Creating and detecting specious randomness

Jonas Almléf Gemma Vall Llosera Elisabet Arvidsson Gunnar Bjork
Ericsson AB Ericsson AB Royal Institute Royal Institute
of Technology (KTH) of Technology (KTH)

Abstract

We present a new test of non-randomness that tests both the lower and the upper critical
limit of a x2-statistic. While checking the upper critical value has been employed by other
tests, we argue that also the lower critical value should be examined for non-randomness.
To this end, we prepare a binary sequence where all possible bit strings of a certain length
occurs the same number of times and demonstrate that such sequences pass a well-known
suite of tests for non-randomness. We show that such sequences can be compressed, and
therefore are somewhat predictable and thus not fully random. The presented test can detect
such non-randomness, and its novelty rests on analysing fixed-length bit string frequencies
that lie closer to the a priori probabilities than could be expected by chance alone.

Keywords: randomness test, data compression.

1. Introduction

Randomness is a resource that is getting increasingly important, such as in scientific or engi-
neering simulations, in statistical sampling, in probabilistic computation and in cryptography
(both classical and quantum). Randomness is typically generated from hardware processes,
which are considered nondeterministic, or by algorithms which are pseudorandom Yao (1982);
Blum and Micali (1984). A pseudorandom number generator uses a short input string, a “seed”,
to produce a longer, seemingly random output string by applying a one-way function and an
iterative algorithm. However, the process produces a deterministic sequence, as every specific
seed produces a specific outcome.

Another means of generating randomness is to use a so-called random number generator (RNG),
or entropy source. These are typically based on physical devices exhibiting some stochastic
output, such as the thermal noise in electronic devices Millenson and Sullivan (1968) or the
amplitude in chaotic oscillators Reidler, Aviad, Rosenbluh, and Kanter (2009). In this manner,
RNGs are nondeterministic.

The ultimate source of randomness is believed to be found in quantum devices. As far as we
know, the collapse (by measurement) of an equal superposition between two quantum states
will result in a fundamentally unpredictable outcome (between the two possibilities). In fact,
some of the random generators on the market are based on this principle, where a singe light
particle (a photon) is prepared in a superposition between taking one path or another, e.g. by
passing through a balanced beam splitter. Subsequently the path (reflection or transmission)
is measured by a photo detector in the path, and the outcome determines the random bit value
Jennewein, Achleitner, Weihs, Weinfurter, and Zeilinger (2000). For each passing photon a
random bit is generated.

A third way of generating random strings, having elements of both computational and physical
randomness, are e.g. the built-in pseudorandom number generator of the Linux operating
system. It uses physical, real-time, operating system events (such as mouse and keystrokes) as

2 Creating and detecting specious randomness

a seed of randomness and then applies a hash-function on the seed to provide a pseudo random
string and provide feedback to update the seed. However, questions have been voiced over how
secure this apparent randomness is when used in cryptographic protocols Gutterman, Pinkas,
and Reinman (2006).

Unfortunately, physical devices are susceptible to imperfections, so even with the best intention
and with the use of quantum physics, a seemingly random string may not be completely random.
Therefore, a number of tests, a so-called test suite, for non-randomness of binary strings have
been devised by the US National Institute of Standards and Technology (NIST), see Rukhin,
Soto, Nechvatal, Smid, Barker, Leigh, Levenson, Vangel, Banks, Heckert, Dray, and Vo (2010).
As the world is predominantly digital when it comes to data handling and communication, the
NIST test suite only considers randomness in the context of binary strings (ex. 10101000), and
so will we in what follows. A sufficiently long! sample string from a good source of random binary
digits should pass the whole suite of tests. However, it was pointed out in e.g., Sénmez Turan,
Doganaksoy, and Boztag (2008) that constituent tests should ideally be independent.

The NIST tests investigate different aspects of non-randomness of long binary strings, such as
predominance of certain sub-strings (in the simplest such case, that the number of zeros and
ones in the string are not as equal as one would expect) or if the string has periodic features.
At least one of these tests, Maurer’s “Universal Statistical” Test utilises the fact that the data
bits generated should not be possible to compress, i.e., their entropy is maximal.

