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Scale-invariant scale-channel networks: Deep networks that generalise

to previously unseen scales

Ylva Jansson and Tony Lindeberg

Abstract The ability to handle large scale variations is cru-
cial for many real world visual tasks. A straightforward ap-
proach for handling scale in a deep network is to process an
image at several scales simultaneously in a set of scale chan-
nels. Scale invariance can then, in principle, be achieved by
using weight sharing between the scale channels together
with max or average pooling over the outputs from the scale
channels. The ability of such scale-channel networks to gen-
eralise to scales not present in the training set over signifi-
cant scale ranges has, however, not previously been explored.

In this paper, we present a systematic study of this method-
ology by implementing different types of scale-channel net-
works and evaluating their ability to generalise to previously
unseen scales. We develop a formalism for analysing the
covariance and invariance properties of scale-channel net-
works, including exploring their relations to scale-space the-
ory, and exploring how different design choices, unique to
scaling transformations, affect the overall performance of
scale-channel networks. We first show that two previously
proposed scale-channel network designs, in one case, gen-
eralise no better than a standard CNN to scales not present
in the training set, and in the second case, have limited scale
generalisation ability. We explain theoretically and demon-
strate experimentally why generalisation fails or is limited in
these cases. We then propose a new type of foveated scale-
channel architecture, where the scale channels process in-
creasingly larger parts of the image with decreasing reso-
lution. This new type of scale-channel network is shown to
generalise extremely well, provided sufficient image reso-
lution and the absence of boundary effects. Our proposed
FovMax and FovAvg networks perform almost identically
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over a scale range of 8, also when training on single-scale
training data, and do also give improved performance when
learning from datasets with large scale variations in the small
sample regime.

Keywords Deep learning - Convolutional neural networks -
Invariant neural networks - Scale covariance - Scale
invariance - Scale generalisation - Scale space

1 Introduction

Scaling transformations are as pervasive in natural image
data as translations. In any natural scene, the size of the pro-
jection of an object on the retina or a digital sensor varies
continuously with the distance between the object and the
observer. Compared to translations, scale variability is in
some sense harder to handle for a biological or artificial
agent. It is possible to fixate an object, thus centering it on
the retina. The equivalence for scaling, which would be to
ensure a constant distance to objects before further process-
ing, is not a viable solution. A human observer can nonethe-
less recognise an object at a range of scales, from a sin-
gle observation, and there is, indeed, experimental evidence
demonstrating scale-invariant processing in the primate vi-

sual cortex [112,3/41/5,16]]. Convolutional neural networks (CNNSs)

already encode structural assumptions about translation in-
variance and locality, which by the successful application of
CNNs for computer vision tasks has been demonstrated to
constitute useful priors for processing visual data. We pro-
pose that structural assumptions about scale could, similarly
to translation covariance, be a useful prior in convolutional
neural networks.

Encoding structural priors about a larger group of vi-
sual transformations, including scaling transformations and
affine transformations, is an integrated part of a range of suc-
cessful classical computer vision approaches [[7,8L9,10.11}
12013L1441516L17[18] and in a theory for explaining the
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computational function of early visual receptive fields [19}
20]. There is a growing body of work on invariant CNNS, es-
pecially concerning invariance to 2D/3D rotations and flips

(2102211231124 25126112711281291130,(311132,133113411351136]. There

has been some recent work on scale-covariant and scale-
invariant recognition in CNNs, where recent approaches [37,
381139,40,41] have shown improvements compared to stan-
dard CNNss for scale variability present both in the training
and the testing sets. These approaches have, however, either
not been evaluated for the task of generalisation to scales
not present in the training set 3814213941 or only across
a very limited scale range [37,/40]. Thus, the possibilities for
CNNs to generalise to previously unseen scales have so far
not been well explored.

The structure of a standard CNN implies a preferred
scale as decided by the fixed size of the filters (often 3 x 3
or 5 x 5 kernels) together with the depth and max pooling
strategy applied. This determines the resolution at which
the image is processed and the size of the receptive fields
of individual units at different depths. A vanilla CNN is,
therefore, not designed for multi-scale processing. Because
of this, state-of-the-art object detection approaches that are
exposed to larger scale variability employ different mecha-
nisms, such as branching off classifiers at different depths
[43.144], learning to transform the input or the filters [45.46|
47]], or by combining the deep network with different types
of image pyramids [48/49L50L51L521153]).

The goal of these approaches has, however, not been
to generalise between scales and even though they enable
multi-scale processing, they lack the type of structure nec-
essary for true scale invariance. Thus, it is not possible to
predict how they will react to objects appearing at new scales
in the testing set or a to real world scenario. This can lead to
undesirable effects, as shown in the rich literature on adver-
sarial examples, where it has been demonstrated that CNN's
suffer from unintuitive failure modes when presented with
data outside the training distribution [54155.56.57.58.59,
60]. This includes adversarial examples constructed by means
of small translations, rotations and scalings [611162]], that is
transformations that are partially represented in a training
set of natural images. Scale-invariant CNNs could enable
both multi-scale processing and predictable behaviour when
encountering objects at novel scales, without the need to
fully span all possible scales in the training set.

Most likely, a set of different strategies will be needed
to handle the full scale variability in the natural world. Full
invariance over scale factors of 100 or more, as present in
natural images, might not be viable in a network with simi-
lar type of processing at fine and coarse scale We argue,

however, that a deep learning based approach that is invari-
ant over a significant scale range could be an important part
of the solution to handling also such large scale variations.
Note that the term scale invariance has sometimes, in the
computer vision literature, been used in a weaker sense of
“the ability to process objects of varying sizes” or “learn
in the presence of scale variability”. We will here use the
term in a stricter classical sense of a classifier/feature extrac-
tor whose output does not change when the input is trans-
formed.

One of the simplest CNN architectures used for covari-
ant and invariant image processing is a channel network (also
referred to as siamese network) [63.126,64]]. In such an ar-
chitecture, transformed copies of the input image are pro-
cessed in parallel by different “channels” (subnetworks) cor-
responding to a set of image transformations. This approach
can together with weight sharing and max or average pool-
ing over the output from the channels enable invariant recog-
nition for finite transformation groups, such as 90 degree
rotations and flips. An invariant scale-channel network is
a natural extension of invariant channel networks as previ-
ously explored for rotations in [26]]. It can equivalently be
seen as a way of extending ideas underlying the classical
scale-space methodology to deep learning [65}1661/67.1681/69,
70.71,7217374.[75]], in the sense that the in the absense of
further information, the image data is processed at all scales
simultaneously, and that the outputs from the scale channels
will constitute a non-linear scale-covariant multi-scale rep-
resentation of the input image.

1.1 Contribution and novelty

The subject of this paper is to investigate the possibility to
construct a scale-invariant CNN based on a scale-channel
architecture. The key contributions of our work are to im-
plement different possible types of scale-channel networks
and to evaluate the ability of these networks to generalise
to previously unseen scales, so that we can train a network
at some scale(s) and test it at other scales, without com-
plementary use of data augmentation. It should be noted
that previous scale-channel networks exist, but those are ex-
plicitly designed for multi-scale processing [76.[77] rather
than scale invariance or have not been evaluated with regard
to their ability to generalise to unseen scales over any sig-
nificant scale range [37]. We here implement and evaluate
networks based on principles similar to these previous ap-
proaches, but also a new type of foveated scale-channel net-
work, where the individual scale channels process increas-
ingly larger parts of the image with decreasing resolution.

! When analysing image data with very large scale variations, the
finite receptive field of any detector and the difference in image reso-
lution between objects observed at different scales will imply a large
difference in appearance between very small and very large objects.

This implies that fully invariant processing over such wide scale ranges
might not be an applicable strategy. Instead different strategies will
likely be needed to recognise objects at very low resolution from those
needed to recognise objects at very high resolution.
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To enable testing each approach over a large range of
scales, we create a new variation of the MNIST dataset, re-
ferred to as the MNIST Large Scale dataset, with scale vari-
ations up to a factor of 8. This represents a dataset with suf-
ficient resolution and image size to enable invariant recog-
nition over a wide range of scale factors. We also rescale
the CIFAR-10 dataset over a scale factor of 4, which is a
wider scale range than has previously been evaluated for
this dataset. This rescaled CIFAR-10 dataset is used to test
if scale-invariant networks can still give significant improve-
ments in generalisation to new scales, in the presence of lim-
ited image resolution and for small image sizes. We evalu-
ate the ability to generalise to previously unseen scales for
the different types of channel networks, by first training on
a single scale or a limited range of scales and then testing
recognition for scales not present in the training set. The re-
sults are compared to a vanilla CNN baseline.

Our experiments on the MNIST Large Scale dataset show
that two previously used scale-channel network designs or
methodologies, in one case, do not generalise any better than
a standard CNN to scales not present in the training set or, in
the second case, have limited generalisation ability. The first
type of method is based on concatenating the outputs from
the scale channels and using this as input to a fully con-
nected layer (as opposed to applying max or average pool-
ing over the scale-dimension). We show that such a network
does not learn to combine the output from the scale channels
in a correct way so as to enable generalisation to previously
unseen scales. The reason for this is the absence of a struc-
ture to enforce scale invariance. The second type of method
is to handle the difference in image size between the rescaled
images in the scale channels, by applying the subnetwork
corresponding to each channel in a sliding window manner.
This methodology, however, implies that the rescaled copies
of an image are not processed in the same way, since for an
object processed in scale channels corresponding to an up-
scaled image, a wide range of different, (e.g., non-centered)
object views, will be processed, compared to only process-
ing the central view for an object in a downscaled image.
This implies that full invariance cannot be achieved, since
max (or average) pooling will be performed over different
views of the objects for different scales, which implies that
the max (or average) over the scale dimension is not guaran-
teed to be stable when the input is transformed.

We do, instead, propose a new type of foveated scale-
channel architecture, where the scale channels process in-
creasingly larger parts of the image with decreasing resolu-
tion. Together with max or average pooling, this leads to our
FovMax and FovAvg networks. We show that this approach
enables extremely good generalisation, when the image res-
olution is sufficient and there is an absence of boundary
effects. Notably, for rescalings of MNIST, almost identical
performance over a scale range of 8 is achieved, when train-

ing on single size training data. We further show that, also on
the CIFAR-10 dataset, in the presence of severe limitations
regarding image resolution and image size, the foveated scale-
channel networks still provide considerably better generali-
sation ability compared to both a standard CNN and an alter-
native scale-channel approach. We also demonstrate that the
FovMax and FovAvg networks give improved performance
for datasets with large scale variations in both the training
and testing data, in the small sample regime.

We propose that the presented foveated scale-channel
networks will prove useful in situations where a simple ap-
proach that can generalise to unseen scales or learning from
small datasets with large scale variations is needed. Our study
also highlights possibilities and limitations for scale-invariant
CNNs and provides a simple baseline to evaluate other ap-
proaches against. Finally, we see possibilities to integrate the
foveated scale-channel network, or similar types of foveated
scale-invariant processing, as subparts in more complex frame-
works dealing with large scale variations.

1.2 Relations to previous contribution

This paper constitutes a substantially extended version of
a conference paper presented at the ICPR 2020 conference
[78]] and with substantial additions concerning:

— the motivations underlying this work and the importance
of a scale generalisation ability for deep networks (Sec-
tion[T),

- a wider overview of related work (Section [T] and Sec-
tion[2)),

— theoretical relationships between the presented scale-channel
networks and the notion of scale-space representation,
including theoretical relationships between the presented
scale-channel networks and scale-normalised derivatives
with associated methods for scale selection (Section E])

— more extensive experimental results on the MNIST Large
Scale dataset, specifically new experiments that investi-
gate (i) the dependency on the scale range spanned by
the scale channels, (ii) the dependency on the sampling
density of the scale levels in the scale channels, (iii) the
influence of multi-scale learning over different scale in-
tervals, and (iv) an analysis of the scale selection prop-
erties over the multiple scale channels for the different
types of scale-channel networks (Section [},

— experimental results for the CIFAR-10 dataset subject to
scaling transformations of the testing data (Section[7)),

— details about the dataset creation for the MNIST Large
Scale dataset (Appendix [A).

