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Abstract: Increasing the service lifetime of mobile Internet-enabled devices (MIEDs) such as 
smartphones, tablets and laptops is a promising strategy to reduce the number of devices that need to 
be produced and reduce environmental impacts associated with device production. A broad spectrum 
of lifetime-extending measures has been explored in literature and in industry practice. In this article, 
we present an overview of explored measures, discuss challenges in their implementation and 
environmental impacts of lifetime extension. We find that measures can be distinguished into measures 
aiming at (1) the improvement of the device design (e.g. modular or durable design of smartphones), 
(2) device retention (increasing the time a user keeps a device, e.g. by offering repair services or 
fostering emotional attachment to devices), and (3) recirculation (creating a second life with a different 
user and/or in a different context, e.g. by refurbishing and reselling devices). The implementation of 
measures is challenged by trade-offs faced by organizations in the MIED value chain, which specifically 
occur when revenues depend on the number of new devices produced and sold. Furthermore, 
measures are subject to rebound and induction effects (e.g. imperfect substitution, re-spending effects), 
which can compensate for the (theoretical) environmental gains from service lifetime extension. In 
particular, it is uncertain to what extent a measure actually leads to lifetime extension and eventually 
reduces primary production of devices (displacement rate). Thus, more systematic research is needed 
on the feasibility of measures and the conditions under which they effectively contribute to a net 
reduction of environmental impacts. 
 
Introduction and approach 
Mobile Internet-enabled devices (MIEDs), such 
as smartphones, tablets or laptops require a 
large amount of resources and energy during 
production (Hilty & Bieser, 2017). Estimations 
of the greenhouse gas (GHG) emissions 
caused by the information and communication 
technology (ICT) sector worldwide range from 
1.5% to 4% of global GHG emissions, most of 
which are caused by the production and 
operation of end user devices (Bieser et al., 
2020) with the main share in production (Bieser 
& Coroamă, 2020; Itten et al., 2020). 
At the same time, the average service lifetime 
of a MIED is much shorter than the technically 
feasible lifetime (Thiébaud (-Müller) et al., 
2018). For example, in Switzerland a mobile 
phone is used on average for roughly 3.3 years 
(Thiébaud (-Müller) et al., 2018). Thus, a 
promising strategy to reduce the environmental 
footprint caused by MIEDs is to increase their 
average service lifetime, with the aim of 
reducing the number of units produced.  

Several measures to extend the service lifetime 
of MIEDs have been explored in literature and 
industry practice. For example, André, Söder-
man and Nordelöf (2019) discuss commercial 
reuse operation for laptops, Schischke et al. 
(2016) discuss modular smartphone design, 
Xun Li et al. (2010) and Zink et al. (2014) 
suggest reusing obsolete equipment in a 
different context, e.g. for educational purposes 
at schools or as in-car parking meters. 
In this article, we provide an overview of 
measures to extend the service lifetime of 
MIEDs that have been explored in literature and 
cluster the identified measures into categories 
by their basic mode of action. We discuss 
challenges in the implementation of measures, 
as well as environmental consequences 
associated with measures (e.g. rebound 
effects). 
Even though we reviewed a vast amount of 
literature, we do not claim that the resulting list 
of measures is exhaustive. 
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Measures to extend the service 
lifetime of MIEDs 
 
Overview 
In total, we identified three categories of 
measures:  

1. Improve device design: improving 
technical features of devices to increase 
the service lifetime 

2. Retention: increasing the time a user 
keeps a device 

3. Recirculation: encouraging use of device 
by an additional user and/or in a different 
context 

Table 1 provides an overview of measures in 
each category, which are described in more 
detail in the following.  
 

Category Measure 
Improve 
device 
design 

Avoid software-induced 
obsolescence 
Avoid hardware-induced 
obsolescence 
Software-induced behavior 
change 
Improve reparability and 
upgradability 
Design for durability 
Increase user attachment to 
device 
Design for reuse of components 

Retention Provide possibilities to repair 
device 
Increase user attachment to 
device 
Increase awareness for 
environmental impact of device 
production 

Recirculation Resell device 
Pass on device 
Device-as-a-service 
Repurpose device in different 
context 
Retrieve still functioning 
parts/devices for reuse 

Table 1. Measures to extend the service lifetime 
of MIEDs clustered into categories. 
 
