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Abstract

Autonomous robots are expected to make a greater presence in the homes
and workplaces of human beings. Unlike their industrial counterparts, au-
tonomous robots have to deal with a great deal of uncertainty and lack of
structure in their environment. A remarkable aspect of performing manipula-
tion in such a scenario is the possibility of physical contact between the robot
and the environment. Therefore, not unlike human manipulation, robotic
manipulation has to manage contacts, both expected and unexpected, that
are often characterized by complex interaction dynamics.

Skill learning has emerged as a promising approach for robots to acquire
rich motion generation capabilities. In skill learning, data driven methods
are used to learn reactive control policies that map states to actions. Such
an approach is appealing because a sufficiently expressive policy can almost
instantaneously generate appropriate control actions without the need for
computationally expensive search operations. Although reinforcement learn-
ing (RL) is a natural framework for skill learning, its practical application
is limited for a number of reasons. Arguably, the two main reasons are the
lack of guaranteed control stability and poor data-efficiency. While control
stability is necessary for ensuring safety and predictability, data-efficiency is
required for achieving realistic training times. In this thesis, solutions are
sought for these two issues in the context of contact-rich manipulation.

First, this thesis addresses the problem of control stability. Despite un-
known interaction dynamics during contact, skill learning with stability guar-
antee is formulated as a model-free RL problem. The thesis proposes multiple
solutions for parameterizing stability-aware policies. Some policy parameter-
izations are partly or almost wholly deep neural networks. This is followed by
policy search solutions that preserve stability during random exploration, if
required. In one case, a novel evolution strategies-based policy search method
is introduced. It is shown, with the help of real robot experiments, that
Lyapunov stability is both possible and beneficial for RL-based skill learning.

Second, this thesis addresses the issue of data-efficiency. Although data-
efficiency is targeted by formulating skill learning as a model-based RL prob-
lem, only the model learning part is addressed. In addition to benefiting from
the data-efficiency and uncertainty representation of the Gaussian process,
this thesis further investigates the benefits of adopting the structure of hybrid
automata for learning forward dynamics models. The method also includes
an algorithm for predicting long-term trajectory distributions that can rep-
resent discontinuities and multiple modes. The proposed method is shown to
be more data-efficient than some state-of-the-art methods.

Keywords: Skill Learning, Reinforcement Learning, Contact-Rich Manipu-
lation
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Sammanfattning

Autonoma robotar förväntas utgöra en allt större närvaro p̊a människors
arbetsplaster ioch i deras hem. Till skillnad fr̊an sina industriella motparter,
behöver dessa autonoma robotar hantera en stor mängd osäkerhet och brist
p̊a struktur i sina omgivningar. En väsentlig del av att utföra manipulation i
dylika scenarier, är förekomsten av fysisk interaktion med direkt kontakt mel-
lan roboten och dess omgivning. Därför måste robotar, inte olikt människor,
kunna hantera b̊ade förväntade och oväntade kontakter med omgivningen,
som ofta karaktäriseras av komplex interaktionsdynamik.

Skill learning, eller inlärning av färdigheter, st̊ar ut som ett lovande al-
ternativ för att l̊ata robotar tillgodogöra sig en rik förmoga att generera
rörelser. I Skill Learning används datadrivna metoder för att lära in en re-
aktiv policy, en reglerfunktion som kopplar tillst̊and till styrsignaler. Detta
tillvägag̊angssätt är tilltalande eftersom en tillräckligt uttrycksfull policy kan
generera lämpliga styrsignaler nästan instantant, utan att behöva genomföra
beräkningsmässigt kostsamma sökoperationer. Även om Reinforcement Lear-
ning (RL), förstärkningsinlärning, är ett naturligt ramverk för skill learning,
har dess praktiska tillämpningar varit begräsade av ett antal anledningar. Det
kan med fog p̊ast̊as att de tv̊a främsta anledningarna är brist p̊a garanterad
stabilitet, och d̊alig dataeffektivitet. Stabilitet i reglerloopen är nödvändigt för
att kunna garanterar säkerhet och förutsägbarhet, och dataeffektivitet behövs
för att uppn̊a realistiska inlärningstider. I denna avhandling söker vi efter
lösningar till dessa problem i kontexten av manipulation med rik förekomst
av kontakter.

Denna avhandling behandlar först problemet med stabilitet. Trots at dy-
namiken för interaktionen är okänd vid förekomsten av kontakter, formuleras
skill learning med stabilitetsgarantier som ett modelfritt RL-problem. Av-
handlingen presenterar flera lösningar för att parametrisera stabilitetsmed-
vetna policys. Detta följs sedan av lösningar för att söka efter policys som är
stabila under slumpmässig sökning, om detta behövs. N̊agra parametrisering-
ar best̊a helt eller delvis av djupa neurala nätverk. I ett fall introduceras ocks̊a
en sökmetod baserad p̊a Evolution Strategy. Vi visar, genom experiment p̊a
faktiska robotar, att lyaponovstabilitet är b̊ade möjligt och fördelaktigt vid
RL-baserad skill learning.

Vidare tar avhandlingen upp dataeffektivitet. Även om dataeffektivite-
ten angrips genom att formulera skill learning som ett modellbaserat RL-
problem, s̊a behandlar vi endast delen med modellinlärning. Utöver att dra
nytta av dataeffektiviteten och osäkerhetsrepresentationen i gaussiska proces-
ser, s̊a undersöker avhandlingen även fördelarna med att använda strukturen
hos hybrida automata för att lära in modeller för framåtdynamiken. Metoden
inneh̊aller även en algoritm för att förutsäga fördelningarna av trajektorier
över en längre tidsrymd, för att representera diskontinuiteter och multipla
moder. Vi visar att den föreslagna metodiken är mer dataeffektiv än ett antal
existerande metoder.

Thanks to Christian Smith for translating the abstract to Swedish
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Chapter 1

Introduction

1.1 Motivation

The possibility of creating machines with human-like intelligence and skills has
always intrigued humans. Today, it is not difficult to imagine the potential im-
pact of such machines, or robots, on manufacturing, healthcare, transportation,
exploration or even entertainment. To function effectively in a real-world envi-
ronment, one which is characterized by uncertainty and lack of structure, a robot
would need a high degree of autonomy. An autonomous robot has to perceive
the world through a suit of sensors, build internal models of the external environ-
ment, plan according to the goal and resource constraints, and finally act through
the set of available actuators. The more complex and dynamic the environment
is, the more sophisticated the algorithms and software systems of the robot are.
Unfortunately, despite decades of research, it is only systems at the lower end
of autonomy that are most successful. For example, robots that work in highly
structured environments, thus having little need for autonomy, are ubiquitous in
the automobile manufacturing industry; whereas, service and social robots that
require more autonomy to interact with uncertain and unstructured environments
are relatively rare. It is well understood that only the successful application of ar-
tificial intelligence (AI), the primary tool for achieving autonomy, can realize the
long cherished dream of robots cohabiting with humans in homes and workplaces.

Although scientific research often targets specific areas of autonomous robots,
it is beneficial to have an overall conceptual architecture of such a system in
mind. After all, without such an architecture, no actual system can be built.
To manage the complexity of an autonomous robot, a popular architecture that
is often adopted is the three tiers (3T) architecture [1]. A simplified sketch is
shown in Fig. 1.1. The planning layer is responsible for the generation of long-
term plans required for a task. The execution layer breaks down a plan into
a hierarchical structure consisting of behaviors which are then executed either
concurrently or sequentially. The execution of behaviors is monitored and any

5
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Interpreter
Execution
Monitor

Exception
handler

Behavior (Skill)
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Execution
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Behavioral 
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Figure 1.1: The three tier (3T) architecture for autonomous robots

exception is also handled. The behavioral control layer is responsible for the
execution of all behaviors that are activated by the execution layer. Behaviors
are stateless perception-actuation loops running at high frequencies that usually
do not perform any planning or search operations. It is here traditional control
algorithms reside.

While the planning and the execution layers are the domain of AI planning
methods, the behavioral control layer usually consists of hand-crafted perception-
actuation control loops. Well-known algorithms such as the Kalman filter and the
proportional-integral-derivative (PID) controller are good examples. However,
there has been an increasing trend towards pushing more and more functionalities
into the behavioral control layer. This can be motivated as follows. Consider a
pick and place robotic manipulation task. In a simple design, the planning layer
would synthesize the grasp [2] and motion path [3] solutions that satisfy the
goal while avoiding obstacles. The main behaviors would be trajectory tracking
control and gripper actuation. However, if there happens to be dynamic obstacles,
it makes sense to endow the behavior layer with an online obstacle avoidance
behavior. Then the planning layer could be reserved for higher level functions
such as planning the order of multiple picks and places. The true potential of this
strategy emerges when we consider leveraging the latest advances in deep learning
to obtain a rich repertoire of behaviors, or skills, that are fast and reactive–unlike
the traditional AI-based planning methods. Robot skill learning, also referred to
as robot learning [4], thus has an important role to play in autonomous robots.

