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Privacy-Preserving Identification Systems
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Abstract—In this paper, we study fundamental trade-offs in
privacy-preserving biometric identification systems with noisy
enrollment. The proposed identification systems include helper
data, secret keys, and private keys. Helper data are stored in
a public database and used for identification. Secret keys are
either stored in a secure database or provided to the user, and
can be used in a next step, e.g. for authentication. Private keys
are provided by users, and are also used for identification. In this
paper, we impose a noisy enrollment channel and an arbitrarily
small privacy and secrecy leakage rate. We characterize the
optimal trade-off among the identification, secret key, private
key, and helper data rates. Depending on how secret keys are
produced, we study two cases of the proposed privacy-preserving
identification systems, where the secret keys are generated and
chosen respectively. By introducing private keys, it is shown
that the identification system achieves close to zero privacy
leakage rate in both generated and chosen secret key settings.
The results also show that the identification rate and the secret
key rate can be enlarged by increasing the private key rate. This
work provides a framework for analyzing privacy-preserving
identification systems and an insight on the design of optimal
systems.

Index Terms—Biometrics, identification systems, noisy enroll-
ment, privacy, secrecy.

I. INTRODUCTION

With recent advances in technology and smart devices,
biometrics are more and more deployed to reinforce traditional
authentication or identification that uses keys, passwords, etc.
Compared to traditional methods, biometric features have
the advantage that they are more stable and individualized.
Nowadays, the most recognized biometric technologies are
fingerprint mapping, face recognition, and retina scans. The
use of biometric features makes authentication or identification
more convenient, but the abuse of biometric information could
invoke serious privacy issues. A recent breach of BioStar,
which is a biometric identification system using facial recog-
nition and fingerprinting technology, leads to a compromise
of millions records containing personal information of sen-
sitive nature. As stated in [1], once biometric information
is compromised, the privacy can not be restored. Therefore,
it is important to take privacy into account when designing
identification or authentication systems using biometrics.
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Fig. 1. Generated Secret Key System: In the enrollment phase, each user w ∈
[1 : MI ] is observed via a noisy enrollment channel QX̃|X and generates
an observation X̃N (w). Then the enrollment mapping maps the observation
X̃N (w) and private key Pw to the helper data Jw and secret key Sw . In
the identification phase, assume a previously enrolled user is observed. The
system compares the observation Y N with the database and uses the private
key to guess the user index and the secret key.

Several aspects of identification and authentication problems
have been studied. The fundamental limits of an identification
system was firstly studied by Willems et al. in [2], where the
identification capacity of a biometric identification system was
characterized. Tuncel et al. analyzed in [3] the identification
capacity and the storage trade-off in a biometric identification
system. The identification rate, search and memory complexity
trade-offs are studied in [4]. In [5], several assumptions in
the identification problems are relaxed and the corresponding
fundamental bounds regions are derived. The information
theoretic perspectives of robust authentication systems is
investigated in [6]. Hypothesis testing in identification and
authentication system is studied in [7] and [8], respectively.
The privacy and secrecy aspects of biometric systems are
studied in [9], [10]. Algorithmic computability of the secret
key and authentication with constraints is discussed in [11].
The problem of controllable authentication with privacy and
storage constraints on the source sequence is considered in
[12]. In [13], Kittichokechai et al. investigated the secret-based
identification and authentication with a privacy constraint.
Fundamental trade-offs in biometric identification systems that
supports authentication are studied in [14].



For the privacy aspect, several privacy metrics have been
studied in the literature. Often, one aims for privacy against
statistical inference, such as membership privacy or recon-
struction of certain data. In this work, we take an information-
theoretic approach and use mutual information rate as privacy
leakage measure. By bounding the mutual information, we
limit the amount of information leaked about the biometric
source from the public data. Since the generation of the
public helper data can be seen as source coding process,
bounding the mutual information leakage directly relates to
the rate-distortion problem, which therefore protects against
adversarial reconstruction of the biometric data. The achieved
privacy level in [9], [13], [14] is also measured using mutual
information rate where, however, the privacy leakage is not
necessarily small. In this work, we consider the case that the
privacy leakage is required to be close to zero, i.e., the mutual
information rate should be negligible.

Additional to a more restrictive privacy constraints, the
noise in the observation in both the enrollment and the identi-
fication phases has to be included in the design. For example,
when scanning the fingerprints or faces, it is inevitable that
there would be random noise due to the devices, as well as dif-
ferent angles or positions when one scans the physical features.
The noisy enrollment can be interpreted as an additional fixed
privacy filter that protects the true biometric source so that the
privacy leakage measures the total protection of the system.
Therefore, considering the noisy enrollment is closer to real
life scenarios and has a positive side effect on protecting the
true biometric data. Biometric systems with noisy enrollment
and without zero privacy leakage constraints are studied in
[15]–[17], in which it is assumed that the true biometric
source is hidden and only noisy versions of biometric source
are available to the system. Therein, the public helper data
are generated based on the noisy enrollment whereas in our
work the public label is generated from the combination of
noisy information and a private key. Additionally, in our work,
the privacy leakage is evaluated with respect to the noise-
free biometric source instead of the noisy enrollment, which
makes the privacy leakage analysis with noisy enrollment more
challenging.

This work extends the single-user problem with close to
zero privacy leakage rate in [9] to noisy enrollment and the
problem of identification that allows authentication. In other
words, by introducing an extra private key as in [9], close to
zero privacy leakage rate is achieved. This work is also an
extension of [18], while in this work we additionally include
noisy enrollment channel. Due to the existence of noise in
the enrollment phase, the proofs are siginificantly changed
and results are more general. Moreover, depending on how
the secret keys are produced, we consider two variations of
identification systems, where the secret keys are generated and
chosen respectively.

The rest of the paper is organized as follows. In Section
II, we introduce the problem formulation for two settings, the
generated secret key system and the chosen secret key system.
In Section III, the main results are presented, where we will
determine the optimal regions for both settings. Finally, in
Section IV, we summarize the work and provide a conclusion.
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Fig. 2. Chosen Secret Key System: In the enrollment phase, each user w ∈
[1 : MI ] is observed via a noisy enrollment channel QX̃|X and generates
an observation X̃N (w). Then the enrollment mapping maps the observation
X̃N (w), the secret key Sw and private key Pw to the helper data Jw . In the
identification phase, assume a previously enrolled user W is observed. The
system compares the observation Y N with the database and uses the private
key to guess the user index and the secret key.

Notations: We denote random variables, their realizations
and alphabets by upper cases, lower cases and calligraphic let-
ters. We use XN to denote a vector (X1, X2, . . . , XN ). H(X),
I(X;Y ), QX(x) and QY |X(y|x) denote the entropy, mutual
information, marginal and conditional probability distributions
respectively. The strong typical set is denoted by T Nε . We use
|A| to denote the cardinality of a finite set A.

II. PROBLEM FORMULATION

A. Noisy Enrollment
Fig. 1 depicts the generated secret key system. Assume that

there are MI users indexed by w ∈ [1 : MI ]. We use xN (w)
to denote the biometric sequence of user w ∈ [1 : MI ], which
is assumed to be identically independently distributed (i.i.d.)
according to the mass probability function (p.m.f.) QX(·)
defined on the finite alphabet X .

In the enrollment phase, for each user w, the biometric
sequence xN (w) is observed via a noisy memoryless enroll-
ment channel QX̃|X(·) and an observation x̃N (w) is generated.
Hence, given xN (w), the observation x̃N (w) in the enrollment
phase occurs with probability

Pr{X̃N (w) = x̃N (w)|XN (w) = xN (w)}

=

N∏
i=1

QX̃|X(x̃i(w)|xi(w)). (1)

B. Generated Secret Key Systems
The enrollment mapping e(·) maps the noisy biometric

sequence x̃N (w) and the private key pw ∈ [1 : MP ] to
generate the helper data jw ∈ [1 : MJ ] and a secret key
sw ∈ [1 : MS ], i.e.,

(jw, sw) = e(x̃N (w), pw). (2)



We assume that the private key for every user w ∈ [1 : MI ]
is independent and uniformly distributed on [1 : MP ]. The
private key pw is also presented to the system when the user
w wants to be identified in the identification phase.

In the identification phase, an unknown user w is observed
via the discrete memoryless channel (DMC) QY |X(·). It is
assumed that the user index w is uniformly distributed over
[1 : MI ].

Lastly, after an unknown user with index w has been
observed, the observation yN and its corresponding private
key pw are presented to the system. The identification mapping
d(·) estimates the user index ŵ ∈ [1 : MI ] and the secret key
ŝ ∈ [1 : MS ] as

(ŵ, ŝ) = d(yN , j, pw), (3)

where j = (ji)
MI
i=1 denotes data of the database.

We are interested in the optimal trade-off among the achiev-
able identification, secret key, private key, and helper data
rates such that the identification system is able to: (a) return
the true user index and the secret key with high probability;
(b) distributions of secret keys are approximately uniform; (c)
preserve privacy and secrecy such that the privacy leakage
rate and secrecy leakage rate are arbitrarily small. Moreover,
we want the identification rate and secret key rate as large as
possible, and the private key rate and helper data rate as small
as possible. Accordingly, we define the achievability for the
generated secret key system as follows.

Definition 1: An identification, secret key, private key, and
helper data rate tuple (RI , RS , RP , RJ) ∈ R4

+ is achievable in
a generated secret key system if, given any δ > 0 there exists
some N0(δ) ≥ 1, enrollment mapping e(·), and identification
mapping d(·) such that for any N ≥ N0(δ), the following
conditions are satisfied

Pr{(Ŵ , Ŝ) 6= (W,SW )} ≤ δ, (4a)
logMI ≥ N(RI − δ), (4b)
H(SW ) +Nδ ≥ logMS ≥ N(RS − δ), (4c)
logMP ≤ N(RP + δ), (4d)
logMJ ≤ N(RJ + δ), (4e)
I(SW ; JW ) ≤ Nδ, (4f)

I(XN (W ); JW ) ≤ Nδ. (4g)

The capacity region Rg is the closure of the set of all
achievable identification, secret key, private key, and helper
data rate tuples for a generated secret key system.