Indeed, an important quality of a series of random numbers that the NIST test suite allegedly
tests is that each symbol is independent of the others, so that the next bit cannot be predicted
from the previous one, or the following ones. Thus, unpredictability is an important quality of
randomness, moreover it is also essential for the inability to compress data, i.e., incompressibility.

In this work, it is shown that a particular type of string passes the NIST test suite, and in
particular Maurer’s test, but at the same time the bit string is constructed to have some degree
of predictability, or equivalently, compressibility. An alternative test to demonstrate that such
types of strings are compressible, and hence not perfectly random, is presented.

2. Specious randomness

Data compression, i.e., the act of representing a given string of data bits so that they take up less
space without losing any of the information from the original representation, can be performed if
patterns are present in the data. As a simple pattern model, let us consider so-called n-grams,
see Shannon (1948), i.e., blocks of bit symbols with a fixed length n. For illustration, first
consider the string 1010101001 and count the number of 1-grams, i.e., the number of "0" and "1"
in the string. We find that the sequence has exactly the same observed number of occurrences,
namely five. Our best guess is that if the a priori probabilities for each of these blocks are equal,
the string cannot be compressed, see Shannon (1948). However, if we consider 2-grams instead,
a well-known compression algorithm called Huffman coding Huffman (1952) would analyse the
frequencies for the four 2-grams according to Table 1. As a final step, the algorithm will perform
the replacements "10" — "0", and "01" — "1". Then, after replacement, the original string
can be encoded as "00001" using the new symbols, thus the string has become smaller, while
maintaining the original information. Here, we ignored the fact that the code book also requires
space, but in a long data string, for small n, the size of the code book can be ignored, as its
relative size asymptotically approaches zero as the data string grows. The example illustrates
that although a string can be incompressible for a small n, it may be compressible for a larger
n.

!Common tests of randomness have different sample length requirements, typically between 10° — 10° bits,
depending on the complexity of the patterns studied.

Jonas Almliéf, Gemma Vall Llosera, Elisabet Arvidsson and Gunnar Bjork 3

The reasoning we used in the example assumed that the frequencies we observe can be used
as best point estimates of the a priori probabilities, and thus we should abandon the idea of
compression when these are equal. But what if, by some mechanism, the observed frequencies
are abnormally equal? In fact, there are many examples of this in Nature but also in processes
where one, artificially, want to mimic randomness, e.g., in the shape of a deck of cards. The
randomness we can extract from this deck is artificial in the sense that when almost all the cards
in the deck are drawn, the remaining cards are predictable. They are predictable because the
observed frequencies of values and colours in the whole deck of cards are abnormally equal. We
will in what follows call this type of artificial randomness specious randomness, alluding to the
deceitful properties which will lead many entropy estimators into believing that the sequence is
random.

Table 1: Frequencies and estimated a priori probabilities for some small n-grams for the string
1010101001. When there is a large variation between the frequencies for each n-gram, the
original string can be compressed using Huffman coding.

’ n \ n-gram \ frequency \ Dn ‘

110 5 0.5
1) 0.5
200 0 0.0
01 1 0.2
10 4 0.8
11 0 0.0

2.1. A method for generating specious randomness

Binary number systems
Let gy denote the set of all binary sequences of length N, i.e.,
gy ={e}, iel...2V. (1)

We will denote an ordered sequence of the elements in gy a number system, Sjv, where ¢ can
take any value 1...2V!

For example, S? denotes the number systems of block length 1,
Sll = (0’ 1) S% = (170)’ (2)

i.e., Si denotes the most primitive number systems.

