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Abstract

Cyberattacks against critical infrastructures has been a growing problem for
the past couple of years. These infrastructures are a particularly desirable
target for adversaries, due to their vital importance in society. For instance,
a stop in the operation of a critical infrastructure could result in a crippling
effect on a nation’s economy, security or public health. The reason behind this
increase is that critical infrastructures have become more complex, often being
integrated with a large network of various cyber components. It is through
these cyber components that an adversary is able to access the system and
conduct their attacks.

In this thesis, we consider methods which can be used as a first line of
defence against such attacks for Cyber-Physical Systems (CPS). Specifically,
we start by studying how information leaks about a system’s dynamics helps
an adversary to generate attacks that are difficult to detect. In many cases,
such attacks can be detrimental to a CPS since they can drive the system
to a breaking point without being detected by the operator that is tasked to
secure the system. We show that an adversary can use small amounts of data
procured from information leaks to generate these undetectable attacks. In
particular, we provide the minimal amount of information that is needed in
order to keep the attack hidden even if the operator tries to probe the system
for attacks.

We design defence mechanisms against such information leaks using the
Hammersley-Chapman-Robbins lower bound. With it, we study how informa-
tion leakage could be mitigated through corruption of the data by injection of
measurement noise. Specifically, we investigate how information about struc-
tured input sequences, which we call events, can be obtained through the
output of a dynamical system and how this leakage depends on the system
dynamics. For example, it is shown that a system with fast dynamical modes
tends to disclose more information about an event compared to a system with
slower modes. However, a slower system leaks information over a longer time
horizon, which means that an adversary who starts to collect information long
after the event has occured might still be able to estimate it. Additionally, we
show how sensor placements can affect the information leak. These results are
then used to aid the operator to detect privacy vulnerabilities in the design
of a CPS.

Based on the Hammersley-Chapman-Robbins lower bound, we provide
additional defensive mechanisms that can be deployed by an operator on-
line to minimize information leakage. For instance, we propose a method to
modify the structured inputs in order to maximize the usage of the existing
noise in the system. This mechanism allows us to explicitly deal with the
privacy-utility trade-off, which is of interest when optimal control problems
are considered. Finally, we show how the adversary’s certainty of the event
increases as a function of the number of samples they collect. For instance,
we provide sufficient conditions for when their estimation variance starts to
converge to its final value. This information can be used by an operator to
estimate when possible attacks from an adversary could occur, and change
the CPS before that, rendering the adversary’s collected information useless.



ii

Sammanfattning

De senaste åren har cyberanfall mot kritiska infrastructurer varit ett växande
problem. Dessa infrastrukturer är särskilt utsatta för cyberanfall, eftersom de
uppfyller en nödvändig function för att ett samhälle ska fungera. Detta gör
dem till önskvärda mål för en anfallare. Om en kritisk infrastruktur stoppas
fr̊an att uppfylla sin funktion, d̊a kan det medföra förödande konsekvenser för
exempelvis en nations ekonomi, säkerhet eller folkhälsa. Anledningen till att
mängden av attacker har ökat beror p̊a att kritiska infrastrukturer har blivit
alltmer komplexa eftersom de numera ing̊ar i stora nätverk dör olika typer av
cyberkomponenter ing̊ar. Det är just genom dessa cyberkomponenter som en
anfallare kan f̊a tillg̊ang till systemet och iscensätta cyberanfall.

I denna avhandling utvecklar vi metoder som kan användas som en första
försvarslinje mot cyberanfall p̊a cyberfysiska system (CPS). Vi med att un-
dersöka hur informationsläckor om systemdynamiken kan hjälpa en anfallare
att skapa sv̊arupptäckta attacker. Oftast är s̊adana attacker förödande för
CPS, eftersom en anfallare kan tvinga systemet till en bristningsgräns utan
att bli upptäcka av operatör vars uppgift är att säkerställa systemets fortsatta
funktion. Vi bevisar att en anfallare kan använda relativt små mängder av
data för att generera dessa sv̊arupptäckta attacker. Mer specifikt s̊a härleder
ett uttryck för den minsta mängd information som krävs för att ett anfall
ska vara sv̊arupptäckt, även för fall d̊a en operatör tar till sig metoder för att
undersöka om systemet är under attack.

I avhandlingen konstruerar vi försvarsmetoder mot informationsläcker ge-
nom Hammersley-Chapman-Robbins olikhet. Med denna olikhet kan vi stu-
dera hur informationsläckan kan dämpas genom att injicera brus i datan.
Specifikt s̊a undersöker vi hur mycket information om strukturerade insig-
naler, vilket vi kallar för händelser, till ett dynamiskt system som en anfal-
lare kan extrahera utifr̊an dess utsignaler. Dessutom kollar vi p̊a hur den-
na informationsmängd beror p̊a systemdynamiken. Exempelvis s̊a visar vi
att ett system med snabb dynamik läcker mer information jämfört med ett
l̊angsammare system. Däremot smetas informationen ut över ett längre tidsin-
tervall för l̊angsammare system, vilket leder till att anfallare som börjar tjuv-
lyssna p̊a ett system l̊angt efter att händelsen har skett kan fortfarande upp-
skatta den. Dessutom s̊a visar vi jur sensorplaceringen i ett CPS p̊averkar
infromationsläckan. Dessa reultat kan användas för att bist̊a en operatör att
analysera sekretessen i ett CPS.

Vi använder även Hammersley-Chapman-Robbins olikhet för att utveckla
försvarslösningar mot informationsläckor som kan användas online. Vi föresl̊ar
modifieringar till den strukturella insignalen s̊a att systemets befintliga brus
utnyttjas bättre för att gömma händelsen. Om operatören har andra mål den
försöker uppfylla med styrningen s̊a kan denna metod användas för att styra
avvängingen mellan sekretess och operatorns andra mål. Slutligen s̊a visar vi
hur en anfallares uppskattning av händelsen förbättras som en funktion av
mängden data f̊ar tag p̊a. Operatorn kan använda informationen för att ta re-
da p̊a när anfallaren kan tänka sig vara redo att anfalla systemet, och därefter
ändra systemet innan detta sker, vilket gör att anfallarens information inte
längre är användbar.
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Chapter 1

Introduction

Digitalization is rapidly transforming many aspects of society by using data col-
lected by sensors in smart cities, manufacturing facilities, and energy networks to
decrease costs, detect faults, and improve the experience of its end-users. Most of
this information is used to improve operation in some form. For instance, energy
efficiency can be improved by analyzing energy flows in an energy management sys-
tem. With the help of big data, an operator could inject or redirect the energy in
these systems to reduce losses, thus achieving maximum utilization of energy [1–3].
Improvements to quality of life could be achieved by understanding how the users
interact with the system. In residential and office buildings, for instance, the oper-
ator could use the heating, ventilation and air cooling (HVAC) systems to make the
space the occupants use as pleasant as possible. Typically, the controllers which
are used to achieve that objective are based on predictive methods, where the an-
ticipation of future usage and behavior of its customers decides the current control
action [4–6]. Digitalization also offers a higher degree of decentralization and coop-
eration between subsystems. Such a digital communication network enables direct
peer-to-peer communication between subsystems, thus removing the need to go
through a central server.

A key aspect of digitalization, and specifically the digital communication net-
work, is its coupling with physical systems, creating a cyber-physical system (CPS).
However, many communication protocols are not designed with the security of
the physical system in mind. For instance, the standard communication protocol
MODBUS does not provide provide any security guarantees against any possible
eavesdropping or modification of data [7]. Instead, the security is typically in-
serted through the computer hosts in the network through firewalls or anomaly
detectors [8]. Similarly, standard protocols for SCADA systems were not designed
with security in mind [9], but instead focused on being to be open and easily oper-
ated [10]. The security solutions for SCADA typically are implemented in terms of
encryption on the host side of the network, while failing to consider how adversaries
can enter the system in the lower levels. Several governments have recognized that

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: The total number of vulnerabilities found in industrial control systems
during the years 2013-2018. Source: Positive Technologies, ICS Vulnerabilities:
2018 In Review.

critical infrastructures, which often contain a physical element such as the power
grid or the water distribution network, are prone to cyberattacks and are investing
heavily in securing them [11, 12]. In Figure 1.1, one can see that the number of
vulnerabilities that have been detected in industrial control systems has risen over
the past few years. Therefore, research into CPS, particularly in terms of robust-
ness and resiliency against faults and attacks, is a very active area. Specifically the
question regarding how cyber systems change when a physical component is added
remains an open question.

One specific question asks what happens if an maleficent player is able to gain
access to the system through the cyber component. Specifically, what can an adver-
sary do to the physical system, when they are able to read and manipulate signals
that are being sent in cyberspace. This type of questions is very relevant, as evident
by the amount of reporting on CPS attacks in the news, especially during recent
time. For instance, an adversary could alter the operating point of a system, as was
done in a recent attack on a water treatment facility in Florida [13] where poten-
tially deadly amounts of sodium hydroxide could have been released in the water
supply. Other examples of cyber attacks are derailing of trams, which was done by
a local teenager in Poland [14], or by poisoning local water ways, as was done in
the Maroochy incident [15]. The worst types of attacks aim to cause a total system
collapse, as in the case for a cyberattack on a German steel mill in 2014 [16], the
Stuxnet virus [17], which caused a destruction of Iranian uranium enrichment facil-
ities or the attack on the Ukranian power grid [18] which left hundreds of thousands
left without any electricity. A more recent attack was conducted on a pipeline in
the US [19], which caused the shutdown of nearly half of the US East Coast’s fuel
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supply.

These examples show that not only can an adversary render a CPS unusable, but
the adversary can actively use it to harm anyone who is in contact with or dependent
it. Thus, securing CPS is one of the most important issues facing the 21st century
since an unsecured critical infrastructure allows a potential adversary to use it to
affect the lives of hundreds of thousands people at once. In order to secure a CPS
against attacks, several defensive mechanisms have to be introduced. For instance,
introducing mechanisms that detect ongoing attacks or designing the system to
be attack resilient are two defensive approaches. In this thesis, we will consider
first-line of defence methods, meaning that we will consider securing a CPS such
that an adversary becomes discouraged from attacking the system. We show, with
relative ease on the side of the adversary, that conducting simple disclosure attacks
against the system can empower the adversary to design powerful undetectable
attacks, since they increase the adversary’s knowledge about the CPS. Therefore,
disrupting these disclosure attacks by making them as unreliable as possible has
the potential to make the adversary give up their efforts, since they will not be able
to construct a meaningful attack.

Another way to formulate the aim of this thesis is that we seek to preserve the
privacy of CPS and their users, which also gives us a clear application to test our
results. For residential buildings, cyberattacks in the form of privacy breaches are
of large concern. In the first half of 2019, Kaspersky reports that nearly 38% of
its smart building products were exposed to some form of cyberattack, of which
spyware was the most common type [20]. With 4th and 5th generation of district
heating on their way [21], which require a cyber element for their operation, and the
general implementation of the smart building management systems [22], keeping the
privacy of the residents should therefore be of the highest concern for any operator
working with controlling the HVAC systems of residential or office buildings.

1.1 Research Questions

In addition to accessing sensitive data, the leaked information could be used by the
attacker to figure out the structure of the underlying system and learn its weak-
nesses. For residential buildings, this could imply figuring out when the residents
are not home, which gives the adversary a clear opportunity to conduct a burglary,
for instance. An attack of this type, where the adversary obtains access to informa-
tion about the system is called a confidentiality or privacy breach. In this thesis,
we will develop defensive measures against these confidentiality breaches.

Consider the CPS that is shown in Figure 1.2, where communication between
the system and operator occurs over a network that is susceptible to cyberattacks.
Now consider an adversary that can intercept signals in the communication network.
If the adversary has access to both the up and down stream signals of the physical
system, then it will be able to learn the dynamics of the physical system and
be able generate attack signals from the learned model. Additionally, the more
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Physical System Operator

Measurement signals

Control signals

Communication
network

Figure 1.2: A Cyber-Physical System, where the communication between the phys-
ical system and operator occurs over a communication network

time the adversary spends eavesdropping, the better its learned model will be. A
better model enables the generation of more powerful attacks, which could remain
undetected until they destroy the physical system. Therefore, in the first part of
this thesis, we ask the following question,

Problem 1. For how long does the adversary need to eavesdrop before being able
to construct a harmful attack that is difficult to detect?

The question eludes to the inevitable fact that the adversary, with access to
all the in- and outgoing signals, will always be able to launch a powerful attack
eventually. After we investigate this question, we will assume a somewhat weaker
adversary. Specifically, we will consider an adversary that only intercepts signals
going out of the physical system, its measurements, that are sent through the
communication network to a controller which resides on a remote server, or to an
operator that is monitoring the CPS. If the adversary is able to reconstruct the
input using these measurements, then it it will be able generate a powerful attack
eventually.

While having access to the measurements is a serious confidentiality breach on
its own, we imagine that, for most of the time, the data will not be particularly
useful for an adversary. For instance, a hacker that gains access to a meter mea-
suring the energy usage of an office space, might not be particularly interested in
the energy usage during the night. For instance, someone might have forgotten
to turn off their computer or desk light, causing a non-zero energy usage shown
in the meter. Instead, they are probably interested in the activity of the office,
which is typically linked to changes of the energy consumption. Similarly, we imag-
ine that the physical system, for the most part, is at steady state around some
operating point. The particular value of the steady state may not be of interest
for the adversary that wishes to attack a dynamical system. Rather, the adver-
sary may instead be interested in the changes of the system, for instance when
the system moves between operating points. These changes are particularly useful
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for performing system identification [23], since the changes expose what type of
underlying dynamics govern the physical system.