An unavoidable consequence of manipulating objects in an uncertain and un-
structured environment is the possibility of making extensive contact with the
environment. While traditional industrial robots mostly move in free space with
high speeds, autonomous robots are expected to be able to control motion during
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(a) A YuMi robot performing gear assembly

Pick gear

Move to shaft

Insert gear

Release gear

Grasping

Collision-free 
motion planning

Contact-rich
manipulation

(b) Contact-rich manipulation within
a general manipulation context

Figure 1.2: An example of contact-rich manipulation: gear assembly

contact. Motion of a robot in contact with its environment is called constrained
motion and the manipulation process under such a condition is referred to as
contact-rich manipulation. To understand contact-rich manipulation, consider
the task of assembling a gear onto a fixed shaft as shown in Fig. 1.2. One can
infer that in addition to grasping and collision free motion planning, the robot
has to execute a compliant search operation to engage the gear onto the top part
of the shaft and then proceed with a compliant insertion motion. Both the search
and insert motions require compliance control due to uncertainty in the relative
positions and orientations of the two mating pieces. Compliance control implies
that the robot has to comply with motion constraints imposed by the environment
in addition to generating motion in unconstrained directions. Even in the uncon-
strained directions, the robot has to manage interaction forces that arise due to
friction or deformation. In contact-rich manipulation, we generally do not think
of collision avoidance and instead consider the interesting proposition of how to
seek and exploit contact. Planning and control of contact-rich manipulation is a
challenging problem.

Contact-rich manipulation involves control of the manipulator in contact with
the environment. Traditional control schemes are collectively called compliance
control [5,6] or interaction control [7–9]. Most of these methods assume the avail-
ability of a nominal trajectory and deliver fixed or variable compliance behavior
along the nominal trajectory. Various studies have shown that such a strategy is
an important part of the human manipulation process [10, 11]. Ideally, both the
motion profile (nominal trajectory) and the compliance profile need to be jointly
optimized against the task geometry and also the physical interaction model.
Even if the geometry and the interaction models are perfectly known, a joint op-
timization of the motion and compliance profiles would be nonconvex in general.
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In reality, the situation is worse because the geometric model, if at all available,
would have inaccuracies and the interaction model is generally unknown. Here,
the interaction model refers to a model that describes phenomena such as fric-
tion, stiction or deformation along with their associated forces. Thus, except for
simple contact cases where a nominal trajectory can be independently generated
and a fixed compliance behavior can be assumed, traditional control algorithms
are not a general solution for contact-rich manipulation.

A promising alternative to the traditional compliance control approach is
robot learning. In robot learning, a control policy is learned that maps state
to action, one that can potentially encapsulate both the trajectory and compli-
ance profiles. The policy in robot learning is generally consistent with the concept
of skill or behavior. If the policy outputs torques or forces, then there is no longer
any explicit trajectory or compliance profile and the policy can be thought of as
encompassing the essence of both. If the policy outputs a kinematic variable,
such as position or velocity, then further solution for compliance planning and
control has to be sought. Therefore, a natural formulation of the policy, in the
context of contact-rich manipulation, is one that outputs torques or forces. In
robot learning, both Learning from Demonstration (LfD) [12–17] and reinforce-
ment learning (RL) [18–24] have been proposed for contact-rich manipulation.
Interestingly, instead of torques or forces, some methods featured policies that
produce a combination of trajectory and compliance profiles [23, 24] or a combi-
nation of trajectory and force profiles [19, 22]. Since LfD requires expert human
demonstrations, that may be inconvenient at times, and also additional sensors
(haptic) to register the required forces, RL-based methods may be considered
more suitable for contact-rich manipulation.

Although RL has had impressive successes for robotic manipulation in general
[25–27] and contact-rich manipulation in particular [18,20,23], several aspects of
it remain as open problems. Some of the most important problems are:

1. How to guarantee control stability?

2. How to achieve practical sample complexity (data-efficiency)?

3. How to synthesize the reward function?

4. How to achieve domain generalization and domain adaptation?

The first problem can be understood when we realize that the policy learned
through RL can be considered as a feedback controller. Since stability is the
foremost property that is expected whenever a closed-loop controller is synthe-
sized, it is natural to expect the same for a learned policy. While LfD methods
with stability guarantees [15–17] are common, RL-based methods are quite rare.
The problem of sample complexity is well-known in RL, but it attains more sig-
nificance in the context of contact-rich manipulation. This is because random
trials in RL that involve repeated contacts and exchange of forces can poten-
tially wear out the hardware. Model-based RL methods [28,29] are promising in
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this regard but those that are tolerant to contact-induced discontinuous dynam-
ics are yet to be demonstrated. The problem of reward synthesis is studied in
inverse reinforcement learning where the goal is to generate a reward function
for a given set of human demonstrations. A notable prior work that includes a
real robot demonstration is [30]. The issue of Domain Generalization (DG) and
Domain Adaptation (DA) have been extensively researched in recent years. DA
or few-shot learning aims to leverage models learned from one task to speed up
learning for a new task. DG or zero-shot learning, on the other hand, aims to
achieve transfer to a new task or domain without any new training. Both DA and
DG are usually represented by meta-learning ; a critical evaluation of the latest
methods can be found in [31].

In this thesis, we address the first two of the above mentioned problems in
the context of contact-rich manipulation. More specifically, we are interested in
answering the following questions:

• Control stability:

1. Is it possible to structure a policy such that stability is guaranteed in-
herently? The motivation being that with an inherently stable policy,
existing unconstrained policy optimization methods can be used.

2. How can a robot explore randomly while preserving the stability prop-
erty?

3. Is it possible to obtain provably stable policies when they are parame-
terized as deep neural networks?

4. How does imposing stability guarantee affect other aspects of RL? Will
it increase or decrease the sample complexity?

5. How to reason about stability when the environment with which the
robot is physically interacting is unknown. What assumptions are nec-
essary?

• Data-efficiency:

6. If a model-based RL approach is taken to achieve data-efficiency, how to
effectively learn dynamics models that feature contact-induced disconti-
nuities?

7. How can prior knowledge about the nature of contact dynamics be used
for model learning and motion prediction?

8. Can methods based on dynamics priors lead to data efficiency?

9. How to exploit structure in learned dynamics models for policy search?

1.2 Thesis Contributions

This thesis is a compilation of four papers [32–35]. A detailed summary of these
papers is given in Chapter 3. In this section, the included papers are listed along
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with a brief description of the scientific contributions. The individual contribu-
tions by the author of this thesis are also pointed out. The included papers are:

Paper A:
Stability-Guaranteed Reinforcement Learning for Contact-Rich Ma-
nipulation
S. A. Khader, H. Yin, P. Falco, and D. Kragic. In IEEE Robotics and Automa-
tion Letters (RAL), 2020

Paper B:
Learning Stable Normalizing-Flow Control for Robotic Manipulation
S. A. Khader1, H. Yin1, P. Falco, and D. Kragic, preprint, arXiv:2011.00072.
Accepted at IEEE International Conference on Robotics and Automation (ICRA),
2021

Paper C:
Learning Deep Neural Policies with Stability Guarantees
S. A. Khader, H. Yin, P. Falco, and D. Kragic, preprint, arXiv:2103.16432. In
submission, 2021

Paper D:
Data-Efficient Model Learning and Prediction for Contact-Rich Ma-
nipulation Tasks
S. A. Khader, H. Yin, P. Falco, and D. Kragic. In IEEE Robotics and Automa-
tion Letters (RAL), 2020

Learning contact-rich manipulation skills with control stability

Papers A-C are different approaches for attaining control stability in a model-
free RL framework. No environment models are learned and no assumptions
regarding objects in the environment are made except that they are passive. The
manipulator dynamics is also not utilized in the policy synthesis except that
a gravity compensation is assumed. The manipulator is made passive through
control and the overall stability is reasoned based on the theory of passive inter-
action between two passive objects. See Section 2.5 for a detailed explanation.
This addresses question 5.

Papers A-C also succeed in parameterizing policies such that the manipulator-
environment interaction is inherently stable. The methods rely on Lyapunov’s
direct method [36] for stability proof. Since a deterministic framework is used
for stability analysis, stable exploration is guaranteed by limiting exploration in
the parameter space. This approach is followed in papers A and C. The method
in paper B uses action space exploration and therefore does not guarantee stable
exploration. The method, nevertheless, does have practical stability properties

1Equal contribution
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even during exploration and ultimately produces a deterministic policy that is
fully stable. This addresses questions 1 and 2.

Paper B features a policy that is partially neural network while paper C
features a policy parameterization that is almost entirely neural network. The
method in paper A uses a policy with an analytical form. Question 3 is, therefore,
answered in the affirmative.

Papers A-C indicate that the stability property actually helps reduce sample
complexity and thus answers question 4.