The capacity region can be interpreted as follows: (4a)
indicates that the identification system is able to return the
true user index and the secret key with only negligible error
probability; (4b), (4c), (4d) and (4e) put constraints on the
identification, secret, private key and helper data rate respec-
tively; especially, (4c) also states that distributions of secret
keys are approximately uniform; (4f) and (4g) require the
system is secrecy-preserving and privacy-preserving in a weak
sense, respectively.

C. Chosen Secret Key System
Similarly, in a chosen secret key system, as illustrated in

Fig. 2, in the enrollment phase, the system observes the noisy

enrolled biometric sequence x̃N (w) of user w and private key
pw. Additionally, the system also observes a chosen secret key
sw. It is assumed that the secret key sw and private key pw
are chosen uniformly at random from [1 : MS ] and [1 : MP ]
respectively.

In the identification phase, an unknown user w is observed
via a discrete memoryless channel (DMC) QY |X(·), where w
is uniformly distributed over [1 : MI ]. After an unknown user
with index w is observed, the observation yN and its private
key pw are provided to the system. The identification mapping
d(·) estimates the user index ŵ ∈ [1 : MI ] and the secret key
ŝ ∈ [1 : MS ] as

(ŵ, ŝ) = d(yN , j, pw), (5)

where j = (ji)
MI
i=1. We define the achievability of a chosen

secret key system as follows.
Definition 2: An identification, secret key, private key, and

helper data rates tuple (RI , RS , RP , RJ) ∈ R4
+ is achievable

in a chosen secret key system if, given any δ > 0 there exists
some N0(δ) ≥ 1, enrollment and identification mappings such
that for any N ≥ N0(δ) the conditions (4a), (4b), (4d), (4e),
(4f), and (4g) and

logMS ≥ N(RS − δ), (6)

are satisfied.
The capacity region Rc is the closure of the set of all

achievable identification, secret key, private key, and helper
data rate tuples for a chosen secret key system.

III. OPTIMAL TRADE-OFFS

Now we give the capacity regions of generated secret key
systems and chosen secret key systems. A binary example is
also provided to illustrate the optimal trade-offs.

A. Capacity Regions and Discussion

Theorem 1: For a privacy-preserving identification system
using generated secret keys with noisy enrollment, the capacity
region Rg is given by

Rg = {(RI , RS , RP , RJ) ∈ R4
+ :

RI +RS ≤ RP + I(U ;Y ), (7a)
RI + I(U ;X) ≤ RP + I(U ;Y ), (7b)

RI + I(U ; X̃) ≤ RJ + I(U ;Y ), (7c)
for somePUX̃XY = QXQX̃|XQY |XPU |X̃ , (7d)

and |U| ≤ |X̃ |+ 2}. (7e)

Theorem 2: For a privacy-preserving identification system
using chosen secret keys with noisy enrollment, the capacity
region Rc is given by

Rc = {(RI , RS , RP , RJ) ∈ R4
+ :

RI +RS ≤ RP + I(U ;Y ), (8a)
RI + I(U ;X) ≤ RP + I(U ;Y ), (8b)

RI + I(U ; X̃) +RS ≤ RJ + I(U ;Y ), (8c)
for somePUX̃XY = QXQX̃|XQY |XPU |X̃ , (8d)



and |U| ≤ |X̃ |+ 2}. (8e)

In the following, we provide some discussion of the results.
Corollary 1: If a rate tuple (RI , RS , RP , RJ) ∈ Rg, then

(RI , RS , RP , RJ +RS) ∈ Rc.
Comparing (7c) and (8c), we can conclude that, to achieve

the same identification rate, secret key rate and private key
rate tuple (RI , RS , RP ), the chosen secret key system needs
a larger minimum helper data rate, which is the sum of the
minimum helper data rate in the generated secret key system
and the secret key rate.

Corollary 2: If (RI , RS , RP , RJ) ∈ Rg, then for any r1 ≥
0 and r2 ≥ 0, (RI +r1, RS+r2, RP +r1 +r2, RJ +r1) ∈ Rg

and (RI + r1, RS + r2, RP + r1 + r2, RJ + r1 + r2) ∈ Rc

hold.
On one hand, the above result can be interpreted as a rate

transfer argument. An extra private key can be used to increase
identification rate or secret key rate. On the other hand, to
increase the identification rate, the helper data rate has to be
enlarged correspondingly. Further, for the chosen secret key
system, the helper data rate also increases as the secret rate
increase.

In the following analysis, for simplicity, we use the
following notations. For RJ ≥ 0, denote Rg(RJ) and
Rc(RJ) to be the set of rate triple (RI , RS , RP ) such that
(RI , RS , RP , RJ) ∈ Rg and (RI , RS , RP , RJ) ∈ Rc, re-
spectively. Moreover, we define the region R∗ as follows

R∗ = {(RI , RS , RP ) ∈ R3
+ :

RI +RS ≤ RP + I(U ;Y ),

RI + I(U ;X) ≤ RP + I(U ;Y ).} (9)

Corollary 3: If R1
J ≤ R2

J , then Rg(R1
J) ⊆ Rg(R2

J) and
Rc(R1

J) ⊆ Rc(R2
J). Additionally, there exists a R0

J such that
for every RJ ≥ R0

J , Rg(RJ) = Rc(RJ) = R∗.
If we increase the helper data rate, the capacity region is

larger. Further, if RJ is increased to be sufficiently large, then
the constraints (7c) and (8c) are not active. Since the remaining
constraints are the same, the generated and chosen secret key
systems achieve the same capacity region.

In the following analysis, for simplicity and without losing
generality, we consider the above case that the storage can
be arbitrarily large, and the generated and chosen secret key
systems both achieve the region R∗.

Corollary 4: When X̃ = X , then

R∗|X̃=X = {(RI , RS , RP ) ∈ R3
+ :

RI +RS ≤ RP + I(U ;Y ),

RI + I(U ;X) ≤ RP + I(U ;Y )}. (10)

The region above corresponds to the region for biometric
identification system without privacy leakage and with clean
enrollment channel, which is derived in [18]. Therefore, the
results in Theorem 1 and 2 give more general results for the
biometric identification systems without privacy leakage.

Corollary 5: When X = X̃ and further RI = 0, then

R∗|X=X̃,RI=0 = {(RS , RP ) ∈ R2
+ :

RS ≤ RP + I(U ;Y ),
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P̄W ) = JW
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(MW , LW ,

P̃W ) = SW

P̄W P̆W P̃W

Codeword
Index
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Key

Fig. 3. Illustration of generating helper data and secret keys in the generated
secret key system. Note that the block size does not necessarily reflect the
true sequence length.

I(U ;X) ≤ RP + I(U ;Y )}. (11)

This region corresponds to the region for biometric au-
thentication without privacy leakage derived in [9]. Therefore,
authentication is a special case of identification that allows
authentication.

B. Overview of Proofs

The proofs of Theorem 1 and Theorem 2 consist of two
parts, i.e., the achievability part and the converse part. The
detailed achievability proof of Theorem 1 and Theorem 2 are
provided in Appendix A and Appendix B, respectively. The
achievability for Theorem 2 is an extension of Theorem 1
adding an extra masking layer. In this layer, the one-time pad
is used to mask a generated secret key. Here we provide a
sketch of the achievability proof of Theorem 1.

We first fix a conditional p.m.f. PU |X̃ , which determines the
joint p.m.f.

PUX̃XY = PU |X̃QX̃|XQXQY |X . (12)

Here, U is an auxiliary variable that describes the codebook.
Then we generate roughly 2NI(U ;X̃) codebook sequences
uN . Each sequence is assigned to a bin. We have roughly
2N(I(U ;X̃)−I(U ;X)) bins with 2NI(U ;X) sequences in each bin.
Each sequence in each bin is additionally assigned to one out
of 2N(I(U ;X)−I(U ;Y )) sub-bins with 2NI(U ;Y ) sequences in
each sub-bin.

In the enrollment phase, data from MI users are enrolled.
For each user w ∈ [1 : MI ], the system observes a noisy
biometric sequence x̃N (w) and receives a private key pw. The
private key is divided into three parts, p̄w, p̆w and p̃w. We
assume roughly 2NRI values of p̄w, 2N(I(U ;X)−I(U ;Y )) values
of p̆w, and 2N(RP−I(U ;X)+I(U ;Y )) values of p̃w. A sequence
uN (kw,mw, lw) is looked for such that it is jointly typical with
x̃N (w). A helper data is generated as jw = (kw,mw⊕p̆w, p̄w),
which is stored in a public database. Then the enrollment
mapping generates a secret key sw = (mw, lw, p̃w). Fig. 3
illustrates the process of generating helper data and secret key
of user W .

Therefore, in the enrollment mapping, the private key can
be used for three purposes: (i) masking the codeword index to
ensure zero leakage; (ii) generating helper data additional to
the masked codeword index and thus enable identifying more
users; (iii) generating secret key additional to the codeword
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index and hence increasing the secrecy level. This is consistent
with the discussion in Corollary 2.