In relation to the ICPR 2020 paper, this paper therefore (i) gives
a more general motivation for scale-channel networks in re-
lation to the topic of scale generalisation, (ii) presents more
experimental results for further use cases and an additional
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dataset, (iii) gives deeper theoretical relationships between
scale-channel networks and scale-space theory and (iv) gives
overall better descriptions of several of the subjects treated
in the paper, including (v) more extensive references to re-
lated literature.

2 Relations to previous work

In the area of scale-space theory [65,166467,68L69L70L71172]
73174,[75]], a multi-scale representation of an input image is
created by convolving the image with a set of rescaled Gaus-
sian kernels and Gaussian derivative filters, which are then
often combined in non-linear ways. In this way, a powerful
methodology has been developed to handle scaling trans-
formations in classical computer vision [7L8L9,10L1 1113114}
151[16l/18]]. The scale-channel networks described in this pa-
per can be seen as an extension of this philosophy of pro-
cessing an image at all scales simultaneously, as a means
of achieving scale invariance, but instead using deep non-
linear feature extractors learned from data, as opposed to
hand-crafted image features or image descriptors.

CNNs can give impressive performance, but they are
sensitive to scale variations. Provided that the architecture of
the deep network is sufficiently flexible, moderate increase
in the robustness to scaling transformations can be obtained
by augmenting the training images with multiple rescaled
copies of each training image (scale jittering) [[79,80]. The
performance does, however, degrade for scales not present
in the training set [81,/62|82]], and different network struc-
ture may be optimal for small vs. large images [82]. It is
furthermore possible to construct adversarial examples by
means of small translations, rotations and scalings [61./62]].

State-of-the-art CNN based object detection approaches
all employ different mechanisms to deal with scale variabil-
ity, e.g., branching off classifiers at different depths [44]],
learning to transform the input or the filters [45,/46./47], us-
ing different types of image pyramids [48./49,5045 141521153,
or other approaches, where the image is rescaled to differ-
ent resolutions, possibly combined with interactions or pool-
ing between the layers [83,/841|85|82]]. There are also deep
networks that somehow handle the notion of scale by ap-
proaches such as dilated convolutions [861/87/88]],
pooling [89], scale-adaptive convolutions [90], by spatially
warping the image data by a log-polar transformation prior
to image filtering [47,/42]], or adding additional branches of
down-samplings and/or up-samplings in each layer of the
network [91L92]]. The goal of these approaches has, how-
ever, not been to generalise to previously unseen scales and
they lack the structure necessary for true scale invariance.

Examples of handcrafted scale-invariant hierarchical de-
scriptors are [93L94]. We are, here, interested in combin-
ing scale invariance with learning. There exist some pre-
vious work aimed explicitly at scale-invariant recognition

in CNNs [37,38139,140,141] These approaches have, how-
ever, either not been evaluated for the task of generalisation
to scales not present in the training set [38,39,41] or only
across a very limited scale range [37,40]]. Previous scale-
channel networks exist, but are explicitly designed for multi-
scale processing [[76[77] rather than scale invariance, or have
not been evaluated with regard to their ability to generalise
to unseen scales over any significant scale range [48l37].
A dual approach to scale-covariant scale-channel networks
that, however, allows for scale invariance and scale general-
isation, is presented in [95.96], based on transforming con-
tinuous CNNs expressed in terms of continuous functions
for the filter weights with respect to scaling transformations.
Other scale-covariant or scale-equivariant approaches to deep
networks have also been recently proposed in [97,98199,
100].

There is a large literature on approaches to achieve rotation-
covariant and rotation-invariant networks [25,26.127.128.,29,
30,131413211331134] with applications to different domains, in-
cluding astronomy [64]], remote sensing [101], medical im-
age analysis [102/[103/104] and texture classification [105].
There are also approaches to invariant networks based on
formalism from group theory [24.[106l107].

3 Theory of continuous scale-channel networks

In this section, we will introduce a mathematical framework
for modelling and analysing scale-channel networks based
on a continuous model of the image space. This model en-
ables straightforward analysis of the covariance and invari-
ance properties of the channel networks, that are later ap-
proximated in a discrete implementation. We, here, gener-
alise previous analysis of invariance properties of channel
networks [26] to scale-channel networks. We further analyse
covariance properties and additional options for aggregating
information across transformation channels.

3.1 Images and image transformations

We consider images f : RY — R that are measurable func-
tions in L., (RY) and denote this space of images as V. A

scale-dependent,, ., ¢ image transformations corresponding to a group

G is a family of image transformations 7, (¢ € G) with a
group structure, i.e., fulfilling the group axioms of closure,
identity, associativity and inverse. We denote the combina-
tion of two group elements g, h € G by gh and the cardi-
nality of G as |G|. Formally, a group G induces an action
on functions by acting on the underlying space on which the
function is defined (here the image domain). We are here in-
terested in the group of uniform scalings around zy with the
group action

(stof)(m/) = f(x), x' = Ss(z - 930) + xo, (1)
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where S = diag(s). For simplicity, we often assume xg =
0 and denote S o as S, corresponding to

(Sof)(@) = (S5 @) = fu(2). 2)
We will also consider the translation group with the action
(where 6 € RY)

(Dsf)(a) = f(z), 2’ =x+3. 3)

3.2 Invariance and covariance

Consider a general feature extractor A : V' — K that maps
an image f € V to a feature representation y € K. In our
continuous model, K will typically correspond to a set of
M feature maps (functions) so that Af € VM. This is a
continuous analogue of a discrete convolutional feature map
with M features.

A feature extractolf] A is covariant]to a transformation
group G (formally to the group action) if there exists an in-
put independent transformation 7~‘g that can align the feature
maps of a transformed image with those of the original im-
age
ATef) =Ty(Af)  VgeG,feV. @)
Thus, for a covariant feature extractor it is possible to predict
the feature maps of a transformed image from the feature
maps of the original image or, in other words, the order be-
tween feature extraction and transformation does not matter,
as illustrated in the commutative diagram in Figure|[T]

Af = AT f) = To(Af)

[+ [+

- Tof

Fig. 1: Commutative diagram for a covariant feature extrac-
tor A, showing how the feature map of the transformed im-
age can be matched to the feature map of the original image
by a transformation of the feature space. Note that 7'9 will
correspond to the same transformation as T, but might take
a different form in the feature space.

2 With regard to the scale-channel networks that we develop later in
this paper, note that A should be seen as representing the entire family
of scale channels, not a single-scale channel in isolation. An invariant
feature extractor A will then correspond to the result of max pooling or
average pooling over all the scale channels.

3 In the deep learning literature, the notion of “equivariance” is also
often used for this relationship, which is referred to as “covariance” in
scale-space theory. In this paper, we use the terminology “covariance”
to maintain consistency with the earlier scale-space literature [[108].

A feature extractor A is invariant to a transformation
group G if the feature representation of a transformed image
is equal to the feature representation of the original image

A(Tyf) = A(f)  VgeG,feV. o)

Invariance is thus a special case of covariance, where 7 is
the identity transformation.

3.3 Continuous model of a CNN

Let ¢ : V — VMk denote a continuous CNN with & layers
and M; feature channels in layer i. Let (") represent the
transformation between layers ¢ — 1 and ¢ such that

(6 ) (@, ) = (696D ... 0@ ), ), ®)

where ¢ € {1,2,... M} denotes the feature channel and
¢ = ¢). We model the transformation 6(*) between two
adjacent layers ¢~ f and ¢ f as a convolution followed
by the addition of a bias term b; . € R and the application
of a pointwise non-linearity o; : R — R:

(6" f)(z,c)

M; 1
=0 (i—1) _ (3) )
| X [N e m @ b

where gf,i)c S Ll(RN ) denotes the convolution kernel that
propagates information from feature channel m in layer ¢ — 1
to output feature channel c in layer . A final fully connected
classification layer with compact support can also be mod-
elled as a convolution combined with a non-linearity o, that
represents a softmax operation over the feature channels.

3.4 Scale-channel networks

The key idea underlying channel networks is to process trans-
formed copies of an input image in parallel, in a set of net-
work “channels” (subnetworks) with shared weights. For fi-
nite transformation groups, such as discrete rotations, using
one channel corresponding to each group element and ap-
plying max pooling over the channel dimension can give an
invariant output. For continuous but compact groups, invari-
ance can instead be achieved for a discrete subgroup.

The scaling group is, however, neither finite nor com-
pact. The key question that we address here is whether a
scale-channel network can still support invariant recogni-
tion.

We define a multi-column scale-channel network A :
V' — VMx for the group of scaling transformations S by
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@

Fig. 2: Foveated scale-channel networks. (a) Foveated scale-channel network that processes an image of the digit 2. Each
scale channel has a fixed size receptive field/support region in relation to its rescaled image copy, but they will together
process input regions corresponding to varying sizes in the original image (circles of corresponding colors). (b) This corre-
sponds to a type of foveated processing, where the center of the image is processed with high resolution, which works well to
detect small objects, while larger regions are processed using gradually reduced resolution, which enables detection of larger
objects. (c) There is a close similarity between this model and the foveal scale space model [[L09]], which was motivated by a
combination of regular scale space axioms with a complementary assumption of a uniform limited processing capacity at all

scales.

using a single base network ¢ : V — VM« to define a set of
scale channels {¢s}scs

(¢sf)(xvc) = (¢sz)(:z:,c) =

where each channel thus applies exactly the same operation
to a scaled copy of the input image (see Figure[2[a)). We de-
note the mapping from the input image to the scale-channel
feature maps at depth i as I'?) : V' — Y Mil5]

(F(i)f)(l‘,c, S) = (d)(sl)f)(x’c) =

A scale-channel network that is invariant to the continuous
group of uniform scaling transformations S = {s € R, }
can be constructed using an infinite set of scale channels
{¢s}ses- The following analysis also holds for a set of scale
channels corresponding to a discrete subgroup of the group
of uniform scaling transformations, such that S = {v'|i €
Z} for some v > 1.