Contributions by the author: In papers A and C, the author proposed
and formulated the idea, designed, implemented and evaluated the methods,
and wrote the vast majority of the paper. All experiments were designed and
performed by the author but after receiving the implementation of the baseline
methods. In paper B, the author made significant contributions to the method
development, wrote the large majority of the paper, and designed and performed
the experiments. The author made only a minor contribution to the implementa-
tion of the method. In papers A-C, the author conducted real robot experiments
after additional implementations.

Data-efficient learning of contact-rich manipulation skills through model-
based RL

To achieve the goal of data efficiency, paper D is formulated within the frame-
work of model-based RL. However, the work is limited to only model learning.
The focus is on model learning for contact-rich manipulation. To that end, the
paper presents a method based on the formalism of hybrid automata [37], which
is ideal for representing the peculiarities of contact dynamics in robotic manipu-
lation. This answers questions 6 and 7.

Paper D also shows, on the basis of experimental results, that the proposed
method can effectively perform motion prediction after learning a forward dy-
namics model with little data. This answers question 8.

From a skill learning point of view, the most relevant question is whether
the hybrid structure of the learned model can be exploited during policy search.
However, this (question 9) remains unanswered in this thesis.

Contributions by the author: In paper D, the author proposed and for-
mulated the idea, designed, implemented and evaluated the method, and wrote
the vast majority of the paper. All experiments were designed and performed by
the author but after receiving the implementation of the baseline methods.

1.3 Thesis Outline

This thesis consists of two parts. The first part is an overview that contains
the motivation, background and summary of the papers included in this thesis.
The second part consists of the four included papers. In the overview part of
the thesis, Chapter 2 provides a discussion of the scientific background of the
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work, Chapter 3 provides a summary of the included papers with more details of
the contributions, and Chapter 4 concludes with a discussion of limitations and
future work.



Chapter 2

Background

In this chapter, we introduce the scientific background for the contributions in
this thesis. Section 2.1 introduces the problem of contact-rich manipulation fol-
lowed by the necessary background in Section 2.2. The concept of skill learning
is presented in Section 2.3, along with its formulation as either Learning from
Demonstration (LfD) or reinforcement learning (RL). In Section 2.4, the pecu-
liarities of learning contact-rich manipulation skills are considered and a case for
RL is made. Finally, in Sections 2.5 and 2.6, the issues of control stability and
data-efficiency in RL-based skill learning are examined, respectively.

2.1 Contact-Rich Manipulation

Autonomous robots operating in unstructured environments have to deal with
uncertainties. Common sources of uncertainties are errors in modeling, sensing
and actuation. Consider, for example, sensing; modern robots are equipped with
vision, force, distance and touch sensors and are expected to process these streams
of data and build unified internal representations. It is quite natural for uncer-
tainties to creep into the internal models. Autonomous robots in an industrial
production environment may also have to deal with tolerances in part sizes.

Uncertainties can have a significant impact on all aspects of manipulation.
Consider the example of gear assembly in Fig. 1.2. Uncertainties in the position,
size and pose of the gear can have an impact on the grasping process. The
same is also true for the collision-free motion planning phase, if uncertainties
exist for the locations of the objects in the environment. However, for these
two phases: grasping [2] and collision-free motion planning [3], it is common
to bound the uncertainties and plan with a sufficient margin without explicitly
taking the uncertainties into account. Unfortunately, such an approach is not
possible for the gear insertion phase, where even a tiny amount of uncertainty
in the relative location, pose or size of either the gear or shaft would result in a
collision. With the classical approach of motion planning and control, where a
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Figure 2.1: Motion and contact forces in contact-rich manipulation

trajectory is planned independently to be tracked by a feedback controller, such
collisions can result in large forces and cause damage. In such a scenario, more
sophisticated motion generation and control algorithms are required that can
not only seamlessly handle unexpected contacts, but also plan based on possible
contacts. We refer to this aspect of manipulation as contact-rich manipulation.

It may be pointed out that contact-rich manipulation should not be seen as
something relevant to insertion or assembly tasks only. Consider a simple pick
and place operation where a manipulator has to pick an object and place it on
the top of a surface. The place operation is depicted in Fig. 2.1a where the real
and perceived locations of the surface are shown. The discrepancy exists due
to uncertainty. In this example, it can be concluded that a trajectory planned
according to the perceived height of the surface will penetrate the actual surface
and thus would result in collision.

More generally, contact-rich manipulation involves constrained motion and
compliant motion [4]. The former refers to the situation where the manipulator
motion is constrained by a rigid object. The forces applied by the manipulator
are balanced by the reaction from the surface normals. The latter refers to the
motion of a manipulator that is in continuous contact. While in contact, the
manipulator may slide along a surface and experience frictional phenomena that
also give to rise forces. In addition to frictional forces, physical interaction can
also subject a manipulator to inertial forces, e.g. pushing a block, and elastic
forces, e.g. pushing against an elastic wall.

Notice that in all our considerations, we assume that a stable and rigid grasp
is already established, an assumption that will be held throughout this thesis.
Moreover, within the context of contact-rich manipulation, as exemplified by the
gear assembly task in Fig. 1.2, there shall not be a consideration of collision
avoidance; rather, we shall be interested in the possibility that a sophisticated
motion generation and control algorithm could seek and exploit contacts in order
to eliminate uncertainties during the manipulation process. A simplified task



2.2. CLASSICAL APPROACHES FOR CONTACT-RICH MANIPULATION 15

that represents all the complexities involved in contact-rich manipulation is the
peg-in-hole task [6, 20, 38, 39]. See Fig. 2.1b for a two-dimensional illustration.
Here, the goal is to insert a rigidly grasped peg into a hole under uncertainty.

2.2 Classical Approaches for Contact-Rich Manipulation

A classical approach to endow an autonomous robot with contact-rich manipu-
lation capability is the active compliant motion (ACM) system [4]. It is mainly
composed of fine motion planning, compliant motion planning and contact state
identification. While fine motion planning [40, 41] refers to the general strategy
of planning fine scale motions that take into account contact forces, friction and
geometry, compliant motion planning [42] specifically addresses motion planning
under continuous contact. Contact state identification deals with monitoring and
identifying the exact contact state at any given time. The ACM system is con-
sistent with the 3T architecture that was mentioned in Section 1.1; the first two
components of ACM can be seen as the planning layer and the last component as
belonging to the execution layer. The behavior layer would execute the compliant
motion plan with interaction control methods such as impedance control [43] or
hybrid position/force control [44].

Interaction control methods [7, 8] are thus an important part of contact-rich
manipulation. In one of the earliest works, the hybrid position/force control
[44] was introduced to simultaneously deal with motion and force aspects. The
lack of consideration of manipulator dynamics in the hybrid approach was later
addressed in the operational space formalism [45]. Another seminal method was
the stiffness control method introduced by Salisbury [46] that allowed to impart
a desired stiffness behaviour without the need for a force sensor. The impedance
control approach by Hogan [43] can be seen as a generalization of the stiffness
control to include also inertia and damping properties to the interaction behavior.
An approach that inverts the velocity-to-force causality of impedance control to
force-to-velocity causality is admittance control. Admittance control is suitable
for most industrial manipulators, the majority of which are non-backdrivable.
A comparison of both strategies in [47] revealed that while impedance control
is better suited for rigid interactions, admittance control is the better choice
for non-rigid cases. Finally, an important concept is that of variable impedance
control (VIC) where the impedance parameters, inertia, damping and stiffness,
are varied–instead of being kept constant–according to task requirements. VIC
is believed to give rise to rich interaction behaviors [48].

The biggest drawback of the active compliant motion system is its high com-
putational needs in general [4]. The planning algorithm has to process complex
geometric and interaction models and even take into account interaction forces.
A key feature of such systems is the generation of contact states that is generally
intractable except for simple geometries [49]. Even with a perfectly generated
contact states and transition model, the system would also require contact state
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identification that is generally error prone [4]. Beyond contact state detection,
compliant motion planning involves generation of motion trajectory and its as-
sociated compliance profiles. For example, the VIC scheme requires a varying
impedance profile to be generated according to the interaction properties. Even
with accurate interaction models, which is highly unlikely, no general solution
exists for the compliant motion planning problem. In general, it is challenging to
scale the active compliant motion system to arbitrary manipulation tasks.

2.3 Robot Skill Learning

In this section, a brief introduction to robot skill learning, also known as robot
learning, is given without any particular focus on contact-rich manipulation. Skill
learning for contact-rich manipulation is taken up in the next section.

Although robot learning could have a wider interpretation with regard to ap-
plying various machine learning algorithms to solve robotics problems, we adopt
the particular interpretation of learning control and motion generation [4]. It is
desirable to synthesize expressive control behaviors that assimilate, as much as
possible, the functionalities of the upper layers in a 3T-like architecture. This
allows the upper layers to focus on more general and coarser aspects of manipu-
lation, while a collection of expressive skills in the behavior layer, each of which
is reactive in nature with little computational needs, can easily cope with the
dynamism and complexity of the task. Recall that the skill, according to the re-
quirements of the behavior abstraction, is a direct mapping from observation to
action. Assuming that a sufficiently rich skill is available, its execution is straight-
forward and computationally cheap. This is the appeal of the skills concept. Of
course, synthesizing skills is not trivial, which is exactly the problem that skill
learning promises to solve by harnessing the power of machine learning.