In order to make it harder for the adversary to estimate the change, we will
intentionally modify the signals in the communication network by corrupting them
with noise. The noise may not necessarily be large enough to hide the change for all
future times, but it will obfuscate when the change occurred. Therefore, we pose
the following question that we seek to answer in this thesis.

Problem 2. Assume an adversary obtains access to the noisy measurements of a
physical system. How difficult is it to estimate when a change occurred?

The tools that we will use to answer Problem 2, and all of the subsequent
problems posed in this section, is a lower bound on the variance of the estimation
error. By quantifying the difficulty of the estimation in this manner, we are able to
see which parts of the system affects the estimation certainty. This insight will be
useful for offline design of a system where, for instance, the sensors could be placed
in a privacy-optimal manner. Also, since we are explicitly interested in controlling
the physical system, we will also be able to answer how the confidentiality depends
on the controller. This gives the operator an additional degree of freedom, where
they are able to choose different controllers for different changes, depending on the
need for privacy. A natural question to ask is whether every change is equally
private, when being estimated by an adversary. The thesis will additionally answer
the following question.

Problem 3. How can the operator influence the privacy through the design of the
controller.

The third problem can be used by an operator to increase the privacy without
having to fully redesign the physical system. In this case, the operator can send
signals to the system, indicating when to use a controller that changes the system
in a more private manner. Answering this question is useful for situations where
the operator does not explicitly know when the changes occur, and therefore is as
affected by the measurement noise as the adversary is. The uncertain measurements
will then lead to a large operating cost, since the controller will not be as optimal.
Therefore, the operator might want to use a non-private controller for operating
conditions that are not very prone to security breaches, whereas they would want
to increase the privacy for operating conditions that may imply a larger security
risk.

Finally, the last question we investigate in this thesis is how the information
leak develops over time. Specifically, we ask when an adversary is no longer able
to extract more information about a change.

Problem 4. For how many time steps after an abrupt change does the physical
system leak information?
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Answering this question gives the operator some degree of damage control, since
it can act as an indication of when the adversary might start their attack. To max-
imize their chances of constructing a successful attack, the adversary will probably
want to collect data until they reach a saturation limit. In some sense, it can be said
that the adversary has extracted the maximum amount of information about the
system, since any data collection beyond this limit will not improve the adversary’s
attack.

The contributions that will be presented in this thesis are general and could
be used in related fields outside of CPS security. For instance, the investigation of
Problem 4 in Chapter 7 will not be made with the security aspect in mind. Rather,
we will use the theory that is developed in previous chapters to analyze the certainty
of Non-Pharmaceutical interventions (NPIs) for the COVID-19 outbreak. Using the
theory that is developed in this thesis would then be able to answer questions about
certainty regarding to which NPI correspond to which change in the spreading
parameter of the disease model. With respect to the previous security formulation,
the analysis of the outbreak is akin to the eavesdropping of an adversary, and
the change we are trying to look for is the infectivity parameter. By being able to
answer with which certainty a change occurs, we will be able to definitely associated
a measured change with an NPI.

1.2 Thesis Outline and Contributions

Here, we will summarize the chapters of the thesis and their contributions to the
literature. At a glance, we start with some background on the security and privacy
of CPS, before we go on to showcase an example of an attack that is generated only
through confidentiality attacks and minimal assumptions about the physical system.
After that, we focus on various aspects of enforcing privacy of CPS to remove the
ability to construct such attacks. Finally, we demonstrate the applicability of our
developed tools to other problem settings, specifically the detectability of NPIs
during the COVID-19 pandemic.

Chapter 2

In this chapter, we go over relevant literature behind CPS security and specifically
privacy for dynamical systems. Additionally, we go over some results with regards
to fundamental limits of estimation of linear systems. Finally we will end the
chapter by looking into the well studied field of Change Point Problems, which will
provide us with key insights about estimation of change time.

Chapter 3

Chapter 3 will go over the mathematical concepts and notations that will be used
throughout the thesis. Specifically, we model the CPS as a dynamical system and go
over some definitions regarding security and privacy of CPS. The research questions
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discussed in Section 1.1 will be formalized. Additionally, we will state the adversary
model, which is will be a man-in-the-middle type adversary. Finally, the chapter
will go over the Hammersley-Chapman-Robbins bound and its generalization to
the Barankin Bound. These two bounds will be stated and discussed in relation
to the more famous Cramér-Rao lower bound, which provides lower limits on the
estimation error variance of parameters.

Chapter 4

Here, we answer Problem 1 by providing a motivating example of what could happen
if the adversary has complete access to the inputs and outputs of a dynamical
system. Specifically, what type of attacks it is able to conduct, even though it
has minimal knowledge about the system, for instance, it only knows that it is
linear, time-invariant with at most a certain number of states. We show that with
a minimal amount of data samples regarding the input and output of the physical
system, the adversary will not only be able to conduct undetectable attacks but
also completely decouple the system from the operator.

The chapter is based on the following publication,

• R. Alisic and H. Sandberg, “Data-injection Attacks Using Historical Inputs
and Outputs”. 2021 European Control Conference (ECC), Rotterdam, The
Netherlands, 2021, (accepted).

Chapter 5

In this chapter, we answer Problem 2. Specifically, we will look at how the system
dynamics affect the adversary’s capability of estimating changes, which are initially
modeled as step inputs before more general changes are considered. We produce
a lower bound on the estimation variance which explicitly depends on the system
dynamics, as well as controller and sensor placement. With this knowledge, an
operator can identify system setups which are more private than others and use
this knowledge to identify how to enhance the privacy of their own system.

This chapter is based on the following two publications,

• R. Alisic, M. Molinari, P. E. Paré and H. Sandberg, ”Ensuring Privacy of
Occupancy Changes in Smart Buildings,” 2020 IEEE Conference on Control
Technology and Applications (CCTA), Montreal, QC, Canada, 2020, pp. 871-
876.

• R. Alisic, M. Molinari, P. E. Paré and H. Sandberg, ”Maximizing Privacy in
MIMO Cyber-Physical Systems Using the Chapman-Robbins Bound,” 2020
59th IEEE Conference on Decision and Control (CDC), Jeju, Korea (South),
2020, pp. 6272-6277.
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Chapter 6

Here, we consider Problem 3, where the operator can redesign the controller to
generate more private output responses, as opposed to redesigning the physical
system. Under the assumption that the controller minimizes some cost function, it
is shown that with relatively minor modifications of the cost function, large privacy
enhancements can be obtained. The proposed minor modifications to improve pri-
vacy come in terms of regularized cost. Thus, this formulation allows the operator
to explicitly deal with cost functions and constraints on the controller. Finally, it
also provides the operator with explicit privacy-utility trade-offs.

This chapter is based on the following two publications,

• R. Alisic, M. Molinari, P. E. Paré and H. Sandberg, ”Maximizing Privacy in
MIMO Cyber-Physical Systems Using the Chapman-Robbins Bound,” 2020
59th IEEE Conference on Decision and Control (CDC), Jeju, Korea (South),
2020, pp. 6272-6277.

• R. Alisic and H. Sandberg, “Privacy Enhancement of Structured Inputs in
Cyber-Physical Systems,” 2021 60th IEEE Conference on Decision and Con-
trol (CDC), Austin, Texas, USA, 2021, (accepted).

Chapter 7

Here, we again consider the privacy of abrupt changes, but take a more generalized
approach in the form of considering changes for nonlinear systems. However, we
adopt a different approach where we are interested in what happens to the quality
of estimation as we continue to sample the output for long times after the change.
We aim to determine when the sampling of additional measurement sequences can
stop without affecting the quality of estimation. This is done in two steps. First, we
separate our previous results in two cases, the first of which is intrinsic due to the
nature of the signal, and the second one depends explicitly on the estimator. We
show when these two cases should be applied. Second, we provide simplifications to
our previous results, which can enable us make projections about future samples.

In order to show the generality of the developed theory, we will apply these
results outside the domain of CPS security. In particular, we will look into the cer-
tainty that a change in spreading parameter of a disease modeled by the Susceptible-
Infected-Removed (SIR) model as a function of the number of collected samples.
The aim is to determine whether it is possible to attribute changes in the outputs
to particular NPIs.

This chapter is based on the following publication,

• R. Alisic, P. E. Paré and H. Sandberg, “Detecting Multiple Parameter Changes
in Nonlinear Dynamical Systems With Applications to Non-Pharmaceutical
Interventions of COVID-19,” (under journal review).
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Chapter 8

In this chapter, we will summarize the findings in the thesis and present some
potential future extensions.

Additional publications

Additionally, the author has published the following paper, which will not be in-
cluded in the discussion of this thesis,

• R. Alisic, P. E. Paré and H. Sandberg, “Modeling and Stability of Prosumer
Heat Networks,” IFAC-PapersOnLine, Volume 52, Issue 20, 2019, pp. 235-
240.





Chapter 2

Background

In this thesis, we aim to prevent cyber attacks against CPS by using privacy as
a first line of defense. Historically, strategies for detection and mitigation against
attacks on CPS are usually based on the risk that an adversary will exploit an
inherent vulnerability of the system [24]. A central part of risk is the likelihood
of an attack, which is typically estimated through a combination of the amount of
prior knowledge the adversary has of the system, controller, and anomaly detector,
and the effort the adversary has to put into the attack. This likelihood is difficult
to obtain and is often estimated by experts [25, 26]. Therefore, many attacks that
have been considered in the literature assume that the adversary either knows a
parametric model [27] or learns an approximate model and compensates for the
uncertainty using disclosure attacks [28]. By saying that we are using privacy as a
first line of defence in this thesis, we explicitly mean that we are seeking to reduce
the likelihood of an attack by increasing the amount of effort the adversary has to
put in into learning the dynamics and operating procedures of the CPS.

2.1 The CIA Triad

Cyber attacks on CPS can typically be modelled as some action that is applied to
the signals of a dynamical system. Security breaches of CPS are categorised into
three distinct classes, depending on the type of action is applied to the signals;
attacks on a system’s confidentiality, integrity, or availability, abbreviated by CIA.
Let us start this chapter by giving a brief overview of these groups in order to
understand which types of attacks we expect to reduce the risk of by enhancing
privacy. However, since privacy breaches are closely linked to the confidentiality
group, we will go through them in reverse order.

In an attack on the availability of a system, the adversary blocks the system
from accessing some type of resource. This attack is modeled in a dynamical system
by a signal not reaching its destination. For instance Denial-of-Service attacks [29]
can be used to stop a controller from collecting the measurements that are needed

13
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to calculate a new input. Thus, they can be very detrimental to a CPS. Since it is
easy to detect when a resource becomes unavailable, an attack of this sort cannot
be considered as stealthy. In turn, if the adversary does not need to consider stealth
when conducting the attack, then they require relatively little system knowledge to
perform the attack. Therefore, the risk of attacks on availability will not be affected
by the enhancement of privacy of a CPS, and we will therefore not consider them
in this thesis.

Integrity breaches are a class of attacks where the adversary changes the signals
of a CPS, for instance through false data-injection. A common way to counter
these attacks is to add an anomaly detector, which is able to detect when the true
output of a system deviates from an expected output, based on an model of CPS.
However, an anomaly detector does not guarantee that the system is free from
attacks. In [30], it was shown that even if the adversary does not know the internal
state of the anomaly detector, the adversary is still able to generate an attack if it
has access to all of the measurements. Such stealthy attacks are typically detectable
in theory, but they are tailored to bypass a specific anomaly detector. Thus, explicit
knowledge about the anomaly detector is needed to conduct the attack.

Other types of integrity attacks focus on making the measurements seem as real
as possible. Examples of such attacks are the covert attack [31], where the adversary
masks its attack influence by altering the measurements as well, and zero-dynamics
attack [32], where the adversary excites dynamics in the physical system that are
not visible in the output. Similar to the availability attacks, integrity attacks have
the potential to cause massive damage to a CPS, or even destroy it. For instance,
it is possible to cause a system collapse through the use of zero-dynamics attacks
if the attacked dynamical mode corresponds to a non-minimum phase zero [33].
However, once again, in order to be able to generate such attacks, the adversary
needs to have very good knowledge about the physical system that it is attacking.

The previous examples shows that in order to conduct powerful integrity at-
tacks, the adversary needs to know something about the dynamics of the CPS.
In many cases this knowledge is not available to the adversary. Instead however,
the adversary can obtain the equivalent knowledge by employing an eavesdropping
phase, where they extract data from the CPS in order to learn the dynamics, ahead
of their attack. The act of extracting data from the CPS in order to learn some-
thing about the underlying system is an example of a confidentiality breach. In that
case, the adversary gains access to information about the CPS, which means that
the privacy of the CPS has been compromised. However, a confidentiality attack is
typically very difficult to detect, since it does not directly change anything in the
CPS and therefore, there are no signal deviations to detect. Confidentiality attacks
do however, aid the adversary in conducting more powerful attacks. For instance,
confidentiality attacks allows the adversary to learn the system dynamics or the
internal state of the anomaly detector, thus enabling them to generate and conduct
some of the more powerful, undetectable integrity attacks.