Kronecker concatenation

A new set gs can be generated by a so-called Kronecker concatenation of two g sets, i.e.,
92 = K(g91,91) = {0,1} ® {0,1} = {00,01, 10, 11}. (3)

Since the defining property of a number system is that each element occurs exactly once, we
note that any number system stemming from a gy/q set, i.e.,

Q@ times
——
gom = K9, 90, --7), (4)

is M-skip-balanced. This notion means that if we take an arbitrary number system stemming
from a gprq set and concatenate all elements (forming an M Q2M€ bit sequence), then non-
overlapping blocks of length M will occur an equal amount of times. We shall also interest

4 Creating and detecting specious randomness

ourselves in another related property; if we instead count all possible sub-strings (even over-
lapping) of fixed length n and find that such strings are equally frequent, we will call such
sequences n-balanced. Note that an n-balanced string does not need to be n-skip-balanced and
vice versa.

It follows that, any number system va is n-skip-balanced when n divides N, e.g., all 12-bit
number systems are 1-, 2-, 3-, 4-, 6- and 12-skip-balanced.

2.2. Existing tests do not detect specious randomness

We have used the NIST test suite Rukhin et al. (2010) to test different binary sequences by
concatenating elements of 13-, 16-, 17-, 24- and 25-bit number systems in random order. The
number of used bits for each file were 100 kbit, 1 Mbit, 1 Mbit, 700 Mbit and 700 Mbit
respectively.

The NIST test suite uses so called null hypothesis significance testing, where p-values are re-
ported, i.e., the probability of obtaining test results at least as extreme as the results actually
observed, under the assumption that the null hypothesis is correct. The null hypothesis is
that the bit sequence being tested is random, conversely, the alternative hypothesis is that the
sequence is not random.

For every test the bit sequence was tested against, the NIST tests determine acceptance or
rejection of the null hypothesis, in our case a critical value of p = 0.01 was chosen. In other
words, a passing sequence can be considered random with a probability of 0.99.

The NIST tests report both p-values and a proportion of passing sequences. Table 2 shows the
mean p-values and mean proportion values for the different binary sequences tested here (13-,
16-, 17-, 24- and 25-bit random number systems). The mean p-value and the mean success
proportion is calculated by averaging the individual p-values and the passing rates, obtained
after the computation of all the tests in the NIST suite, for which the p-value was larger than
0.01. Note that the Universal Maurer’s test did not execute for the 13-, 16-, 17-bit random
number systems due to non-matching input size requirements. Table 3 shows the proportion of
sequences that pass each constituent statistical test in the NIST test suite.

The proportion of passed tests is between 8-10/10 thus the null hypothesis is favoured for the 24-
and 25-bit man-made random number sequences. For the 13-, 16- and 17-bit number system
sequences, some tests failed, in particular the Approximate Entropy test, and other did not
execute due to an insufficient sequence length.

Table 2: Mean p-values and mean proportion of pass events (out of a maximum of 10) for all
data sources.

’ data source | < p-value> | <proportion> ‘

25 bit 0.5045 9.86
24 bit 0.51 9.88
17 bit 0.4789 9.81
16 bit 0.5117 9.82
13 bit 0.5150 9.82

3. Compressibility of specious randomness

Jonas Almiéf, Gemma Vall Llosera, Elisabet Arvidsson and Gunnar Bjérk

Table 3: Proportion of passes for each individual test in the NIST test suite. The minimum

pass rate is 8.
y [13Dbit [16Dbit [17bit [25bit | 2 x 24 bit *¥

Frequency 10/10 10/10 10/10 9/10 10/10
Block Frequency 9/10 10/10 10/10 10/10 10/10
Cumulative Sums 1 10/10 10/10 10/10 9/10 10/10
Cumulative Sums 2 10/10 10/10 10/10 9/10 10/10
Runs 10/10 | 10/10 | 10/10 | 10/10 | 10/10
Longest Run 10/10 10/10 10/10 9/10 10/10
Rank 10/10 | 10/10 | 10/10 | 10/10 | 9/10
FFT 10/10 | 10/10 | 10/10 | 10/10 | 9/10
Non Overlapping Template | 9.82/10* | 9.80/10* | 9.79/10* | 9.89/10* | 9.88/10*
Overlapping Template 10/10 10/10 10/10 8/10 10/10
Universal 0/10 0/10 0/10 10/10 | 10/10
Approximate Entropy 9/10 8/10 5/10 10/10 10/10
Random Excursions - - - 9/9* 9.00/9*
Random Excursions Variant | - - - 9/9* 9.00/9*
Serial 1 10/10 | 10/10 | 10/10 | 10/10 | 10/10
Serial 2 10/10 | 10/10 | 10/10 | 10/10 | 10/10
Linear Complexity 9/10 10/10 10/10 10/10 10/10
* Average of multiple versions of the specific test