Skill learning takes on two main forms in robotic manipulation: Learning
from Demonstration (LfD) [50,51] and Reinforcement Learning (RL) [52,53]. In
LfD, human demonstrations of a task are used to synthesize a policy. In RL, the
policy is iteratively improved, based on autonomous trials of the task and a reward
function to evaluate its performance, until a good enough policy is obtained. In
both cases, the policy is the embodiment of the skill or behavior. Skill learning
is generally applied in the context of motion generation after a stable and fixed
grasp has been established, although it could potentially include grasping [2] or
dexterous manipulation [54, 55].

Learning from Demonstration

The human user produces a set of demonstrations, by manually guiding the ma-
nipulator to trace out the desired trajectory (kinesthetic teaching), which is then
fed into a learning algorithm that optimizes the parameters of a policy. The
learned policy is expected to be able to generate the desired motion behavior. A
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Figure 2.2: Skill learning: Learning from demonstration

survey of LfD methods for robot skill learning can be found in [51]. See Fig. 2.2
for an illustration of the learning process.

Let s ∈ S be the state variable and a ∈ A be the action variable, where
the sets S and A are the state and action spaces respectively. Then, the set
of N demonstrations, each with an episode length of T , can be represented as
D = {(s0:T , a0:T )i}Ni=1. If a = πθ(s, t) is the policy parameterized by θ, the LfD
learning problem can be summarized as,

min
θ
L(D,πθ(s, t))

where L is a suitable loss function that measures the error between D and what
the policy π would produce. The time dependency of the policy is represented by
the variable t. Many LfD methods have either explicit or implicit time dependency
although it is not strictly required.

A popular approach to model the policy in LfD is the dynamical systems (DS)
approach. Dynamic Movement Primitive (DMP) [50, 56] is one such representa-
tion that can be learned from a small number of demonstrations. It is composed
of a global attractor toward the goal position and a motion shaping function that
shapes the path the robot takes. A probabilistic version of DMP is the so-called
ProMP introduced in [57]. Another instance of DS, that is strictly a function of
state, is the approach of modeling a joint distribution of position and velocity as
Gaussian mixture models (GMM) and then obtaining the policy as a conditional
on position through Gaussian mixture regression (GMR) [58–60]. An important
point to note with regard to the DS approach is that in most cases the learned
policy evolves independently in time while generating a kinematic motion profile,
usually in the form of velocity. The velocity command is then fed into a low-
level proportional-derivative (PD) controller for tracking. In this formulation,
the action variable a is in fact the velocity command. The state variable s always
includes position but may or may not include velocity.
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Figure 2.3: Skill learning: Reinforcement learning

Reinforcement Learning

In contrast to LfD, RL promises the possibility of autonomous policy learning1.
Instead of providing the learning algorithm with demonstration data, it is supplied
with an appropriate reward function that encourages the desired behavior. The
learning process starts with a base policy, often randomly initialized, and is then
improved by trial and error in multiple iterations. In each iteration, the robot
attempts to perform the task by executing the current policy. The trial phase is
marked by some version of random exploration that would potentially discover
high reward behavior. Extensive surveys on the topic can be found in [53] and [61].
See Fig. 2.3 for an illustration of the process.

Reinforcement learning is formulated as a Markov decision process (MDP)
where an agent interacts with an environment to solve a sequential decision mak-
ing problem. It is formally defined by the tuple (S,A,R, T ). The sets S ⊆ Rn
and A ⊆ Rm are the state and action spaces, respectively. The agent acts on
the environment through the action space and makes observations through the
state space. The notation T represents the transition probability, or dynamics,
of the environment and is described by the conditional probability distribution
p(st+1|st,at), where s ∈ S, a ∈ A and t is the time index. The environment is
generally assumed to be unknown. The reward R is a scalar function, r(st,at),
that gives the immediate reward of taking action at in state st. The solution to
the MDP problem is obtained by finding the optimal stochastic policy πθ(at|st)
by maximizing the expected cumulative reward. For an episodic problem with
time horizon H, the policy optimization problem can be summarized as,

θ∗ = argmax
θ

Es0,a0,...,sH [

H∑
t=0

r(st,at)],

1Although RL is not necessarily limited to policy search methods, we shall focus on it due to
its prominence in robot learning.
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where {s0,a0, ..., sH} is a sample trajectory from the distribution induced in the
stochastic system and θ∗ is the parameter value for the optimal policy.

RL algorithms can be broadly categorized into model-free [26, 62–66] and
model-based [18, 28, 29, 67, 68]. As illustrated in Fig. 2.3, model-based RL al-
gorithms first learn a model of the environment T , from the data acquired from
trials, before optimizing the policy. This is repeated in every iteration. Model-
free RL methods, on the other hand, avoid such an intermediate step and directly
optimize the policy using the collected data. Model-based methods are known to
be more data-efficient [28] but it is at the expense of introducing an additional
machine learning problem–model learning.

Given a set of N random trials D = {(s0,a0, ..., sH)i}Ni=1, the model learning
problem can be formulated as,

min
θ
L(D, p(st+1|st,at)),

where L is an appropriate loss function, for example, that maximizes the log
likelihood of D. A survey on model learning can be found in [69].

2.4 Learning Contact-Rich Manipulation Skills

In this section, we shall examine the peculiarities of contact-rich manipulation.
This is followed by discussions on possible policy requirements and, finally, we
conclude by pointing out the preferences one could make for learning contact-rich
manipulation skills.

Important features of contact-rich manipulation are:

1. Constrained motion due to unexpected contact and frictional effects

2. Specific forces may be required to accomplish relative motion

3. Contact dynamics is discontinuous in nature

The first feature is due to unexpected contacts with surfaces in the envi-
ronment that force the manipulator to be constrained in some directions. This
cannot be avoided because of the presence of uncertainties in the environment or
the robot model. The motion is constrained either due to the blocking action by
obstacles or static friction that needs to be overcome. Either way, this gives a
discontinuous character to the motion. The second feature emphasizes the fact
that unlike free space motion, contact-rich motion often requires the manipulator
to deliver task specific forces to the environment to counteract interaction forces.
The last feature reminds us that any model learning algorithm would have to deal
with the complexities of learning a discontinuous model.

Following from the above features, the most important requirements for a
policy could be:
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1. Force/torque as action spaces: Policies that output only kinematic quan-
tities such as position or velocity are less suitable for contact-rich manip-
ulation. When motion is inhibited due to an unexpected contact or static
friction, the low-level controller that tracks the position or velocity command
would saturate and enter a fault condition. A force/torque policy would not
have any such difficulty.

2. State-dependent policies: Policies that generate control action as a func-
tion of time instead of state are less suitable for contact-rich manipulation.
This is because a manipulator could be blocked by any number of motion
constraints in the environment and a time dependent policy would easily get
out of sync with reality. A state dependent policy would stay in sync with
the dynamics of the environment.

3. Policy should learn interaction behavior: Since physical interaction
between the manipulator and the environment involves exchange of forces,
the policy should be able to deliver the right amount of forces in addition
to achieving the right motion profile. The manipulator should comply with
environmental conditions when necessary but without generating excessive
forces.

Based on the above set of requirements, a set of preferences for skill learning
could be listed:

1. State-dependent policy: State-dependent policies [15, 17, 70] may be pre-
ferred over time-dependent policies such as movement primitives [48,71].

2. Force/torque as action space: Policies that output force/torque [15,17,18]
can be preferred over the ones that output position or velocities, such as
[58–60].

3. VIC as action space: Another alternative is to adopt the structure of
VIC (see Section 2.2) as the action space. The policy would output the
desired position as well as the varying stiffness and damping gains. Using
these quantities and the measured position and velocity, a VIC controller can
deliver the force/torque to the manipulator. Examples of VIC-based policies
are [16,17,23,24,48,70]

4. RL-based skill learning: RL approaches such as [18, 20, 23, 48, 70] may be
preferred over LfD since contact-rich manipulation requires the manipulator
to deliver task specific forces to the environment. Demonstrating desired
forces is arguably more complex than demonstrating motion trajectory and
would incur additional costs in the form of haptic sensors or data gloves. An
example of an LfD work that did succeed in such a demonstration is [14].

5. Deep RL: A deep RL approach such as [18,20,21,23,68,72,73] would be able
to harness the expressivity of deep neural network policies. This is likely to aid



2.5. CONTROL STABILITY IN SKILL LEARNING 21

complex behavior synthesis that includes motion generation and interaction
control.