It can be shown that the labels KW , MW , and LW are
close to uniformly distributed. Using this property and the fact
that the private key is uniformly distributed, we can show that
the generated secret key is close to uniformly distributed and
the secrecy leakage rate 1

N I(SW ; JW ) becomes sufficiently
small for large N . Using again the fact that the private key
is uniformly distributed, we can also have that the privacy
leakage rate 1

N I(JW ;XN (W )) is close to zero.
During the identification phase, the system observes a noisy

biometric sequence yN and receives the user’s corresponding
private key p. The system checks the database and looks for
a unique triple (ŵ, k̂, m̂, l̂) such that uN (k̂, m̂, l̂) is jointly
typical with yN and jŵ = (k̂, m̂ ⊕ p̆, p̄). The identification
mapping also provides an estimate of the secret key as ŝ =
(m̂, l̂, p̃). It can be shown that the identification mapping can
reliably identify the user index and guess the secret key if and
only if the conditions in Theorems 1 and 2 are satisfied.

Based on the codebook generation method described above,
the privacy leakage analysis should be treated carefully due
to the noisy enrollment. To bound the privacy leakage rate,
we bring in Fano’s inequality (which usually is used in the
converse) for the achievability proof. This proof technique is
reflected in (37).

C. Binary Case Example

In the following we present a binary example that illustrates
the trade-off relationships. We assume a binary symmetric
source, i.e., the source X is Bernoulli distributed with proba-
bility 1

2 . Let the noisy enrollment and observation channels be
binary symmetric channels (BSCs) with crossover probability
p1 and p2 respectively. Moreover, choose U to be an output
of a BSC with crossover probability q and input X̃ . We depict
the relations among U , X̃ , X and Y in Fig. 4. According to
Mrs. Gerber’s Lemma [19], we know that if H(X̃|U) = h2(q)
for some q ∈ (0, 1

2 ), then H(X|U) ≥ h2(q ∗ p1), where
q ∗ p1 = q(1− p1) + p1(1− q). It similarly holds H(Y |U) ≥
h2(q ∗p1 ∗p2), where q ∗p1 ∗p2 = (q(1−p1)+p1(1−q))(1−
p2) + p2(1− q(1− p1)− p1(1− q)).

In the following example, the private key rate is fixed as
RP = 1, and we choose q = 0.2, p1 = 0.1 and p2 = 0.15.
The achievable regions of the generated and chosen secret key
system are then given as follows:

Rg|RP=1 = {(RI , RS , RJ) ∈ R3
+ :

RI +RS ≤ 2− h2(q ∗ p1 ∗ p2),

RI − h2(q ∗ p1) ≤ 1− h2(q ∗ p1 ∗ p2),

0
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Fig. 5. Generated secret key system subset capacity region boundary with
q = 0.2, p1 = 0.1 and p2 = 0.15.
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Fig. 6. Chosen secret key system subset capacity region boundary with q =
0.2, p1 = 0.1 and p2 = 0.15. The facet ABC1D1 is the bottom facet from
the region in Fig. 5.

RI − h2(q) ≤ RJ − h2(q ∗ p1 ∗ p2),

for some q ∈ (0,
1

2
)}, (13)

and

Rc|RP=1 = {(RI , RS , RJ) ∈ R3
+ :

RI +RS ≤ 2− h2(q ∗ p1 ∗ p2),

RI − h2(q ∗ p1) ≤ 1− h2(q ∗ p1 ∗ p2),

RI − h2(q) +RS ≤ RJ − h2(q ∗ p1 ∗ p2),

for some q ∈ (0,
1

2
)}, (14)

Fig. 5 and Fig. 6 illustrate subsets of capacity regions’
boundaries of the identification rate, secret key rate and helper
data rate for the generated and chosen secret key systems,
respectively. Any rate triples with smaller identification rate,
or smaller secret key rate, or larger helper data rate than the
rate triples on the boundaries are achievable. From comparison
of Fig. 5 and Fig. 6, we can see that when the private key rate
is fixed, the generated and chosen secret key system show
similar trade-off relationships among the rate triple of the
identification rate, the secret key rate and helper data rate.
However, we can also observe the difference between these
two settings. As the secret key rate increases, the chosen
secret key system needs a larger helper data rate. To further
compare the generated and the chosen secret key systems, in
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Fig. 6, we also plot the bottom facet ABC1D1 of the region
boundary in Fig. 5. Observe the bottom facet ABC1D1 of the
generated secret key system and the bottom facet ABC2D2

of the chosen secret key system in Fig. 6, we see that for the
same identification rate and the secret key rate, the chosen
secret key system requires larger minimum achievable helper
data rate. Therefore, in order to enroll and identify the same
number of users as well as employing secret keys of the same
rate, the chosen secret key system needs more storage to store
the helper data than the generated secret key system.

To further illustrate the trade-off between the identification
and the secret key rate, in Fig. 7 we depict the identification
rate and secret key rate plane section of the capacity region
boundary. Moreover, as in Corollary 3, if helper data rate is
not considered, the generated and chosen secret key systems
achieve the same region, therefore we do not distinguish
whether the secret key is generated or chosen in the following
discussion. First, we fix q = 0.2 and let p1 and p2 vary to
investigate how the projection changes. We also include the
case that the enrollment channel is noise-free, i.e., p1 = 0,
which is depicted with the black curve. For noisy enrollment
channels, we see that the secret key rate is smaller while
the identification rate is enlarged compared with noise-free
enrollment channel. Moreover, when we fix p2 = 0.15 and
vary p1, i.e., the enrollment channel changes, we can see that
the maximal achievable secret key rate decreases while the
identification rate increases as the enrollment channel becomes
more noisy. If the enrollment channel is fixed, in this example
we have p1 = 0.1, and the observation channel quality is
varied, then we can observe that the maximal achievable
identification rate and secret key rate both decrease as the
channel is more noisy.

IV. CONCLUSION

The fundamental trade-off for privacy-preserving identifi-
cation systems with noisy enrollment has been characterized.
It shows that for reliable identification and authentication, as
well as close to zero privacy leakage rate and secrecy leakage
rate, under noisy enrollment, certain helper data rate and
private key rate are necessary. Noisy enrollment is a significant
assumption especially for biometric systems. We considered

two variations of the proposed biometric identification system,
where the secret keys are assumed to be generated and chosen,
respectively. We illustrated capacity region with a binary
example. The results show that, a higher minimum helper
data rate is necessary if the secret key is chosen rather than
generated. If there is no restriction on the helper data rate, i.e.,
the database can be arbitrarily large, the generated secret key
and chosen secret key systems have the same capacity region.

APPENDIX A
PROOF OF THEOREM 1

1) Achievability Part: Fix a conditional probability dis-
tribution PU |X̃ . Thus we have the joint p.m.f. PUX̃XY =

QXQX̃|XQY |XPU |X̃ . Let MI = 2NRI denote the number
of enrolled users. Further, fix small enough ε > 0, δ1 and δ
such that δ1 > 2δ > 0.

Codebook generation: For fixed δ and δ1, pick a rate pair
tuple (RI , RS , RP , RJ) ∈ Rg such that RP ≥ RI+I(U ;X)−
I(U ;Y ) + 2δ1, RJ = RI + I(U ; X̃) − I(U ;Y ) + 3δ1 and
RS = RP −RI+I(U ;Y )−2δ1. Randomly and independently
generate 2N(I(U ;X̃)+δ1) i.i.d. codewords uN (k,m, l) according
to
∏N
i=1 PU (ui). We distribute the codewords uniformly at

random into 2N(I(U ;X̃)−I(U ;X)+δ1) bins indexed by k, and
each bin consists of 2NI(U ;X) codewords. We further distribute
the codewords in a bin into 2N(I(U ;X)−I(U ;Y )+δ) subbins
indexed by m, and each subbin consists of 2N(I(U ;Y )−δ)

codewords indexed by l.
Enrollment: For each user w ∈ [1 : 2NRI ],

a codeword uN (kw,mw, lw) is looked for such that
(uN (kw,mw, lw), x̃N (w)) ∈ T Nε . If no such (kw,mw, lw)
exists, an index triple (kw,mw, lw) is randomly drawn from
[1 : 2NR1 ] × [1 : 2NR2 ] × [1 : 2NR3 ], where R1 =
I(U ; X̃) − I(U ;X) + δ1, R2 = I(U ;X) − I(U ;Y ) + δ1
and R3 = I(U ;Y ) − δ1. If there are more than one such
index triple (kw,mw, lw), one of them is selected uniformly
at random. The private key of the user pw is divided into
three parts, p̄w, p̆w and p̃w, such that pw = (p̄w, p̆w, p̃w),
p̄w ∈ [1 : 2N(RI+δ1)], p̆w ∈ [1 : 2N(I(U ;X)−I(U ;Y )+δ1)] and
p̃w ∈ [1 : 2N(RP−(RI+δ1)−(I(U ;X)−I(U ;Y )+δ1))]. A helper data
index is generated as jw = (kw,mw⊕p̆w, p̄w), which is stored
in the database at the location w. Lastly, a secret key sw is
generated as sw = (mw, lw, p̃w).

Identification and Authentication: After user w is ob-
served, the observation yN and the user’s private key p =
(p̄, p̆, p̃) are provided to the system. The identification map-
ping searches for a unique index tuple (ŵ, k̂, m̂, l̂) such that
jŵ = (k̂, m̂⊕ p̆, p̄) and (uN (k̂, m̂, l̂), yN ) ∈ T Nε . An estimate
of the secret key is given by ŝ = (m̂, l̂, p̃). If there is no such
index triple or more than one index tuple, an error is declared.