An example of the combination of a confidentiality and integrity attack that does
not use model knowledge is the Replay attack [34], where the adversary starts by
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collecting measurement data, which is the confidentiality breach, and then replays
these measurements back to the operator, which is the integrity breach. This attack
is relatively easy to detect once the physical system changes operating point, how-
ever, before that change, the adversary may control the physical system arbitrarily.
Recently, however, a model-free undetectable sensor attack for static systems us-
ing subspace methods was proposed in [35]. Additionally in [27], a sensor attack
that essentially decouples the physical system from the operator was created using
input-output data. However, they rely on injected sensor noise to achieve their
decoupling.

The crucial role that confidentiality plays in enabling integrity attacks is high-
lighted through these examples. However, research into the connection between
these attacks remains relatively sparse in the literature. In this thesis, we will ex-
pand upon this knowledge by considering an additional framework for data-driven
attacks in Chapter 4. The reason for privacy being the first line of defence in a
secure CPS is therefore well motivated, and any operator wishing to secure their
CPS must enhance the privacy component.

2.2 Privacy in Cyber-Physical Systems

There are several ways one can consider privacy in a dynamical system, as will be
presented in this section. However, the different privacy problems can roughly be
classified into three groups, depending on what the adversary is trying to obtain.
For state privacy, the adversary tries to obtain a good estimate of (a subset of)
the state vector. Generally, the majority of research into the privacy of dynamical
systems has revolved around keeping the state of the system private. As protective
mechanisms, consensus algorithms have been used to ensure that the estimation
variance of the initial state is not zero [36], or the minimization of Fisher informa-
tion has been used to increase the variance of state observers [37]. Another type of
privacy is parametric privacy, where the adversary tries to learn a specific model
of the system. In [38] for instance, the privacy of the model parameters are con-
sidered. It was shown that by minimizing Fisher information, one could increase
the adversary’s estimation variance of the model parameters, thus increasing its
uncertainty. Here however, we will consider input privacy, since we are interested
in how an adversary can directly use the input-output relationship of the physical
system to construct an attack.

Encryption has historically been the most common protection method against
privacy breaches for cyber systems [39]. The combination of control and encrypted
signals is currently a popular research topic, where homomorphic encryption seems
to offer a potential solution [40–42]. Encryption, however, has major drawbacks
in terms of additional costs. For instance, increased computational due to the en-
coding/decoding operations either add additional computational time or require
specialized hardware. Another example is the additional costs related to the main-
tenance of secret keys. These drawbacks may make encryption a cumbersome solu-
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tion for real-time applications [43]. Additionally, it has been illustrated in [44], that
the homomorphism allows a potential attacker to crack the secret keys relatively
efficiently.

Instead, a low cost defence strategy would be to introduce noise into the data
stream, which makes the adversary uncertain about what the actual signal is. A
natural framework would then be to consider privacy for systems in the context of
hypothesis testing [45, 46]. An attacker considers a set of hypotheses that corre-
spond to different states of the system, and uses measurements to determine which
hypothesis is true. The privacy is defined as being the type-II error of a hypothesis
test, namely the probability of missing to declare that the correct hypothesis is
true. However, a binary metric like this does not explicitly tell the operator how
close the adversary’s estimate is to the truth, since a very small error in the model
leakage could be sufficient for the adversary to construct an attack.

Adding noise is also a central mechanism behind the concept of differential
privacy for databases [47, 48]. A database can be modeled as a static system that
answers queries based on its individual entries. However, an adversary could use
these answers to figure out what the entries are, especially if the adversary has some
additional side information. For instance, if the adversary knows the salary of all
but one employee in a company, then it can query the database for the average salary
of the company. This additional information allows the adversary to deduce the final
employees salary. A differentially private database, however, can answer queries
with regards to its data, while keeping the individual data entries private even if the
adversary has additional side information [49]. It does so by corrupting the answers
to queries with noise so that it becomes more difficult to reveal individual entries
even if the adversary has side information. The operator obtains a level of control
over how much information is potentially leaked, by choosing the amount of noise
that is released. Differential privacy works best with signals that are somewhat
similar, since the noise level is determined based on the difference between the
two most dissimilar entries. This is different from what we are trying to hide in
this thesis, namely one particular true data entry, which should not be that much
affected by the addition of one relatively wrong trajectory in the data base.

Extending the concept of differential privacy to dynamical system may not be
obvious, however attempts have been made. In [50], the entire output trajectory
was regarded as an entry in a static database, which reduced the problem to a
static database. A more direct generalization of differential privacy to dynamical
systems is presented in [51], where the privacy of aggregated input signals is con-
sidered. However, since dynamical systems generate temporal data, an adversary
can use models of the physical system to reconstruct corrupted data supplied by
the differentially private mechanism. Therefore, special care has to be taken into
account when designing these systems. Privacy for dynamical systems may instead
be defined based on the adversary’s estimation error states [38, 52], and can be
quantified by, for instance, the estimation variance or the mean error. Using this
metric, the adversary’s accuracy is explicitly shown, and thus, more direct ways to
protect against them are possible. In this thesis - we will adopt the later approach,
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however, we will provide some results relating to differential privacy.

2.3 Fundamental Limits to Detection and Estimation

The central concept behind input privacy is input observability, as defined by [53]. If
a non-zero input can be applied to a system such that the output of that system does
not change because of the input, then the system is not input observable. In [54],
the structured input and state observability was shown for networked systems and
conditions for when a subset of state and input signals are reconstructable are
given. Generally, each input and state needs to be uniquely identifiable by a subset
of samples, and observability is lost if an output sequence can be explained by two
different input sequences. Although the input observability conditions are given in
a non-stochastic setting, the addition of process and measurement noise does not
remove this necessary condition.

Input reconstruction is closely related to system inversion [55]. Theoretically,
system inversion requires that the system contains no non-minimum phase zeros in
order to make the inversion stable [56]. A classical result regarding this is given
in [57]. There, the authors present an algorithm that is able to reconstruct the
inputs using the output data, the so called Massey-Sain algortihm. Given that the
system is input observable, the algorithm reconstructs the input after some fixed
amount of time steps. Similarly, Moylan [56] presented a different algorithm which
is also able to reconstruct the input after a couple of time steps.

Although the ultimate goal of an adversary in this thesis is to reconstruct the
input, we will not explicitly deal with the case of how well the adversary reconstructs
the input, in the sense of system inversion above. We will not assume that the
adversary is completely ignorant about the system input. The adversary that is
considered here may perhaps be well informed of the input in the sense that it knows
the input sequence a priori, however it does not know when it is applied. Such an
adversary will be able to reconstruct, or detect, the input the moment it is visible in
the measurements compared to the noise, which could be much sooner than the time
it takes to fully reconstruct the input. Therefore, the adversary could instead be
looking for a confirmation of an input sequence through the measurements, instead
of estimating the entire input from scratch.

Estimating inputs in the presence of noise can be achieved using a maximum
likelihood approach, which can be solved through an optimization problem. For
each additional data point that is sampled, the entire optimization problem has
to be solved again, however the computational complexity increases for each new
added data point. Such an estimator is called the Full Information Estimator [58].
Several restrictions for such an estimator have been considered. For instance, by
restricting the estimation horizon, one obtains the Moving Horizon Estimator [59].
A notable special case for a linear, time-invariant dynamical system with a known
input sequence and an estimation horizon of 1, one obtains the famous Kalman
filter [58] if the noise is Gaussian. Since the optimization based approach also allows
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for constraints on the input, it is an ideal tool to employ for when an adversary
knows something about the input a priori. Therefore, in this thesis, the adversary
will exclusively apply the Full Information Estimator to estimate the change.

2.4 Change Point Problems

Since the input reconstruction an adversary is faced with in this thesis is two-
fold, first estimating when a change occurs, and then possibly estimating what
the change was, they are essentially solving a Change Point Problem. Change-
point detection has been an active research area for nearly a century, where the
initial works of [60, 61] investigated abrupt changes process control using online
methods. Since then, several different detection algorithms have been introduced for
detection of abrupt changes [62]. Most notable examples are the χ2-detector, which
is a memoryless detector that uses the residuals as output, MEWMA-detector,
which uses a moving average on the residuals as output, and finally the CUSUM-
detector, which uses a cumulative sum of the residuals with a forgetting factor. All
of the aforemention detection algorithms detect a change once their output crosses
a particular threshold, which is typically chosen as a trade-off between Type I and
Type II errors. Additionally, this trade-off affects the time until the detection of a
change.

The focus on online methods is not surprising since the common application for
change point detection has been in fault detection [63]. In [64], however, an offline
detection algorithm was proposed in order to detect abrupt changes, which they
later convert into an online version by restricting the algorithm to finite window
lengths. In fact, the proposed method is related to the Generalized Likelihood
Ratio test [65]. In [62], an offline maximum likelihood estimator of the change time
and change amplitude is proposed, which is shown to be the same as the CUSUM
algorithm applied to the offline data.

The authors in [66] showed that for estimating the change time, one will never
be able to obtain a uniform minimum variance unbiased estimator. Therefore, the
quality of estimation does not only depend on what estimator is used, but also
where the change time occurs in the time window. However, given enough samples
before the change, knowing how the statistics look like both before and after the
change time is not different from not knowing the statistics asymptotically [67]. In
other words, as the number of samples tend to infinity, the limiting uncertainty will
be the one that arises from the change time uncertainty. For small sample sizes
on the other hand, the asymptotic distribution of the change time estimation will
be poor [67, 68]. The best an adversary can then do is to solve a combinatorial
problem, where the second part of the input reconstruction, specifically figuring
what the eventual change was, is solved for each possible change time [62].



Chapter 3

Preliminaries

In this chapter, we will formalize the discussions of the previous chapter and clearly
define what we mean by CPS, adversary and operator. Initially, the notation that
is commonly used throughout the thesis will be introduced and used to build up the
three aforemention entities. Finally, we will go over some of the underlying results
that are used recurringly throughout the thesis.

3.1 The Cyber-Physical System

As we have eluded to in previous chapters, we will model a CPS, which can be seen
in Figure 3.1, as a dynamical system that is characterized by the dynamics,

xk+1 = f(xk, uk),

zk = g(xk, uk),

yk = zk + ek,

(3.1)

where the state and outputs are given by xk ∈ Rn and zk ∈ Rp, respectively. The
measurements, yk, are simply zk corrupted by measurement noise at each time
step, where ek ∼ N (0,Σ) and i.i.d. Denote the initial state as x0. The CPS
is illustrated in Figure 3.1, where the inputs uk, and the measurements yk, go
through a communication network. The operator, on the other side of the network,
is characterized according to Figure 3.1, namely they will act as a (potentially
high-level) controller together with an anomaly detector.

The CPS is assumed to be operating in steady state for most of the time. We
will model this as the input uk being zero for the first few time steps. It is assumed
that the adversary does not obtain any useful information about the CPS if their
sampling horizon occurs over constant steady state. Changes are modelled as inputs
uk ∈ Rq that have the following form

uk =

{
0 for k < k∗,
vk for k ≥ k∗,

(3.2)

19
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Physical System Controller
Anomaly
Detector

Y

U

Communication
network

Figure 3.1: The graph shows the CPS, where the measurements, Y are sent from
the physical system to the controller and the anomaly detector. The control inputs
U are sent from the controller to the anomaly detector and the physical system.
For the latter transmission, the signal has to also travel across the communication
network.

where vk∗ 6= 0 and vk ∈ Rq, ∀k > k∗.

The signals that are being sent back and forward over the network will generally
be denoted by Y = (yk)N−1

0 and U = (uk)N−1
0 , which are data sequences over a

horizon of length N . Any other signal sequences of length N will also be denoted
similarly, for instance, the sequences Z = (zk)N−1

0 and X = (xk)N−1
0 . Although

we will mostly work with real-time data in this thesis, thus the length of the data
sequence will be N = 1, Chapter 4 will consider systems that can send longer signal
sequences, N > 1 as well.

A special type of system dynamics that will mostly be considered in this thesis
is the linear, time-invariant system, whose dynamics are given by


xk+1 = Axk +Buk,

zk = Cxk +Duk,

yk = zk + ek,

(3.3)

where the system matrices are A ∈ Rn×n, B ∈ Rn×q, C ∈ Rp×n and D ∈ Rp×q. We
will assume that the operator knows the system matrices for the dynamical system
when controlling it.

The objective of the operator is to keep the system running without any out-
side interference from an adversary, while trying to minimize some cost functional.
Without loss of generality, the latter objective can be switched for something else,
such as trying to make the system follow a reference trajectory or to extract data in
order to employ a learning algorithm on the system for latter improvements to the
control or system design. Here however, we will explicitly assume that the operator
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Figure 3.2: The graph shows where the adversary enters the CPS, namely though
the communication network.

wishes to minimize the cost

minimize
uk

∑
x>k Qxk + u>k Ruk + x>k Nuk,

subject to xk ∈ X , uk ∈ U ,
(3.4)

where the summation can take place over any horizon.
The objective to keep the system running without interference implies that the

operator essentially has to counteract any attack that a potential adversary might
want to conduct on the system. Ideally, the operator should know what attack an
adversary plans to conduct, however in reality, this is difficult to know. Instead, the
operator should focus on what the adversary does not know, and counteract any
attempt to improve their knowledge in order to be able to construct better attacks.
Therefore, to state the adversary’s objective, we need an explicit adversary model
and what they need to learn about the system to be able to construct or improve
an attack.