**Two 24-bit systems with different seeds were concatenated

3.1. Number system compressibility

Suppose we have a number system S}V, that is, a string of binary digits, N2V digits long,
which if it is divided into 2V sequential sub-strings, each N binary digits long, every possible
sub-string will occur exactly once.

In such a number system string we can always predict the last sub-string given that we know
the 2V — 1 sub-strings preceding it. Hence, in transmitting a number-system string, we need
only to transmit 2 — 1 of the 2V sub-strings to fully specify the whole string. Thus, it can be
compressed into a shorter string. The length ratio n between the two strings will be

oN 1 N
m="gy—=1-27". ()

However, we should be able to do substantially better that that. Having no other information
about the string than that it is a number system, we get, on average, the information

i, N) = ~logs (57— (6)

when receiving the mth sub-string. This is because by then, the choice of possible (and equally
likely) sub-strings is only 2 4+ 1 — m . Hence, the average information obtained over all 2V
sub-strings is

2N -1
Tpy =27V Z logy (QN — m) . (7)
m=0

A more relevant measure is the average, obtained information per binary digit which is

1 2N 1
2= JoN Z logy (2N - m) : (8)
m=0

6 Creating and detecting specious randomness

In principle, 72 denotes the compressibility of the string. However, the fact that in principle
the string can be compressed to 72 times its original length gives no clue as to how such a
compression algorithm should be designed.

3.2. A simple number-system compression algorithm

A possible compression algorithm, inspired by Huffman coding Huffman (1952), that works
on any arbitrary N2V binary digits long number-system string is the following: Transmit the
first 2V=! sub-strings, each one N binary digits long, just as they are. Since we know that
the whole string to be sent is a number system, we order all the 2V~ "missing" sub-strings in
ascending order, and renumber them using the N — 1 binary number long strings 0...0,0...1,
..., 1...1. Subsequently send the first 2V =2 of these relabeled (and shortened) N — 1 binary
number sub-strings. Then order all the 2¥V=2 still "missing" original sub-strings in ascending
order and relabel them with N — 2 binary number long strings. Repeat the process until there
are only two of the original sub-strings left to transmit. Order these in ascending order and
call the smallest of them 0 and the other 1. Send the bit corresponding to the second to last
sub-string. The last sub-string need not be sent since it can be deduced from the received string.

Let us exemplify the compression algorithm through a N = 3 number sequence 24 binary digits
long. We choose the string to be compressed to be

S =000 111 101 001 011 100 010 110, 9)

where we have separated the string into eight three-digit sub-strings, partly to highlight that
the string is a number sequence (the numbers 0 to 7 in binary notation, and unsorted). We start
the algorithm from the left. The first half of the compressed string is identical to the leftmost
half of S, namely 000 111 101 001.

To compress the second half of S we order the remaining four sub-strings in ascending order
and associate them with their order number using two bits:

010 < 00, (10)
011 < 01, (11)
100 < 10, (12)
110 < 11. (13)

(14)

In the string S, the sub-strings 011 and 100 appear at position five and six from the left. In the
compressed string we replace them with the numbers 01 and 10 according to the table above.
The appended compressed string will thus become 000 111 101 001 01 10.