Improve device design 
Measures in this category aim at changes to the 
hardware or software design of MIEDs which 
(can) lead to an extension of their service 
lifetime by creating conditions that are 
beneficial for retention or recirculation. 
Most measures require manufacturers to 
systematically take design choices (e.g. allow 
for replacement of battery) or abolish existing 
practices to shorten the service lifetime (e.g. 

avoid software-induced obsolescence, Kern et 
al. 2018). 
A key concern here is obsolescence, which 
means that a device loses its functionality or 
usability due to ageing (Proske et al., 2016). 
Updating MIED software or hardware can 
render devices obsolete (Proske et al., 2016), 
e.g. software updates can reduce battery 
cycles, changes of physical interfaces can 
render accessory devices obsolete. 
To avoid software-induced obsolescence, 
software applications are required to be 
compatible with different hardware and 
software configurations and software providers 
need to offer support services (Kern et al., 
2018). Also, users could be informed about the 
consequences of a software update before 
installing it. Exemplary strategies to avoid 
hardware-induced obsolescence are to use 
durable materials (Proske et al., 2016) and 
open and commonly used interface standards 
(Schischke et al., 2016).  
Software can be designed in a way which 
encourages users to use the device longer 
(software-induced behavior change). For 
example, a smartphone app can inform users 
about possible actions to increase the service 
lifetime close to expiration of the mobile 
network subscription (e.g. renewal of 
subscription without buying a new device, 
reselling or returning the device, Huang and 
Truong 2008).  
The possibility to repair or replace components 
can increase the service lifetime of devices that 
are broken or no longer meet the requirements 
of the user (Nes & Cramer, 2005). Several 
design principles aiming at improving 
reparability and upgradability of MIEDs exist. 
For example, modularization improves "the 
composability of the final product from a set of 
standardized components” (Hankammer et al., 
2018, p. 147) and thus the chance to replace 
broken or obsolete components with 
functioning or even more powerful components. 
Design for upgradeability (e.g. intentionally 
over-specifying some components, Inoue et al. 
2016) or design for reparability are related 
approaches. The availability of spare parts and 
repair instructions is also essential for repairing 
a device (Vonplon, 2020; Wilhelm, 2012). 
The durability of a product refers to how well a 
device is protected from wear and tear (Bocken 
et al., 2016). Design for durability “is about 
testing a product against assumptions about 
how the product is going to be used” (Schischke 
et al., 2016, p. 5). For example, some 
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smartphones shut down automatically when 
their core temperature gets too high. 
Psychological obsolescence is obsolescence 
caused by subjective aging, e.g. due to fashion 
trends (Proske et al., 2016). Increasing user 
attachment to a device can encourage users to 
postpone replacement and handle devices 
more carefully (Sung et al., 2015). For example, 
ergonomic design can lead to increased user 
attachment to devices (Komeijani et al., 2016).  
Design for reuse of components enables to 
reuse parts of a defunct device to repair other 
devices (Franklin-Johnson et al., 2016). 
Therefore, devices need to allow for 
disassembly and components need to be 
compatible with other devices (Nes & Cramer, 
2005; Sawanishi et al., 2015).  
 
Retention 
Retention measures aim at increasing the time 
a user actively uses a device, e.g. by 
encouraging users to postpone the decision to 
acquire a new device.  
In case of broken devices, this can be achieved 
by providing users with the possibility to repair 
devices. In many cases, users cannot repair the 
devices themselves because specialized 
knowledge, skills, and tools are required (Nes & 
Cramer, 2005; Sawanishi et al., 2015). 
Producers can actively contribute to these 
obstacles, e.g. by using screws for which 
screwdrivers are not publicly available 
(Sawanishi, Torihara, and Mishima 2015). 
Exemplary measures to support repair are the 
availability of repair instructions and spare parts 
(Vonplon, 2020).  
Measures to increase user attachment to 
devices (also discussed in the section “Improve 
device design”) exist, e.g. personalization or 
upcycling (Sung et al., 2015, p. 2) through 
engravings, buttons or stickers. 
Many users are not aware of the environmental 
impact of hardware production. Informing users 
about the environmental impact of device 
production can persuade them to postpone 
replacement. Wilhelm (2012) suggests eco-
labelling as a possible measure.  
 
Recirculation 
Recirculation measures aim at encouraging 
reuse of a used device by an additional user 
and/or in a different context. Successful 
recirculation always depends on user decisions 
at two life cycle stages at least: some users 
need to pass on or return their device and some 