Error Events Analysis: Assume that the user with index
W is observed. Let (KW ,MW , LW ) be the corresponding
codeword index triple determined by the enrollment mapping.
Let PW , SW and JW be the actual private key, secret key,
and helper data stored in the database. Let Ŵ and Ŝ denote
the estimated user index and secret key, respectively. We use
C to denote the codebook and define the following events:

A(ŵ, k̂, m̂, l̂) = {Jŵ = (k̂, m̂⊕ P̆W , P̄W ),



(UN (k̂, m̂, l̂), Y N ) ∈ T Nε } (15)

We have the following error events:

E1 = {(UN (k,m, l), X̃N (W )) 6∈ T Nε ,

∀(k,m, l) ∈ [1 : 2NR1 ]× [1 : 2NR2 ]× [1 : 2NR3 ]},
E2 = {(UN (KW ,MW , LW ), Y N ) 6∈ T Nε },

E3 =
⋃
ŵ 6=W

⋃
k̂

⋃
m̂

⋃
l̂

A(ŵ, k̂, m̂, l̂),

E4 =
⋃

l̂ 6=LW

A(W,KW ,MW , l̂). (16)

The first error event corresponds to the enrollment error, i.e.,
there is no codeword jointly typical with the noisy biometric
sequence. The error event E2 is an error in the identification
phase that the true codeword is not jointly typical with the
observation Y N . The error event E3 denote the identification
error that there exists another user index ŵ that fulfills all
conditions. The error event E4 is the authentication error that
the estimated user index is correct while the estimated secret
key is not the same with the true one. Taking the codeword
indices into account, the identification error event E3 can be
covered by the following five error events:

E31 =
⋃
ŵ 6=W

⋃
k̂ 6=KW

⋃
m̂6=MW

⋃
l̂

A(ŵ, k̂, m̂, l̂),

E32 =
⋃
ŵ 6=W

⋃
k̂ 6=KW

⋃
l̂

A(ŵ, k̂,MW , l̂),

E33 =
⋃
ŵ 6=W

⋃
m̂6=MW

⋃
l̂

A(ŵ,KW , m̂, l̂),

E34 =
⋃
ŵ 6=W

⋃
l̂ 6=LW

A(ŵ,KW ,MW , l̂),

E35 =
⋃
ŵ 6=W

A(ŵ,KW ,MW , LW ). (17)

If none of above error events happens, the identification is
successful, i.e., the estimated user index is the same with the
true user index. We obtain that E3 = E31∪E32∪E33∪E34∪E35.

As for the authentication error, note that due to the identi-
fication and authentication mapping, the estimated user index
is correct ŵ = W implies that the estimated helper data
Jŵ = (k̂, m̂ ⊕ P̆W , P̄W ) and the true user’s helper data
JW = (KW ,MW ⊕ P̆W , P̄W ) are the same. Further, from
Jŵ = JW , we can obtain that k̂ = KW and m̂ = MW always
hold. Therefore, under the condition that the estimated user
index is correct, i.e., ŵ = W , the authentication error happens
when l̂ 6= LW .

If none of the events occurs, the identification and authen-
tication will be successful. Thus, we have the following error
event

E = E1 ∪ E2 ∪ E31 ∪ E32 ∪ E33 ∪ E34 ∪ E35 ∪ E4. (18)

Since R1 +R2 +R3 > I(U ; X̃), we obtain that Pr(E1)→ 0
as N →∞ due to the covering lemma [20, Lemma 3.3].

The event {X̃N (W ) = x̃N , UN = uN} implies Y N ∼∏N
i=1 PY |X̃(·|x̃i). By the Markov lemma [20, p.27], we obtain

that Pr(Ec1 ∩ E2)→ 0 as N →∞.

In the following analysis of bounding the error events
probabilities, we use the arguments as follows: (a): the union
bound; (b): expanding helper data Jŵ = (Kŵ,Mŵ⊕ P̆ŵ, P̄ŵ);
(c): Kŵ, Mŵ⊕ P̆W and P̄W are mutually independent as P̆W
and P̄W are uniformly distributed; (d): X̃N (w) and Y N are
either jointly typical with the same codeword or two different
codewords; (e): Lemma 1 in [21]; (f): P̆ŵ is independent of
(m̂, P̆1,Mŵ).

Define the event E1,ŵ similarly as E1 by replacing W with
w, i.e.,

E1,ŵ = {(UN (k,m, l), X̃N (ŵ)) 6∈ T Nε ,

∀(k,m, l) ∈ [1 : 2NR1 ]× [1 : 2NR2 ]× [1 : 2NR3 ]}. (19)

The probability Pr(E31|W = 1) can be bounded as

Pr(E31|W = 1)

=Pr{Jŵ = (k̂, m̂⊕ P̆1, P̄1), (UN (k̂, m̂, l̂), Y N ) ∈ T Nε ,

for some ŵ 6= 1, k̂ 6= K1, m̂ 6= M1, and l̂|W = 1}
(a)

≤
∑
ŵ 6=1

Pr{Jŵ = (k̂, m̂⊕ P̆1, P̄1), (UN (k̂, m̂, l̂), Y N ) ∈ T Nε ,

for some k̂ 6= K1, m̂ 6= M1, and l̂|W = 1}

≤
∑
ŵ 6=1

(
Pr{Jŵ = (k̂, m̂⊕ P̆1, P̄1),

(UN (k̂, m̂, l̂), Y N ) ∈ T Nε ,

for some k̂ 6= K1, m̂ 6= M1, and l̂, Ec1,ŵ|W = 1}

+ Pr{E1,ŵ|W = 1}
)
, (20)

Due to the covering lemma [20, Lemma 3.3], we have that

Pr{E1,ŵ|W = 1} → 0, (21)

double exponentially. Therefore, the second term in (20) goes
to 0. As for the first term, without loss of generality, we
condition on B = {W = 1,K1 = 1,M1 = 1, L1 = 1, P̄1 =
1, P̆1 = 1, P̃1 = 1}. Then we have that

Pr{Jŵ = (k̂, m̂⊕ P̆1, P̄1), (UN (k̂, m̂, l̂), Y N ) ∈ T Nε ,

for some k̂ 6= K1, m̂ 6= M1, and l̂, Ec1,ŵ|B}
=Pr{Jŵ = (k̂, m̂⊕ 1, 1), (UN (k̂, m̂, l̂), Y N ) ∈ T Nε ,

for some k̂ 6= 1, m̂ 6= 1, and l̂, Ec1,ŵ|B}
(a)

≤
∑
k̂ 6=1

∑
m̂ 6=1

∑
l̂

Pr{Jŵ = (k̂, m̂⊕ 1, 1),

(UN (k̂, m̂, l̂), Y N ) ∈ T Nε , Ec1,ŵ|B}
(b)
=
∑
k̂ 6=1

∑
m̂ 6=1

∑
l̂

Pr{Kŵ = k̂,Mŵ ⊕ P̆ŵ = m̂⊕ 1,

P̄ŵ = 1, (UN (k̂, m̂, l̂), Y N ) ∈ T Nε , Ec1,ŵ|B}

≤
∑
k̂ 6=1

∑
m̂ 6=1

∑
l̂

Pr{(UN (k̂,m′, l′), X̃N (ŵ)) ∈ T Nε ,

for some m′ and l′,m′ ⊕ P̆ŵ = m̂⊕ 1,

P̄ŵ = 1, (UN (k̂, m̂, l̂), Y N ) ∈ T Nε |B}



(c)

≤
∑
k̂ 6=1

∑
m̂6=1

∑
l̂

∑
m′

∑
l′

Pr{(UN (k̂,m′, l′), X̃N (ŵ)) ∈ T Nε ,

(UN (k̂, m̂, l̂), Y N ) ∈ T Nε |B}
× Pr{P̄ŵ = 1}Pr{P̆ŵ = m̂⊕ 1	m′|B}. (22)

Consider and bound the following term:∑
m′

∑
l′

Pr{(UN (k̂,m′, l′), X̃N (ŵ)) ∈ T Nε ,

(UN (k̂, m̂, l̂), Y N ) ∈ T Nε |B}
(d)
=Pr{(UN (k̂, m̂, l̂), X̃N (ŵ)) ∈ T Nε ,

(UN (k̂, m̂, l̂), Y N ) ∈ T Nε |B}

+
∑

(m′,l′) 6=(m̂,l̂)

Pr{(UN (k̂,m′, l′), X̃N (ŵ)) ∈ T Nε ,

(UN (k̂, m̂, l̂), Y N ) ∈ T Nε |B}

=
∑
uN

∑
yN

Pr{UN (k̂, m̂, l̂) = uN , Y N = yN |B}

Pr{(uN , yN ) ∈ T Nε |UN (k̂, m̂, l̂) = uN , Y N = yN , B}︸ ︷︷ ︸
(e)

≤ (1+ε̂)2−N(I(U;Y )−δ)

Pr{(uN , X̃N (ŵ)) ∈ T Nε |UN (k̂, m̂, l̂) = uN , B}︸ ︷︷ ︸
≤2−N(I(U;X̃)−δ)

+
∑

(m′,l′)6=(m̂,l̂)

∑
uN1

∑
uN2

Pr{UN (k̂, m̂, l̂) = uN2 , Y
N = yN |B}

Pr{(uN2 , yN ) ∈ T Nε |UN (k̂, m̂, l̂) = uN2 , Y
N = yN , B}︸ ︷︷ ︸

(e)

≤ (1+ε̂)2−N(I(U;Y )−δ)

× Pr{UN (k̂,m′, l′) = un1 |UN (k̂, m̂, l̂) = uN2 ,

Y n = yn, B}
× Pr{(uN1 , X̃N (ŵ)) ∈ T Nε |UN (k̂,m′, l′) = uN1 ,

UN (k̂, m̂, l̂) = uN2 , Y
N = yN , B}︸ ︷︷ ︸

≤2−N(I(U;X̃)−δ)

≤(1 + ε̂)2−N(I(U ;Y )−δ)2−N(I(U ;X̃)−δ)

+ 2N(I(U ;X)−I(U ;Y )+δ1)2N(I(U ;Y )−δ1)