3.2 Man-In-The-Middle Adversary Model

Consider Figure 3.2, where an adversary is present between the operator and the
system. This type of an adversary is called a man-in-the-middle (MIM) [7, 9],
because the signals have to essentially pass through the adversary. In this setup,
in order to conduct a confidentiality or privacy breach, the adversary has to have
access to disclosure resources, which essentially means that they have to be able
to read some of the signals. We will assume that the adversary is able to read the
measurements, Y , that are being sent from the physical system to the operator.

For simplicity, let us assume that the adversary knows the input sequence that
is being applied to the system. This assumption is reasonable for some of the cases
we consider in this thesis, since the inputs for most cases will be simple steps.
Even if the adversary does not know the input a priori, the results we obtain will
still be applicable for more general cases. If the adversary is able to successfully
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detect when a the input has been applied, then it will be able to successfully learn
an input-output dynamical model, modulo some potential steady state gain. This
small amount of information leakage turns out to be sufficient for learning a system
model which the adversary can base their attacks on.

Formally for the disclosure phase, the adversary seeks to use the gathered data

in an estimator of the change time k∗, ψ(Y ) = k̂∗, to minimize the following
expression,

minimize
ψ

Cov(ψ(Y )). (3.5)

If this quantity is small, then the adversary has a pretty good chance of estimating
a physical model for instance, which the adversary can use to generate an unde-
tectable attack.

3.3 Definition of Input Privacy

Now that we have stated the objective of the adversary, the operator’s second
objective is clear. It should preserve the privacy of system (3.1) through obstruction
of the adversary’s goal (3.5). Based on this goal, we are now ready to define what
we mean by privacy in this thesis.

Definition 1. Consider an unbiased estimator ψ(Y ), which uses the measurements
Y and possibly a priori knowledge of (6.10), to produce an estimation of k∗,

ψ : Rp×N → N. (3.6)

We define the level of privacy Π to be

Π := min
ψ

Cov (ψ(Y )) . (3.7)

The privacy level of system (3.1) is thus the most certain estimate of the change
time k∗ the adversary can produce given measurements Y . We can expand this
definition of privacy to cases when the input shape is not explicitly known,

Definition 2. Consider an unbiased estimator ψ(Y ), which uses the measurements
Y , to produce an estimation of k∗ and the input sequence U ,

ψU : Rp×N → N× Rq×N . (3.8)

We define the level of privacy with unknown input ΠU to be

ΠU := min
ψU

Cov (ψU (Y )) . (3.9)

Solving (3.7) and (3.9) essentially answers Problem 2. However, being able
to solve these optimization programs precisely is generally difficult. In the next
section, we will provide tools which are generally used to analyze such problems.
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We will show in Chapter 6 that v>ΠUv ≥ Π, where v is a vector that extracts
the variance of the change time estimation. Thus, if the operator increases the
privacy level Π, it may also increase ΠU implicitly. Given these definitions, we can
now state the operator’s first objective as

maximize min
ψ

Cov(ψ(Y )). (3.10)

Obtaining an explicit solution for (3.10) is in general hard. However, as we will
see in the next section, the solution can be analyzed using lower bounds of this
quantity.

3.4 Lower Bounds on Estimation Variance

The Cramér-Rao (CR) lower bound [69] is typically used to answer questions about
uncertainties of parameters through their estimation error variance. Assume that
the measurements Y follows a probability distribution that is parametrized by the
vector θ, p(Y |θ). The CR lower bound then states that for any estimator with bias
h(θ) of the parameters, the covariance of the estimates is lower bounded by

Cov(θ) ≥
(

1 +
∂h(θ)

∂θ

)
(I(θ))

−1

(
1 +

∂h(θ)

∂θ

)>
,

where I(θ) is the Fisher information matrix defined by,

(I(θ))ij = E
[
∂ log p(Y |θ)

∂θi

∂ log p(Y |θ)
∂θj

∣∣∣∣ θ] .
Note that due to the due to the existence of the bias term, the adversary could

simply choose an estimator where ∂h(θ)
∂θ = −1, which would make the the covariance

be lower bounded by 0. This is a bad estimator, since it in essence means that it
will always guess some value c, irrespective of the measurements Y it has obtained.
It is because of this reason that we will enforce an unbiased condition on estimators
in future Chapters, which is made to ensure that the adversary at least has a
somewhat good estimator.

The Hammersley-Chapman-Robbins (HCR) bound

A major difficulty for the abrupt changes that we are considering in this thesis, is
the fact that the Fisher Information matrix in the Cramér-Rao bound calculates a
derivative. This derivative implies, by definition, that the parameter vector should
be able to tend to zero continuously, θ → 0. However, we are interested in, amongst
other things, to estimate the change time k∗, which is a discrete parameter and thus
is not able to tend to zero continuously.

We therefore need another result that we can use for the analysis of discrete
paramters. Hammersley [70], and Chapman and Robbins [71] proved the following
result independently of each other.
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Theorem 1. Let θ ∈ Θ ⊂ R1 be a scalar of unknown parameters and let Y ∼ p(Y |θ),
where p(Y |θ) is the probability distribution for Y given the parameter θ ∈ Θ. Then,

the variance of any estimator of the parameters, ψ(Y ) := θ̂ using the sample Y is
lower bounded by,

Cov(ψ(Y )|θ) ≥ sup
(θ+τ)∈Θ, τ 6=0

E2

E
[(

p(Y |θ+τ)
p(Y |θ) − 1

)2
∣∣∣∣ θ] , (3.11)

where,
E2 = (E [ψ(Y )|θ + τ ]− E [ψ(Y )|θ])2

(3.12)

This lower bound does not require any regularity conditions on the parameter
and therefore, we can use it to lower bound the estimation variance of discrete
parameters.

Note that it is quite easy to obtain the Cramér-Rao bound from the HCR bound
under the assumption that the parameter fulfills the regularity conditions. We get
that, using E [ψ(Y )|θ + τ ] = θ + τ + h(θ + τ),

Covθ̂ ≥ sup
τ 6=0

(τ + h(θ + τ)− h(θ))
2

E
[(

p(Y |θ+τ)
p(Y |θ) − 1

)2
∣∣∣∣ θ]

≥ lim
τ→0

(
1 + h(θ+τ)−h(θ)

τ

)2

E
[(

p(Y |θ+τ)−p(Y |θ)
τ

1
p(Y |θ)

)2
∣∣∣∣ θ] =

(
1 + ∂h(θ)

∂θ

)2

E
[
∂ log p(Y |θ)

∂θ

2
∣∣∣ θ] ,

where h(·) is the bias of the estimator. The last expression is the CR bound for
a single parameter θ. Thus, for the cases where both bounds can be applied, the
HCR bound is tighter. In fact, several previous numerical results [72,73] show that
the HCR bound could be much tighter than the CR bound in many cases.

Similarly as we did with the CR bound, we would like to consider the unbiased
version of this lower bound to be able to apply it to estimators that are in sense
“good”. Using the same approach as in the previous section, we get that the HCR
bound for unbiased estimators is,

Covθ̂ ≥ sup
τ 6=0

τ2

E
[(

p(Y |θ+τ)
p(Y |θ) − 1

)2
∣∣∣∣ θ] .

Finally, let us perform a simplification to the bound, which we will use throughout
the thesis. Note that the denominator can be written as,

E

[(
p(Y |θ + τ)

p(Y |θ)
− 1

)2
∣∣∣∣∣ θ
]

= E

[(
p(Y |θ + τ)

p(Y |θ)

)2

− 2
p(Y |θ + τ)

p(Y |θ)
+ 1

∣∣∣∣∣ θ
]
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which simplifies to

Covθ̂ ≥ sup
τ 6=0

τ2

E
[(

p(Y |θ+τ)
p(Y |θ) − 1

)2
∣∣∣∣ θ] = sup

τ 6=0

τ2

E
[(

p(Y |θ+τ)
p(Y |θ)

)2
∣∣∣∣ θ]− 1

.

This is the form of the HCR bound that we will work with in the thesis.
In other words, the HCR bound states that the variance of the estimated pa-

rameters is lower bounded by the largest fraction between E2 and the χ2-divergence
between the true and an alternative probability distribution. Using Neyman’s ver-
sion, the χ2-divergence is defined as,

χ2 (p(x|θ + τ)‖p(x|θ)) =

∫ (
p(x|θ + τ)

p(x|θ)
− 1

)2

dp(x|θ),

which can be simplified to,

χ2 (p(x|θ + τ)‖p(x|θ)) =

∫ (
p(x|θ + τ)

p(x|θ)

)2

dp(x|θ)− 1. (3.13)

The χ2-divergence has historically been used as an information measure with re-
gards to hypothesis testing. Note that the χ2-divergence, or simply denominator
of (3.11), does not depend explicitly on what estimator is used. One may see that
the estimator does, however, appear explicitly in the numerator (3.11). The numer-
ator essentially measures how the estimator bias changes for alternative parameters.
In this thesis, we will only consider the unbiased HCR bound, E2 = τ2, for simplic-
ity, since it is always possible to pick a bias so that the estimation variance becomes
arbitrarily small, which is known as the bias-variance trade-off. This also motivates
why we only consider unbiased estimators in Definition 1 and Definition 2.

Finally, similarly as for the unbiased CR bound, where the inverse of it is the
Fisher Information, we can use the denominator of (3.11) to define the HCR Infor-
mation.

IHCR(θ) = E

[(
p(Y |θ + τ∗)

p(Y |θ)

)2
∣∣∣∣∣ θ
]
− 1

In the thesis, this information metric will be used directly to improve privacy.
Specifically, note that the value of this information metric depends on the optimal
τ∗, which maximizes the bound in (3.11).

Barankin-type bounds

A final lower bound that we will use in this thesis is an approximation to the
Barankin bound (BB) [74]. A drawback of the HCR bound is that it is rarely
extended to the multi parameter case in the literature. Following the note by
Chapman and Robbins in [71], where they mention that their result may be obtained
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using Barankin’s result, many authors have tried to generalize the HCR bound
to multiple parameters through the BB, with somewhat differing approaches [74].
Here we will do the same, however, we will not use the denote the bound by HCR.
Instead, we will call it a Barankin-type bound, to emphasize that it is a special case
of the BB [75].

The Barankin bound is the tightest bound that gives the optimal local unbiased
estimation variance. It is, however, difficult to compute since it requires that an
infinite amount of test points are evaluated in order to obtain the lower bound.
The approximation to the bound, the Barankin-type bound, uses instead a finite
number of test points, which we write as

Cov(θ̂) ≥ Φr(H − 1)−1Φ>r , (3.14)

where θ̂ is the estimate of the true parameter θ0 and 1 is a matrix of ones. The
inequality between matrices should be interpreted as A ≥ B means that the matrix
A−B is positive semi-definite. The matrix H is then defined by

(H)ij := E

[
p (Y | θi) p (Y | θj)

p (Y | θ0)
2

∣∣∣∣∣ θ0

]
,

where Φr =
[
Eθ1(θ̂)− Eθ0(θ̂) · · · Eθr (θ̂)− Eθ0(θ̂)

]
. The vectors θi 6= θ0, for

i ∈ {1, . . . , r} are test vectors that can be chosen at will, since (6.11) will hold for
any choice. The Barankin bound is then obtained by letting r →∞.

Note the similarities between (6.11) and the HCR bound. In both cases, one
looks at the difference between the true and a possible alternative value of the
parameter. However, in the Barankin Bound, several different test points can be
evaluated. By fixing the number of test vectors, r, to some finite value, we obtain
the approximation we seek. This Barankin-type bound will also lower bound the
estimation variance, however it will not be as tight as the Barankin Bound.

Note that both the HCR bound and the CR bound can be recreated from
the Barankin-type bounds. Let us consider the bound for unbiased estimators,
Eθ(θ̂) = θ. Fix r = 1, then we get that the lower bound becomes,

Cov(θ̂) ≥ τ2

E
[(

p(Y |θ+τ)
p(Y |θ)

)2
∣∣∣∣ θ]− 1

.

Note that this inequality holds for all τ 6= 0, which implies that it also holds when
we take supremum over the expression. Thus, by obtaining the HCR bound in
this case, we can conclude that the Barankin-type bounds is a generalization of the
HCR bound.

Similarly, we can recreate the CR lower bound for multiple parameters. A
typical approach is to use Φr = diag(θ). Then, similar to how we went from the
HCR bound to the one-dimensional CR bound. We will omit the details here, since
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the CR bound will not be used in this thesis. However, details about this procedure
can be found in [76].

Thus, the Barankin-type bound acts as the generalization to both lower bounds.
In fact, due to ambiguity of the test vectors, one could obtain several other lower
bounds as well. We will use this property in Chapter 6, where we will use a
particular choice of test vectors to obtain a lower bound that uses a mixture of
discrete and continuous parameters simultaneously.

Just like for the HCR, we can define the factorH−1 as the Barankin information
matrix [77].

IrBB(θ) = H − 1

Note that this information matrix depends on which test vectors are chosen, and
therefore, similar to the Barankin-type lower bound, only captures the full informa-
tion when r →∞. In Chapter 6, we will seek to minimize the Barankin Information
matrix in order to improve privacy for mixed parameter estimation.





Chapter 4

Data Driven Attacks

Recall that an adversary could use disclosure attacks to obtain information about a
CPS which, in turn, can be used to generate attacks. In this chapter, we investigate
how much information the adversary needs so as to be able to generate undetectable
and stealthy attacks. These types of attacks can be quite devastating since they
could allow the adversary to move the system states to some arbitrarily large value,
‖x‖2 → ∞. Moving states arbitrarily indicates that the adversary can break or
destroy the physical plant before a fault is detected by an anomaly detector, which
shows that the aforementioned attacks could be quite devastating for the operator.