users need to acquire used devices instead of 
new devices. 
Reselling leverages the heterogeneity in 
consumer requirements, i.e. some consumers 
might be content with a device that is 
inadequate to another user in exchange for a 
lower price (Williams, 2003). This cascade use 
(Rudolf et al., 2020) can be fostered through 
device retailers or peer-to-peer marketplaces 
such as eBay (Williams, 2003). Often 
intermediaries overhaul smartphones, e.g. 
through refurbishment or remanufacturing 
(Mugge et al., 2017; Skerlos et al., 2003). 
A common practice is to collect or buy back 
used and still-functioning MIEDs in 
industrialized countries and export these to 
lower-income countries (Sinha et al., 2016) or 
to pass on the devices to a friend or family 
member (Wieser & Tröger, 2018).  
One barrier for reuse is that many consumers 
are still skeptical towards used products due to 
quality concerns (Wieser & Tröger, 2018). 
Thus, further measures to convince users and 
promote second-hand purchases are required 
(Gåvertsson et al., 2020). 
An approach to promote reuse is the rental of 
devices (i.e. as a product-service-system or 
device-as-a-service) instead of selling them 
(Schneider et al., 2018). Once a user wants a 
new device, they return it to the service provider 
who still owns the device, can refurbish or 
remanufacture it and rent it out to another user.  
Some authors also suggest to repurpose 
obsolete devices for use in a different context. 
For example, a mobile phone could be used as 
an entertainment device in a waiting room 
(Huang & Truong, 2008), or as an in-car parking 
meter (Zink et al., 2014). 
When a MIED is no longer functional, the device 
usually contains still-functioning parts, which 
can be used to repair other devices. To retrieve 
still-functioning parts/devices for reuse, 
obsolete devices could be collected with mail 
back envelopes or at easily accessible drop-off 
points (Tanskanen & Butler, 2007). Design for 
reuse (see section “Improved device design”) 
supports reuse of components. 
 
Discussion 
 
Implementation of measures 
The measures we described strongly focus on 
structural solutions (e.g. by means of technical 
improvements) to extend the service lifetime of 
MIEDs. We do not delve into measures to 
change the consumer mindset (e.g. “less is 
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more”, Miesler et al., 2018) or regulatory 
measures (e.g. extended producer 
responsibility).  
In many cases, organizations trying to 
implement approaches for lifetime extension 
will face conflicting goals and interests. For 
example: Durable smartphones are often larger 
and heavier than their non-modular 
counterparts (Schischke et al., 2016). 
Improving the modularity of a smartphone can 
allow new companies to produce spare parts, 
and thereby “cannibalize” the revenues of 
original equipment manufacturers. Lifetime 
extension as such can also reduce revenues of 
manufacturers, as they are usually coupled to 
the number of devices sold.  
Thus, systematic research on the feasibility of 
these measures and collaboration along the 
MIED value chain is needed to find creative 
solutions to mitigate these conflicts. 
 
Environmental impacts of measures 
A key requirement for realizing environmental 
gains through service lifetime extension is that 
it avoids the production of new devices. To 
date, there is little research about consumer 
acceptance of measures and the extent of 
actual lifetime extension (e.g. 1 year, 2 years). 
Additionally, existing research on the 
displacement rate of primary production by 
lifetime extension indicates that this does not 
occur on a one-to-one basis (imperfect 
substitution, Makov and Font Vivanco 2018; 
Zink et al. 2014; Zink and Geyer 2017), e.g. 
because used devices might be purchased by 
consumers who would not purchase a new 
device otherwise (Cooper & Gutowski, 2017). 
Also, re-spending effects can compensate for 
the environmental gains of lifetime extension 
(Jattke et al., 2020) if consumers increase their 
relative income (e.g. by postponing acquisition 
of new devices, by selling used devices, or by 
buying used instead of new devices) and direct 
that income to the consumption of other goods 
and services which are associated with 
environmental impacts as well (Makov & Font 
Vivanco, 2018; Zink & Geyer, 2017).  
Service lifetime-extending measures can also 
lead to induction effects: adopting the 
measures induces activities which are 
associated with environmental impacts (e.g. 
shipping smartphones to repair facilities, Jattke 
et al. 2020). 
Exporting obsolete devices to developing 
countries can also cause environmental 
impacts beyond energy consumption and GHG 
emissions because these devices are often 

informally recycled with harmful effects on 
people and the environment (Böni et al., 2015; 
Yu et al., 2017). 
  
Conclusions 
Extending the service lifetime of MIEDs can 
help to reduce the environmental impacts 
associated with the life cycle of MIEDs. Various 
potential measures exist that can be clustered 
into measures aiming at (1) improvements of 
device design, (2) retention and (3) 
recirculation. 
While measures in all categories have been 
explored in literature, little is known about their 
effectiveness in achieving lifetime extension 
and reducing environmental impacts in 
practice. Reasons for this uncertainty are: 
- Implementation of measures is challenged 

by diverse conflict of interests among actors 
in the MIED value chain, which often are 
caused by (expected) declines in revenues 
of manufacturers. 

- Lack of research on consumer acceptance 
of measures and the degree to which the 
service lifetime is actually extended. 

- The extent to which lifetime extension 
actually replaces primary production is 
uncertain (displacement rate).  

- Re-spending effects and induction effects 
can diminish the environmental gains from 
lifetime extension.  

Thus, more systematic research on the 
feasibility for implementing measures and the 
conditions under which such measures 
effectively contribute to reduction of 
environmental impacts of MIEDs is required. 
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