To conclude, an RL-based skill learning approach where a deep neural network
policy is designed to be independent of time and features an action space that is
either force/torque or variable impedance parameters (VIC) is ideal for contact-
rich manipulation.

2.5 Control Stability in Skill Learning

Stability is the first property to guarantee whenever a closed-loop feedback con-
troller is synthesized. Control theory is rich in tools with which to analyze and
design stable feedback controllers, for both linear systems and complex nonlinear
systems. Most existing methods synthesize controllers with analytic structure
based on an available dynamics model of the controlled system. Of particular
interest to manipulator control is the Lyapunov stability [36] analysis, also the
main method for nonlinear systems in general. Stability analysis for various ma-
nipulator control problems are well-established and an introduction to the topic
can be found in [7]. The concept of policy, that has been used in this thesis to
embody the notion of skills, can be seen as a closed loop feedback controller in
the regulator sense. Therefore, it is only natural to expect learned policies to con-
form to the standard notion of stability. A Lyapunov stable RL would guarantee
convergence of motion towards a desired goal position irrespective of exploration
and the extent of policy training. This would naturally provide predictability,
and some amount of safety, to the entire process.

Lyapunov Stability

In Lyapunov stability analysis, an equilibrium point of a nonlinear dynamical
system is stable if the state trajectories that start close enough remain bounded
around it. If, in addition, the state trajectories eventually converge to the equi-
librium point, then it is said to be asymptotically stable. If the system only has
a single equilibrium point, then one can refer to global stability of the system
instead of any particular equilibrium point.

The precise mathematical definition of the Lyapunov stability method is as
follows. Consider an autonomous nonlinear system [36], represented by the dif-
ferential equation ṡ = f(s), where s ∈ Rd is the state variable. Let s = 0 be an
equilibrium point and D ⊆ Rd be a region that contains the origin. Let V (s) be
a continuously differentiable scalar function. Then, s = 0 is stable if,

1. V is positive definite in D, or V (0) = 0 and V (s) > 0 ∀s ∈ D \ 0

2. V̇ is negative semidefinite in D, or V̇ (s) ≤ 0 ∀s ∈ D \ 0

If, in addition,
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3. V̇ is negative definite in D, or V̇ (s) < 0 ∀s ∈ D \ 0,

then s = 0 is asymptotically stable.

Furthermore, if,

4. D = Rd and

5. V is radially unbounded, or ||s|| → ∞ =⇒ V (s)→∞,

then s = 0 is globally asymptotically stable.
The nonlinear system ṡ = f(s) is an abstract autonomous system. In the

case of a controlled dynamical system, the corresponding autonomous system is
formed as ṡ = f(s, π(s)) where ṡ = f(s, a) represents the system dynamics and
a = π(s) represents the feedback controller. Note that the formalism above is
for a deterministic system, unlike the stochastic formulation of RL in Section 2.3.
The result generalizes to any equilibrium point in Rd through a simple translation
transformation of the state variable.

Learning Manipulation Skills with Stability-Guarantee

In the field of skill learning, the DMP policy parameterization, in its original form,
has an asymptotic convergence property towards the goal. LfD methods [50,56,57]
and RL methods [74–76] that are based on DMP inherit this property. However,
DMPs are often formulated as time-dependent trajectory generators that depend
on low-level controllers to track the generated trajectory. Although a case can be
made for the overall stability of the system–if the gains of the low-level controller
are kept fixed–such a solution is ill-suited for contact-rich tasks. To remedy this,
stable dynamical systems were formulated in [15–17] to be time-independent poli-
cies that directly output torque or forces. While these methods were essentially
LfD, Rey et al. [70] formulated an RL solution along these lines but without estab-
lishing complete stability. See paper A for a discussion. Therefore, an RL-based
solution for learning contact-rich manipulation skills that guarantee stability, es-
pecially with neural network policies, is not only an open problem but hardly any
work exists to date.

Challenges in Stability-Guaranteed RL

The difficulty in realizing stability-guaranteed RL can be seen from Fig. 2.4. In
this figure, a general possibility is sketched for the purpose of discussion. First of
all, the fact that the dynamics model is assumed to be known in the Lyapunov
analysis is respected by formulating a model-based RL approach. In model-based
RL, the dynamics model is not known to begin with and any learned model is
updated in every iteration. This implies a possibility that the Lyapunov function
itself is learned. Would the Lyapunov function synthesis be based on the learned
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Figure 2.4: A possible framework for stability-guaranteed model-based RL

model or directly from data? How to optimize the policy using both the model
and Lyapunov function? How to guarantee stability during random trials? Would
it be possible to have a model-free RL algorithm in practice? If so, would it be
possible to parameterize a particular policy and then deploy a state-of-the-art
model-free RL algorithm? Is it possible to apply Lyapunov stability analysis on
deep neural network policies? These are some of the difficult questions that arise
in this context.

The closest method to the model-based RL approach is [77] except that the
Lyapunov function is not learned. The question of learning the Lyapunov function
is studied in [78] but outside the framework of RL. Furthermore, the method
in [77] would struggle to cope with contact-rich manipulation due to its reliance
on smooth Gaussian process (GP) [79] model of the dynamics. Another GP based
method [80] to learn dynamics is further limited to learning only the unactuated
part of the dynamics with the assumption that the remaining part is known. The
method in [81] requires a stabilizing prior controller, the uncertainty of which
together with that of the learned model determines the region of guaranteed
stability. Ideally, it would be good to avoid learning complex dynamics of robot-
environment interaction and also be free of any requirements of prior stabilizing
controllers. Furthermore, a solution that achieves stability based on only policy
parameterization would benefit from state-of-the-art model-free policy search,
greatly simplifying practical RL-based skill learning.

Stability through Passive Interaction

An important property of the manipulator-environment interaction process is the
passive interaction property. If the manipulator is made stable and passive with
respect to the energy port (Fext, ẋ), where Fext represents the force variable and
ẋ represents the velocity variable, then any interaction with a passive environ-
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Figure 2.5: Passive interaction between the robot and the environment. Fext repre-
sents the external force acting on the manipulator and ẋ represents the end-effector
velocity.

ment through this port will result in a stable coupled system [9, 82] (Fig. 2.5).
The significance of this property is that, if the environment is passive, then it is
enough to establish stability (and passivity) of only the manipulator in isolation.
This provides a tremendous opportunity since it removes the necessity of learn-
ing the interaction dynamics; in fact, no model learning is required because the
manipulator dynamics is well-known and need not be learned. This opens up the
possibility of a model-free RL approach.

Passivity of a system is reasoned as follows. Consider a dynamical system that
is influenced by an unknown external input u and has an output y. The system

ṡ = f(s, u) y = h(s, u)

is passive if there exists a continuously differentiable lower bounded function
V (s) with the property V̇ (s) ≤ uT y ∀u, y. In the case of a manipulator, f is the
dynamical system composed of the control law and the manipulator dynamics,
u = Fext is the force experienced during interaction, y = ẋ is the velocity and h is
any appropriate function. The variable s is the state as defined earlier. Passivity
means that a system can only dissipate or store energy and not generate it. This
is inherently true for unactuated objects in the environment due to the law of
conservation of energy.

In this formulation, the only remaining question is how to model the parame-
terized policy and the Lyapunov function for a manipulator moving in free space
such that it is stable and passive. It may be pointed out that the requirement of
a passive environment is not limiting since all it means is that the environment is
not actuated. Thus most objects in the environment are passive and the obvious
exceptions are other robots and humans.

2.6 Data-Efficiency in Skill Learning

Reinforcement learning has an advantage that it is possible to learn complex con-
trol policies without having to model the environment. When the environment
dynamics is difficult to model, such as the case in contact-rich manipulation, RL



2.6. DATA-EFFICIENCY IN SKILL LEARNING 25

algorithms shine in their utility. However, one of the most worrisome concerns
regarding RL is its possible requirement of a large number of trials. The expected
number of trials, or samples, of an RL algorithm is called its sample complexity.
For instance, the groundbreaking DQN method [83] for playing Atari games used
ten million frames for training. An order of magnitude reduction in training steps
was achieved in DDPG [64] and NAF [26] methods that focused on continuous
control tasks. However, to achieve practical training times, in real-world appli-
cation of RL, and also to minimize wear and tear of physical systems, the total
number of data samples for training has to be brought down to at least thousands.

Model-based RL is considered as a promising approach for data-efficient policy
learning [84]. As shown in Fig. 2.3b, model-based RL methods learn a model
of the dynamics as an intermediate step and use it to optimize the policy. It
was shown in a number of works [28,29,85,86] that a probabilistic model learning
and uncertainty propagation approach can significantly reduce sample complexity
down to hundreds of trials. Therefore, model-based RL offers a practical solution
for real-world robotic manipulation tasks, especially those that can benefit from
reduced physical interaction.