The final output Af from the scale-channel network is
an aggregation across the scale dimension of the last layer
scale-channel feature maps. In our theoretical treatment, we
combine the output of the scale channels by the supremum

(Asupf) (2, ¢) = sup [(¢sf) (@, ¢)] (10)

ses

(0f)(x,c), ®)

(S f) (@, c).  (9)

Other permutation invariant operators, such as averaging op-
erations, could also be used. For this construction, the net-
work output will be invariant to rescalings around o =
0 (global scale invariance). This architecture is appropriate
when characterising a single centered object that might vary
in scale and it is the main architecture that we explore in this

paper. Alternatively, one may instead pool over correspond-
ing image points in the original image by operations of the
form

(35" ) (@, ) = sup{(@f) (s, )} (11
se
This descriptor instead has the invariance property

(AR5 ) (@0, €) = (A5 Ss 20 ) (20, €)

i.e., when scaling around an arbitrary image point, the out-
put at that specific point does not change (local scale in-
variance). This property makes it more suitable to describe
scenes with multiple objects.

for all zg, (12)

3.4.1 Scale covariance

Consider a scale-channel network A (I0) that expands the
input over the group of uniform scaling transformations S.
We can relate the feature map representation I"(*) for a scaled
image copy S; f for ¢ € S and its original f in terms of op-
erator notation as

(F(i)Stf)($7 c, S) = ((bgz) Stf)(xﬂ C)
= (0" 8 Sef)(@,c) = (6 S f) (@, )
= (08 (@) = (TDf)(z,c,st), (13)

where we have used the definitions (8) and (9) together with
the fact that S is a group. A scaling of an image thus only
results in a multiplicative shift in the scale dimension of the
feature maps. A more general and more rigorous proof us-
ing an integral representation of the scale-channel network
is given in Section[3.3}
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3.4.2 Scale invariance

Consider a scale-channel network Ag,p @ that selects the
supremum over scales. We will show that A, is scale in-
variant, i.e., that

(Asup St.f)(@, ¢) = (Asup f) (T €). (14)

First, (13) gives {6{" (Sif)}ses = {6 (/)}ses. Then, we
note that {st}scs = St = S. This holds both in the case
when S = R and in the case when S = {~'|i € Z}. Thus,
we have

(DS 1) (,¢)}ses = {69 ) (@, ) }oes
= {8 f)(@,0)}ses, (15)

i.e., the set of outputs from the scale channels for a trans-
formed image is equal to the set of outputs from the scale
channels for its original image. For any permutation invari-
ant aggregation operator, such as the supremum, we have
that

k
(Asup Sf) () = sup{ (847 £) (2, )}
s€
= sup{ (60 /)@ ©)} = (Asup ) (2,6), (16)
se
and, thus, A is invariant to uniform rescalings.
3.5 Proof of scale and translation covariance using an
integral representation of a scale-channel network

We, here, prove the transformation property
(F'Dh)(z,s,¢) = (I'Df)(x + SsSpxy — Spxo, st,c) (17)

of the scale-channel feature maps under a more general com-
bined scaling transformation and translation of the form

h(z") = f(z) for 2’ = 8Si(z —21) + 22 (18)
corresponding to
hiw) = f(S;H(z — 2) + 1) (19)

using an integral representation of the deep network. In the
special case when x1 = x5 = x, this corresponds to a
uniform scaling transformation around z (i.e., S5, s). With
r1 = xo and x2 = xo + I, this corresponds to a scaling
transformation around x( followed by a translation D;.

Consider a deep network ¢(*) @ and assume the inte-
gral representation (7), where we for simplicity of notation
incorporate the offsets b; . into the non-linearities o; .. By
expanding the integral representation of the rescaled image
h , we have that that the feature representation in the
scale-channel network is given by (with My = 1 for a scalar
input image):

(IFDh)(2, s, ¢) = {definition @)} = (V1) (x, c)

= {definition @)} = (¢ h,)(x, ¢) = {equation (G)}
= (0Wgl=Y . 9P9Wh ) (z, c) = {equation (7)}

]\/{i71 ]\/Ii72
= 0Oi.c E / Oi—1,m; E / cee
my—=1" & ERY my_1=1"&i-1ERY

My
01,m2<2/ Nhs(x_fi_gifl_"'_fl)x
m1:1 16R
. gy(fz_,ll)m (§im1)d€ia

gV (&) d&

gt (&) d&; | - (20)

Under the scaling transformation (T8), the part of the inte-

grand hg(x — & — &1 — + -+ — &) transforms as follows:
hs(x =& —&im1— - = &1)

= {hs(x) = h(S; ') according to definition }
=hS;H e =& = &1~ = &))

= {h(x) = f(S; *(x — x2) + x1) according to }

= f(S,1 S (@ =& = &ima — - = &1) = Sswz + SsSia1)
= {54S; = S, for scaling transformations }

= f(S5' ((x + SsSiw1 — Sgwy — & — &1 — - — £1))

= {fu(x) = f(S;'z) according to definition }

= fst(x + SsSiw1 — Sswa — & — &1 — - —&1). (21

Inserting this transformed integrand into the integral repre-
sentation (20) gives

(I'Dh)(2,s,¢) =

M; 1
= Oi,c § /
mi:1

M;_2

Oi—1,m; §

mi—1=1

/i—1€RN

Mo
01,mo < Z AlERN fst(x + SsStxl - 55372_

177,1:1

ERN

§i—&i1— =&)X

(i—1)

g () dgr | gl L (&imr) d€ia

g (&) d& | (22)
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which we recognise as

(F(i)h)(x,s,c)

= (0900 0D0W f)(x + SuSpwy — Sam2, )

= (6D fo)(x 4 SsSix1 — Sya, )

= (65 f)(@ + SsSew1 — Ssan, )

= (F(i)f)(x + SsSix1 — Ssxa, st, ¢) (23)

and which proves the result. Note that for a pure translation
(St =1, 1 = g and x5 = xg + J) this gives

(1O Dy f)(z,e,5) = (PO )z — 56,5,). 24)

Thus, translation covariance is preserved in the scale-channel
network but the magnitude of the spatial shift in the feature
maps will depend on the scale channel. The discrete imple-
mentation and some additional design choices for discrete
scale-channel networks are discussed in Section[3] but, first,
we will consider the relationship between continuous scale-
channel networks and scale-space theory.

4 Relations between scale-channel networks and
scale-space theory

This section describes relations between the presented scale-
channel networks and concepts in scale-space theory, specif-
ically (i) a mapping between scaling the input image using
multiple scaling factors, as used in scale-channel networks,
or instead scaling the filters multiple times, as done in scale-
space theory, and (ii) a relationship to the normalisation over
scales of scale-normalised derivatives, which holds if the
learning algorithm for a scale-channel network would learn
filters corresponding to Gaussian derivatives.

4.1 Preliminaries 1: The Gaussian scale space

In classical scale-space theory [65.664167.168./69L701711[72|
73\[74[75]], a multi-scale representation of an input image
is created by convolving the image with a set of rescaled
and normalised Gaussian kernels. The resulting scale-space
representation of an input image f : RY — R is defined as
[69]:

L(x;0) = /GRN f(@—u)g(u; o) du, (25)

where g : RV x RT — R denotes the (rotationally symmet-
ric) Gaussian kernel

1
g(x;0) = m“” ) (26)

and we use o as the scale parameter compared to the more
commonly used ¢ = 2. The original image/function is thus

embedded into a family of functions parameterised by scale.
The scale-space representation is scale covariant and the rep-
resentation of an original image can be matched to that of a
rescaled image by a spatial rescaling and a multiplicative
shift along the scale dimension. From this representation, a
family of Gaussian derivatives can be computed as

Lyo (2;0) = Ope L(;0) = (O g (5 0)) % f(-))(2), 27)

where n € Z and we use multi index notation o« = (a1, - - - an)
such that Opa = 0 o1 -+ 0 on.

The scale covariance property also transfers to such Gaus-
sian derivatives, and these visual primitives have been widely
used within the classical computer vision paradigm to con-
struct scale-covariant and scale-invariant feature detectors
and image descriptors [ZLI8L10L11L13L14L15016L108L/18].

4.2 Scaling the image vs. scaling the filter

The scale-channel networks described in this paper are based
on a similar philosophy of processing an image at all scales
simultaneously, although the input image, as opposed to the
filter, is expanded over scales. We, here, consider the rela-
tionship between multi-scale representations computed by
applying a set of rescaled kernels to a single-scale image
and representations computed by applying the same kernel
to a set of rescaled images. Since the scale-space represen-
tation can be computed using a single convolutional layer,
we compare with a single-layer scale-channel network. We
consider the relationship between representations computed
by:

(i) Applying a set of rescaled and scale-normalised filters
(this corresponds to normalising filters to constant L -
norm over scales) b : RV — R

1
ha(@) = 7h(>) 28)

to a fixed size input image f(x):

Lp(z;8) = (f x hs)(2) z/ fw) hs(z — ) du,

ueRN

(29)

where the subscript indicates that A might not neces-
sarily be a Gaussian kernel. If h is a Gaussian then
Ly = L.

(i) Applying a fixed size filter h to a set of rescaled input
images

Ma(zss) = (fo  h)(z) = /

u€RN

fs(u) h(z — u) du,
(30)
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with
). @31

This is the representation computed by a single layer
in a (continuous) scale-channel network.

It is straightforward to show that these representations are
computationally equivalent and related by a family of scale
dependent scaling transformations. We compute using the
change of variables u = sv, du = s™ dv:

wERN S
:/ fs_l(f — ) h(v)dv
u€RN s
= (forx (S8 (32)

Comparing this with (30), we see that the two representa-
tions are related according to
T -1
Lp(z;5) :Mh(gQS )- (33)
We note that the relation (33) preserves the relative scale
between the filter and the image for each scale and that both
representations are scale covariant. Thus, to convolve a set
of rescaled images with a single-scale filter, is computation-
ally equivalent to convolving an image with a set of rescaled
filters that are L;-normalised over scale. The two represen-
tations are related through a spatial rescaling and an inverse
mapping of the scale parameter s — s~'. Note that it is
straightforward to show, using the integral representation of
a scale-channel network (7), that a corresponding relation
between scaling the image and scaling the filters holds for a
multi-layer scale-channel network as well.

The result (33)) implies that if a scale-channel network
learns a feature corresponding to a Gaussian with standard
deviation o, then the representation computed by the scale-
channel network is computationally equivalent to applying
the family of kernels

1 =z 1 =y
hs(x) = Swh(g) = WB (e (34)

to the original image, given the complementary scaling trans-
formation (33) with its associated inverse mapping of the
scale parameters s — s~ . Since this is a family of rescaled
and L -normalised Gaussians, the scale-channel network will
compute a representation computationally equivalent to a
Gaussian scale-space representation. For discrete image data,

a similar relation holds approximately, provided that the dis-
crete rescaling operation is a sufficiently good approxima-
tion of the continuous rescaling operation.

4.3 Relation between scale-channel networks and
scale-normalised derivatives

One way to achieve scale invariance within the Gaussian
scale-space concept is to first perform scale selection, i.e.,
identify the relevant scale/scales, and then, e.g., extract fea-
tures at the identified scale/scales. Scale selection can be
done by comparing the magnitudes of «-normalised deriva-
tives [[ZL18]]:

a&‘)‘ = ax‘)‘,'yfnorm = t|a|7/2 8&00‘ = U‘al’y aar:‘)‘ (35)
over scales with v € [0,1] as a free parameter and || =
a1 + - -+ 4+ apn. Such derivatives are likely to take maxima
at scales corresponding to the relevant physical scales of ob-
jects in the image. Although a multi-layer scale-channel net-
work will compute more complex non-linear features, it is
enlightening to investigate whether the network can learn to
express operations similar to scale-normalised derivatives.
This would increase our confidence that scale-channel net-
works could be expected to work well together with, e.g.,
max pooling over scales.

We will, here, consider the maximally scale-invariant
case for scale-normalised derivatives with v = 1
Do = 0110,a. (36)
and show that scale-channel networks can indeed learn fea-
tures equivalent to such scale-normalised derivatives.

4.3.1 Preliminaries II: Gaussian derivatives in terms of
Hermite polynomials

As a preparation for the intended result, we will first estab-
lish a relationship between Gaussian derivatives and proba-
bilistic Hermite polynomials. The probabilistic Hermite poly-
nomials He, (x) are in 1-D defined by the relationship

Hen(z) = (—1)"¢" /2 9,n (6—12/2) 37)
implying that
D (e—f/?) = (~1)"He,(z) e~ /2 (38)
and

22 /952 n T, .2 021
D (e /2 ):(—1) He,(Z)e /7" —. (39)
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Applied to a Gaussian function in 1-D, this implies that

1 (_1)71 ({E) —z? /20
\V2ro o” "
= C e (D) g o) (40)

4.3.2 Scaling relationship for Gaussian derivative kernels

We, here, describe the relationship between scale-channel
networks and scale-normalised derivatives. Let us assume
that the scale-channel network at some layer learns a ker-
nel that corresponds to a Gaussian partial derivative at some
scale o

Orag(z; 0) =
= 836?136;2 TNNg(CL'; U) = thllngz SN (:)3; O’). 1)

We will show that when this kernel is applied to all the scale
channels, this correspond to a normalisation over scales that
is equivalent to scale-normalisation of Gaussian derivatives.