At position seven and eight in S we find the sub-strings 010 and 110. We assign to them their
ascending order number with one bit, hence 010 <+ 0 and 110 <+ 1. We append the bit value
associated to the seventh sub-string in S to the end of C' and get

C =000 111 101 001 01 10 0. (15)

This compressed string uniquely encodes .S. The eighth sub-string of S is the only three binary
digit string not represented in C. Therefore, it can be omitted from C' without losing any
information.
The compressed string C' is 17 binary digits long compared to S that is 24 digits long. The
relative length of C' is thus 17/24 ~ 0.708.
Thus, instead of sending a whole N2V binary number long string, a re-coded string will “only”
have the length
N—2
1+ > (N-m2¥"I"m=2M(N-1)+1 V N >2, (16)

m=0

Jonas Almiéf, Gemma Vall Llosera, Elisabet Arvidsson and Gunnar Bjérk

and the length one for N = 1. The relative length, which is a measure of the obtained com-
pression is thus
SN2V 41 1 1
L L A P
The tabulated compression ratios 71, 12, and ns for some N is found in the Table below.

vV N>2 (17)

m \ 2 \ 3 \

0.5 0.5 0.5
0.75 | 0.573 | 0.625
0.825 | 0.637 | 0.708
0.937 | 0.691 | 0.766
0.969 | 0.735 | 0.806
10 | 0.999 | 0.856 | 0.900
100 | 1.000 | 0.986 | 0.990

OTHkOJl\DHZ

4. A new statistical test of non-randomness

The test suite from NIST Rukhin et al. (2010) tests non-randomness, i.e., these tests checks
a binary sequence for different abnormal properties. Since there are many such abnormalities
that could be present in a binary sequence, a truly random binary string should, in principle,
pass all such tests. Since there is no known universal test for randomness, the best we can do
is to try to test for non-randomness, i.e., our test hypothesis is formulated in such a way that
a probability for such abnormalities can be calculated.

Below we will present a new test that performs a double sided x? test to the uniform distribution,
i.e., also checking the lower limit. It was understood by R. Fisher Fisher (1936) that statistical
experiments are unlikely to yield observed frequencies too close to the expected ones. He
used this method to show that Mendel’s genetic experiments with garden peas Mendel (1866);
Druery and Bateson (1901) showed observed relative frequencies closer to the a priori (expected)
probabilities than were likely by chance alone. In the presented method, the lower range of the
test statistics checks if the sub-strings in the sample follows the a priori probability closer
than expected by chance. If so, the test fails since it gives rise to predictability. The upper
limit checks if the observed frequencies are compatible with the hypothesis that all a priori
probabilities are equal.

4.1. The chi-squared test

The x? test is often used to verify if a given expected distribution is compatible with observa-
tions. Its probability density function is

1
bog) = — k2122 18
where k is the number of degrees of freedom and I" is the Gamma function Wikipedia contrib-
utors (2021).

For a discrete uniform distribution, we can calculate the x? statistic

@ =y e NimE (19)
; N/m
where v; is the number of observations in bin i, A is the total number of observations and
m = 2" is the number of possible n-grams of length n. The assumed a priori probabilities for
each of these is 1/2™. Thus the test is specific for a particular n € 1,2,3.. ..

8 Creating and detecting specious randomness

In order to determine the probability to get some lower value a than the test statistic x? we
calculate the cumulative distribution function

P(k,a <) = /_to F(k, x)dz. (20)

We now denote p as the probability that a distribution was deemed not random, while in fact
it was random (this can happen by chance due to statistical variance). Then we define a lower
critical bound X;,Z) /o A8 the value of the test statistic x? when the probability P(k,a < x?) = p/2

and an upper critical bound X%,p /o 8S the value of x? when the probability P(k,a < x?) =
1—p/2.
The degrees of freedom k in this case is 2" — 1, and thus XZ/2 (Xffp/z) indicates the lower

(higher) limit for the test statistic x? when we accept the hypothesis that the data is random.
If the value is lower than X?, /2 We will reject that the data is random on the basis that its

distribution is too close to the a priori uniform probabilities. If the value is higher than X%_p /2
we reject the hypothesis because the observations are not compatible with the assumed uniform
a priori distribution. The total probability that a random series will fail the test is thus p.