× 2−N(I(U ;X̃)−δ)(1 + ε̂)2−N(I(U ;Y )−δ)

=(1 + ε̂)(2−NI(U ;X) + 1)2−N(I(U ;X̃)−I(U ;X)+I(U ;Y )−2δ).
(23)

where ε̂ > 0 is a fixed number.
Consider the following term in (23) have that

Pr{P̄ŵ = 1}Pr{P̆ŵ = m̂⊕ 1	m′|B}
(f)

≤ 2−N(RI+δ1)2−N(I(U ;X)−I(U ;Y )+δ1). (24)

Combining the above results and define δ′′ → 0, the
probability of Pr(E31|W = 1) can be bounded as follows

Pr(E31|W = 1)

≤
∑
ŵ 6=1

∑
k̂ 6=K1

∑
m̂ 6=M1

∑
l̂

(1 + ε̂)(2−NI(U ;X) + 1)

× 2−N(I(U ;X̃)−I(U ;X)+I(U ;Y )−2δ)

× 2−N(RI+δ1)2−N(I(U ;X)−I(U ;Y )+δ1) + δ′′

≤2NRI2N(I(U ;X̃)−I(U ;X)+δ1)2N(I(U ;X)−I(U ;Y )+δ1)

× 2N(I(U ;Y )−δ1)(1 + ε̂)(2−NI(U ;X) + 1)

× 2−N(I(U ;X̃)−I(U ;X)+I(U ;Y )−2δ)

× 2−N(RI+δ1)2−N(I(U ;X)−I(U ;Y )+δ1) + δ′′

=(1 + ε̂)(2−NI(U ;X) + 1)2−N(δ1−2δ) + δ′′, (25)

where ε̂ > 0 is a fixed number and δ′′ → 0. Therefore
Pr(E31|W = 1)→ 0 as N →∞.

Follow similar analysis in bounding Pr(E31|W = 1), we
can obtain that the probability of E32|W = 1 can be bounded
as follows:

Pr(E32|W = 1)

=Pr{Jŵ = (k̂,M1 ⊕ P̆1, P̄1), (UN (k̂,M1, l̂), Y
N ) ∈ T Nε ,

for some ŵ 6= 1, k̂ 6= K1, and l̂|W = 1}
(?)

≤
∑
ŵ 6=1

Pr{Jŵ = (k̂,M1 ⊕ P̆1, P̄1),

(UN (k̂,M1, l̂), Y
N ) ∈ T Nε ,

for some k̂ 6= K1 and l̂, Ec1,ŵ|W = 1}+ δ′′

(b)

≤
∑
ŵ 6=1

∑
k̂ 6=K1

∑
l̂

Pr{(UN (k̂,m′, l′), X̃N (ŵ)) ∈ T Nε

for some m′ and l′,Mŵ ⊕ P̆ŵ = M1 ⊕ P̆1, P̄ŵ = P̄1,

(UN (k̂,M1, l̂), Y
N ) ∈ T Nε |W = 1}+ δ′′

(c)

≤
∑
ŵ 6=1

∑
k̂ 6=K1

∑
l̂

∑
m′

∑
l′

Pr{(UN (k̂,m′, l′), X̃N (ŵ)) ∈ T Nε ,

(UN (k̂,M1, l̂), Y
N ) ∈ T Nε |W = 1}

× Pr{P̄ŵ = P̄1}Pr{P̆ŵ = M1 ⊕ P̆1 	m′|W = 1}+ δ′′

(??)

≤
∑
ŵ 6=1

∑
k̂ 6=K1

∑
l̂

(1 + ε̂)(2−NI(U ;X) + 1)

× 2−N(I(U ;X̃)−I(U ;X)+I(U ;Y )−2δ)

× 2−N(RI+δ1)2−N(I(U ;X)−I(U ;Y )+δ1) + δ′′

≤2NRI2N(I(U ;X̃)−I(U ;X)+δ1)2N(I(U ;Y )−δ1)

(1 + ε̂)(2−NI(U ;X) + 1)2−N(I(U ;X̃)−I(U ;X)+I(U ;Y )−2δ)

× 2−N(RI+δ1)2−N(I(U ;X)−I(U ;Y )+δ1) + δ′′

=(1 + ε̂)(2−NI(U ;X) + 1)2−N(I(U ;X)−I(U ;Y )+2δ1−2δ) + δ′′.
(26)

where ε̂ > 0 is a fixed number and δ′′ → 0; (?) follows the
analysis in (20) and (21); (??) follows the analysis in (23) and
(24). Therefore Pr(E32|W = 1)→ 0 as N →∞.

Consider Pr(E33|W = 1), when N is sufficiently large, then
we obtain that

Pr(E33|W = 1)



=Pr{Jŵ = (K1, m̂⊕ P̆1, P̄1), (UN (K1, m̂, l̂), Y
N ) ∈ T Nε ,

for some ŵ 6= 1, m̂ 6= K1, and l̂|W = 1}
(?)

≤
∑
ŵ 6=1

Pr{Jŵ = (K1, m̂⊕ P̆1, P̄1),

(UN (K1, m̂, l̂), Y
N ) ∈ T Nε ,

for some m̂ 6= M1 and l̂, Ec1,ŵ|W = 1}+ δ′′

(b)

≤
∑
ŵ 6=1

∑
m̂ 6=M1

∑
l̂

Pr{(UN (K1,m
′, l′), X̃N (ŵ)) ∈ T Nε ,

for some m′ and l′,m′ ⊕ P̆ŵ = m̂⊕ P̆1,

P̄ŵ = P̄1, (U
N (1, m̂, l̂), Y N ) ∈ T Nε , Ec1,ŵ|W = 1}+ δ′′

(c)

≤
∑
ŵ 6=K1

∑
m̂6=M1

∑
l̂

∑
m′

∑
l′

Pr{(UN (K1,m
′, l′), X̃N (ŵ)) ∈ T Nε ,

(UN (K1, m̂, l̂), Y
N ) ∈ T Nε |W = 1}

× Pr{P̄ŵ = P̄1}Pr{P̆ŵ = m̂⊕ P̆1 	m′|W = 1}+ δ′′

(??)

≤
∑
ŵ 6=1

∑
m̂ 6=M1

∑
l̂

(1 + ε̂)(2−NI(U ;X) + 1)

× 2−N(I(U ;X̃)−I(U ;X)+I(U ;Y )−2δ)

× 2−N(RI+δ1)2−N(I(U ;X)−I(U ;Y )+δ1) + δ′′

≤2NRI2N(I(U ;X)−I(U ;Y )+δ1)2N(I(U ;Y )−δ1)

(1 + ε̂)(2−NI(U ;X) + 1)2−N(I(U ;X̃)−I(U ;X)+I(U ;Y )−2δ)

× 2−N(RI+δ1)2−N(I(U ;X)−I(U ;Y )+δ1) + δ′′

=(1 + ε̂)(2−NI(U ;X) + 1)2−N(I(U ;X̃)−I(U ;Y )+2δ1−2δ) + δ′′.
(27)

where ε̂ > 0 is a fixed number and δ′′ → 0; (?) follows the
analysis in (20) and (21); (??) follows the analysis in (23) and
(24). Therefore Pr(E33|W = 1)→ 0 as N →∞.

As for the probability of the error event Pr{E34|W = 1},
for sufficiently large N , we have

Pr(E34|W = 1)

=Pr{Jŵ = (K1,M1 ⊕ P̆1, P̄1),

(UN (K1,M1, l̂), Y
N ) ∈ T Nε ,

for some ŵ 6= 1 and l̂ 6= L1|W = 1}
(?)

≤
∑
ŵ 6=1

Pr{Jŵ = (K1,M1 ⊕ P̆1, P̄1),

(UN (K1,M1, l̂), Y
N ) ∈ T Nε ,

for some l̂ 6= L1, Ec1,ŵ|W = 1}+ δ′′

(b)

≤
∑
ŵ 6=1

∑
l̂ 6=L1

Pr{(UN (K1,m
′, l′), X̃N (ŵ)) ∈ T Nε ,

for some m′ and l′,m′ ⊕ P̆ŵ = M1 ⊕ P̆1,

P̄ŵ = P̄1, (U
N (K1,M1, l̂), Y

N ) ∈ T Nε |W = 1}+ δ′′

(c)

≤
∑
ŵ 6=1

∑
l̂ 6=L1

∑
m′

∑
l′

Pr{(UN (K1,m
′, l′), X̃N (ŵ)) ∈ T Nε ,

(UN (K1,M1, l̂), Y
N ) ∈ T Nε |W = 1}

Pr{P̄ŵ = P̄1}Pr{P̆ŵ = m̂⊕ P̆1 	m′|Ec1 ,W = 1}+ δ′′

(??)

≤
∑
ŵ 6=1

∑
l̂ 6=L1

(1 + ε̂)(2−NI(U ;X) + 1)

× 2−N(I(U ;X̃)−I(U ;X)+I(U ;Y )−2δ)

× 2−N(RI+δ1)2−N(I(U ;X)−I(U ;Y )+δ1) + δ′′

≤2NRI2N(I(U ;Y )−δ1)(1 + ε̂)(2−NI(U ;X) + 1)

× 2−N(I(U ;X̃)−I(U ;X)+I(U ;Y )−2δ)

× 2−N(RI+δ1)2−N(I(U ;X)−I(U ;Y )+δ1) + δ′′

=(1 + ε̂)(2−NI(U ;X) + 1)2−N(I(U ;X̃)−I(U ;Y )+3δ1−2δ) + δ′′.
(28)

where ε̂ > 0 is a fixed number and δ′′ → 0; (?) follows the
analysis in (20) and (21); (??) follows the analysis in (23) and
(24). Therefore Pr(E34|W = 1)→ 0 as N →∞.