Typically, an adversary that conducts undetectable or stealthy attacks requires
a good model of, at least some parts of, the CPS. In many cases, these models
are obtained by disclosure attacks. However, we will approach the problem here
slightly differently, namely by linking possible attacks directly to disclosed input-
output data through the assumption that the adversary uses a model-free approach
to design the attacks. This methodology allows us to determine precisely when
enough data has been sampled to generate different types of attacks against a
CPS, assuming that the adversary has relatively little knowledge about the system
initially. We assume that the adversary performs their disclosure attacks after they
have obtained full control over the communication network, meaning that they
can read and write to all of the signals directly, which is a very ideal scenario.
Additionally, another idealization is that we will assume that there is no noise in
the CPS, meaning that we are working with deterministic systems. However, in
the final parts of this chapter, we will discuss how the methodology we present here
can, with some minor modifications, still be applied in the presence of noise.

4.1 The Behavioral Framework

A model-free description of the system can be achieved through the use of Willems’s
Fundamental Lemma [78, 79]. With it, the adversary only needs to consider lin-
ear combinations of input-output pairs in order to anticipate the response of the

29
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physical plant. Now, consider a sampled input trajectory denoted by

Du = [u1, u2, . . . , uL+n+N−1].

We define the Hankel matrix for this trajectory as

Hu =

[
HPu
HFu

]
=


u1 u2 · · · uL
u2 u3 · · · uL+1

...
...

. . .
...

un+N un+N+1 · · · uL+n+N−1

 , (4.1)

where HPu has qn rows, which represent the n initial subtrajectories of length L
in Du, and HFu has qN rows, which represent the remaining N subtrajectories of
Du. The number of columns, L, denotes the number of subtrajectories of length
n+N that can be constructed from Du. Similarly, consider a corresponding Hankel
matrix for the sampled output trajectory, Dy = [y1, y2, . . . , yL+n+N−1],

Hy =

[
HPy
HFy

]
=


y1 y2 · · · yL
y2 y3 · · · yL+1

...
...

. . .
...

yn+N yn+N+1 · · · yL+n+N−1

 , (4.2)

where HPy has pn rows and HFy has pN rows. The fundamental lemma states that

if Hu has full row rank, then for any g ∈ RN , the following expression is a valid
input-output trajectory of a linear, time-invariant system,[

Hu
Hy

]
g. (4.3)

If the Hankel matrix Hu has the property that it is of full row rank, then we say
that it is persistently exciting.

Definition 3. The data set Du is persistently exciting of order N if Hu has full
row rank.

In other words, the fundamental lemma states that if the data set Du is persis-
tently exciting of order N , then we can find several vectors g such that the elements
of HPu g and HPy g correspond to the previous n inputs and outputs of the physical
system, respectively. From this set of vectors g, if we thereafter apply the inputs
that are given by HFu g to the physical plant, then the output will be Hyg. Thus, the
fundamental lemma provides a way to control the physical plant by directly work-
ing with input-output data, circumventing the need for a model of the plant. In
the subsequent chapters, the adversary will use this control methodology to design
attacks.



4.2. PROBLEM STATEMENT 31

4.2 Problem Statement

Recall that we consider the physical plant of a CPS as a discrete, linear, time-
invariant system,

G(U, x0) :

{
xk+1 = Axk +Buk

yk = Cxk +Duk.
(4.4)

We denote an output trajectory of system (4.4) with length N as Y = G(U, x0) :=
{yk}N−1

k=0 . Additionally, we assume that system (4.4) is controllable, meaning that
the system can reach any state. The input that the physical plant (4.4) receives,
Ũ , is determined by a controller that sends the signal U through a communication
network and then is altered in the communication network, as shown in Figure 4.1.
The system response, Y , is sent back to the controller through the communication
network in Figure 4.1 in order to calculate a new input signal. The operator, which
we here use to denote both the controller and the anomaly detector, is assumed to
know the system model (4.4). Specifically, the model (4.4) is used in the anomaly
detector, which compares the expected output, Ŷ , to the received output, Ỹ , and
uses the mismatch to detect any errors or attacks in the system. If the anomaly
detector finds a large or persistent mismatch it sounds an alarm to alert the human
operator that an error or attack on the system has occurred.

Remark 1. The specific anomaly detector and controller that are used here are
not particularly important, since the attacks that we consider will be able to avoid
detection from any type of setup.

As was stated previously, the adversary is assumed to have full access to all
signals in the communication network in the sense that it can read and write to the
signals which are passing through the communication network, which is illustrated
in Figure 4.1. After an initial disclosure attack phase, where the adversary collects
input-output data which breaches the confidentiality of the system, the adversary
breaches the integrity of the physical plant by conducting a data injection attack.
We model this data injection attack by the addition of signals Ua and Y a in Fig-
ure 4.1. The adversary’s goal is to drive the system to a malignant state while
evading detection from the anomaly detector. However, since a change in the state
of the system often tends to change the output of the system as well, which can
easily be detected by the anomaly detector, the adversary will only consider to use
undetectable attacks.

Definition 4. An undetectable attack is a combination of attack signals (Ua, Y a)
such that

ỹ := G(U, x̃0) = Y + Y a = G(U + Ua, x0) + ya

for some U and Y . Additionally, if x̃0 = x0, we say that it is a perfectly unde-
tectable attack.
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Figure 4.1: The adversary reads and changes signals that are sent through the
communication network.

An attack of this type cannot be detected by any anomaly detector [80], since
the output of the system is indistinguishable from a non-attacked system. Because
the undetectable attack works against all types of anomaly detectors, Definition 4
describes a relatively restrictive class of attacks. We will broaden the class of attacks
by showing how one can apply this methodology to attacks that are detector-
specific. Most anomaly detectors are designed to allow small deviations from their
internal model in order to be applicable to be applicable to stochastic systems
or when the operator’s model of the system contains errors. These deviations
are captured by the residual, δ(Ỹ , Ŷ ) := {δk(ỹk, ŷk)}N−1

k=0 , where δk(·, ·) is some
distance measure. The residual could, for instance, be the `2-norm of the difference
between the expected output and the measured output, δk(ỹk, ŷk) = ‖ỹk − ŷk‖2.
The anomaly detector labels certain trajectories of the residual as safe, δ(Ỹ , Ŷ ) ∈ S,
for some safe set S, and only sounds the alarm when the trajectory leaves the safe
set, δ(Ỹ , Ŷ ) 6∈ S. An adversary can take advantage of this trait and use it to
construct attacks specifically tailored for a certain detector, such that the residual
remains in this safe set although the attack is visible in the output.

Definition 5. An attack, (Ua, Y a), is stealthy with respect to detector (δ,S) if

δ
(
G(U + Ua, x0) + Y a, Ŷ

)
∈ S.

Since our discussion will mostly focus on undetectable attacks, we will explicitly
point out when these attacks can easily be modified to also be detector-specific.

Furthermore, we will classify undetectable attacks into three categories based
on which signals need to be modified for the attack. Implicitly, this allows for
situations where the adversary only can change either U or Y , although they are
able to read both of them. Thus, we refer to an undetectable attack as a;

• Simulation attack [27]: if the adversary only alters the output, namely Ua = 0
and Y a 6= 0,

• Zero-dynamics attack [29]: if the adversary only alters the input, namely
Ua 6= 0 and Y a = 0,
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• Covert attack [31]: if the adversary alters both the input and output, namely
Ua 6= 0 and Y a 6= 0.

In order to conduct an undetectable attack, the adversary will often need to
anticipate what outputs the operator expects from the inputs it has sent to the
physical plant. Although the dynamics of the physical plant are unknown, the
adversary assumes that the plant fulfills the following properties,

Assumption 1. The adversary assumes that the system is discrete, linear, time-
invariant, and controllable, with at most n states.

The adversary’s goal is to attack the system (4.4) by using (4.3), which is com-
prised of historical inputs and outputs to generate the attack. Since the adversary
injects signals between two subsystems, namely the physical plant and the operator,
it can use two instances of (4.3) to construct the attack. Specifically, the adversary
solves for g1, g2, u

a and ya in the following expression,
HPu
HPy
HFu
HFy

 [g1 g2

]
=


U i Ũ i

Y i Ỹ i

U + Ua U
Y Y + Y a

 , (4.5)

where U i and Y i are the previous n inputs and outputs of the system’s current
trajectory, respectively. Similarly, Ũ i and Ỹ i are the previous n inputs and outputs
that the operator has measured. The future N inputs which are applied by the
controller are given by U , and the future N outputs of the plant are given by
Y . The adversary injects the false data inputs and outputs through Ua and Y a,
respectively. Note that an undetectable attack using this framework is possible only
if g1 or g2 exists.

Equation (4.5) implies that Ua = HFu (g1 − g2), which means that the attack on
the actuators will be U + Ua = HFu g1. The adversary’s attack will then cause the
future output of the plant to be Y = HFy g1. However, altering the output makes
the attack easy to detect. To hide the attack, and therefore make it covert, the
adversary wants to return valid trajectories to the operator so that the anomaly
detector does not set off an alarm. It does so by manipulating the output of the plant
using Y a, which from (4.5) becomes Y a = HFy (g2− g1). This modification removes

the influence of the attack on the perceived output signal so that Ỹ = HFy g2.

Remark 2. The attack signals Ua and Y a in (4.5) are sequences of length N , thus
they are open loop attacks. However, an adversary may adopt a receding horizon
approach where new Ua and Y a are calculated at each time step. Thus the adversary
can also generate a closed loop attack using this framework. An example of a such
closed loop attack will be shown in Section 4.3.

Using the attack proposed by scheme (4.5), we pose the following question,
which is a formalization of Problem 1 in Chapter 1.
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Problem 1. What conditions on the data matrices Hu and Hy allows the adversary
to find solutions to (4.5) that enable undetectable attacks on system (4.4)?

The answer to Problem 1 tells the adversary when it can generate undetectable
attacks. Additionally, we will show in the subsequent sections that the data sets
Du and Dy need to fulfill different conditions depending on what class of unde-
tectable attack the adversary is considering to implement. These conditions also
provide the operator with a method for figuring out when the plant has leaked
enough data so that an undetectable attack can be constructed from it. In order
to combat undetectable attacks, the operator could adopt a moving target defense
scheme [81,82] to ensure that the necessary conditions that allow the adversary to
generate attacks are never fulfilled. For instance, once it is possible to conduct an
undetectable attack, the operator should change the system configuration.

4.3 Covert Attacks

Persistency of excitation represents that everything about a system’s input-output
relation is known, since any trajectory can be constructed from it. This represen-
tation is used in the next theorem, which gives sufficient conditions for a covert
attack.

Theorem 2. Let Hu be persistently exciting of order n+N , then for any actuator
attack, Ua, there is a corresponding sensor attack Y a such that (Ua, Y a) is a covert
attack.

Proof. Since Hu is persistently exciting, the fundamental lemma states that any
input-output trajectory, (U0, Y 0), of system (4.4) can be represented by a g0 ∈ RN
where, [

Hu
Hy

]
g0 =

[
U0

Y 0

]
. (4.6)

Using the notation of (4.5), equation (4.6) implies that the output of the attacked
plant will be Y = HFy g1, for a g1 ∈ RN such thatHPuHPy

HFu

 g1 =

 U i

Y i

U + Ua

 .
By using Y a = HyF (g2−g1) to alter the output of the physical plant, the following
signal is sent to the operator

Y + Y a = HFy g1 +HFy (g2 − g1) = HFY g2.
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Finally, equation (4.6) states that the output of the unattacked system will be
given by Ỹ = G(x̃0,HFu g) = HFy g, for any g ∈ RN such thatHPuHPy

HFu

 g =

Ũ iỸ i
U

 . (4.7)

Therefore, by finding a solution to (4.7), whose solution is guaranteed by the fun-
damental lemma, and letting g2 = g, the adversary will be able to construct a
masking attack such that y + ya = ỹ.

Theorem 2 implies that generating trajectories which lead to persistently ex-
citing data sets means that an operator could lose control of their system without
knowing it. Additionally, the attack is therefore perfectly undetectable, meaning
that it can be conducted independently of the state of the plant. However, it turns
out that persistency of excitation is not necessary for the generation of attacks.
If the operator manages to keep the data set from becoming persistently exciting,
then an adversary can still employ covert attacks. However, these attacks will not
be perfectly undetectable, which is shown in the next theorem.

Theorem 3. A covert attack sequence of length N can be constructed using (4.5)
if [

ui

yi

]
∈ Im

([
HPu
HPy

])
and

[
ũi

ỹi

]
∈ Im

([
HPu
HPy

])
. (4.8)

Proof. If (4.8) holds, then there exists vectors g1, g2 ∈ RN such that the following
holds [

HPu
HPy

]
g1 =

[
ui

yi

]
and

[
HPu
HPy

]
g2 =

[
ũi

ỹi

]
.

Lemma 1 in [79] states that we can associate g1 and g2 to states in the observable
subspace, which we denote by x0 and x̃0, respectively. Then, the future input-
output trajectory can be described by

HFy g1 = G
(
x0,HFu g1

)
and HFy g2 = G

(
x̃0,HFu g2

)
.