Model Learning

As mentioned in Section 2.3, the model learning step in model-based RL is an
independent machine learning problem. Here, the model of interest is the forward
dynamics model of the environment. The model can be used to predict the
trajectory of the system, which can then be used to evaluate the underlying
policy. A policy that produces high cumulative reward, based on the system
trajectory, is preferred to the one with a lower reward. In the seminal work
PILCO [28], Deisenroth et al. showed that a probabilistic model that represents
both epistemic2 and aleatoric3 uncertainties along with a long-term prediction
model that propagates these uncertainties can drastically reduce the amount of
training data. In [28] (PILCO) and [85] (GP-MPC), Gaussian process (GP),
that inherently includes both types of uncertainties, is used to learn models and
moment matching is used to perform long-term predictions. In [29] (PETS), an
ensemble of bootstraps approach combined with a particle based method is used
to achieve the same results using neural networks. Deterministic model learning
and long-term prediction using deep neural networks was done in [67] and [68].

Discontinuous Dynamics in Contact-rich Manipulation

In the context of contact-rich manipulation, the environment in the RL sense is in
fact the coupled system of the physically interacting manipulator and the object.
As noted in Section 2.4, learning dynamics models in this case can be challenging

2Epistemic uncertainty is the uncertainty due to the lack of training data.
3Aleatoric uncertainty is the uncertainty due to the inherent randomness in a system.
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(a) Discontinuous dynamics. Only the
deterministic version is shown here.

(b) Discontinuous state
(velocity) propagation.
The shaded region indi-
cates uncertainty in the
probabilistic propagation.

Figure 2.6: Illustrations of discontinuous dynamics and state propagation

due to its discontinuous nature. Recall that discontinuity arises due to collision
with constraints and rapid making and breaking of friction between the contact-
ing surfaces. In addition to discontinuities in the forward dynamics function,
contact can also cause discontinuous transitions in velocity. Multi-step long-term
prediction using a learned dynamics model should be able to faithfully reproduce
such discontinuities in state propagation. Finally, for reasons mentioned earlier,
both the model and the long-term prediction should be probabilistic in nature.
Figure 2.6 shows an illustration.

Most machine learning models, be it GP or neural network, have an underlying
assumption of smoothness between two data samples. Normal Gaussian process
regression (GPR) will have difficulty in distinguishing between a discontinuity
and noise. Regular neural network regression would require complex models and
large amounts of data to approximate a complex function such as discontinu-
ity, thereby defeating the purpose of model-based RL. Despite these difficulties,
several methods employed common modeling techniques without any special con-
siderations for discontinuities. For example, GMM [18], neural network regres-
sion [67, 68, 87] and GPR [28, 85] have been used for learning predictive models.
Non probabilistic state propagation was done in [67,68].

Two notable methods that increase the expressivity of the learned model while
maintaining probabilistic representation of the model and probabilistic long-term
prediction are [88] and [29]. The increased expressivity is expected to help model
discontinuities in the learned model but no attention was given to discontinu-
ous long-term prediction. Manifold GP [88] introduced neural network feature
mapping before applying the squared exponential kernel function in a GP. The
parameters of the mapping and the regular GP hyperparameters were jointly op-
timized. The work only featured one-step prediction and therefore did not include
long-term prediction. PETS [29] introduced an ensemble of bootstrap approach
to learn neural network models with uncertainty representation, something the
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normal GP and also the manifold GP had built in. It also presented particle
based long-term probabilistic prediction. However, none of these works explic-
itly validated long-term prediction using a learned model for contact-rich tasks;
instead, they only validated the overall policy learning.

Learning Hybrid Models

An appropriate theoretical construct that models discontinuous dynamics well is
hybrid automata [37], which is a special member of the general family of hybrid
systems. Generally, a hybrid system is characterized by discrete modes, each of
which represents a smooth model. In the case of the dynamics model depicted
in Fig. 2.6a, each of the smooth regions would be called a mode, and an instan-
taneous transition between two adjacent modes would represent a discontinuity.
Learning methods for hybrid systems learn each of the modes and also a selector
function [89] [90] based on the current inputs. This is related to the mixture of
experts approach in learning expressive mixture model [91], except that there is
no soft mixing but only a hard switching. More sophisticated approaches such
as [92] and [93] also consider the current mode, in addition to the current in-
puts, for the selector function. However, none of the existing methods in learning
hybrid models include a solution for discontinuous state propagation.

Summary

In this chapter, we presented the scientific background of this thesis. We first
clarified the meaning and scope of contact-rich manipulation and then justified
the need for skill learning by RL. Two topics of concern with respect to skill
learning in contact-rich manipulation are identified: control stability and data-
efficiency. This is followed by more in-depth background and literature review on
these topics. Papers A-C deal with control stability in RL and paper D addresses
data-efficiency in model learning, an integral part of model-based RL.

Paper A [32] delivers a stability-guaranteed RL method with a VIC-based
policy; the policy, which is of an analytic form, is adopted from the prior work [17].
Paper B [33] presents a solution for parameterizing a partially neural policy with
stability property but without guaranteeing stability during random exploration.
Paper C [34] introduces a deep neural policy with inherent stability and also
demonstrates a policy search with complete stability guarantee. All the three
works exploit the passive interaction property in order to enable a model-free RL
approach.

In paper D [35], we propose a hybrid system learning method based on the
formalism of hybrid automata. This formalism has a unique concept called the
reset map that explicitly deals with the issue of discontinuous state propagation
during the long-term prediction. The main contribution is a solution that not
only learns discontinuous dynamics models but also performs discontinuous long-
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term prediction with the learned model. Additionally, the method is completely
probabilistic and hence meets all the requirements mentioned so far.



Chapter 3

Summary of Included Papers

In this chapter, the papers included in this thesis are summarized and their
scientific contributions highlighted. The contributions of the author of this thesis
are also listed.

Paper A - Stability-Guaranteed Reinforcement Learning for
Contact-Rich Manipulation

Summary

In this paper, we address the lack of stability guaranteed RL algorithms for
learning contact-rich manipulation skills. Recognizing the importance of VIC in
interaction control theory, a number of RL methods were proposed that adopted
a VIC structured policy parameterization. However, these methods either did not
address stability at all [23, 48] or did so only partially [70]. To convey the scope
of the stability guarantee of our method, we introduced the term all-the-time-
stability that explicitly meant that every possible trial during the RL process will
be stability guaranteed. The aim was to develop an RL method with all-the-time-
stability property.

The proposed solution is crafted based on the requirements that were out-
lined in Sections 2.4 and 2.5, most of which were already satisfied by the adopted
motion modeling framework i-MOGIC [17]. Specifically, the i-MOGIC policy is
parameterized in a state-dependent form and features a VIC structure. It also
has stability properties subject to certain constraints on its parameters. It uti-
lized the stability property of passive interaction between the manipulator and
its environment. With the i-MOGIC policy already satisfying all of our require-
ments with regard to policy parameterization and inherent stability property,
our focus was diverted to the model-free RL aspect. To this end, we introduced
a novel gradient-free policy search algorithm that is inspired by Cross-Entropy
Method [94] to optimize the parameters of the policy. Our solution for policy
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search was such that stability was inherently guaranteed despite an unconstrained
search.

The method was validated on a series of simulated two-dimensional block
insertion tasks and also a 7-DOF manipulator arm performing a peg-in-hole task.
The results confirmed the feasibility and usefulness of stability guaranteed RL.
Particularly, we showed that stability guarantee did not come at the expense of
sample efficiency. As a part of our study, we reported the first successful stability
guaranteed RL that was demonstrated on the standard benchmark problem of
peg-in-hole. A limitation of our work was that the policy (i-MOGIC) is of an
analytic form and is arguably less expressive than a deep neural network policy.

Contributions

The scientific contributions in this work are:

• We present a solution for stability-guaranteed RL of contact-rich manipulation
skills.

• We introduce a novel evolution strategies [95]-based policy optimization al-
gorithm closely resembling the Cross-Entropy Method. In particular, our
method can handle positive definite matrices, in addition to real-valued vec-
tors, as part of the decision variables.

• We demonstrate, to the best of our knowledge, the first stability guaranteed
RL of the peg-in-hole task.

Contributions by the author

• Proposed and formulated the problem.

• Designed and implemented the method.

• Designed and performed all experiments after receiving baseline method im-
plementation.

• Wrote the large majority of the paper.
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Paper B - Learning Stable Normalizing-Flow Control for
Robotic Manipulation

Summary

Stability guarantee is a desirable property to have in deep RL algorithms for
continuous control problems. To benefit from the rapid progress in deep RL
research, one would like to impart the stability property to the policy alone
and stay within the framework of popular policy search algorithms. One of the
reasons why this is difficult is the uninterpretable nature of deep neural network
policies. In the context of contact-rich manipulation, an additional challenge is to
guarantee stability during physical interaction of a manipulator with an unknown
environment. Since no such solution exists to date, we contribute towards closing
this gap.