The probability Pr{E35|B} can be bounded as follows for
sufficiently large enough N

Pr(E35|W = 1)

=Pr{Jŵ = (K1,M1 ⊕ P̆1, P̄1),

(UN (K1,M1, L1), Y N ) ∈ T Nε ,

for some ŵ 6= 1|Ec1 ,W = 1}
(?)

≤
∑
ŵ 6=1

Pr{Jŵ = (K1,M1 ⊕ P̆1, P̄1),

(UN (K1,M1, L1), Y N ) ∈ T Nε , Ec1,ŵ|W = 1}+ δ′′

(b)

≤
∑
ŵ 6=1

Pr{(UN (K1,m
′, l′), X̃N (ŵ)) ∈ T Nε ,

for some m′ and l′,m′ ⊕ P̆ŵ = M1 ⊕ P̆1, P̄ŵ = P̄1,

(UN (K1,M1, L1), Y N ) ∈ T Nε , Ec1,ŵ|W = 1}+ δ′′

(c)

≤
∑
ŵ 6=1

∑
m′

∑
l′

Pr{(UN (K1,m
′, l′), X̃N (ŵ)) ∈ T Nε ,

(UN (K1,M1, L1), Y N ) ∈ T Nε , Ec1,ŵ|W = 1}
Pr{P̄ŵ = P̄1}Pr{P̆ŵ = m̂⊕ P̆1 	m′|W = 1}+ δ′′

(??)

≤
∑
ŵ 6=1

(1 + ε̂)(2−NI(U ;X) + 1)

× 2−N(I(U ;X̃)−I(U ;X)+I(U ;Y )−2δ)

× 2−N(RI+δ1)2−N(I(U ;X)−I(U ;Y )+δ1) + δ′′

≤2NRI (1 + ε̂)(2−NI(U ;X) + 1)

× 2−N(I(U ;X̃)−I(U ;X)+I(U ;Y )−2δ)

× 2−N(RI+δ1)2−N(I(U ;X)−I(U ;Y )+δ1) + δ′′

=(1 + ε̂)(2−NI(U ;X) + 1)2−N(I(U ;X̃)+2δ1−δ) + δ′′, (29)

where ε̂ > 0 is a fixed number and δ′′ → 0; (?) follows the
analysis in (20) and (21); (??) follows the analysis in (23)
and (24). Therefore we obtain that Pr(E35|W = 1) → 0 as
N →∞.



As for the probability of the last error event Pr{E4|B}, for
sufficiently large enough N , we have

Pr(E4|W = 1)≤
∑
l̂ 6=L1

Pr{(UN (K1,M1, l̂), Y
N ) ∈ T Nε |B}

(e)

≤2N(I(U ;Y )−δ1)(1 + ε̂)2−N(I(U ;Y )−δ)

=(1 + ε̂)2N(δ−δ1), (30)

where ε̂ > 0 is a fixed number. Therefore Pr(E4|W = 1)→ 0
as N →∞.

As a consequence, due to the union bound, we obtain that

Pr(E)→ 0, as N →∞. (31)

Therefore, from the random coding argument, we can con-
clude that there exists a suitable codebook C such that (31)
holds.

Uniformity of Secret Key Analysis: The proof of unifor-
mity of secret key is similar to the analysis in [18]. Due to
symmetry, it is sufficient to consider the case when the user
index is W = 1. For any sequence uN (k1,m1, l1) where
k ∈ [1 : 2NR1 ], m ∈ [1 : 2NR2 ], and l ∈ [1 : 2NR3 ], we
have

Pr{X̃N (1) ∈ T Nε (X̃|uN (k1,m1, l1))} ≤2−N(I(U ;X̃)−δ).
(32)

Let E be a random variable such that E = 0 when
there exists a codeword index triple (k1,m1, l1) for user
W = 1 satisfying (XN (1), uN (k1,m1, l1)) ∈ T Nε . If no such
codeword index exists, then E = 1. Let γ denote Pr(E = 1).
According to the error events analysis, we obtain that γ → 0
as N →∞.

Similar to [9, (105)-(106)], consider the following joint
entropy

H(K1,M1, L1)

=H(K1,M1, L1, E)−H(E|K1,M1, L1)

≥H(K1,M1, L1, E)−H(E)

(a)

≥ −
∑
k

∑
m

∑
l

Pr(K1 = k,M1 = m,L1 = l, E = 0)

× log(Pr{X̃N (1) ∈ T Nε (X̃|uN (k,m, l))})
− h2(Pr(E = 0))

≥
∑
k

∑
m

∑
l

Pr(K1 = k,M1 = m,L1 = l, E = 0)

×N(I(U ; X̃)− δ)− h2(Pr(E = 0))

=N(I(U ; X̃)− δ)(1− γ)− h2(1− γ), (33)

where we use h2(·) to denote the binary entropy function.
(a) follows from that if (K1 = k,M1 = m,L1 = l) and
E = 0 hold, then X̃N (1) ∈ T Nε (X̃|uN (k,m, l)) is valid. Thus
(KW ,MW , LW ) is close to uniformly distributed. Moreover,
the private key is uniformly distributed and independent of
the user index and biometrics. Since the secret key is a
combination of (MW , LW ) and part of the private key, this
proves that the secret key is close to uniformly distributed.

Total Leakage Analysis: We first consider the secrecy
leakage, which can be bounded as follows

I(SW ; JW |C = C)

=I(MW , LW , P̃W ;KW ,MW ⊕ P̆W , P̄W |C = C)

(a)
= I(MW , LW ;KW |C = C)

(b)

≤ Nδ, (34)

where (a) follows from that P̄W , P̃W , P̆W , and
(KW ,MW , LW ) are mutually independent given the
codebook; (b) follows from that (KW ,MW , LW ) is close to
uniformly distributed, which can be obtained from (33).

Now we consider the privacy leakage. When N is suffi-
ciently large, the privacy leakage can be bounded as

I(XN (W ); JW |C = C)

=I(XN (W );KW ,MW ⊕ P̆W , P̄W |C = C)

=I(XN (W );KW , P̄W |C = C)

+H(MW ⊕ P̆W |KW , P̄W , C = C)

−H(MW ⊕ P̆W |XN (W ),KW , P̄W , C = C)

≤I(XN (W );KW |C = C) +NR2

−H(P̆W |X̃N (W ),KW , P̄W , C = C)

(a)
= I(XN (W );KW |C = C)

=H(KW |C = C)−H(KW |XN (W ), C = C)

≤NR1 −H(KW , |XN (W ), C = C)

=NR1 −H(KW , X̃
N (W )|XN (W ), C = C)

+H(X̃N (W )|KW , X
N (W ), C = C)

(b)
=NR1 −H(X̃N (W )|XN (W ), C = C)

+H(X̃N (W )|KW , X
N (W ), C = C)

(c)
=NR1 −H(X̃N (W )|XN (W ), C = C)

+H(X̃N (W ),MW , LW |KW , X
N (W ), C = C)

(d)

≤NR1 −H(X̃N (W )|XN (W ), C = C)

+H(MW , LW |KW , X
N (W ), C = C)

+H(X̃N (W )|uN (KW ,MW , LW ), XN (W ), C = C)

(e)

≤N(R1 −H(X̃|X) +H(X̃|U,X) + δε)

+H(MW , LW |KW , X
N (W ), C = C)

(f)

≤N(δ1 + δε) +H(MW , LW |KW , X
N (W ), C = C), (35)

where (a) follows from that P̄W is independent of
(XN (W ),KW ) given the codebook, and the fact that P̆W
is independent of (X̃N (W ),KW , P̄W ); (b) follows because,
given the codebook C = C, X̃N determines KW ; (c) fol-
lows because, given the codebook C = C, X̃N determines
(MW , LW ); (d) follows from that given the codebook C = C,
(KW ,MW , LW ) determines uN (KW ,MW , LW )1; (e) follows
for sufficiently large N from [22, Lemma 4]; (f) follows
from the Markov chain U − X̃ − X − Y and the choice of
R1 = I(U ; X̃)− I(U ;X) + δ1.

1Note that when the codebook is also fixed, the codeword
uN (KW ,MW , LW ) is fixed and therefore written using lower case.



Next, we provide the details of analysis for (f). Let
E be a random variable such that E = 0 when
(XN (W ), UN (KW ,MW , LW ), X̃N (W )) ∈ T Nε and E = 1
when (XN (W ), UN (KW ,MW , LW ), X̃N (W )) 6∈ T Nε . Due
to (31), we obtain that Pr(E = 0|C = C) → 1 as N → ∞.
Then for sufficiently large N , we have that

H(X̃N (W )|uN (KW ,MW , LW ), XN (W ), C = C)

≤ H(X̃N (W ), E|uN (KW ,MW , LW ), XN (W ), C = C)

≤ H(E|C = C) + Pr(E = 0|C = C)×H(X̃N (W )|
uN (KW ,MW , LW ), XN (W ), E = 0, C = C)

+ Pr(E = 1|C = C)H(X̃N (W )|uN (KW ,MW , LW ),

XN (W ), E = 1, C = C)

(a)

≤ Nδ′ε + Pr(E = 0|C = C)×H(X̃N (W )|
uN (KW ,MW , LW ), XN (W ), E = 0, C = C)

(b)

≤ N(δ′ε + δ′′ε ) +NH(X̃|U,X), (36)

where (a) follows from that Pr(E = 1|C = C) → 0
and therefore H(E) → 0 as N → ∞; (b) follows
from that, given the codebook C = C and E = 0,
(XN (W ), uN (KW ,MW , LW ), X̃N (W )) ∈ T Nε is valid so
that we can use Lemma 4 in [22].