In Table 4 we list the results from the testing of two concatenated 24-bit number systems, i.e.,
our example of specious randomness from Section 2.2. The file is 2 x 24 - 224 bits (=~ 800 Mbit)
long and different random seeds were used for the two systems to determine their respective
element order. A file with the entire string can be found at Almlof, Vall Llosera, Arvidsson,
and Bjork (2021). From the Table, we see that from the 48 values tested, only 2 will pass the
test, i.e. have an observed x? value between Xf, /2 and X%,p /25 where p = 0.01. All the other 46
values indicate non-randomness. To put the number p/2 = 0.005 in perspective, recall that it is
half of the p-value used when performing the NIST tests in Section 2.2, since we now examine
both the lower and upper critical value X}% /2 and X%_p /2° In Table 4 we can also see that the

observed test statistics for n = 1 — 24 are all lower than the upper-critical value X%,p /20 both
for non-overlapping and overlapping n-gram counting. If this test is to be used together with
other tests, it was pointed out in S6nmez Turan et al. (2008) that combined tests should be
independent. The novelty of our test lies in testing the lower critical limit, while the upper
critical limit is examined in other tests, e.g., in the Frequency sub-test of the NIST suite. The
presented test could in light of this, easily be modified so that it only examines a lower critical
value XZ, i.e., performs a one-sided test. Such a modification could help make the presented test
independent, or even better; anti-correlated, of other tests in a test suite, making the combined
set of tests better at detecting non-randomness.

5. Conclusions

We have demonstrated a method for constructing binary strings N2V digits long, consisting
of one instance of every binary number with IV digits, ordered in a random fashion. We have
shown that if N is sufficiently large, which in practice means N > 12, such a string will typically
pass the NIST suite of tests for randomness (or more accurately expressed, fail the tests for
non-randomness).

We have also shown a method to compress such a string. This shows that the string has a
certain amount of compressibility, or equivalently, predictability or non-randomness.

A test to reveal the non-randomness of the string is subsequently proposed. It consists of
looking at the frequency of n-grams for different n:s. This is already done in some of the NIST-
suite tests, but evidently these tests look for unusually large deviations from a nominally even
distribution of frequencies. In our test we also examine the “opposite”, namely if the frequencies
are suspiciously similar (or even identical). The extremes of either case signal that the tested
string is non-random.

Jonas Almliéf, Gemma Vall Llosera, Elisabet Arvidsson and Gunnar Bjork 9

Table 4: For the specious randomness file based on two concatenated 24-bit number systems,
the probability to get some value a, lower than the cumulative distribution function Eq. (20)
is tabulated for different n-grams < 24, using non-overlapping counting (column 2). We know
that forn =1,2,3,4,6,8,12 and 24, all n-grams occur equally frequently, therefore the sequence
is skip-balanced for those n-values. In column 3 we tabulate the corresponding result when
overlapping n-gram counting was used.

n P2"—1,a<x3) | P(2" —1,a < x3)
(non-overlapping) (overlapping)

1 0 0

2 0 0.00050

3 0 0.000034

4 0 0.0000000080

5 0.13 < 10715

6 0 < 10715

7 0.0092 < 10715

8 0 < 10715

9 0.000091 <10~ P

10 0.00024 <10~ P

11 0.034 <10~ P

12 0 <107 P

13 0.0041 <1071
14-24 <107 <1071

6. Acknowledgements

The authors would like to thank Andrew Rukhin, Meltem Sonmez Turan (National Institute
of Standards and Technology), Johan Hastad (Royal Institute of Technology (KTH)) for help-
ful comments about randomness tests and Remi Robert (Ericsson AB) for providing valuable
feedback.

References

Almlof J, Vall Llosera G, Arvidsson E, Bjork G (2021). “Specious randomness data sequences for
various number systems.” http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298306.

Blum M, Micali S (1984). “How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits.” SIAM J. on Computing, 13, 850-864.