For later convenience, we write this learned kernel as a
scale-normalised derivative at scale o for v = 1 multiplied
by some constant C":

h(z) = C o Tt HoNg 0y on v (@3 0). (42)

Then, the corresponding family of equivalent kernels h;(z)
in the dual representation (29), which represents the same
effect on the original image as applying the kernel h(x) to
a set of rescaled images fs(x) = f(x/s), provided that a
complementary scaling transformation and the inverse map-
ping of the scale parameter s +— s~ ! are performed, is given

by
1 x
ho(w) = — ()
C  aritast ot z
= gotaz OéNgm;nlm;’Q”_miN (;, o). (43)
Using Equation with
g(x7 U) — ]‘ e*($%+1§+”'+$?\7)/20’2 (44)

(V2ro)N

in N dimensions, we obtain

c
hs — — soatoazt-tan -1 artast-+an
(2) N7 (1)
1 €2 TN
Heo, (—)Heay(==) ... Heqy (—
¢ 1(50) € 2(50) € N(5g>

1

—(ai+al+taly) /250"
go1taz+-tan

1
(V2mo)N

=C (sg)a1+a2+~~-+m\r (71)a1+a2+-~+aw

&1 T2 TN
Cor () Heay () - Heay (T7)

U -@edeoad) /20 !
(\/%SO')N (SU)(X1+Q2+"‘+(¥N ’

(45)

Comparing with [@0), we recognise this expression as the
scale-normalised derivative

hs(x) =C (Sa)a1+a2+-<~+aw

Goo1202  oON (z; so)  (46)

CE2 Z(Il\,
of order @ = (a1, g, . . . apy) at scale so.

This means that if the scale-channel network learns a
partial Gaussian derivative of some order, then the applica-
tion of that filter to all the scale channels is computation-
ally equivalent to applying corresponding scale-normalised
Gaussian derivatives to the original image at all scales.

While this result has been expressed for partial deriva-
tives, a corresponding results holds also for derivative oper-
ators that correspond to directional derivatives of Gaussian
kernels in arbitrary directions. This result can be easily un-
derstood from the expression for a directional derivative op-
erator J.» of order n = n; + ny + --- + ny in direction

e:(61762,-- ,EN Wlth|6 \/61+€2 +6?\7:1
aeng(x; O')
:(elaatl +628x2++6NaxN)ng(.T, O')

- ¥

n
0411042! e OtN!
artaz+-t+an=n

o1 (o AN Q01 Q&2 N .
eftes? .. .eyN 051002 ... 0xN g(x; o)

n
041!0(2! OzN!

(e SN2}
ejley”.

artaz+-tan=n

ey Goorgez pon (T3 0). (47)

Since the scale normalisation factors || for all scale-normal-
ised partial derivatives of the same order |a] = a1 + ag +

--+a = n are the same, it follows that all linear combina-
tions of partial derivatives of the same order are transformed
by the same multiplicative scale normalisation factor, which
proves the result.
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4.4 Relations to classical scale selection methods

Specifically, the scaling result for Gaussian derivative ker-
nels implies that a scale-channel network that combines the
multiple scale channels by supremum, or for a discrete set
of scale channels, max pooling (see further Section [3)), will
be structurally similar to classical methods for scale selec-
tion, which detect maxima over scale of scale-normalised
filter responses [7,8ll110]. In the scale-channel networks,
max pooling is, however, done over more complex feature
responses, already adapted to detect specific objects, while
classical scale selection is performed in a class-agnostic way
based on low-level features. This makes max pooling in the

scale-channel networks also closely related to more specialised

classical methods that detect maxima from the scales at which
a supervised classifier delivers class labels with the highest

posterior [L11L112]. Average pooling over the outputs of a

discrete set of scale channels (Section[3)) is structurally simi-

lar to methods for scale selection that are based on weighted

averages of filter responses at different scales [113[18]]. Al-

though there is no guarantee that the learned non-linear fea-

tures will, indeed, take maxima for relevant scales, one might
expect training to promote this, since a failure to do so should
be detrimental to the classification performance of these net-

works.

5 Discrete scale-channel networks

Discrete scale-channel networks are implemented by using a
standard discrete CNN as the base network ¢. For practical
applications, it is also necessary to restrict the network to
include a finite number of scale channels

S = {7V} Kpin<i<Knman- (48)

The input image f : Z? — R is assumed to be of finite
support. The outputs from the scale channels are, here, ag-
gregated using, e.g., max pooling

(Amax f)(x,¢) = measgc{(gbsf) (z,¢,8)} (49)
or average pooling
(Aavgf)(x7c) = an{((bsf)($,C, 3)} (50)

ses

We will also implement discrete scale-channel networks that
concatenate the outputs from the scale channels, followed by
an additional transformation ¢ : RM:IS| — RM: that mixes
the information from the different channels

(Aconcf) ($7 C)

= ¢ (96, (@, ), (bss /)@, ) -+ (85 N, 0]
(51)

Aconce does not have any theoretical guarantees of invariance,
but since scale concatenation of outputs from the scale chan-
nels has been previously used with the explicit aim of scale-
invariant recognition [37], we will evaluate that approach
also here.

5.1 Foveated processing

A standard convolutional neural network ¢ has a finite sup-
port region {2 in the input. When rescaling an input image of
fixed size/finite support in the scale channels, it is necessary
to decide how to process the resulting images of varying size
using a feature extractor with fixed support. One option is to
process regions of constant size in the scale channels, corre-
sponding to regions of different sizes in the input image. This
results in foveated image operations, where a smaller region
around the center of the input image is processed at high
resolution, while gradually larger regions of the input im-
age are processed at gradually reduced resolution (see Fig-
ures b)-(c)). Note how this implies that the scale channels
will together process a covariant set of regions, so that for
any object size there is always a scale channel with a support
matching the size of the object. We will refer to the foveated
network architectures A ax, Aavg and Acone as the FovMax
network, the FovAvg network and the FovConc network, re-
spectively.

5.2 Approximation of scale invariance

Foveated processing combined with max or average pooling
will give an approximation of scale invariance in the con-
tinuous model (Section [3.4.2) over a limited scale range.
The numerical scale warpings of the input images in the
scale channels approximate continuous scaling transforma-
tions. A discrete set of scale channels will approximate the
representation for a continuous scale parameter, where the
approximation will be better with a denser sampling of the
scaling group.

A possible source of problems will, however, arise due
to boundary effects caused by a finite scale interval. True
scale invariance is only guaranteed for an infinite number of
scale channels. In the case of max pooling over a finite set of
scale channels, there is a risk that the maximum value over
the scale channels moves in or out of the finite scale range
covered by the scale channels. Correspondingly, for aver-
age pooling, there is a risk that a substantial part of mass
of the feature responses from the different scale channels
may move in or out of a finite scale interval. The risk for
such boundary effects would, however, be mitigated if the
network learns to suppress responses for both very zoomed
in and very zoomed out objects, so that the contributions
from such image structures are close to zero. As a design
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Fig. 3: An illustration of how discrete scale-channel networks approximate scale invariance over a finite scale range. Con-
sider a foveated scale-channel network combined with max or average pooling over the output from the scale channels.
Since the same operation is performed in all the scale channels, when comparing the output for an original image (left) and
a rescaled copy of this image (right), we see that the output code is just shifted along the scale dimension. Thus, if the values
taken at the edge of the scale range are small enough, then the maximum over scales will still be preserved between an
original and a rescaled image. Correspondingly, for average pooling, there will in this case be no significant change of the
mass of the feature response within the scale range spanned by the scale channels. Here, we illustrate the idea for a network
that produces a scalar output, but the same argument is valid for vector valued output, where the only difference is that the
pooling over the scale dimension is performed for each vector element separately.

Fig. 4: Samples from the MNIST Large Scale dataset: The MNIST Large Scale dataset is derived from the original MNIST
dataset [[114]] and contains 112 x 112 sized images of handwritten digits with scale variations of a factor of 16. The scale
factors relative the original MNIST dataset are in the range % (top left) to 8 (bottom right).

criterion for scale-channel networks, we therefore propose
to include at least a small number of scale channels both be-
low and above the effective training scales of the relevant
image structures. Further, we suggest training the network
from scratch as opposed to using pretrained weights for the
scale channels. Then, we propose that it should be likely that
the network will learn to suppress responses for image struc-
tures that are far off in scale, since the network would oth-
erwise classify based on use of object views that will hardly

provide any useful information. An illustration providing the
intuition for how invariance can be achieved in the discrete
scale-channel networks is presented in Figure 3]

5.3 Sliding window processing in the scale channels

An alternative option for dealing with varying image sizes
is to, in each scale channel, process the entire rescaled im-
age by applying the base network in a sliding window man-
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ner. We, here, evaluate this option, but instead of evaluating
the full network anew at each image position, we slide the
classifier part of the network (i.e., the last layer) across the
convolutional feature map. This is considerably less com-
putationally expensive and, in the case of a network with-
out subsampling by means of strided convolutions (or max
pooling), the two approaches are equivalent. Since strided
convolution is used in the network, it implies that we here
trade some resolution in the output for computational effi-
ciency, where it can be noted that a similar choice is made
in the OverFeat detector [48]E]

Concerning max pooling over space vs. over scale, where
according to the most original formulation, a sliding window
approach in a scale-space setting would mean that the base
network that performs integration over scale should be ap-
plied and evaluated anew at all the visited image positions,
we, again for reasons of computational efficiency, swap the
ordering between max pooling over space vs. over scale, and
perform the max pooling over space before the max pooling
over scale, since we can then avoid the need for incorporat-
ing an explicit mechanism for a skewed/non-vertical pooling
operation between corresponding image points at different
levels of scale according to (TT).

The output from the scale channels can then be com-
bined by max (or average) pooling over space followed by
max (or average) pooling over scalesﬂ

(Asw,maxf)(c) = max gleag{(%f )(z,¢,8)}. (52)

We will here only evaluate this architecture using max pool-
ing only, which is structurally similar to the popular multi-
scale OverFeat detector [48]]. This network will be referred
to as the SWMax network.

For this scale-channel network to support invariance, it
is not sufficient that boundary effects resulting from using
a finite number of scale channels are mitigated. When pro-
cessing regions in the scale channels corresponding to only
a single region in the input image, new structures can ap-
pear (or disappear) in this region for a rescaled version of
the original image. With a linear approach, this might be ex-

4 A main difference between the OverFeat detector [48]] and our ap-
proach, however, is that the OverFeat detector uses a total effective
stride of 32, whereas our network has a total effective stride of 4 (2
convolutional layers with stride 2 each). Because of the larger effective
stride in the OverFeat detector, they apply their subsampling operation
for every spatial offset in the last convolutional layer, whereas we with
our smaller effective stride do not need to, since the subsampled image
representations are still at a satisfactory resolution.