The term H(MW , LW |KW , X
N (W ), C = C) in (35) can

be bounded as follows

H(MW , LW |KW , X
N (W ), C = C)

(a)
= H(MW , LW |KW , X

N (W ),W, C = C)

(b)
= H(MW , LW |KW , X

N (W ),W, PW , C = C)

(c)
= H(MW , LW |KW , JW , X

N (W ),W, PW , C = C)

(d)
= H(MW , LW |KW , (Ji)

MI
i=1, X

N (W ),W, PW , C = C)

(e)

≤ H(SW |Ŝ, C = C)

(f)

≤ 1 + Pr{Ŝ 6= SW |C = C} logMS

(g)

≤ NRSδ
′′, (37)

where (a) follows from that W is independent
of (MW ,KW , LW , X

N (W )) given the codebook
C = C; (b) follows from that PW is independent of
(MW ,KW , LW , X

N (W ),W ); (c) follows from that JW is
a function of (KW , PW ); (d) follows from that given W
and the codebook C = C, (MW ,KW , LW , X

N (W ), PW )
is independent of the helper data of the other users; (e)
follows from that Ŝ is a function of ((Ji)

MI
i=1, Y

N (W ), PW )
and conditioning reduces entropy; (f) follows from Fano’s
inequality; (g) follows from defining a parameter δ′′ that is
small with large N and small ε due to (31) and the choice of
the codebook C.

Therefore, we obtain that

I(SW ;JW |C = C) + I(XN (W ); JW |C = C)

≤ N(δ + δ1 + δε +RSδ
′′). (38)

Combining the above results, the direct part of the proof is
completed.

2) Converse: Let J denote (Ji)
MI
i=1. Define auxiliary ran-

dom variable Un = (W,SW , PW , JW , X
n−1(W )) for n ∈

[1 : N ]. We assume that there exists a sequence of codes C
with identification rate RI , secret key rate RS , private key rate
RP , and helper data rate RJ such that the identification and
authentication error probability vanishes as N →∞. For such
code, Fano’s inequality implies that H(W,SW |Ŵ , Ŝ) ≤ F ,
where F ∆

= 1 + Pr{(Ŵ , Ŝ) 6= (W,SW )} log(MIMS). There-
fore F

N → 0 as Pr{(Ŵ , Ŝ) 6= (W,SW )} → 0 and N →∞.
Similar to [14, Equation (38)], consider the joint entropy

H(W,SW )

=I(W,SW ;PW ,J , Y
N ) +H(W,SW |PW ,J , Y N )

(a)

≤ I(W,SW ;PW ,J , Y
N ) + F

=I(W,SW ;J) + I(W,SW ;Y N , PW |J) + F

(b)
=I(SW ;J |W ) + I(W,SW ;Y N , PW |J) + F

(c)

≤I(SW ; JW ,W ) + I(W,SW ;Y N , PW |J) + F

(d)
=I(SW ; JW ) + I(W,SW ;Y N , PW |J) + F

≤Nδ + I(W,SW ;Y N , PW |J) + F

=Nδ + I(W,SW ;PW |J) + I(W,SW ;Y N |PW ,J) + F

≤Nδ +H(PW ) + I(W,SW ,J , PW ;Y N ) + F

(e)
=Nδ +H(PW ) + I(Y N ;W,SW , PW , JW ) + F

≤N(2δ +RP ) + I(Y N ;W,SW , PW , JW ) + F

≤N(2δ +RP ) + F

+

N∑
n=1

I(Yn;W,SW , PW , JW , Y
n−1, Xn−1(W ))

(f)
=N(2δ +RP ) +

N∑
n=1

I(Yn;Un) + F, (39)

where (a) follows from the fact that (Ŵ , Ŝ) are functions
of (PW ,J , Y

N ), and Fano’s inequality; (b) holds since W
is independent of J ; (c) is valid since given the user index
W , SW is independent of the helper data of the other users;
(d) follows from that W is independent of both JW and
SW ; (e) holds as Y N is only dependent with the helper
data of the true user in the database; (f) holds due to
Y n−1 − (W,SW , PW , JW , X

n−1(W ))− Yn.
Combining the above results, we obtain that

logMIMS

(a)

≤ logMI + min
w=1,2,··· ,MI

H(Sw) +Nδ

≤H(W ) +H(SW |W ) +Nδ = H(W,SW ) +Nδ

≤NRP +

N∑
n=1

I(Yn;Un) + F + 3Nδ, (40)

where (a) follows from the uniformity of the secret key (4c).
Combining (40) with (4b) and (4c), we obtain that

RI +RS ≤
logMIMS

N
+ 2δ

≤ RP +
1

N

N∑
n=1

I(Yn;Un) +
F

N
+ 5δ. (41)



Next we consider the privacy leakage,

I(XN (W ); JW ) = I(XN (W );J |W )

(a)
= I(XN (W ),W ;J)

≥H(XN (W ),W )−H(XN (W ), SW ,W |J)

=H(W ) +H(XN (W ))−H(SW ,W |J , Y N , PW )

− I(Y N , PW ;SW ,W |J)−H(XN (W )|SW ,W,J)

(b)

≥H(W ) + I(XN (W );SW ,W,J)−H(SW ,W |Ŝ, Ŵ )

− I(Y N , PW ;SW ,W,J)

(c)

≥H(W ) + I(XN (W );SW ,W, JW )− F
− I(Y N , PW ;SW ,W, JW )

(d)
=N(RI − δ) + I(XN (W );SW ,W, JW |Y N )− F
− I(PW ;SW ,W, JW |Y N )

=N(RI − δ) + I(XN (W );SW ,W, JW |Y N )− F
−H(PW |Y N ) +H(PW |SW ,W, JW , Y N )

≥N(RI −RP − 2δ)

+ I(XN (W );SW ,W, JW , PW |Y N )− F
(d)
=N(RI −RP − 2δ) + I(XN (W );SW ,W, JW , PW )

− I(Y N ;SW ,W, JW , PW )− F
(e)

≥N(RI −RP − 2δ)

+

N∑
n=1

I(Xn(W );Un)−
N∑
n=1

I(Yn;Un)− F, (42)

where (a) follows from that W is independent of J ; (b) follows
from the fact that (Ŵ , Ŝ) are functions of (PW ,J , Y

N );
(c) follows from that the XN (W ) and Y N only correlate
to the helper data JW of user W in the database, and
Fano’s inequality; (d) holds due to the Markov chain Y N −
XN (W ) − X̃N (W ) − (SW ,W, JW , PW ) holds; (e) is valid
due to Y n−1 − (SW ,W, JW , PW , X

n−1(W ))− Yn.
Combining the above result with (4g), we obtain that

RI+
1

N

N∑
n=1

I(Xn(W );Un)

≤ RP +
1

N

N∑
n=1

I(Yn;Un) +
F

N
+ 3δ. (43)

We bound the helper data rate as follows

N(RJ + δ) ≥ H(JW |W )

= I(X̃N (W ); JW |W ) +H(JW |X̃N (W ),W )

(a)
= I(X̃N (W );J |W ) +H(JW |X̃N (W ),W )

= I(X̃N (W ),W ;J) +H(JW |X̃N (W ),W )

= H(W ) +H(X̃N (W ))−H(X̃N (W ),W, SW |J)

+H(SW |X̃N (W ),W,J) +H(JW |X̃N (W ),W )

= H(W ) +H(X̃N (W ))−H(X̃N (W )|J ,W, SW )

−H(W,SW |J) +H(SW |X̃N (W ),W,J)

+H(JW |X̃N (W ),W )

= H(W ) + I(X̃N (W );SW ,W,J)

−H(SW ,W |J , Y N , PW )− I(Y N , PW ;SW ,W |J)

+H(SW , JW |X̃N (W ),W )

≥ H(W ) + I(X̃N (W );SW ,W,J)

−H(SW ,W |Ŝ, Ŵ )− I(Y N , PW ;SW ,W |J)

+H(SW , JW |X̃N (W ),W )

(b)

≥ H(W ) + I(X̃N (W );SW ,W, JW |Y N )− F
− I(PW ;SW ,W, JW |Y N ) + I(Y N , PW ;J)

+H(SW , JW |X̃N (W ),W )

≥ H(W ) + I(X̃N (W );SW ,W, JW , PW |Y N )− F
+H(PW |SW ,W, JW , X̃N (W ), Y N )

−H(PW |Y N ) +H(SW , JW |X̃N (W ),W )

(c)
= H(W ) + I(X̃N (W );SW ,W, JW |Y N )− F

+H(PW |SW ,W, JW , X̃N (W ))−H(PW |Y N )

+H(SW , JW |X̃N (W ),W )

= H(W ) + I(X̃N (W );SW ,W, JW |Y N )− F
+H(PW |X̃N (W ),W )

− I(PW ;SW , JW |X̃N (W ),W )

−H(PW |Y N ) +H(SW , JW |X̃N (W ),W )

= H(W ) + I(X̃N (W );SW ,W, JW |Y N )− F
+H(PW |X̃N (W ),W )−H(PW |Y N )

+H(SW , JW |X̃N (W ),W, PW )

(d)
= H(W ) + I(X̃N (W );SW ,W, JW |Y N )− F
(c)
= H(W ) + I(X̃N (W );SW ,W, JW , PW )

− I(Y N (W );SW ,W, JW , PW )− F
(e)

≥ N(RI − δ)− F

+

N∑
n=1

I(X̃n(W );Un)−
N∑
n=1

I(Yn;Un), (44)

where (a) follows from the fact that, given the user in-
dex W , the enrolled biometric sequence X̃N (W ) is inde-
pendent of the helper data of the other users; (b) follows
from Fano’s inequality; (c) follows from the Markov chain
Y N − XN (W ) − X̃N (W ) − (SW ,W, JW , PW ); (d) follows
from that PW is independent of (X̃N (W ),W, Y N ), and
(JW , SW ) is a function of (X̃N (W ), PW ); (e) follows from
Xn−1(W ) − (SW ,W, JW , PW , X̃

n−1(W )) − Xn(W ) and
Y n−1 − (SW ,W, JW , PW , X

n−1(W ))− Yn.
Therefore, we obtain the rate condition

RI +
1

N

N∑
n=1

I(X̃n(W );Un)

≤ RJ +
1

N

N∑
n=1

I(Yn;Un) +
F

N
+ 2δ. (45)

Let Q be a uniform random variable on [1 : N ] and
independent of everything else. Define U = (UQ, Q) and



PUXQYQ = QYQ|XQPU |XQPXQ . Note that U −XQ(W )−YQ
still holds. As (XQ, YQ) has the same joint distribution as
(X,Y ), with δ → 0, we obtain that (RI , RS , RP , RJ) ∈ Rg
from (41), (43), and (45). This completes the proof of the
backward direction.

