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which implies that the lower bound in Theorem 3 is obtained for �τI + ε instead of
�τI . Using � from (B.1), we can bound the expression on the right hand side,

(�τI + ε)2

e
∑
k∈κ

(zk−z
τ̄I+ε

k )>Σ−1(zk−z
τ̄I+ε

k )

− 1
≤ (�τI + ε)2

e
ε∆+

∑
k∈κ

(zk−z
τ̄I
k )>Σ−1(zk−z

τ̄I
k )

− 1
=: B(ε).

(B.2)
If we let ε→∞, then the upper bound tends to zero,B(ε) → 0. This limit implies
that a restriction of the candidates T exists, if the number of samplesN is large
enough.

The set that is given by Proposition 15 can be very large, which is a consequence
of trying to �nd a restriction in one step. Instead, one may use an iterative process
with a smaller step size which may give a better restriction. An approach like this
is presented in the next algorithm.

Algorithm 1 Restricting τ

0. Initialization; Start by setting τs := 1.

1. Find the smallest τc > τs which ful�lls the following∑
κ

(2zk − (zτck + zτc+`k ))>� −1(zτck − z
τc+`
k ) ≤ 0, ∀` ≥ 1.

2. Find all ε that solve the following expression:

(2− τc − ε)eε∆ = 2e
−
∑
k∈κ

(zk−zτck )>Σ−1(zk−zτck )

, (B.3)

where � is given by (B.1).

3. If no ε > 0 is found, then �τs = τc. Otherwise, setτs = τc + bεc and return to
step 1.

Proposition 16. The set of candidates of τ ∈ T can be restricted to a set T +,
where τ∗ ∈ T + is the τ which maximizes (7.9) using Algorithm 1. Then the largest
τ which needs to be considered is �τs = max(T +). Similarly, the set can be restricted
from below using the same algorithm, but by replacing �τI , ` and ε with τ I , −` and
−ε, respectively.

Proof. Note that in the �rst iteration, we obtain τc = �τ from Lemma 4 in Step
1. Through Step 1 we enforce that � > 0. In the proof of Proposition 15, it was
shown that if τc < τ∗, then the following holds

τ2
c

e
∑
k∈κ

(zk−zτck )>Σ−1(zk−zτck )

− 1
≤ B(ε),
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where B(ε) is defined in (B.2). Since it was also shown that B(ε) → 0 as ε → 0,
then there must be at least one maximum for τc ≤ τc + ε ≤ τ̄ , where τ̄ is the upper
bound which is shown in Proposition 15. The maximum is found by the first-order

necessary condition for optimality, dB(ε)
dε = 0, which gives the expression in (B.3).

Setting τs = τc + bεc, repeating this process and obtaining no maximum for ε > 0,
implies that the upper bound decreases, B(0) > B(ε).

Note that we have not provided any guarantee that the method which is pre-
sented in Proposition 16 is better than the one presented in Proposition 15. How-
ever, due to its smaller step size, we conjecture that it may find a smaller set.
Also, its computational time is larger due to the iteration and therefore may be less
favorable to use.
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[1] A. Parisio, C. Wiezorek, T. Kyntäjä, J. Elo, K. Strunz, and K. H. Johans-
son. Cooperative MPC-Based Energy Management for Networked Microgrids.
IEEE Transactions on Smart Grid, 8(6):3066–3074, 2017.

[2] A. Ouammi. Optimal power scheduling for a cooperative network of smart
residential buildings. IEEE Transactions on Sustainable Energy, 7(3):1317–
1326, 2016.

[3] J. Reynolds, Y. Rezgui, and J.-L. Hippolyte. Upscaling energy control from
building to districts: Current limitations and future perspectives. Sustainable
Cities and Society, 35:816–829, 2017.

[4] I. T. Michailidis, T. Schild, R. Sangi, P. Michailidis, C. Korkas, J. Fütterer,
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