3> Concerning images of finite size, we make use of all the available
image data for computing the scale-channel representations used for
the sliding window approach, implying that more pixels are processed
at a fine scale compared to a coarse scale. This is in contrast to the
foveated representations, which are based on using the same number
pixels in the scale channels for every resolution.

pected to not cause problemsE] since the best matching pat-
tern will be the one corresponding to the template learned
during training. For a deep neural network, however, there
is no guarantee that there cannot be strong erroneous re-
sponses for, e.g., a partial view of a zoomed in object. We
are, here, interested in studying the effects that this has on
generalisation in the deep learning context.

6 Experiments on the MNIST Large Scale dataset
6.1 The MNIST Large Scale dataset

To evaluate the ability of standard CNNs and scale-channel
networks to generalise to unseen scales over a wide scale
range, we have created a new version of the standard MNIST
dataset [114]]. This new dataset, MNIST Large Scale, which
is available online [[115]], is composed of images of size 112x
112 with scale variations of a factor 16 for scale factors
s € [0.5, 8] relative to the original MNIST dataset (see Fig-
ure [). The training and testing sets for the different scale
factors are created by resampling the original MNIST train-
ing and testing sets using bicubic interpolation followed by
smoothing and soft thresholding to reduce discretisation ef-
fects. Note that for scale factors > 4, the full digit might not
be visible in the image. These scale values are nonetheless
included to study the limits of generalisation. More details
concerning this dataset are given in Appendix [A]

6.2 Network and training details

In the experimental evaluation, we will compare five types
of network designs: (i) a (deeper) standard CNN (ii) Fov-
Max (max-pooling over the outputs from the scale chan-
nels), (iii) FovAvg (average pooling over the outputs from
the scale channels), (iv) FovConc (concatenating the out-
puts from the scale channels) and (v) SWMax (sliding win-
dow processing in the scale channels combined with max-
pooling over both space and scale).

The standard CNN 1is composed of 8 conv-batchnorm-
ReLU blocks with 3 x 3 filters followed by a fully con-
nected layer and a final softmax layer. The number of fea-
tures/filters in each layer is 16-16-16-16-32-32-32-32-100-
10. A stride of 2 is used in convolutional layers 2, 4, 6 and
8. Note that this network is deeper and has more parame-
ters than the networks used as base networks for the scale-
channel networks. The reason for using a quite deep network

6 When using linear template matching, the best matching pattern
for a template learned during training will be a very similar image
patch. Thus, when sliding a template across a matching object, it will
take the maximum response when centered on the object. When us-
ing a non-linear method, however, there is no reason there could not
be large responses for non centered views of familiar objects or com-
pletely novel patterns.
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Fig. 5: Generalisation ability to unseen scales for a standard CNN and the different scale-channel network architectures for
the MNIST Large Scale dataset. The networks are trained on digits of size 1 (trl), size 2 (tr2) or size 4 (tr4) and evaluated
for varying rescalings of the testing set. We note that the CNN (a) and the FovConc network (b) have poor generalisation
ability to unseen scales, while the FovMax and FovAvg networks (c) generalise extremely well. The SWMax network (d)
generalises considerably better than a standard CNN, but there is some drop in performance for scales not seen during

training.

is to avoid a network structure that is heavily biased towards
recognising either small or large digits. A more shallow net-
work would simply not have a receptive field large enough
to enable recognising very large objects. The need for ex-
tra depth is thus a consequence of the scale preference built
into a vanilla CNN architecture. Here, we are aware of this
more structural problem of CNNs, but specifically aim to
test scale generalisation for a network with a structure that
would at least in principle enable scale generalisation.

The FovMax, FovAvg, FovConc and SWMax scale-channel

networks are constructed using base networks for the scale
channels with 4 conv-batchnorm-ReLU blocks with 3 x 3 fil-
ters followed by a fully connected layer and a final softmax
layer. The number of features/filters in each layer is 16-16-
32-32-100-10. A stride of 2 is used in convolutional layers 2
and 4. Rescaling within the scale channels is done with bilin-
ear interpolation and applying border padding or cropping as
needed. The batch normalisation layers are shared between

the scale channels for the FovMax, FovAvg and FovConc
networks. This implies that the same operation is performed
for all scales, to preserve scale covariance and enable scale
invariance after max or average pooling.

We do not apply batch normalisation to the SW network,
since this was shown to impair the performance. We believe
that this is because the sliding window approach implies a
change in the feature distribution for this network when pro-
cessing data of different sizes. For the batch normalisation
to function optimally, the data/feature distribution should
stay approximately the same, which is not the case for the
SWMax network. [[]

7 Note that for the OverFeat detector networks pretrained on
ImageNet use a pretrained base network which precludes the prob-
lem with training a sliding window scale-channel network with batch
normalisation from scratch. For the larger scale ranges evaluated here,
however, using networks with pretrained weights for the scale chan-
nels gives considerably worse generalisation performance. We, here,



Scale-invariant scale-channel networks

15

For the FovAvg and FovMax networks, max pooling and
average pooling, respectively, are performed across the log-
its outputs from the scale channels before the final softmax
transformation and cross entropy loss. For the FovConc net-
work, there is a fully connected layer that combines the log-
its outputs from the multiple scale channels before applying
a final softmax transformation and cross entropy loss.

All the scale-channel architectures have around 70k pa-
rameters, whereas the baseline CNN has around 90k param-
eters.

All the networks are trained with 50 000 training sam-
ples from the MNIST Large Scale dataset for 20 epochs us-
ing the Adam optimiser with default parameters in PyTorch:
51 = 0.9 and B2 = 0.999. During training, 15 % dropout is
applied to the first fully connected layer. The learning rate
starts at 3e~2 and decays with a factor 1/e every second
epoch towards a minimum learning rate of 5¢~°. For the
SWMax network, the learning rate instead starts at 3e~ 4,
since this produced better results in the absence of batch nor-
malisation. Results are reported for the MNIST Large Scale
testing set (10000 samples) as the average of training each
network using three different random seeds. The remaining
10000 samples constitute a validation set, which was used
for parameter tuning. Parameter tuning was performed for a
single-channel network, and the same parameters were used
for the multi-channel networks and for the standard CNN.

Numerical performance scores for the results in some of
the figures to be reported are given in [[L16]].

6.3 Generalisation to unseen scales

We, first, evaluate the ability of the standard CNN and the
different scale-channel networks to generalise to previously
unseen scales. We train each network on either of the sizes 1,
2, and 4 from the MNIST Large Scale dataset and evaluate
the performance on the testing set for scale factors between
1/2 and 8. The FovMax, FovAvg and SWMax networks
have 17 scale channels spanning the scale range [%, 8]. The
FovConc network has 3 scale channels spanning the scale
range [1, 4] The results are presented in Figure We, first,

tested two versions of batch normalisation: (i) normalising the fea-
ture responses jointly across all feature maps and (ii) normalising each
channel separately. Neither of these options is scale invariant, the first
because of the change in the feature distribution for the joint set of fea-
ture maps between inputs of different sizes and the second because the
same operation is not applied for all feature channels. Both impaired
the performance. We thus opt for evaluating the SWMax network with
the best configuration we found, which corresponds to training the net-
work from scratch without batch normalisation.

8 The FovConc network has worse generalisation performance when
including too many scale channels or spanning a too wide scale range.
Since we are more interested in the best case rather than the worst
case scenario, we, here, picked the best network out of a large range of
configurations.

note that all the networks achieve similar top performance
for the scales seen during training. There are, however, large
differences in the abilities of the networks to generalise to
unseen scales:

6.3.1 Standard CNN

The standard CNN shows limited generalisation ability to
unseen scales with a large drop in accuracy for scale varia-
tions larger than a factor /2. This illustrates that, while the
network can recognise digits of all sizes, a standard CNN
includes no structural prior to promote scale invariance.

6.3.2 The FovConc network

The scale generalisation ability of the FovConc network is
quite similar to that of the standard CNN, sometimes slightly
worse. The reason why the scale generalisation is limited is
that although the scale channels share their weights and thus
produce a scale-covariant output, when simply concatenat-
ing these outputs from the scale channels, there is no struc-
tural constraint to support scale invariance. This is consistent
with our observation that spanning a too wide scale range
(Section [6.4) or using too many channels, the scale general-
isation degrades for the FovConc network (Section[6.5). For
scales not present during training, there is, simply, no use-
ful training signal to learn the correct weights in the fully
connected layer that combines the outputs from the different
scale channels. Note that our results are not contradictory
to those previously reported for a similar network structure
[137]], since they train on data that contain natural scale vari-
ations and test over a quite narrow scale range. What we
do show, however, is that this network structure, although it
enables multi-scale processing, is not scale invariant.

6.3.3 The FovAvg and FovMax networks

We note that the FovMax and FovAvg networks generalise
very well, independently of what size the network is trained
on. The maximum difference in performance in the size range
[1, 4] between training on size 1, size 2 or size 4 is less than
0.2 percentage points for these network architectures. Im-
portantly, this shows that, if including a large enough num-
ber of sufficiently densely distributed scale channels and
training the networks from scratch, boundary effects at the
scale boundaries do not prohibit invariant recognition.

6.3.4 The SWMax network

We note that the SWMax network generalises considerably
better than a standard CNN, but there is some drop in per-
formance for sizes not seen during training. We believe that
the main reason for this is, here, that since all the scale
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Fig. 6: Dependency of the scale generalisation property on the scale range spanned by the scale channels: (a)—(b) For the
FovAvg and FovMax networks, the scale generalisation property is directly proportional to the scale range spanned by the
scale channels, and there is no need to include training data for more than a single scale. (c) For the SWMax network, the
scale generalisation is improved when including more scale channels, but the network does not generalise as well as the
FovAvg and the FovMax networks. (d) For the FovConc network, the scale generalisation does actually become worse when
including more scale channels (in the case of single-scale training), because there is no mechanism to support scale invariance
when training the weights in the final fully connected layer that combines the different scale channels.

channels are processing a fixed sized region in the input im-
age (as opposed to for foveated processing), new structures
might leave or enter this region when an image is rescaled.
This might lead to erroneous high responses for unfamiliar
views (see Section[5.3). We also noted that the SWMax net-
works are harder to train (more sensitive to learning rate etc)
compared to the foveated network architectures as well as
more computationally expensive. Thus, while the FovMax
and FovAvg networks still are easy to train and the perfor-
mance is not degraded when spanning a wide scale range,
the SWMax network seems to work best for spanning a more
limited scale range, where fewer scale channels are needed
(as was indeed the use case in [48]).

6.4 Dependency on the scale range spanned by the scale
channels

Figure [6] shows the result of experiments to investigate the
sensitivity of the scale generalisation properties to how wide
range of scale values is spanned by the scale channels. For
all the experiments, we have used a scale sampling ratio of
/2 between adjacent scale channels. All the networks were
trained on the single size 2 and were tested for all sizes be-
tween % and 8. The scale interval was varied between the

four choices [v/2,2v/2], [1,4], [1/v/2,4v/2] and [1, 8].
6.4.1 The FovAvg and FovMax networks

For the FovAvg and FovMax networks, the scale generali-
sation properties are directly connected to how wide a scale
range is spanned by the scale channels. By including more
scale channels, these networks generalise over a wider scale
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Fig. 7: Dependency of the scale generalisation property on the scale sampling density: (a)—(b) For the FovAvg and FovMax
networks, the overall scale generalisation is very good for all the studied scale sampling rates, although it becomes noticeably
better for 2!/ compared to 2. For a more close up look regarding the FovAvg and FovMax networks, see Figure [8| (c) The
SWMax network is more sensitive to how densely the scales are samples compared to the FovAvg and the FovMax networks,
and the sensitivity to the scale sampling density is larger when observing objects that are larger than those seen during
training, as compared to when observing objects that are smaller than those seen during training. (d) The FovConc network

actually generalises worse with a denser sampling of scales.

range, without any need to include training data for more
than a single scale. The scale generalisation property will,
however, be limited by the image resolution for small test-
ing sizes and by the fact that the full object is not visible in
the image for larger testing sizes.