APPENDIX B
PROOF OF THEOREM 2

The proof of Theorem 2 is based on that of Theorem 1.
1) Achievability: We use the similar codebook generation

as in Theorem 1, while the difference is that we fix RJ =
RS + RI + I(U ; X̃) − I(U ;Y ) + δ + δ1. As in the proof of
Theorem 1, for each user w, we look for a triple (kw,mw, lw)
and generate the corresponding helper data jgw = (kw,mw ⊕
p̆w, p̄w) and a secret key sgw = (mw, lw, p̃w), where JgW ∈ [1 :
Mg
J ]. Theorem 1 states that for any δ > 0, there exist some

N ≥ 1, enrollment mapping and identification mapping such
that

Pr{(Ŵ , Ŝg) 6= (W,SgW )} ≤ δ,
logMI ≥ N(RI − δ),

H(SgW ) +Nδ ≥ logMS ≥ N(RS − δ),
logMP ≤ N(RP + δ),

logMg
J ≤ N(RgJ + δ),

I(SgW ; JgW )+I(XN (W ); JgW ) ≤ Nδ. (46)

Here, we include another masking layer. Let the chosen
secret key scw mask the previously generated secret key sgw,
where scw is generated from [1 : MS ] uniformly at random.
We then obtain the masked secret key jaw = sgw⊕scw, which is
additional helper data. The masked secret keys (jaw)MI

w=1 can
be stored in a public database instead of a secure database.
Therefore, we consider the joint helper data (jgw, j

a
w). In the

identification phase, the secret key can be estimated as

ŝc = jaŵ 	 ŝg = sgŵ ⊕ s
c
ŵ 	 ŝg. (47)

Following a similar analysis as in [14, (48)], we obtain that

I(ScW ; JgW , J
a
W ) = I(ScW ; JgW , S

c
W ⊕ S

g
W )

= I(ScW ; JgW ) + I(ScW ;ScW ⊕ S
g
W |J

g
W )

(a)
= H(ScW ⊕ S

g
W |J

g
W )−H(ScW ⊕ S

g
W |J

g
W , S

c
W )

≤ H(ScW ⊕ S
g
W )−H(ScW ⊕ S

g
W |J

g
W , S

c
W )

= H(ScW ⊕ S
g
W )−H(SgW |J

g
W , S

c
W )

(b)

≤ logMS −H(SgW ) + I(SgW ; JgW ), (48)

where (a) holds since ScW is independent of JcW ; (b) follows
from that ScW is independent of both SgW and JgW .

Following [14, (48)], the privacy leakage can be bounded
as

I(XN (W ); JgW , J
a
W ) = I(XN (W ); JgW , S

c
W ⊕ S

g
W )

= I(XN (W ); JgW ) + I(XN (W );ScW ⊕ S
g
W |J

g
W )

≤ I(XN (W ); JgW ) +H(ScW ⊕ S
g
W )

−H(ScW ⊕ S
g
W |X

N (W ), JgW , S
g
W )

≤ I(XN (W ); JgW ) + logMS −H(ScW |XN (W ), JgW , S
g
W )

= I(XN (W ); JgW ). (49)

Therefore, the total leakage can be bounded as

I(ScW ; JgW , J
a
W |C = C) + I(XN (W ); JgW , J

a
W |C = C)

≤ logMS −H(SgW ) + I(SgW ; JgW |C = C)

+ I(XN (W ); JgW |C = C)

(a)

≤ Nδ + I(SgW ; JgW |C = C) + I(XN (W ); JgW |C = C)

(b)

≤ N(2δ + δ1 + δε +RSδ
′′), (50)

where (a) holds since SgW is close to uniformly distributed on
[1 : MS ]; (b) follows from (38).

In the scenario of the chosen secret key system, as we are
using the masking layer, we can obtain that Ŝc = Sc holds
only if Ŝg = Sg . Thus, Pr{(Ŵ , Ŝg) 6= (W,SgW )} ≤ δ implies
Pr{(Ŵ , Ŝc) 6= (W,ScW )} ≤ δ. And we also have that

logMI ≥ N(RI − δ),
H(ScW ) = logMS ≥ N(RS − δ),

logMP ≤ N(RP + δ),

logMg
J + logMS ≤ N(RcJ + δ),

I(SgW ; JaW , J
g
W )+I(XN (W ); JaW , J

g
W ) ≤ 2Nδ, (51)

for a chosen secret key system.
Consequently, if the rate tuple (RI , RS , RP , RJ) is achiev-

able for a generated secret key system, then the rate tuple
(RI , RS , RP , RJ +RS) is achievable for a chosen secret key
system.

2) Converse: Define the auxiliary random variable Un =
(W,SW , PW , JW , X

n−1(W )) for n ∈ [1 : N ]. Following (39)
and (40), we can obtain that

RI +RS ≤ RP +
1

N

N∑
n=1

I(Yn;Un) +
F

N
+ 5δ. (52)

Similar to the analysis in (42) and (43), we can obtain that

RI+
1

N

N∑
n=1

I(Xn(W );Un)

≤ RP +
1

N

N∑
n=1

I(Yn;Un) +
F

N
+ 3δ. (53)

For the helper data rate, we obtain that

N(RJ + δ) ≥ H(JW |W )

= I(X̃N (W ), SW ; JW |W ) +H(JW |X̃N (W ), SW ,W )

= I(X̃N (W ), SW ;J |W ) +H(JW |X̃N (W ), SW ,W )

= I(X̃N (W ), SW ,W ;J) +H(JW |X̃N (W ), SW ,W )

(a)
= H(X̃N (W )) +H(SW ) +H(W )

−H(X̃N (W ), SW ,W |J) +H(JW |X̃N (W ), SW ,W )

= H(X̃N (W )) +H(SW ) +H(W )−H(SW ,W |J)

−H(X̃N (W )|J , SW ,W ) +H(JW |X̃N (W ), SW ,W )

(b)
= I(X̃N (W );SW ,W, JW ) +H(SW ) +H(W )

−H(SW ,W |J) +H(JW |X̃N (W ), SW ,W )



= I(X̃N (W );SW ,W, JW ) +H(SW ) +H(W )

−H(SW ,W |J , Y N , PW )− I(W,SW ,J ;PW , Y
N )

+ I(J ;Y N , PW ) +H(JW |X̃N (W ), SW ,W )

(c)

≥ I(X̃N (W );SW ,W, JW |Y N ) +H(SW ) +H(W )

−H(SW ,W |Ŝ, Ŵ )− I(W,SW ,J ;PW |Y N )

+H(JW |X̃N (W ), SW ,W )

(d)

≥ I(X̃N (W );SW ,W, JW , PW |Y N ) +H(SW )

+H(W )− F +H(PW |Y N , X̃N ,W, SW , JW )

−H(PW |Y N ) +H(JW |X̃N (W ), SW ,W )

(e)
= I(X̃N (W );SW ,W, JW , PW |Y N ) +H(SW )

+H(W )− F +H(PW |X̃N ,W, SW , JW )

−H(PW |Y N ) +H(JW |X̃N (W ),W, SW )

= I(X̃N (W );SW ,W, JW , PW |Y N ) +H(SW )

+H(PW |X̃N (W ),W, SW )−H(PW |Y N )

+H(W )− F +H(JW |X̃N (W ),W, SW , PW )

(f)
= I(X̃N (W );SW ,W, JW , PW |Y N ) +H(SW )

+H(W )− F
(e)
= H(SW ) +H(W ) + I(X̃N (W );SW ,W, JW , PW )

− I(Y N (W );SW ,W, JW , PW )− F
(g)

≥ N(RI +RS − 2δ)− F

+

N∑
n=1

I(X̃n(W );Un)−
N∑
n=1

I(Yn;Un), (54)

where (a) follows from the fact that X̃N (W ), SW and W
are mutually independent; (b) follows from X̃N (W ) being
independent of the helper data of other users; (c) follows
from the fact that (Ŝ, Ŵ ) are functions of (J , Y N , PW );
(d) follows from Fano’s inequality; (e) follows from the
Markov chain Y N − X̃N (W ) − (SW ,W, JW , PW ); (f) fol-
lows from PW being independent of (X̃N ,W, SW , Y

N ),
and JW is a function of (X̃N , SW , PW ); (g) follows from
Xn−1(W ) − (SW ,W, JW , PW , X̃

n−1(W )) − Xn(W ) and
Y n−1 − (SW ,W, JW , PW , X

n−1(W )) − Yn. Therefore, we
obtain that

RI +RS +
1

N

N∑
n=1

I(X̃n(W );Un)

≤ RJ +
1

N

N∑
n=1

I(Yn;Un) +
F

N
+ 3δ. (55)

Using the cardinality bounding argument, we can complete
the proof for the backward direction.
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