Let therefore x̃0 be the operator’s perceived state of the plant and let x0 be the
plant’s true state. Since the operator can apply an arbitrary input U , we can write
it as

U = σu +HFu g2,

for some σu = {σk}N−1
k=0 , where σk ∈ Rq. The operator then expects the output

Ỹ = G
(
x̃0, σ

u +HFu g2

)
= G (0, σu) +G

(
x̃0,HFu g2

)
.
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However, since the adversary applies the attack signal Ua = HFu (g1 − g2), the
output of the plant becomes

Y = G (x0, U + Ua) = G
(
x0, σ

u +HFu g2 + Ua
)
,

= G
(
x0, σ

u +HFu g1

)
= G (0, σu) +G

(
x0,HFu g1

)
.

By masking the output through Y a = HFy (g2 − g1), the following output is sent to
the operator,

Y + Y a = G (0, σu) +G
(
x0,HFu g1

)
+ Y a,

= G (0, σu) +G
(
x0,HFu g2

)
= Ỹ ,

which concludes the proof.

Theorem 3 provides the adversary with an opportunity to launch attacks with-
out having to collect a persistently exciting data set. It also shows how an operator
should defend the system against covert attacks. Moving the plant’s state into a
new linear subspace every nth time step discourages the adversary from launching
new attacks, since it will not know how the plant responds to future inputs. How-
ever, constantly moving into new subspaces exposes more information about the
dynamics to the adversary, which empowers it to launch more devastating attacks.
Eventually, after going through all the different possible subspaces, the data set Du
will become persistently exciting and the adversary will be able to use Theorem 2
to launch an arbitrary covert attack on the plant.

The operator can also use probing as another type of defence mechanism. By
keeping track of which subspaces that have been exposed so far, the operator could
sporadically move the physical plant into previously undisclosed subspaces, such
that (4.8) is violated through a special probing input. A more complex adversary
that is able to recognise when the system is about to be moved into a previously
unseen subspace, for instance by projecting that the condition in Theorem 3 is
about to be violated, could still be able to remain undetected. However, to remain
undetected, the attacker is required to be able to generate an attack before the
probing input is applied to the physical plant. If that is the case, then the adversary
can generate one final attack sequence of length N , which could be used to return
the dynamical system to the, by the operator, expected state. Intuitively, this
means that the adversary uses its final attack sequence to cover up any evidence of
the previous attack.

Numerical Example

In this section, we will apply the theoretical results we have derived to a physical
plant with dynamics that are the same as the linearized dynamics of the quad tank
system, which is a four-state system, with two inputs and two outputs, see [83].
In all attack scenarios, the operator uses an anomaly detector which is based on
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generating residuals through the use of an observer. Specifically, the observer is
given by, {

x̂k+1 = Axk +Buk + L(yk + yak − Cx̂k −Duk),

ŷk = Cx̂k +Duk,

where two observer poles are placed at 0.8 and the other two are placed at 0.9.
We make this arbitrary choice of slow poles in order to better visualize the effect
of the attack on the system. In a real situation, the choice of observer poles is
application-specific, where the system noise and controller mostly determine the
choice of observer poles.

The output of the observer, Ŷ , is compared to the true output of the system in
order to generate a residual,

δk(ỹk, ŷk) = ‖ỹk − ŷk‖2.

This residual is then used to detect the attack through various control charts, such
as χ2, MEWMA, or CUSUM, see [84]. Additionally, at time step k∗, the controller
sends an input signal to the plant, where uk = 0 for k ≤ k∗ and

uk =

[
1
1

]
(1− 1

k − k∗
), for k > k∗. (4.9)

This input is required in order to force the adversary to produce a time-varying
masking signal, Y a. Conversely, for the case where the adversary does not have a
data set that is persistently exciting, we could think of this input as a probe to see
if the system has been attacked. Otherwise, the adversary would just return the
previous output to the operator, ỹk = ỹk−1, which is equivalent to a replay attack.

The adversary will in all scenarios try to minimize the following expression

minimize
g1, g2

N−1∑
k=0

‖yk − rk‖2 (4.10)

subject to (4.5), where

rk =

[
2.5
−2.5

]
, ∀k. (4.11)

The reference signal, rk, is chosen arbitrarily for this example and could any other
choice would have worked as well.

Covert Attack with Persistently Exciting Data

In this scenario, the adversary has obtained a persistently exciting data set of
order 15 after an initial phase of disclosure attacks. According to Theorem 2, the
adversary will be able to conduct a covert attack. Because the system has 4 states,
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Figure 4.2: The graph shows a covert attack with a persistently exciting data
set. One can see that the adversary is able to reach its reference value without
any difference in the residual of the operator, δ, when ya 6= 0. Finally, even though
operator applies an input at time step 30s, the adversary is able continue the attack
with an unchanged residual.

the adversary can produce an attack signal with a time horizon of 11 time steps.
Additionally, let the adversary calculate a new attack signal at each time step, using
a similar receding horizon approach as in [85].

Consider Figure 4.2, where the output of the attacked system is shown. One
can see that the adversary is able to perfectly achieve its objective output using
ua. In fact, up until time step k = k∗ = 30, the adversary simply returns the same
previous output the operator, ỹk = ỹk−1. Thus, we have a replay attack during this
phase which was predicted during the motivation for the non-zero input (4.9). After
the initial phase, the operator sends the non-zero input to the system in order to
disclose the attack. However, this does not affect the attack on the plant, since the
adversary is able to successfully simulate the operator’s expected plant response by
injecting Y a using (4.5) to the data stream, thus avoiding detection. Additionally,
the success of injecting Y a can be seen when comparing the residual for the two
cases of ya 6= 0 and ya = 0 in Figure 4.2.
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Covert Attack without Persistently Exciting Data

In this section, we consider the case when the adversary’s initial phase of disclo-
sure attacks has not been as successful, since the data they have obtained is not
persistently exciting. Specifically, the adversary has only sampled trajectories that
use one of the input signals, u1, while u2 was kept at zero. This data set implies
that Hu does not have full rank, and therefore is not persistently exciting accord-
ing to Definition 3. Nonetheless, Theorem 3 provides the adversary with a method
of generating a covert open loop attack, if the data it has collected fulfills condi-
tions (4.8). Initially, the attack will be conducted in a closed loop fashion with a
receding horizon of length N − 1 = 10. At k = 30, the operator will probe the
system by applying input (4.9). Since the operator knows that the adversary has
not seen an input that is non-zero in u2, it also knows that condition (4.8) will be
violated. The adversary will then switch to an open loop attack, with the goal of
covering up its previous attack.

Consider Figure 4.3, where the output of the attacked system has been plotted
together with the residual. One may see that this attack scheme does not follow the
reference, which is explained by the adversary having a too short attack horizon.
Nonetheless, the adversary is still able to hide its attack during the closed loop
phase. A change in the attack strategy is evident from time step k = 30 when the
operator applies a non-zero u2. The adversary then calculates the open loop attack
at this time step and applies it for the subsequent 10 steps. However, as is evident
in Figure 4.3, the attack sequence is designed so that the input-output trajectories
coincide for the last 4 time steps of the attack, which effectively hides any signs of
the attack and ensure that there is no mismatch in the observable states that may
produce a visible transient in the output.

Theorem 3 states that an attack of this type on a linear system is covert, namely
that it has no effect on the output signal. In Figure 4.3, one can see that this
is indeed the case through the residual. The attack on one of the actuators is
masked, even when the operator tries to detect it by applying input signals that
have previously not been seen by the adversary.

4.4 Zero Dynamics Attack

Although the input-output model circumvents the need for explicit states, it still
assumes that the system has a state-space representation [78,79]. This assumption
is explicitly used for the first part in the input-output model, namely[

HPu
HPy

]
g0 =

[
U i

Y i

]
. (4.12)

Inserting this expression into the state-space model of the trajectory, we obtain
that,

Y i = HPy g0 = Ocnx0 + Tnu
i = Ocnx0 + TnHPu g0,
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Figure 4.3: The graph shows an attack that was generated through a data set that
is not persistently exciting. One can see that the attack stays hidden even though
the operator applies an input that the adversary has not seen before, which occurs
at 30s. From that time instant, the adversary switches to an open loop strategy
that removes any signs of the attack on the physical plant after 10 seconds, which
is at the end of the attack horizon.

which we can rewrite as

(HPy − TnHPu )g0 = Ocnx0, (4.13)

where

Ocn =


C
CA

...
CAn−1

 ,
and

Tn =


CD 0 . . . 0
CB CD · · · 0
CAB CB · · · 0

...
...

. . .
...

CAn−2B CAn−3B · · · CD

 .
On the left-hand side in (4.13), one may see that there are no terms that ex-

plicitly depend on the initial value of the states. Thus each combination of g0, HPu ,
and HPy is associated with a certain observable initial state of the system. By the

Cayley-Hamilton theorem, we see that it is sufficient to have np rows in HPy since
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any extra measurements will not contribute with additional information about the
initial state of the system. Therefore, Equation (4.13) determines the initial state
of the dynamical system.

Zero-dynamics for state space representations fulfills the following condition on
the Rosenbrock matrix for some λ, x0 and u0[

0
0

]
=

[
A− λI B
C D

] [
x0

u0

]
which is equivalent to the existence of a trajectory that produces a zero-output,
namely

0 = OcLx0 + TLU
0. (4.14)

For finding zero-dynamics in the input-output representation, we have the following
theorem:

Theorem 4. Assume that the attack horizon N > n. If there exists a vector g0

such that the following sufficient conditions hold,

1. g0 ∈ Ker(HFy ),

2. g0 6∈ Ker
(
HFu
)
,

then a zero-dynamics attack is possible to conduct with (4.5). Furthermore, the
system has a zero in λ, such that

ui+1 = λui, (4.15)

where U = HFu g0.

Proof. The trajectory from time n, when the adversary commences its attack, is
given by,

Y = OcLxn + TLU,

which can be written as

HFy g0 = OcLxn + TLHFu g0.

We see that (4.14) requires setting HFy g0 = 0. Additionally, letting HFu g0 6= 0
produces a non-zero u and ensures that

g0 6∈ Ker

([
HPu
HFu

])
,

which implies that a non-zero input trajectory is obtained by g0. Finally, every
zero-dynamics input follows the recursion given by (4.15), which completes our
proof.
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Note that the attack sequence that is described in Theorem 4 may require that
the system is in a particular state, xn, thus it may not be perfectly undetectable.
This can be seen through the following expression,

Y = OcLx̄n + TLu+ TLu
a

= OcL(x̄n − xn) + TLu+OcLxn + TLHFu g0︸ ︷︷ ︸
=0

= OcL(x̄n − xn) + TLu.

(4.16)

The new term, −OcLxn, decays exponentially to zero if the system is strictly stable,
meaning that the eigenvalues of matrix A in (4.4) are strictly within the unit circle.
However, since xn depends linearly on g0, see (4.13), one can make it arbitrarily
small by scaling g0. Therefore, this attack can be made to be stealthy, since the
adversary can choose xn to be small enough so that it does not set off an alarm,
δ(Ỹ , Ŷ ) ∈ S, for some detector with a safe set S and distance measure δ. If the
zero is minimum phase, |λ| < 1, then the adversary’s attack will not be persistent,
meaning that the data injection at the input uak → 0, exponentially as k → ∞.
However, if the zero is non-minimum phase, |λ| > 1, then the attack signal grows
exponentially, uak → ∞ as k → ∞. Although this growing input signal does not
show itself in the output, it still may cause impact to the physical system internally.
Typically, the large input implies that some states become very large, ‖x‖2 → ∞,
which indicates that the adversary can cause severe damage to the physical plant.

Additionally, there can exist zero-dynamics attacks which are perfectly unde-
tectable. In the next proposition, we give sufficient conditions for finding such
attacks.

Proposition 1. If there is a vector g0 such that the conditions in Theorem 4 holds
and, additionally,

g0 ∈ Ker

([
HPu
HPy

])
, (4.17)

then the attack Ua = HFu g0 is perfectly undetectable.

Proof. The condition (4.17) implies that the initial state, x0, is in the unobservable
subspace of the system, which can be seen from (4.13). The past input, HPu g0 is
zero as well. Through the Cayley-Hamilton theorem, we then get that xn is in the
unobservable space, which implies

0 = HFy g0 = OcLxn + TLHFu g0 = TLHFu g0.

Since the input trajectory is non-zero, HFu g0 6= 0, the conditions of the Rosenbrock
matrix are fulfilled and the input can thus only affect states that are unobservable.
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Note that (4.17) is only a sufficient condition for the following to hold

(HPy − TnHPu )g0 = Ocnx0 = 0,

which parametrizes the zero-dynamics attack. Therefore, there might exist other
g0 that make this expression zero. However, one would need to know Tn in order
to calculate them.

Simulation

In this setup, the adversary starts conducting a disclosure attack by sampling input
and output data until they obtain a persistently exciting set of input samples.
Although persistency of excitation is not necessary for zero-dynamics attacks, it
ensures that the adversary is able to find zero-dynamics through its data set. Then,
the adversary analyzes the data using Theorem 4, in order to obtain the value of the
zeros and their corresponding input directions. The input directions are obtained
from U = HFu g0. The system parameters were set so that the dynamics contain a
non-minimum phase zero (which is a zero outside the unit circle), in order to easier
show the attack in the figures. The effect of the attack can be seen in Figure 4.4.
Although the levels for the two measured tanks, Tank 1 and Tank 2, remain zero
for most of the time, the two other tanks which are not directly measured diverge.