6.4.2 The SWMax network

For the SWMax network, the scale generalisation property
is improved when including more scale channels, but the
network does not generalise as well as the FovAvg and the
FovMax networks. It is also noticeable that scale generalisa-
tion is harder when for large testing sizes compared to small
testing sizes. This is probably because of the problem with
unfamiliar partial views present for sliding window process-
ing becoming more pronounced for large testing sizes.

6.4.3 The FovConc network

For the FovConc network, the scale generalisation is actu-
ally worse when including more scale channels. This phe-
nomenon can be understood by considering that the weights
in the fully connected layer, which combines information
from the concatenated scale channels output, are not con-
trolled by any invariance mechanism. Indeed, the weights
corresponding to scales not present during training may take
arbitrary values without any significant impact on the train-
ing error. Incorrect weights for unseen scales will, however,
imply very poor generalisation to those scales.

6.5 Dependency on the scale sampling density

Figure [7]and Figure [§] show the result of experiments to in-
vestigate the sensitivity of the scale generalisation property
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Fig. 8: Dependency of the scale generalisation property on the scale sampling density for the FovAvg and FovMax networks:
FovMax and FovAvg networks spanning the scale range [i, 8] were trained with varying spacing between the scale channels,
either 2, 2'/2 or 2/4. All the networks were trained on size 2. There is a significant increase in the performance when
reducing the spacing between the scale channels from 2 to 2'/2, while the effect of a further reduction to 2'/4 is very small.

to the sampling density of the scale channels. All the net-
works were trained on size 2, with the scale channels span-
ning the scale range [%7 8], and with a varying spacing be-
tween the scale channels: either 2, 21/2 or 21/4, For the Fov-
Conc network, we also included the spacing 22.

The number of scale channels for the different sampling
densities were for the 22 spacing: 3 channels, for the 2 spac-
ing: 5 channels, for the 2'/2 spacing: 9 channels and for the
21/4 spacing: 17 channels.

6.5.1 The FovAvg and FovMax networks

For both the FovAvg and FovMax networks, the accuracy is
considerably improved when decreasing the ratio between
adjacent scale levels from a factor 2 to a factor of 21/ 2 while

a further reduction to 2'/# provides very low additional ben-
efitsP]

6.5.2 The SWMax network

The SWMax network is more sensitive to how densely the
scale levels are sampled compared to the FovAvg and Fov-
Max networks. This sensitivity to the scale sampling density
is larger, when observing objects of larger size than those
seen during training, as compared to when observing objects
of smaller size than those seen during training.

This, again, illustrates the problem due to partial views
of objects, which will be present at some scales but not at
others, are more severe when observing larger size objects
than seen during training.

9 This result is consistent with results about scale sampling in clas-
sical scale-space theory, where it is known that uniform scale sampling
in units of effective scale 7 = log o [117] is the natural scale sampling
strategy, and a scale sampling ratio of v/2 often leads to substantially
better performance than a scale sampling ratio of 2 in classical scale-
space algorithms.

6.5.3 The FovConc network

The FovConc network does actually generalise worse with
a denser sampling of scales. In fact, none of the network
versions generalises better than a standard CNN. The rea-
son for this is probably that for a dense sampling of scales,
there is no need for the last fully connected layer, which
processes the concatenated outputs from all the scale chan-
nels, to include information from scales further away from
the training scale. Thus, the weights corresponding to such
scales may take arbitrary values without affecting the accu-
racy during the training process, thereby implying very poor
generalisation to previously unseen scales.

Accuracy (%)

0.50 0.71 1.00 1.41 2.00 2.83 4.00 5.66 8.00
Scale factor

Fig. 9: Comparing multi-scale vs. single-scale training for a
vanilla CNN. Training is here performed over the size ranges
[1,2] and [2, 4], respectively. The scale generalisation when
trained on single size training data is presented as dashed
grey lines for training sizes 1, 2 and 4, respectively. As can
be seen from the results, training on multi-scale training data
does not improve the scale generalisation ability of the CNN
for sizes outside the size range the network is trained on.
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Fig. 10: Results of multi-scale training for the scale-channel
networks with training sizes uniformly distributed on the
size range [1,4] (with the uniform distribution on a log-
arithmic scale). These two figures show the same exper-
imental results, where the second figure is zoomed in, to
make comparisons between the networks more visible. The
presence of multi-scale training data substantially improves
the performance of the CNN, the FovConc network and the
SWMax network. The difference in performance between
single-scale training and multi-scale training is almost indis-
cernable for the FovAvg and FovMax networks. The overall
best performance is obtained for the FovAvg network.

6.6 Multi-scale vs. single-scale training

All the scale-channel architectures support multi-scale pro-
cessing although they might not support scale invariance.
We, here, test the performance of the different scale-channel
networks when training on multi-scale training data. For the
standard CNN, we also explicitly explore how generalisa-
tion is affected when training on a smaller scale range to
see how this affects generalisation outside the scale range
trained on.

6.6.1 Limits of generalisation for a standard CNN

If including data multi-scale data within a some range, could
a CNN learn to “extrapolate” outside this scale range? Fig-

ure[9]shows the result of training the standard CNN on train-
ing data with multiple sizes uniformly distributed over the
scale ranges [1, 2] and [2, 4], respectively, and testing on all
sizes over the range [%, 8]. (The size distributions are uni-
form on a logarithmic scale.)

Training on multi-scale training data does not improve
the scale generalisation ability of the CNN for scales outside
the scale range the network is trained on. The network can,
indeed, learn to recognise digits of different sizes. But just
because it might learn that an object of size 1 is the same
as the same object of size 2, this does not at all imply that it
will recognise the same object if it has size 4. In other words,
the scale generalisation ability within a subrange does not
transfer to outside that range.

6.6.2 Multi-scale training

Figure [I0] shows the result of performing multi-scale train-
ing over the size range [1, 4] for the scale-channel networks
FovMax, FovAvg, FovConc and SWMax as well as the stan-
dard CNN. Here, the same scale-channel setup with 17 chan-
nels spanning the scale range [%, 8] is used for all the scale-
channel architectures. When multi-scale training data is used,
the advantage of using scale channels spanning a larger scale
range no longer incurs a penalty for the FovConc network,
since the correct weights can be learned in the fully con-
nected layer.

We note that the difference between training on multi-
scale and single-scale data is striking both for the FovConc
network and the standard CNN. It can, however, be noted
that the FovConc network works well in this scenario, es-
pecially for the scale range included in the training set. Out-
side this scale range, we note somewhat better generalisation
compared to the CNN, while the generalisation is still worse
than for the FovAvg and FovMax networks. The FovConc
network does, after all, include a mechanism for multi-scale
processing and when trained on multi-scale training data, the
lack of invariance mechanism in the fully connected layer is
less of a problem.

For the SWMax network, including multi-scale data im-
proves the scale generalisation somewhat compared to single-
scale training. The SWMax network does, however, have
worse performance for spanning larger scale ranges com-
pared to the other networks. The reason behind this is prob-
ably that the multiple views produced in the different scale
channels indeed makes the problem harder for this network
compared to the foveated networks, which only need to pro-
cess centered digit views.

The difference in scale generalisation ability between
training on a single scale or multi-scale image data is on the
other hand almost indiscernible for the FovMax and FovAvg
networks (less than 0.1 % difference in accuracy), illustrat-
ing the strong scale invariance properties of these networks.
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Compact performance measures regarding scale generalisation on the MNIST Large Scale dataset

Scale range 1/2,1] [1,4] [4,8] [1/2,4] [1/2,8]
FovAvg 17ch trl 99.15 99.27 90.82 99.22 96.76
FovAvg 17ch tr2 99.14  99.36  96.55 99.27 98.47
FovAvg 17ch trd 98.78 9931 96.61 99.11 98.36
FovAvg 17ch mean(trl, tr2, tr4) 99.02 99.32  94.66 99.20 97.86
FovAvg 17ch tr14 99.20 9940  96.50 99.32 98.49
FovMax 17ch trl 99.15 9935  93.70 99.27 97.63
FovMax 17ch tr2 99.15 99.31 92.72 99.25 97.32
FovMax 17¢ch tr4 99.03 9930 93.26 99.20 97.45
FovMax 17ch mean(trl, tr2, tr4) 99.11 9932 93.23 99.24 97.47
FovMax 17¢ch tr14 99.16 99.32  94.37 99.26 97.82
FovConc 3ch trl 80.76  48.64 4.61 57.10 44.68
FovConc 3ch tr2 2235  78.17 2271 59.12 49.55
FovConc 3ch tr4 2.57 5020 82.36 35.64 45.63
FovConc 3ch mean(trl, tr2, tr4) 3523  59.00 36.56 50.62 46.62
FovConc 17ch tr14 89.70  99.33 89.54 95.63 93.63
SWMax 17ch trl 95.06 97.60 69.52 96.53 88.77
SWMax 17ch tr2 96.87 9796 69.28 97.48 89.44
SWMax 17ch trd 9140 9723 8221 95.02 91.04
SWMax 17ch mean(trl, tr2, tr4) 9444 97.60 73.67 96.34 89.75
SWMax 17ch tr14 97.05 98.82 79.40 98.13 92.60
CNN trl 88.26 50.78 11.85 61.46 49.64
CNN tr2 27.87 79.88  26.08 61.90 52.60
CNN tr4 1145 5435 82.59 40.99 49.79
CNN mean(trl, tr2, tr4) 4253  61.67 40.17 54.78 50.68
CNN trl4 88.23  99.09 73.98 94.94 88.57

Table 1: Average classification accuracy (%) over different size ranges of the testing data. For each type of network (FovAvg,
FovMax, FovConc, SWMax or CNN), this table shows the average classification accuracy over different ranges of the size
of the testing data in the MNIST Large Scale datasets, for networks trained by single-scale training for either of the training
sizes 1, 2 or 4 (denoted trl, tr2, tr4) or multi-scale training data spanning the scale range [1, 4] (denoted tr14). The rows
labelled “mean(trl, tr2, tr4)” give the average value for the training sizes 1, 2 and 4. The reported accuracy is the average
of the accuracy for multiple test sizes within the size ranges [1/2,1],[1,4], [4,8], [1/2,4] and [1/2, 8] with spacing 2!/4

between consecutive sizes.

Single-scale training evaluated over testing sizes in [1, 4]

FovAvg mean(trl, tr2, tr4) 99.32 %
FovMax mean(trl, tr2, tr4) 99.32 %
SWMax mean(trl, tr2, tr4) 97.60 %
CNN mean(trl, tr2, tr4) 61.67 %
FovConc mean(trl, tr2, tr4) 59.00 %

Table 2: Relative ranking of the different networks for
single-scale training at either of the training sizes 1, 2 or 4

evaluated over the testing size interval [1,4].

Multi-scale training evaluated over testing sizes in [1,4]

FovAvg tr14 99.40 %
FovConc tr14 99.33 %
FovMax tr14 99.32 %
CNN tr14 99.09 %
SWMax tr14 98.82 %

Table 3: Relative ranking of the different networks for multi-
scale training over the training size interval [1, 4] evaluated

over the testing size interval [1, 4].

Single-scale training evaluated over testing sizes in [1/2, 4]

FovMax mean(trl, tr2, tr4) 99.24 %
FovAvg mean(trl, tr2, tr4) 99.20 %
SWMax mean(trl, tr2, tr4) 96.34 %
CNN mean(trl, tr2, tr4) 54.78 %
FovConc mean(trl, tr2, tr4) 50.62 %

Table 4: Relative ranking of the different networks for
single-scale training at either of the training sizes 1, 2 or 4
evaluated over the testing size interval [1/2, 4].