We present the normalizing-flow control structure, a deterministic policy that
is partly parameterized as a deep neural network and partly with an interpretable
spring-damper system. It is well-known that a fixed spring-damper system acting
as a regulator on a manipulator has stability properties. It is also known that a
spring-damper policy would be very limited. Instead of directly controlling the
manipulator using such a policy, a ’normal’ spring-damper system is set up in a
latent coordinate system which is then mapped, bijectively, to the actual coordi-
nate system. This bijective (invertible) transformation function is parameterized
as a deep neural network. The control force generated by the ’normal’ spring-
damper system is transformed into the actual coordinate system by employing the
principle of virtual work. By learning only the nonlinear invertible transformation
through RL, it is proven that the original stability property, in the sense of Lya-
punov, is retained for any parameter value of the mapping. Furthermore, stable
interaction with the passive environment is also proved. Our method is inspired
from the concept of normalizing-flow [96] that is used for density estimation in
machine learning.

The method was validated using a simulated block insertion task and also
a real-world gear assembly task by a 7-DOF manipulator. We used a state-of-
the-art deep RL policy search method despite the fact that the formal stability
guarantee would be lost due to the introduction of action space exploration. Nev-
ertheless, the results clearly showed stable behavior even for moderate amounts
of exploration noise. Our results also showed that it was possible to achieve
exploration efficiency by virtue of the underlying stability property where all tra-
jectories are directed towards the goal. Therefore, not only did our method help
bring stable behavior, but also reduced sample complexity. The proposed method
showcased how to impart stability behavior by virtue of only policy parameteri-
zation while allowing state-of-the-art policy search methods.
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Contributions

The scientific contributions in this work are:

• We present a deterministic policy parameterization for RL, called the normalizing-
flow control, that has inherent stability properties even when interacting with
an unknown (passive) environment.

• Our method provides an instance of interpretable neural network policy with
provable stability property.

• We show empirically that the stability behavior leads to sample efficiency.

• We show an instance of how to impart practical stability in state-of-the-art
RL methods.

Contributions by the author

• Made significant contributions to the problem formulation and method devel-
opment.

• Made minor contributions to the algorithm implementation.

• Designed and performed all experiments.

• Wrote the large majority of the paper.
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Paper C - Learning Deep Neural Policies with Stability
Guarantees

Summary

We follow the same motivation as paper B in seeking stability guarantee in deep
RL algorithms for robotic manipulation tasks. The difficulty of achieving stabil-
ity in this scenario can be attributed to three factors: uninterpretability of neural
network policies, random exploration and unknown dynamics. By assuming the
knowledge of manipulator dynamics and leveraging the stability of passively in-
teracting bodies, the problem of unknown dynamics is largely eliminated. In this
paper, the first two aspects are addressed with the goal of having a policy pa-
rameterization that is almost entirely a neural network. A policy that is almost
entirely a deep neural network would be capable of learning expressive policies.

Our solution is a policy parameterization that is entirely a deep neural net-
work except for an additive component that is linear in the position variable.
The additive component is also learned in the process. The policy is derived from
physics-based prior of Lagrangian mechanics, which has been previously applied
for controlling mechanical systems in the form of energy shaping (ES) control [97].
The ES control form leads naturally to a Lyapunov function that allows straight-
forward stability proof. Although the ES control form is well established, how
to parameterize a learnable neural network policy is not obvious. The energy
shaping policy has a general structure that consists of the gradient of a convex
potential function–a function of the position variable–and a nonlinear function
of the velocity variable that satisfies a certain property. We use the recently
proposed Input Convex Neural Network (ICNN) [98], operated on by automatic
differentiation to get the gradient, and an appropriate nonlinear function of the
velocity to parametrize a deep neural network policy to satisfy the properties of
the ES control form. Since stability is now guaranteed, even for randomly ini-
tialized networks, we proceed with the Cross Entropy Method to implement a
parameter space search for the optimal policy without losing stability.

We validate the method using simulated block insertion tasks and a peg-in-
hole task performed by a 7-DOF manipulator. Our results confirm the previous
observation made in papers A and B that stability in fact improves sample ef-
ficiency due to the convergent behavior toward the goal position. We also show
that, due to global stability, our method is robust to random perturbation to
initial position after learning. The proposed policy form (ES policy) is compared
to the policy in paper B (NF policy) and is found that being almost entirely a
neural network does have an advantage. It turned out that the spring-damper
system in the NF policy has to be properly initialized, while the ES policy, being
fully learnable, has no such hyperparameter to set. Apart from this crucial differ-
ence, unlike the work in paper B, stability was guaranteed even during random
exploration. This work is thus comparable to paper A but with the important
difference that the policy in paper A was of analytic form and thus, arguably, less
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expressive.

Contributions

The scientific contributions in this work are:

• We present a complete stability guaranteed RL of learning manipulation skills
with deep neural policies.

• Our method provides another instance of interpretable neural network policy
with provable stability property.

• We show empirically that the stability behavior leads to sample efficiency.

Contributions by the author

• Proposed and formulated the problem.

• Designed and implemented the method.

• Designed and performed all experiments after receiving baseline method im-
plementation.

• Wrote the vast majority of the paper.
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Paper D - Data-Efficient Model Learning and Prediction for
Contact-Rich Manipulation Tasks

Summary

In this paper, we focus on the problem of learning a forward dynamics model
and using it to perform forward recursive prediction, or long-term prediction, in
the context of contact-rich manipulation. As explained in Section 2.6, the central
challenge is accommodating discontinuities during model learning and also long-
term prediction. Model learning and long-term prediction are both necessary
steps in model-based RL, which is seen as one of the main approaches to gain data-
efficiency. The need for data efficiency is extremely important for contact-rich
manipulation since fewer trials means lesser wear and tear for the physical system.
While several methods exist that can learn discontinuous models, none exist that
can also perform discontinuous long-term prediction. Recall that discontinuity
in the predicted state evolution is due to the fact that velocities can change
abruptly upon contact. To complicate matters, both model learning and long-
term prediction are required to be probabilistic in nature if data efficiency is to
be achieved.

We present a solution to learn probabilistic forward dynamics models with
discontinuities and also to perform probabilistic long-term state trajectory pre-
diction with discontinuities. To represent a discontinuous model, we adopt the
hybrid systems formalism of hybrid automata [37], that includes concepts such
as mode dynamics, guard function and reset maps. Modes represent the actual
dynamics in the smooth regions of the hybrid system. A global guard function
learns to predict the next mode based on the current state-action pair. Finally,
for each mode transition present in the data, a reset map learns to predict the
post transition state based on the pre-transition state-action pair. The modes
and reset maps are learned as probabilistic models using GPR while the global
guard function is learned as a deterministic model using a support vector ma-
chine. A long-term prediction algorithm propagates uncertainties through all the
learned models using a particle based approach. An interesting feature of our
method is that it supports propagation of multimodal state distribution. This
would correspond to distinct possibilities that the motion could evolve into in a
contact-rich environment.

We evaluate the method using a simple contact motion experiment. RL trials
are simulated by perturbing the parameters of a trajectory-centric policy and
the dataset collected is used to learn a model. Long-term prediction is per-
formed using a holdout policy and is validated against the corresponding holdout
data. Comparison to state-of-the-art baseline methods, manifold GP [88] and
PETS [29], showed that our method is able to perform significantly better under
scarce data. A drawback of our method is its low scalability. This is inherited
from GPR but parallelization is expected to alleviate this problem.



36 CHAPTER 3. SUMMARY OF INCLUDED PAPERS

Contributions

The scientific contributions in this work are:

• We present a method for learning a probabilistic hybrid dynamics model. The
main novelty is that the learned model conforms to the structure of hybrid
automata. Of particular interest is the concept of reset maps, which allows
discontinuous long-term prediction, something that has not been achieved in
a learning-based approach prior to our work.

• We showed that data efficiency is increased if the hybrid automata structure is
adopted, in addition to probabilistic models, for learning contact-rich motion
dynamics.

Contributions by the author

• Proposed and formulated the problem.

• Designed and implemented the method.

• Designed and performed all experiments after receiving baseline method im-
plementations.

• Wrote the vast majority of the paper.
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Discussions and Conclusion

This thesis addresses the problem of skill learning for contact-rich manipulation
tasks. The data-driven approach of skill learning is identified as an important
component of autonomous robots. The skill learning problem is formulated and
studied as a reinforcement learning problem with a focus on control stability
and data-efficiency. Both of these aspects are extremely important for real-world
application of reinforcement learning on robotic manipulation tasks. In this chap-
ter, we summarize the important conclusions from the thesis contributions and
expand on remaining challenges and potential future work.

Despite the recognition that stability is a necessary requirement for control
synthesis, almost no solutions exist today for RL-based skill learning when time
independence and force/torque based action space are required. Our papers A-
C [32–34] contribute towards closing this gap. We showed how to reason about
stability in RL despite two difficult obstacles: uninterpretable nature of deep
neural network policies and unknown interaction dynamics. Interestingly, the
stability property helped to improve sample efficiency in RL.