In Figure 4.5, one can see that the attack was not detected through the residual
of the anomaly detector. Since the conditions for Proposition 1 were not fulfilled and
the attack was not conducted at the correct initial state, a non-zero transient on the
residual is present. However, this transient can be chosen to be arbitrarily small by
scaling g0 in Theorem 4 which implies that the attack can be made stealthy against
any detector. One can see from Figure 4.5 that the initial attack signal in this
example was chosen so that the maximum residual was just above 0.05. However,
as time grows, this residual decays to zero, which verifies the stealthiness of the
attack.

4.5 Conclusion: On the Privacy of Input-Output Pairs

In this chapter, we presented an attack strategy based on Willems’ Fundamental
Lemma. Specifically, we showed that if the adversary has access to a sufficiently rich
collection of input-output samples, such that it is persistently exciting, and if they
can manipulate all inputs and outputs, then the adversary can drive the output of
the system to arbitrary values while showing no signs of the attack on the operator’s
residual signal. Additionally, it was shown that even if the input-output data is not
persistently exciting, which is a sufficient condition for estimating the full model
dynamics, it is still possible to conduct a covert attack. Finally, it was shown
that a zero-dynamics attack can also be generated based on Willems’ Fundamental
Lemma and that the data set does not need to be persistently exciting to generate
it. The zero-dynamics attack on a linear system was then shown in a numerical
simulation.
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Figure 4.4: The graph shows a stealthy attack based on the zero-dynamics attack
with mismatched initial condition. One can see that the conditions in Theorem 4
are sufficient for finding inputs that make internal states diverge.
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Figure 4.5: The residual for the stealthy attack. The peak, which here is roughly
0.05, can be adjusted by scaling g0 in Theorem 4.
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The results which are derived in this Chapter provide an operator with knowl-
edge of when the plant is susceptible to attacks from an adversary that does not
have a parametric model. Additionally, the operator may analyze which types of
attacks are possible given the data that has been disclosed. Once the operator has
identified that an attack is possible, they can temporarily prevent undetectable at-
tacks by driving the system to a previously undisclosed state or change the system
configuration so that the adversary has to learn the dynamics again.





Chapter 5

Privacy of Abrupt Changes

In the previous chapter, we saw how little information about the system is needed
in order for the adversary to be able to generate undetectable attacks that could
break a CPS, even though they have minimal initial knowledge about the system. It
was also shown that there is very little an operator can do to counteract the effects
of the disclosure attacks. For instance, the adversary is able to avoid detection
when the operator is probing the system for attacks, however this also causes the
adversary to eventually obtain more information about the system. Since it is very
important to keep the adversary from obtaining information, which in this thesis
comes from the input-output data, we need to consider other methods.

In this chapter, we will consider a defensive mechanism against these privacy
leaks in the form of data corruption through noise injection. Obviously, in order
to maximize privacy, one could inject noise with infinite variance, or equivalently,
remove the sensors altogether. However, the sensors have been placed in the system
for a reason, often to help the operator with controlling the same system. There-
fore, privacy needs to be considered together with other objectives. Typically, this
second objective is some sort of cost function that the operator tries to minimize.
Therefore, privacy-utility trade-offs should be investigated before injecting noise.
We will perform such an analysis in the next Chapter. For now, however, it suf-
fices to aim to add as little noise as possible. Specifically, we investigate how the
noise injection disturbs the adversary’s attempts to procure information during the
disclosure phase of their attack. Thus, the added noise delays the time that an
adversary needs to obtain a model which is good enough so that they are able to
generate undetectable attacks.

However, we will consider some restrictions on the relatively powerful adversary
that was presented in Chapter 4. Here, during the disclosure phase of the attack,
we assume that the adversary only eavesdrops on the measurement signal, Y . This
assumption is reasonable, since the input signal U might be subjected to a higher
security level, since it is a signal directly affects the physical plant. The higher
security level implies that more resources are needed from the adversary’s side in

47
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order to gain access to it. Second, we restrict the input signal that is sent from
the operator to the physical plant to be a step input. For instance, the input could
encode a reference change that the plant has to follow. Alternatively, we could
also consider that the plant is subjected to a step disturbance, which in residential
buildings occurs, for instance, when someone enters a room. Finally, we assume
that the adversary knows that all of the inputs to the physical plants are step
inputs, however, it does not know when these step inputs are applied. Therefore,
form the operator’s point of view, it will focus on keeping the change time private.

5.1 Problem Formulation

Recall the linear time-invariant system where the measurements are corrupted by
a zero-mean, stationary, white Gaussian signal, ek, with covariance E

[
eke
>
k

]
= Σe,

∀k,

M :

{
xk+1 = Axk +Buk

yk = Cxk + ek.
(5.1)

We also assume that the initial state is zero, x0 = 0. Also, recall that we denote the
sequence of outputs and inputs as Y = {yk}N−1

k=0 and U = {uk}N−1
k=0 , respectively.

The input sequence, U , is assumed to be a step,

uk =

{
0, for k < k∗,

u, for k ≥ k∗,

where ‖u‖2 is the size of the input, and u/‖u‖2 is its direction.
The objective of the attacker in this chapter, is to estimate the change time, k∗,

using the model M and the measurements Y . The defender’s main purpose is to
make it as difficult as possible for the attacker to obtain their goal. Motivated by
the attacker’s goal, we define privacy in the following manner:

Definition 6. Consider an estimator of the change time k∗ for the inputs U =
{uk}N−1

k=0 , which are fed through system M in (5.1). Denote the estimator of k∗ by
ψu, which has a bias that is smaller than N. We define the privacy of system M to
be the lowest achievable variance of the estimated change time,

min
ψu

Var(ψu|k∗).

This definition of privacy is general and the defender may consider estimators
which take very complex information into account. The problem of interest in this
paper, however, is to calculate the privacy of system M , conditioned on the type
of estimators that the attacker can produce.

Problem 2. Let an estimator of the change time k∗ in U , denoted by ψu(Y,M),
have access to the model (5.1) and the measurements Y of length N such that
N ≥ k∗. What is the minimum variance that any such estimator can achieve?
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The answer to these questions will show what structures in the model, M , expose
the change time, k∗, to an adversary. Additionally, the answer also provides the
defender with information about how to design their system so that estimating the
change time becomes as difficult as possible. Although any level of privacy can be
achieved by injecting enough noise into the system, additional noise also degrades
the controller performance. If the controller aims to minimize a cost function, then
the actual cost increases when noise is added. It is therefore important that the
noise which is already present is used to the fullest extent, which could be done
by placing the sensors strategically or by designing controllers that make multiple
actuators cooperate so that a particular change is more difficult to estimate. In
this paper, we will assume that the defender knows the noise model a priori, which
might not always be true for real systems.

5.2 Detecting Step Changes

Theorem 5. Consider any estimator of the change time k∗ in the input sequence
U . Denote the estimator by ψu(Y,M) with bias g(k∗), where M is a MIMO-system.
Then

Var(ψu(Y,M)|k∗) ≥ Bu (M) , (5.2)

where,

Bu (M) := max
τ

(τ + g(k∗ + τ)− g(k∗))2

eu>S(τ,M,k∗)u − 1
, (5.3)

for τ ∈ {1, . . . , N − k∗}. Here,

S(τ,M, k∗) =
N−1∑

k=k∗+1

(
CÃ(k, τ)B

)>
Σ−1
e CÃ(k, τ)B, (5.4)

where,

Ã(k, τ) =

min(k∗+τ−1,k−1)∑
l=k∗

Ak−1−l

 . (5.5)

Proof. The proof is given in Appendix A.

We will give a lot of attention to the quantity u>S(τ,M, k∗)u in (5.3) in this
thesis since it plays a key part in the lower bound. Also, we will sometimes refer to
it as S(τ) := u>S(τ,M, k∗)u or simply S := u>S(τ,M, k∗)u, depending on whether
the model and change times are relevant to the discussion or clear from the con-
text. Note that the denominator will appear in any lower bound of the estimation
variance, regardless of what estimator is used. In contrast, the numerator of (5.2)
contains the term g(k∗ + τ)− g(k∗), which explicitly depends on what estimator is
used. In the Chapter 3 we discussed the potential influence of this bias term, which
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essentially serves as a method to potentially reduce estimation variance. However,
this reduction usually has to be paid by increasing the bias of the estimator. Unless
stated explicitly, we will work solely with unbiased estimators, which implies that
g(k∗ + τ)− g(k∗) = 0.

Theorem 5 explicates all the relevant factors that expose the input to potential
privacy breaches. Notice that in the denominator, the quantity u>S(τ,M, k∗)u is
precisely the `2 difference between the true trajectory and an alternative one,∑

k

‖yk − yτk‖
2
2 = u>S(τ,M, k∗)u.

The inputs that generate an output trajectory which is similar to one other output
trajectory will therefore be very hard to estimate. Systems with dynamics that
enables this behavior are therefore more private and less prone to privacy breaches.

Let us consider a system that has the opposite behavior, namely a system where
inputs that are applied at different time steps produce trajectories that never con-
verge to each other. For simplicity, let us apply the bound (5.2) to a single state
SISO system,

M1 :

{
xk+1 = axk + buk

yk = cxk + ek,
(5.6)

where xk ∈ R, yk ∈ R, uk ∈ {0, 1}, and E [ekel] = σ2δlk. The system parameters,
a, b, and c are scalar as well, with a ≥ 0. For an unbiased estimator, the lower
bound of the variance is given by the following corollary.

Corollary 1. Consider any unbiased estimator of k∗, denoted by ψ(Y,M1). Then

Var(ψ(Y,M1)|k∗) ≥ 1

eS(M1) − 1
=: B (M1) , (5.7)

where

S(M1) =
1

σ2

N∑
k=k∗+1

(
cak−1−k∗b

)2

. (5.8)

Proof. The result follows directly from Theorem 5 andmin(k∗+τ−1,k−1)∑
l=k∗

cak−1−lb

2

≥
(
cak−1−k∗b

)2

, k > k∗.

Let us now use Corollary 5.7 to find a system that exhibits a non-private be-
havior for step inputs. Consider a simple integrator{

xk+1 = xk + buk,

yk = cxk + ek,
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which is essentially system (5.6) with a = 1. For the integrator, we get the following
lower bound,

Proposition 2. Consider the single state system in (5.6) with a = 1. Then

Var(ψ(Y,M1)|k∗) ≥ B(M1)→ 0, when N →∞.

Proof. Insert a = 1 in the summation (5.8), then

S(M1) =
c2b2

σ2
(N − k∗)→∞, as N →∞,

which in turn gives that the lower bound, B(M1)→ 0.

Proposition 2 states that an efficient estimator will eventually always obtain
the correct change time. This result is not very surprising since the step response
corresponding to change time k∗ will be different than any other trajectory for all
k > k∗. Thus as N →∞, we get an infinite amount of useful samples which can be
used to deduce k∗. The statement of Proposition 2 can be seen in Figure 5.1, where
the noise-corrupted step response of an integrator with two different change times is
compared. Note that the HCR bound decreases while the noiseless outputs cxk are
different and since it is an integrator, they will always be different. Additionally,
since the HCR bound eventually tends to

B ∝ 1

aebN − 1
, for some a, b > 0,

we get that the HCR bound goes to 0 as N →∞.
Let us show that the lower bound for an integrator is tight as N → ∞ by

using a simple likelihood-ratio test as the estimation algorithm for the change time.
Consider a sample horizon of length N , where the change time occurs at k∗. The
likelihood-ratio test favors k∗ + l as the estimate of the change time over k∗ if

1

σ2

N−1∑
k=0

(yk − cx̂k)
2
<

1

σ2

N−1∑
k=0

(yk − cxk)
2
.

Note that x̂k is the state at time step k if the change time is k∗ + l, and xk is the
state at time k if the change time is k∗. The probability that the estimator chooses
k∗ + l over k∗ is

p

(
1

σ2

N−1∑
k=0

(yk − cx̂k)
2
<

1

σ2

N−1∑
k=0

(yk − cxk)
2

)
.

An explicit expression of the probability is obtained by inserting yk = cxk + ek and
exploiting the fact that ek zero-mean, stationary, white Gaussian noise,

p

(
N−1∑
k=0

(ek + c(xk − x̂k))
2
<

N−1∑
k=0

e2
k

)
=

∫ − 1
2

√
N−1∑

k=k∗+1

c2(xk−x̂k)2

−∞
e−

y2

2σ2 dy
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Figure 5.1: The figure shows how the HCR bound, shown in yellow, decreases
after the change time k∗ = 20. Note that the HCR bound tends to zero, which is
predicted by Proposition 2.

If we assume that l ≥ 1, the difference between the state variables becomes

xk − x̂k =


0, for 1 ≤ k ≤ k∗

b(k − k∗), for k∗ < k ≤ k∗ + l,

bl, for k > k∗ + l.