Druery CT, Bateson W (1901). “Experiments in plant hybridization.” Journal of the Royal
Horticultural Society, 26, 1 — 32.

Fisher RA (1936). “Has Mendel’s work been rediscovered?” Annals of Science, 1, 115-137.

Gutterman Z, Pinkas B, Reinman T (2006). “Analysis of the Linux random number generator.”
2006 IEEE Symposium on Security and Privacy (SE&P’06), pp. 15 — 385.

Huffman DA (1952). “A method for construction of minimum redundancy codes.” Proc. IRE,
40, 1098-1101.

Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A (2000). “A fast and compact
quantum random number generator.” Review of Scientific Instruments, 71, 1675.

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298306

10 Creating and detecting specious randomness

Table 5: For the specious randomness file based on a single 25-bit number system, the probability
to get some value a, lower than the cumulative distribution function Eq. (20) is tabulated for
different n-grams < 25, using non-overlapping (column 2) and overlapping (column 3) counting
of n-grams. We know that for n = 1,5 and 25, all n-grams occur equally frequently, therefore
the sequence is skip-balanced for those n-values.

n P(Q"—l,ag){%) P(2”—1,a§x%)
(non-overlapping) (overlapping)

1 0 0

2 0.62 0.0061

3 0.020 0.000085

4 0.067 0.000000037

5 0 0.00000000010

6 0.37 <10~ P

7 0.048 <10°15

8 0.012 <1071

9 0.18 <10°P

10 <1071 <1071

11 0.010 < 10715

12 0.0026 < 10715

13 0.11 <10~ P

14 0.000025 <107 P

15 <10~P <107P
16-25 < 10710 < 10715

Mendel JG (1866). “Versuche iiber Pflanzenhybriden.” Verhandlungen des naturforschenden
Vereines in Brinn, Bd. IV fiir das Jahr, 1865, 3 — 47.

Millenson JR, Sullivan GD (1968). “A hardware random number generator for use with com-
puter control of probabilistic contingencies.” Behavior Research Methods and Instrumentation,
1, 194 - 196.

Reidler I, Aviad Y, Rosenbluh M, Kanter I (2009). “Ultrahigh-Speed Random Number Gener-
ation Based on a Chaotic Semiconductor Laser.” Physical Review Letters, 103, 024102.

Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks
D, Heckert A, Dray J, Vo S (2010). “A Statistical Test Suite for Random and Pseudo-
random Number Generators for Cryptographic Applications.” available online at https://
nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22rla.pdf. Ac-
cessed on 2020-06-25.

Shannon CE (1948). “A Mathematical Theory of Communication.” Bell Syst. Tech. J., 27,
379423 and 623-656.

Sonmez Turan M, Doganaksoy A, Boztas S (2008). On Independence and Sensitivity of Statis-
tical Randomness Tests. Springer Berlin Heidelberg.

Wikipedia contributors (2021). “Gamma function — Wikipedia, The Free Encyclopedia.”
https://en.wikipedia.org/wiki/Gamma_function. [Online; accessed 2020-06-30].

Yao AC (1982). “Theory and Applications of Trapdoor Functions.” 23rd IEEE Symposium on
Foundations of Computer Science, pp. 80-91.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://en.wikipedia.org/wiki/Gamma_function

Jonas Almliéf, Gemma Vall Llosera, Elisabet Arvidsson and Gunnar Bjork 11

Affiliation:

Jonas Almlof, Gemma Vall Llosera

Ericsson AB, Isafjordsgatan 14E, SE-164 80 Stockholm, Sweden

Elisabet Arvidsson, Gunnar Bjork

Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm,
Sweden

	Introduction
	Specious randomness
	A method for generating specious randomness
	Binary number systems
	Kronecker concatenation

	Existing tests do not detect specious randomness

	Compressibility of specious randomness
	Number system compressibility
	A simple number-system compression algorithm

	A new statistical test of non-randomness
	The chi-squared test

	Conclusions
	Acknowledgements