Multi-scale training evaluated over testing sizes in [1/2, 4]

FovAvg tr14 99.32 %
FovMax tr14 99.26 %
SWMax tr14 98.13 %
FovConc tr14 95.63 %
FovConc tr14 96.32 %
CNN trl14 94.94 %

Table 5: Relative ranking of the different networks for multi-
scale training over the training size interval [1, 4] evaluated
over the testing size interval [1/2, 4].
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6.7 Compact benchmarks regarding the scale generalisation
performance

Table [I] gives compact performance measures of the gen-
eralisation performance of the different types of networks
considered in the experiments on the MNIST Large Scale
dataset. For each type of network (FovAvg, FovMax, Fov-
Conc, SW or CNN), the table gives the average classifica-
tion accuracy over different ranges of the size of the testing
data, for networks trained by single-scale training, for either
of the training sizes 1, 2 or 4 or multi-scale training data
spanning the scale range [1, 4].

Tables 2H3] gives relative ranking of the different net-
works on specific subsets of this data, which can be treated
as benchmarks regarding scale generalisation for the MNIST
Large Scale dataset. As can be seen from these tables, the
FovAvg and FovMax networks have the overall best perfor-
mance scores of these networks, both for the cases of single-
scale training and multi-scale training.

The FovConc, CNN and SWMax networks are very much
improved by multi-scale training, whereas the FovAvg and
FovMax networks perform almost as well for single-scale
training as for multi-scale training.
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Fig. 11: Training with smaller training sets with large scale
variations. All the network architectures are evaluated on
their ability to classify data with large scale variations, while
reducing the number of training samples. Both the training
and the testing sets here span the size range [1, 4]. The Fov-
Avg network shows the highest robustness when decreas-
ing the number of training samples followed by the FovMax
network. The FovConc network also shows a small improve-
ment over the standard CNN.

6.8 Generalisation from fewer training samples

Another scenario of interest is when the training data does
span a relevant range of scales, but there are few training

samples. Theory would predict a correlation between the
performance in this scenario and the ability to generalise to
unseen scales.

To test this prediction, we trained the standard CNN and
the different scale-channel networks on multi-scale training
data spanning the size range [1, 4], while gradually reducing
the number of samples in the training set. Here, the same
scale-channel setup with 17 channels spanning the scale range
[%, 8] was used for all the architectures. The results are pre-
sented in Figure We can note that the FovConc net-
work shows some improvement over the standard CNN. The
SWMax network, on the other hand, does not, and we hy-
pothesise that when using fewer samples, the problem with
partial views of objects (see Section [5.3) might be more se-
vere. Note that the way the OverFeat detector is used in
the original study [48]] is more similar to our single-scale
training scenario, since they use base networks pre-trained
on ImageNet. The FovAvg and FovMax networks show the
highest robustness also in this scenario. This illustrates that
these networks can give improvements when multi-scale train-
ing data is available, but there are few training samples.

6.9 Scale selection properties

One may ask, how do the scales “selected” by the networks,
i.e., the scales that contribute the most to the feature re-
sponse of the winning digit class, vary with the size of the
object in the image? We, here, investigate the relative contri-
butions from the different scale channels to the classification
decision and how they vary with the object size. For this pur-
pose, we train the FovAvg, FovMax, FovConc and SWMax
networks on the MNIST Large Scale dataset for each one of
the different training sizes 1, 2 and 4 and then accumulate
histograms that quantify the contribution from the different
scale channels over a range of image sizes in the testing data.
The histograms are constructed as follows:

— FovMax: We identify the scale channel that provides the
maximum value for the winning digit class and incre-
ment the histogram bin corresponding to this scale chan-
nel with a unit increment.

— FovAvg: The FovAvg network aggregates contributions
from multiple scale channels for each classification de-
cision. For the winning digit class, we, consider the rel-
ative contributions from the different scale channels and
increment each histogram bin with the corresponding
fraction of unity of this contribution. The contribution
is measured as the absolute value of the feature response
before average pooling.

— FovConc: We compute the relative contribution from each
scale channel as the sum of the weights in the fully con-
nected layer corresponding to the winning digit class
and the specific scale channel, multiplied by the feature
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Fig. 12: Visualisation of the scale selection properties of the scale-invariant FovAvg and FovMax networks, when training
the network for each one of the sizes 1, 2 and 4. For each testing size, shown on the horizontal axis with increasing testing
sizes towards the right, the vertical axis displays a histogram of the relative contribution of the scale channels to the winning
classification, with the lowest scale at the bottom and the highest scale at the top. As can be seen from the figures, there
is a general tendency of the composed classification scheme to select coarser scale levels with increasing size of the image
structures, in agreement with the conceptual similarity to classical methods for scale selection based on detecting local
extrema over scale or performing weighted averaging over scale of scale-normalised derivative responses. (In these figures,
the resolution parameter on the vertical axis represents the inverse of scale. Note that the grey-levels in the histograms are
not directly comparable, since the grey-levels for each histogram are normalised with respect to the maximum and minimum
values in that histogram.)
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Fig. 13: Visualisation of the scale selection properties of the not scale-invariant FovConc and SWMax networks, when
training the network for each one of the sizes 1, 2 and 4. For each testing size, shown on the horizontal axis with increasing
testing sizes towards the right, the vertical axis displays a histogram of the relative contribution of the scale channels to the
winning classification, with the lowest scale at the bottom and the highest scale at the top. As can be seen from the figures,
the relative contributions from the different scale levels do not as well follow a linear dependency on the size of the input
structures as for the scale-invariant FovAvg and FovMax networks. Instead, for the FocConc network, there is a bias towards
the size of image structures used for training, whereas for the SWMax network some scale levels dominate for fine-scale or
coarse-scale sizes in the testing data. (In these figures, the resolution parameter on the vertical axis represents the inverse of
scale. Note that the grey-levels in the histograms are not directly comparable, since the grey-levels for each histogram are
normalised with respect to the maximum and minimum values in that histogram.)
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values corresponding to the output from that scale chan-
nel. We increment each histogram bin with the fraction
of unity corresponding to the absolute value of the rela-
tive contribution from each scale channel.

— SWMax: We identify the scale channel that provides the
maximum value for the winning digit class and incre-
ment the histogram bin corresponding to this scale chan-
nel with a unit increment.

The procedure is repeated for all the testing sizes in the
MNIST Large Scale dataset, resulting in two-dimensional
scale selection histograms, which show what scale channels
contribute to the classification output as function of the size
of the image structures in the testing data. The histograms
are presented in Figures[T2HI3] As can be seen in Figure[T2]
for the FovAvg and FovMax networks, the selected scale
levels do very well follow a linear trend in the sense that the
selected scale levels are proportional to the size of the im-
age structures in the testing datam The scale selection his-
tograms are also largely similar, irrespective of whether the
training is performed for size 1, 2 or 4, illustrating that the
scale-invariant properties of the FovAvg and FovMax net-
works in the continuous case transfer very well to the dis-
crete implementation.

In this respect, the resulting scale-selection properties of
the FovAvg and FovMax networks share similarities to clas-
sical methods for scale selection based on local extrema over
scale or weighted averaging over scale of scale-normalised
derivative responses [7,8L{113L/18.110]]. This makes sense in
light of the result that the scaling properties of the filters ap-
plied to the scale channels are similar to the scaling proper-

ties of scale-normalised Gaussian derivatives (see Sectiond.3.2).

The approach for the FovMax network is also closely related
to the scale selection approach in [[112|[118]] based on choos-
ing the scales at which a supervised classifier delivers class
labels with the highest posterior.

As can be seen in Figure the behaviour is different
for the not scale-invariant FovConc and SWMax networks.
For the FovConc network, there is a bias in that the selected

10° A certain bias that can be observed for the FovMax and SWMax
networks, is that there is a stronger peak in the histogram scale chan-
nels for scale channel 1 for small testing sizes, than for the neighbour-
ing scale channels. A possible explanation for this effect is that for
scale channel 1 there will not be any effective initial interpolation stage
as for the other scale channels, which implies that there is no additional
interpolation blur for this scale channel as for the other scale channels,
in turn implying a stronger response for this scale channel compared
to the neighbouring scale channels. A certain bias towards scale chan-
nel 1 can also be observed for the FovConc network. For the FovAvg
network, which is also the network that performs clearly best out of
these four networks, the bias towards scale channel 1 is, however, very
minor. In retrospect, the bias towards scale channel 1 for the other net-
works could point to replacing the initial bilinear interpolation stage
by some other interpolation method, and/or to add a small complemen-
tary smoothing stage after the interpolation stage, to ensure that the
sum of the effective interpolation blur and the added complementary
blur remains approximately the same for neighbouring scale channels.

scales are more concentrated towards the size of the train-
ing data. The contributions from the different scale channels
are also much less concentrated around the linear trend com-
pared to the FovAvg and FovMax networks. Without access
to multi-scale training, the FovConc network does not learn
scale invariance although this would in principle be possi-
ble, e.g., by learning to use equal weights for all the scales,
which would implement average pooling over scales.

For the SWMax network, although the resulting scale se-
lection histogram is largely centered around a linear trend,
consistent with the relative robustness to scaling transforma-
tions that this network shows, the linear trend is not as clean
as for the FovAvg and FovMax networks. For the coarsest
scale testing structures, the SWMax network largely fails
to activate corresponding scale channels beyond a certain
value. This is consistent with the previously problems of not
being able generalise to larger testing scales, and is likely
related to the previously discussed problem of interference
from zoomed-in previously unseen partial views that might
give stronger feature responses than the zoomed-out overall
shape. Furthermore, for finer or coarser scale testing struc-
tures, there are some scale channels for the SWMax net-
work that contribute more to the output than others, and thus
demonstrate a lack of true scale invariance.

In the quantitative scale generalisation experiments pre-
sented earlier, it was seen that the lack of scale invariance
for the SWMax network leads to lower accuracy when gen-
eralising to unseen scales and, for the FovConc network,
which here shows the worst scale selection properties, no
marked improvement at all over a standard CNN. For the
truly scale-invariant FovAvg and FovMax networks, on the
other hand, the ability of the networks to correctly identify
the scale of the object in a scale-covariant way imply excel-
lent scale generalisation properties.

7 Experiments on rescalings of the CIFAR-10 dataset
7.1 Dataset

To investigate if a scale-channel network can still provide a
clear advantage over a standard CNN in a more challeng-
ing scenario, we use the CIFAR-10 dataset [119]. We train
on the original training set and test on synthetically rescaled
copies of the test set with relative scale factors in the range
s € [0.5,2.0]. CIFAR-10 represents a dataset, where the
conditions for invariance using a scale-channel network are
not fulfilled, in the sense that the transformations between
different training and testing sizes are not well modelled
by continuous scaling transformations, as underlie the pre-
sented theory for scale-invariant scale channel networks, based
on continuous models of both the image data and the image
filtering operations.