Data-efficiency is a widely researched topic in RL. In paper D, we adopted
the model-based RL framework to address data-efficiency and limited our work
to only learning forward dynamics models in the context of contact-rich ma-
nipulation. We investigated the possible benefits of adopting a hybrid systems
formulation of contact dynamics and found that it indeed helps in achieving ac-
curate model learning under scarce training data. Our work highlighted the need
for modeling discontinuities in state prediction in addition to discontinuities in
the dynamics model. A learning based method that did both did not exist prior
to our work.

4.1 Control Stability

In this section, we examine some remaining challenges and potential future work
with regard to control stability.

37
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Model capacity in stable RL

Papers A-C present different strategies for parameterizing policies for RL that
suit well for contact-rich manipulation skills. In paper A, a motion modeling
framework with an analytic form [17] is used. In paper B, the policy consists of
a fixed spring-damper structure and a special deep neural network that performs
as a bijective mapping. In paper C, the policy consists of a deep neural network
function that is convex in its input (ICNN) [98] and a fully connected network
structured as a positive definite matrix. The special parameterizations of the
three policies are necessary to prove Lyapunov stability but their effects on the
expressivity of the policies are not obvious.

Although our work includes a limited comparative study between models in
papers B and C, a more comprehensive study that not only compares the three
models, but also with a regular deep neural policy is recommended. Such a study
should examine theoretical limitations on motion profiles that can be generated.
At the very least, empirical studies may be undertaken to establish the modeling
capacity of the policies with the help of a wider range of manipulation tasks.

Exploration in stable RL

One of the limitations in our work is that exploration is limited to only the pa-
rameter space if stability is to be preserved. In papers A and C, we use the
Cross-Entropy Method (CEM) [94]-based approaches for parameter space explo-
ration, which is a gradient-free black-box optimization method. In paper B, we
use the more common action space exploration but lose the stability guaran-
tee in the process. Note that the final deterministic controller would still be
stability guaranteed. Exploration in action space can permit the application of
more efficient policy gradient RL methods while exploration in parameter space
with deterministic policies only allows less efficient gradient-free methods such as
CEM, CMA-ES [99] or NES [100].

A straightforward remedy is to use scalable versions of CEM-like algorithms,
for instance the approach in [101]. A more elegant alternative is to extend the
deterministic Lyapunov analysis to a stochastic version [102] where action space
exploration could be permissible. This is a promising future direction that could
harness the efficiency and scalability of state-of-the-art policy gradient algorithms
such as [65,66,103].

Generalizing stability

In this thesis, stability is defined in the sense of Lyapunov’s direct method [36]
and is used in reasoning about stability of a passive interaction between a ma-
nipulator and its environment. Thus, stability only holds for passive objects in
the environment. Although this is not a serious limitation, as argued in Section
2.5, it may be noted that with active objects in the environment, such as other
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robots or humans, stability is not guaranteed. It may be necessary to adopt other
strategies to cope with such situations [104].

Although our methods do not promise safety, many recent works in safe RL
propose safety through the concept of Lyapunov stability [78,105,106]. Stability
promotes safety only to the extent that certain guarantees exist that ensure state
evolution (trajectory) toward a known goal position. If a human or any delicate
object gets in the way of a stable robot, there are no guarantees on bounds on the
force that the robot may apply. A robot with sufficient energy could do serious
damage in that situation. Therefore, an interesting future direction could be to
adopt suitable notions of safety that may even subsume stability.

In this thesis, we have formulated the underlying Markov decision problem
such that the state variable consists of robot position and velocity. For a ma-
nipulator arm assumed to be a rigid body, such a formulation is appropriate.
However, if the state is not fully observed, for example if the observation is in the
form of a visual input, stability analysis could become more complex. See [107] for
an example. Achieving the same result in an RL-based skill learning framework
is highly desirable.

4.2 Data-Efficiency

In this section, we examine some remaining challenges and potential future work
with regard to data-efficiency.

Policy search with learned hybrid models

In order to achieve data-efficiency through model-based RL, solutions are needed
for both model learning and policy search. We have addressed only the first part–
model learning. A straightforward approach would be to use the learned hybrid
model as a black-box simulator and use existing model-free policy search methods.
This could also include a (gradient-free) model predictive control (MPC) [108]
approach. More interesting alternative would be to exploit the structure of the
learned models. For example, the presence of a number of discrete modes in the
hybrid model could be synergized with sub-policies (or options) within a hier-
archical RL approach such as the option-critic architecture [109]. A partially
successful attempt is reported in [110]. Future improvements could also inves-
tigate how to exploit the multimodal uncertainty propagation capability of our
method.

Learning hybrid systems

Our hybrid dynamics model learning method has some limitations. In most
learning algorithms that learn switched system models [92, 93], the clustering
part and mode learning part are not independent but are intertwined. In our
work (paper D), we assume linear separability in a feature space and perform the
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clustering step independently followed by model learning. The former approach
is considered more optimal but not directly applicable due to the uniqueness of
our formalism (hybrid automata). This could be addressed in a future work. A
closely related issue is that we employ iid clustering when in reality the dynamics
data are temporally correlated. This could be improved by applying trajectory
segmentation methods to consider the temporal correlations.

Scaling model learning

Our model learning method, being based on GPR, would face difficulty in scaling
to a large training dataset. Despite this, GPs are attractive due to its data effi-
ciency and also their inherent capability to represent both epistemic and aleatoric
uncertainties (see section 2.6). A straightforward remedy is through massive par-
allelization for which our method is especially suitable. Along this line is also the
possibility to scale up a potential gradient-free policy search method; see [111]
for an example.

4.3 Skill Learning

The two problems studied in this thesis, control stability and data-efficiency, are
treated independently. Furthermore, the approaches are based on fundamentally
different RL formulation; stability-guaranteed RL is formulated as model-free RL
and data-efficient RL is formulated as model-based RL. We provide a recommen-
dation for when to use each of them. We also discuss the prospects of unifying
both problems in one RL formulation. Finally, we touch on the important topic
of generalization in skill learning.

Stability in model-based RL

The most obvious approach to unify stability guarantee and data-efficiency is to
aim for stability-guaranteed model-based RL. A prominent example of such a
solution is [77] where the model is learned through GPR and stable exploration is
performed according to a given Lyapunov function. A general solution may also
involve the additional step of improving the Lyapunov function [78]. In general,
a model-based stability-guaranteed RL would be computationally expensive; for
example, the method in [77] requires discretization of the state space and sub-
sequent point wise evaluation. With hybrid models involved in the process, the
complexity of such an approach is only going to increase significantly. A survey
on stability analysis for hybrid systems can be found in [112].

Model-based or model-free?

Our work on model learning for contact-rich manipulation revealed that learning
hybrid systems, especially one that is modeled as a hybrid automata, is signifi-
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cantly more complex than a naive regression process with neural networks or GPs.
We also discussed the potential difficulties with a stability-guaranteed model-
based RL. Given this information, the pertinent question is whether a model-
based RL approach is advisable for learning contact-rich manipulation skills at
all.

Based on the results in this thesis, we recommend a model-free approach as
the first choice for stability-guaranteed RL. In this regard, our results are encour-
aging since it indicates that the stability property itself has a positive effect on
improving data-efficiency. However, the model-based RL approach is still rele-
vant for a number of reasons. First, it has the potential to give the best sample
efficiency, which is important in real-world application of skill learning. Second,
a model-based RL in the form of MPC opens the door for elegant unification of
planning and learning approaches. In an MPC-based RL approach [29, 67, 85],
the model is first learned and, instead of learning a policy, an online optimiza-
tion process determines the control action. The online optimization process can
potentially incorporate stability guarantee, safety and resource constraints, or
any other planning process that cannot be solved based on a learning paradigm.
Therefore, a model-based MPC framework would offer a remarkable capability
for an autonomous robot, something that is difficult to achieve in a purely policy
learning framework.

Generalization in skill learning

Generalization to novel situations is one of the main limitations of the skill learn-
ing approaches. In this regard, the traditional active compliant motion systems
discussed in Section 2.2, if designed appropriately, would have an advantage over
skill learning systems. The planning modules of such systems would simply take
in the geometric and interaction models of the new task, or domain, and instantly
be ready for operation. In contrast, most learning based systems would require
additional training sessions to adapt to the new task. Still, skill learning may be
preferable due to its practical viability and its inherent ability to scale.

The concept of domain adaptation (DA) and domain generalization (DG) has
been introduced to address the generalization problem and several solutions for
skill learning have also been proposed. The main topic that encompasses both DA
and DG is meta-learning [31,113], where the proposition is to learn meta models
(policies) and then adapt to new situations with minimum or no extra training.
A possible future work could be to investigate meta-learning in the context of
hybrid systems where additional dynamics modes and policy options (see Section
4.2) could be incrementally acquired, or examine the possibility of guaranteeing
stability within a model-free meta RL.
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