

another convolution with the window function is performed, that is,

3P,F,h
i [Γ,q](xe; 𝜉) = ∫B

H̃i(x)W([xe − x]∗) dx, (D10)

where B denotes the primary cell. The integral in (D10) is evaluated using the trapezoidal rule on the uniform grid,
which is spectrally accurate since the integrand is periodic.

Since the density q does not change during the computation of the streamlines, and the evaluation point xe enters only
in step 5 above, it is possible to do step 1–4 once before starting to compute the streamlines, and save H̃i(x) on the uniform
grid from step 4. When the Fourier-space part 3P,F[Γ,q](xe; 𝜉) is to be evaluated at xe(t) at every timestep of solving (D2),
it is then enough to do only step 5. This speeds up the computation of the streamlines since evaluating (D10) is fast for a
single evaluation point. The real-space part 3P,R[Γ,q](xe; 𝜉) must be computed from scratch at every timestep, but this
is fast since it is a local sum due to its rapid decay.

The periodic completion flow 
(𝛼),3P which appears in (D1) is treated in a very similar way; for details, we refer to

References 58-60. Note that steps 1–5 of the SE method are also what is used when solving the periodic boundary integral
equation as described in Section 5, but in that situation all the evaluation points (i.e., the grid points of Γ) are known in
advance so they can all be fed into step 5 at the same time.