Scale-invariant scale-channel networks 25

Fig. 14: Sample images from the rescaled CIFAR-10 testing set (of size 32 x 32 pixels). The images in the original CIFAR-10

testing set are rescaled for scaling factors between % and 2, with mirror extension at the image boundaries for scaling factors
s < 1. Top row: “frog”. Bottom row: “truck”.
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Fig. 15: Generalisation ability to unseen scales for a standard CNN and different scale-channel network architectures for
the rescaled CIFAR-10 dataset. The network is trained on the CIFAR-10 training set (corresponding to scale factor 1.0) and
tested on rescaled images from the testing set for relative scale factors between % and 2. The FovConc network has better
scale generalisation compared to the standard CNN, but for larger deviations from the scale that the network is trained on,
there is a clear advantage for the FovAvg and the FovMax networks.
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Because already the original dataset is at the limit of be-
ing undersampled, reducing the image size further for scale
factors s < 1 results in additional loss of object details. The
images are also tightly cropped, which implies that increas-
ing the image size for scale factors s > 1 implies a loss
of information towards the image boundaries, and that sam-
pling artefacts in the original image data will be amplified.
Further, when reducing the image size, we extend the image
by mirroring at the image boundaries, adding artefacts in the
image structures, caused by the image padding operations.
What we evaluate here is thus the limits of the scale-channel
networks, near or beyond the limits of image resolution, to
see if this approach can still provide a clear advantage over
a standard CNN.

Figure[T4] shows a few images from the rescaled testing
set, with examples of two out of the 10 object classes in the
dataset: “airplanes”, “cars”, “birds”, “cats”, “deer”, “dogs”,

“frogs”, “horses”, “ships”, and “trucks”.

7.2 Network and training details

For the CIFAR-10 Scale dataset, we will compare the Fov-
Max, FovAvg and FovConc networks to a standard CNNE]
We use the same network for the CNN as for the individual

scale channels, a 7-layer network with conv+batchnorm+ReLLU

layers with 3 x 3 kernels and zero padding with width 1. We
do not use any spatial max pooling, but use a stride of 2 for
convolutional layers 3, 5 and 7. After the final convolutional
layer, spatial average pooling is performed over the full fea-
ture map down to 1 x 1 resolution, followed by a final fully
connected softmax layer. We do not use dropout, since it did
not improve the results for this quite simple network with
relatively few parameters. The number of feature channels
is 32-32-32-64-64-128-128 for the 7 convolutional layers.

For the FovAvg and FovMax networks, max pooling and
average pooling, respectively, is performed across the log-
its outputs from the scale channels before the final softmax
transformation and cross entropy loss. For the FovConc net-
work, there is a fully connected layer that combines the log-
its outputs from the multiple scale channels before applying
a final softmax transformation and cross entropy loss. We
use bilinear interpolation and reflection padding at the im-
age boundaries when computing the rescaled images used
as input for the scale channels.

All the CIFAR-10 networks are trained for 20 000 time
steps using 50 000 training samples from the CIFAR-10 train-
ing set over 103 epochs, using a batch size of 256 and the
Adam optimiser with default parameters in PyTorch: §; =
0.9 and 35 = 0.999. A cosine learning rate decay is used

' We do not evaluate the SWMax network on the CIFAR-10 Scale
dataset, since it is not meaningful to perform a spatial search for objects
in this dataset.

with starting learning rate 0.001 and floor learning rate 0.00005,
where the learning rate decreases to the floor learning rate
after 75 epochs. The networks are then tested on the 10 000
images in the testing set, for relative scaling factors in the
interval [1,2].

We chose the learning rate and training schedule based
on the CNN performance using the last 10 000 samples of
the training set as a validation set.

7.3 Experimental results

The results for the standard CNN are shown in Figure[T3]a).
It can be seen that, already for scale factors slightly off from 1,
there is a noticeable drop in generalisation performance.

The results for the FovConc network, for different num-
ber of scale channels, are presented in Figure [I5[b). The
generalisation ability to new scales is markedly better than
for the standard CNN, but the scale generalisation is not im-
proved by adding more scale channels. This can be com-
pared with no improvement over a standard CNN when trained
on single-scale MNIST data. We believe that the key differ-
ence is that for the CIFAR-10 dataset there are indeed some
scale variations present in the training set, and as discussed
earlier, it is possible for the FovConc network to learn to
generalise by assigning appropriate weights to the layer that
combines information from the different scale channels. This
illustrates that the method does have some structural advan-
tage compared to a standard CNN, but that multi-scale train-
ing data is required to realise this advantage.

The results for the FovMax and FovAvg networks, for
different numbers of scale channels, are presented in Fig-
ure [I5[c—d), and are significantly better than for the stan-
dard CNN and the FovConc network. The accuracy for the
smallest scale 1/2 is improved from = 40% for the CNN to
above 70% for the FovAvg and FovMax networks, while the
accuracy for the largest scale 2 is improved from = 30% for
the CNN to ~ 50% for the FovAvg and FovMax networks.

For the FovMax network, there is a noticeable improve-
ment by going to a finer scale sampling ratio of 2'/4 com-
pared to 2'/2. Then, the generalisation ability for the Fov-
Max network is also somewhat better than for the FovAvg
network. The FovAvg network does, however, have slightly
better peak performance compared to the FovMax network.

To summarise, the FovMax and FovAvg networks pro-
vide the best generalisation ability to new scales, which is
in line with theory. This shows that, also for datasets where
the conditions regarding image size and resolution are not
such that the scale-channel approach can provide full invari-
ance, our foveated scale-channel networks can nevertheless
provide benefits.
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8 Summary and discussion

We have presented a methodology to handle scaling trans-
formations in deep networks by scale-channel networks. Spec-
ifically, we have presented a theoretical formalism for mod-
elling scale-channel networks based on continuous models
of the both the filters and the image data, and shown that
the continuous scale-channel networks are provably scale
covariant and translationally covariant. Combined with max
pooling or average pooling over the scale channels, our fove-
ated scale-channel networks are additionally provably scale
invariant.

Experimentally, we have demonstrated that discrete ap-
proximations to the continuous foveated scale-channel net-
works FovMax and FovAvg are very robust to scaling trans-
formations, and allow for scale generalisation, with very good
performance for classifying image patterns at new scales not
spanned by the training data, because of the continuous in-
variance properties that they approximate. Experimentally,
we have also demonstrated the very limited scale general-
isation performance of vanilla CNNs and scale concatena-
tion networks when exposed to testing at scales not spanned
by the training data, although those approaches may work
rather well when training on multi-scale training data. The
reason why those approaches fail regarding scale generali-
sation, when trained at a single scale or a over a narrow scale
interval only, is because of the lack of an explicit mechanism
to enforce scale invariance.

We have further demonstrated that a foveated approach
shows better generalisation performance compared to a slid-
ing window approach, especially when moving from a smaller
training scale to a large testing scale. Note that this should
not be seen as an argument against any type of sliding win-
dow processing per se. The foveated networks could, in-
deed, be applied in a sliding window manner to search for
objects in a larger image. Instead, it illustrates that for any
specific image point, it is important to process a covariant
set of image regions that correspond to different sizes in the
input image.

We have also demonstrated that our FovMax and Fov-
Avg scale-channel networks lead to improvements when train-
ing on data with significant scale variations in the small sam-
ple regime. We have further shown that the selected scale
levels for these scale-invariant networks increase linearly
with the size of the image structures in the testing data, in
a similar way as for classical methods for scale selection.

From the presented experimental results on the MNIST
Large Scale dataset, it is clear that our FovMax and Fov-
Avg scale-channel networks do provide a considerable im-
provement in scale generalisation ability compared to a stan-
dard CNN as well as in relation to previous scale-channel
approaches. Concerning the CIFAR-10 dataset, it should be
noted that full invariance is not possible because of the /oss

in image information between the original and the rescaled
images. Our experiments on this dataset show, nonetheless,
that also in the presence of undersampling and serious bound-
ary effects, our FovMax and FovAvg scale-channel networks
give considerably improved generalisation ability compared
to a standard CNN or alternative scale-channel networks.

We believe that our proposed foveated scale-channel net-
works could prove useful in situations where a simple ap-
proach that can generalise to unseen scales or learn from
small datasets with large scale variations is needed. Strong
reasons for using such scale-invariant scale-channel networks
could either be because there is a limited amount of multi-
scale training data, where sharing statistical strength between
scales is valuable, or because only a single scale or a limited
range of scales is present in the training set, which implies
that generalisation outside the scales seen during training is
crucial for the performance. Thus, we propose that this type
of foveated scale-invariant processing could be included as
subparts in more complex frameworks dealing with large
scale variations.

Concerning applications towards object recognition, it
should, however, be emphasised that in this study, we have
not specifically focused on developing an integrated approach
for detecting objects, since the main focus has been to de-
velop ways of handling the notion of scale in a theoretically
well-founded manner. Beyond the vanilla sliding-window
approach studied in this paper, which has such a built-in ob-
ject detection capability, also the foveated networks could be
applied in a sliding-window fashion, thus being able to also
handle smaller objects near the image boundaries, which is
not possible if the central point in the image is always used
as the origin when resizing the image multiple times to form
the input for the different scale channels.

To avoid explicit exhaustive search over multiple such
origins for the foveated representations, such an approach
could further be naturally extended to a two-stage approach,
where detection of points of interest is first performed using
a complementary module that detects points of interest (not
necessarily of the same kind as the current regular notion of
interest points for image-based matching and recognition),
followed by more detailed analysis of these points of inter-
est with a foveated representation. Such an approach would
then bear similarity to human vision, by foveating on inter-
esting structures to look at them in more detail. It would
specifically also bear similarity to two-stage approaches for
object recognition, such as R-CNNs [[120,49,[121]], with the
difference that the initial detection step does not need to re-
turn a full window of interest. Instead, only a single initial
point is needed, where the scale, corresponding to the size
of the window, is then handled by the built-in scale selection
step in the foveated scale-channel network.

To conclude, the overarching aim of this study has in-
stead been to test the limits of CNNs to generalise to unseen
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scales over wide scale ranges. The key take home message
is a proof of concept that such scale generalisation is pos-
sible, if including structural assumptions about scale in the
network design.

Appendix
A The MNIST Large Scale dataset

We, here, give a more detailed description of the MNIST
Large Scale dataset. The original MNIST dataset [114] con-
tains images of centered handwritten digits of size 28 x 28.
The MNIST Large Scale dataset is derived from the MNIST
dataset by rescaling the original MNIST images. The result-
ing dataset contains images of size 112 x 112 with scale
variations of a factor of 16. The scale factors s relative the
original MNIST images are s € [%, 8]. The dataset is illus-
trated in Figure [d]

To create an image with a certain scale factor s, the orig-
inal image is first rescaled/resampled using bicubic interpo-
lation. The image range is then clipped to [0, 256] to remove
possible over/undershoot resulting from the bicubic interpo-
lation. The resulting image is embedded into an 112 x 112
resolution image using zero padding or cropping as needed.

Large amounts of upsampling tend to result in discreti-
sation artefacts. To reduce the severity of such artefacts, the
images are post-processed with discrete Gaussian smooth-
ing [122] followed by non-linear thresholding. The stan-
dard deviation of the discrete Gaussian kernel varies with
the scale factor as (s) = %s. After smoothing, the image
range is rescaled to the range [0, 255].

As a final step, an arctan non-linearity is applied to
sharpen the resulting image, where the final image intensity
I,y is computed from the output of the smoothing step I;,,
as:

2
Tout = - arctan(a(l;, — b)) (53)
with a = 0.02 and b = 128. Note that for scale factors > 4,
the full digit might not be visible in the image. These scale
factors are included to enable studying the limits of general-
isation when the entire object is no longer visible (typically
the digits are fully contained in the image for s < 41/2).

All training data sets are created from the first 50 000
images in the original MNIST training set, while the last
10000 images in the original MNIST training set are used
to create validation sets. The testing data sets are created by
rescaling the 10000 images in the original MNIST testing
set. For the multi-scale datasets, scale factors for the indi-
vidual images are sampled uniformly on a logarithmic scale
in the range [Symin, Smax)-

The specific MNIST Large Scale dataset used for the
experiments in this paper is available online [[115].
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