We get that the probability tends to,

∫ − 1
2

√
N−1∑

k=k∗+1

c2(xk−x̂k)2

−∞
e−

y2

2σ2 dy → 0, as N →∞,

which holds for all l ≥ 1. Therefore, this simple estimator will eventually always
favor the change at k∗ compared to k∗ + l. A similar result can be obtained for
l ≤ −1 as well, since we have that

xk − x̂k =


0, for 1 ≤ k ≤ k∗ + l

b(k − k∗ − l), for k∗ + l < k ≤ k∗,
bl, for k > k∗.
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We can conclude from the previous example that an adversary who gains access
to the measurements of a state that integrates over the step input will always
be able to estimate the change time by using the proposed estimator, given that
enough samples about the system has been collected. In Chapter 7 we will show
explicitly that the more different the step responses are from each other, the larger
more information leak about the change will occur. Therefore, the bound will also
go to zero for systems with unstable dynamics (|a| > 1) and similarly, the simple
estimator in the previous example will also be able to estimate the change time
of any step input to such a system. Additionally, since the difference between the
true and alternative trajectories increases for unstable systems, the convergence of
the HCR bound to zero will be quicker than the integrator system. In fact, the
HCR bound will converge to zero quicker the larger a > 0 is. One may be tempted
to apply this intuition in the opposite direction, which would imply that the more
stable the system is, in the sense that the quicker the system converges to steady
state, the more private the input will be. In the next section, we will show that it
might not always be the case.

5.3 Dependence on Dynamics

The integrator system shows that the system dynamics are important for privacy.
It is the `2-difference between the true trajectory and possible alternative ones that
determine how large the privacy leak will be. Time steps where this difference
is large will therefore compromise the privacy more than time steps where the
difference is small. Additionally, if a difference persists for a long time, then the
privacy leak will occur over several time steps. Asymptotically stable systems
(|a| < 1) have a related property.

Proposition 3. Consider two one-state systems as defined in (5.6), M1
1 and M2

1 .
Additionally, let 1 > a2 > a1 > −1 and assume that the step responses converge to
the same steady state output. Then, the lower bounds satisfy

B
(
M2

1

)
> B

(
M1

1

)
. (5.9)

Proof. Instead of directly proving (5.9), we will prove the equivalent statement
S(M2

1 ) < S(M1
1 ). The inequality can be seen by applying Corollary 1. First, note

that the noiseless output of a one-state system converges to

zss =
cb

1− a
.

In order for the output to converge to the same output regardless of a, we can set

b ∝ (1− a).
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Now let b = β(1− a) for some β ∈ R, which implies that the noiseless steady state
output becomes,

zss = cβ.

With this choice of b, the `2-difference becomes

S(M1) =
1

σ2

N∑
k=k∗+1

(
cak−1−k∗b

)2

=
c2β2

σ2

1− a
1 + a

(
1− a2(N−k∗)

)
.

The `2-difference is a decreasing function of a in the interval a ∈ (−1, 1), which can
be seen by taking the derivative,

∂S(M1)

∂a
=

c2β2

σ2(1 + a)2

(
2(a2(N−k∗) − 1) + 2(N − k∗)a2(N−k∗)−1(a2 − 1)

)
︸ ︷︷ ︸

<0

< 0.

The inequality follows from the fact that |a| < 1, which makes both terms in the
second factor negative. Thus, S(M2

1 ) < S(M1
1 ) is true if a2 > a1.

The proposition shows that it is easier to estimate the change time in systems
with fast dynamics (|a| � 1), as opposed to systems with slow dynamics. Consider
the case when N is very large, such that the step response has converged to a
steady state for both a fast and slow system. Although a slower systems allows for
several additional informative samples to be gathered over the same time horizon,
the amount of information per sample is substantially lower in the sense that the
cumulative information about the change time from the slower systems will be lower
than the cumulative information from a faster system.

This phenomenon can also be seen directly in the construction of the system
matrix from zero-order hold sampling of a continuous linear time invariant system,

ẋ(t) = fx(t) + hu(t)

⇒ x ((k + 1) ∆t) = ax (k∆t) + bu (k∆t) ,

where a = ef∆t and b = −h
f (1− a). Assuming that f < 0, the `2-difference for this

one-state system becomes,

S =
c2h2

σ2f2

1− ef∆t

1 + ef∆t

(
1− e2Nf∆t

)
.

By increasing the sampling frequency by a factor α, ∆t → ∆t
α for α ∈ N, we also

get that the number of samples increases by the same factor, N → αN . The
`2-difference is then given by,

S =
c2h2

σ2f2

1− ef
∆t
α

1 + ef
∆t
α

(
1− e2Nf∆t

)
, (5.10)

which we use to derive our next result.
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Proposition 4. Consider the one-state systems as defined in (5.6). The HCR
bound for the estimation of the change time diverges as the sample frequency is
increased,

Bu →∞, when α→∞.

Proof. The proof follows by letting α→∞ in (5.10). We then have that

1− ef
∆t
α → 0, and 1 + ef

∆t
α → 2.

In turn, we get that S → 0⇒ Bu →∞.

The result in Proposition 4 may seem like a counterintuitive property, that as
the sampling frequency (and therefore the resolution) increases, the more difficult
it is to reconstruct the input. However, recall that we are looking at the variance of
the time step or more specifically, the sample number, and not the actual time. It
is simple to convert the results between the two quantities in the following manner,
assuming t0 = 0,

tk = (∆t)k ⇒ Var(t̂k) = (∆t)
2

Var(k̂). (5.11)

Similarly, the lower bound becomes scaled with (∆t)
2
. In order to see how the

sampling frequency affects the variance the estimated time at which the change
occurs, we have the following result,

Theorem 6. Consider the one-state systems as defined in (5.6). The HCR bound
for the estimated time at which the change occurs, tends to zero as the sampling
frequency is increased,

Btime → 0, when α→∞.

Proof. Let us start by scaling the HCR bound as was stated after (5.11), so that
we are working with actual time and not the sample number.

Btime =

(
∆t
α τ
∗)2

eS − 1
=

(
∆t
α τ
∗)2

S +O (S2)
.

In the second equality, we used the Taylor expansion for the exponential function in

the lower bound. Similarly, we can use the Taylor expansion for the factor 1−ef
∆t
α

1+ef
∆t
α

in S,

S =
c2h2

σ2f2

1− ef
∆t
α

1 + ef
∆t
α

(
1− e2Nf∆t

)
=
c2h2

σ2f2

(
e2Nf∆t − 1

)(f∆t

2α
+O

(
1

α3

))
.

This implies that Btime ∝ 1
α . Thus letting α→∞⇒ Btime → 0.
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Although it will be difficult to determine at which sample number the change
occurred, since the amount of samples in an interval becomes infinitely many, it
will be possible to determine the particular time that the change has occurred with
an arbitrary precision by choosing a large enough sampling period.

The opposite occurs when α → 0, namely that the lower bound of the true
time increases. Therefore, we arrive at the first defensive measure an operator can
take in order to hide the change time. By decreasing the sampling frequency, and
therefore decreasing the resolution, the privacy of the change time can be increased.

Naturally, the number of samples can also be increased by increasing the time
window, N +1, over which the sampling takes place. For integrator systems, S will
then increase linearly and for unstable systems the summands increase geometri-
cally. For stable systems, the summands decrease geometrically so that, beyond a
certain time step, l, the measured signal becomes too similar to a different signal
which is generated by a step change at k∗ + 1. Samples beyond l will not produce
any additional information for the estimator. Therefore, any additional sampling
beyond this time step will no longer improve the estimation, which is of interest
when designing a finite time horizon estimator. These ideas will be explored further
in Chapter 7.

Signal to Noise Ratio

Note the particular way we have presented the `2-difference in (5.8), namely as a

product between a factor that is determined by the state dynamics,
N∑

k=k∗+1

(
ak−1−k∗b

)2
,

and the factor c2

σ2 , which is proportional to the signal-to-noise ratio (SNR). We can
increase the SNR simply by scaling c with a corresponding factor. Clearly, the
amplitude of the signal in relation to the amount of noise in the system determines
the level of privacy.

The dependence on the SNR gives the operator a design choice to enhance pri-
vacy, namely by modifying the level of noise. By choosing the noise variance, σ2,
the defender effectively designs the SNR. This approach of increasing the privacy
through noise injection is one of the most popular methods found in recent litera-
ture. Most notably, differential privacy [47,48] has been developed to measure how
much privacy can be preserved in the presence of an eavesdropper with arbitrary
side information. The usefulness of differential privacy comes from the fact that it
can be quantified through one or two parameters depending on what mechanism is
used. It turns out that the lower bound in Theorem 9 can directly be formulated
in terms of the parameters for differential privacy.

First let us state the definition of differential privacy as given in [51], how-
ever modified for our situation. Let the database D contain all outputs that are
parametrized by the change time k∗. Differential privacy is defined between two
elements in D that are adjacent to each other. Typically, two vectors are defined
to be adjacent if they differ in only one element. Typically, changing the output
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of a dynamical system in only one time step implies a change in the input signal
in at least two time steps. Therefore, the conventional definition of adjacency does
not work for step responses of dynamical systems. In [51], adjacency for dynamical
systems was defined as input sequences that are different in only one time step.
In our case, this would always result in the alternative trajectory parametrized by
τ = ±1.

Instead, we will use the definition that two trajectories are adjacent to each
other if they differ in a single element of the vector that parametrizes their output
trajectory. Since each output in our case is parametrized by a single parameter,
namely the change time k∗, we get that all trajectories are adjacent to each other.
Now, we can give the following definition

Definition 7. A mechanism M : D → RpN is (ε, δ)-differentially private if,

p (M (Y ∗)) ≤ p
(
M
(
Ỹ ∗
))

eε + δ,

for all (adjacent) unit step responses, Y ∗ and Ỹ ∗, of (5.6).

The mechanism that is relevant for this thesis adds the Gaussian noise term ek
to the unperturbed measurements cxk. The parameters ε and δ quantify how close
all of the probability distributions are. For the Gaussian mechanism, we have the
following result that is found in [51].

Lemma 1. The Gaussian mechanism with variance σ2, is (ε, δ)-differentially pri-
vate if and only if

σ2 = (κ(ε, δ))
2

max
T

u>S(T,M, k∗)u, (5.12)

where

κ(ε, δ) =
1

2ε

(
Q−1(δ) +

√
(Q−1(δ))

2
+ ε2

)
,

and

Q(x) =
1√
2π

∫ ∞
x

exp(−u2/2)du.

The advantage of Differential Privacy is that that it can quantify the privacy
level through its two parameters, ε and δ. However, it is often difficult to obtain a
good intuition as to what these two parameters imply in terms of estimation un-
certainty, for instance. In the next proposition, we show that quantifying privacy
only through ε and δ might be relatively uninformative for an operator, since they
do not provide as good privacy guarantees in terms of estimation uncertainty com-
pared to (5.7). Additionally, we show that in order to get an equally good privacy
guarantee, alternative output trajectories still need to be calculated and compared.
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Proposition 5. The variance of the estimated change time for an (ε, δ)-differentially
private mechanism is lower bounded by,

Bu = max
τ

(τ + g(k∗ + τ)− g(k∗))2

e
1

(κ(ε,δ))2
u>S(τ,M,k∗)u

max
T

u>S(T,M,k∗)u − 1

≥ (τ + g(k∗ + τ)− g(k∗))2

e
1

(κ(ε,δ))2 − 1
.

Proof. The result is proven in two steps. Consider the (unbiased) HCR bound (5.2)
of a single-state system (5.2),

Bu = max
τ

(τ + g(k∗ + τ)− g(k∗))2

e
u>S(τ,M,k∗)u

σ2 − 1
.

Now, insert expression for σ2 from (5.12) and into the HCR bound,

max
τ

(τ + g(k∗ + τ)− g(k∗))2

e
1

(κ(ε,δ))2
u>S(τ,M,k∗)u

max
T

u>S(T,M,k∗)u − 1

.

Second, note that
u>S(τ∗,M)u

max
T

u>S(T,M, k∗)u
< 1,

which implies the second inequality.

Note the difference between our notion of privacy through the estimation vari-
ance and (ε, δ)-differential privacy. Differential privacy is based on the largest `2-
difference between all possible trajectories, whereas the privacy through estimation
variance depends on the alternative trajectory that maximizes (5.7), which typ-
ically becomes the same as the one for differential privacy only when σ2 → ∞.
As will be seen in Chapter 7, for low noise variance, the τ that maximizes (5.2)
will correspond to the one that is closest to the true trajectory. However, in the
high noise variance case, τ∗ will correspond to the same difference as in differential
privacy. Thus for certain noise variances, the two privacy notions may coincide.

Sensor Design

Much of the intuition from the one-state SISO system carries over to multiple state
MIMO systems with some minor additional technicalities. Specifically, one has to
consider how Buk is transformed and filtered by matrices A and C at each time
step. In order to understand how sensors affect the privacy, we will keep the input
directions constant. Therefore in this section, without loss of generality, we will
keep the assumption that the input is scalar, since Buk will always be a vector that
acts as a scalar input in a certain input direction.

Often, however, the reason behind why sensors are added to a system is to mea-
sure some quantity of interest. Adding noise in order to hide some other quantity
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becomes quite counterproductive, since it may contribute to hiding the quantity
of interest as well. Therefore, another approach to enhancing privacy should be
preferred. Typically, the designer of a system has some degree of choice when it
comes to designing C, for example by placing the sensors in a particular place.
Therefore, the C matrix becomes another design choice that affects the privacy of
a step change which the operator can use.

Let us assume for simplicity that matrix A is diagonalizable and denote the
eigenvalues of A by λi, i ∈ {1, 2, . . . , n} with the corresponding eigenvectors, vi and
where |λi| ≥ |λi+1|, and, without loss of generality, that the covariance matrix Σ is
a diagonal matrix, where σ2

i is the ith diagonal element. We don’t lose generality
since transforming a non-diagonal Σ to a diagonal matrix is always possible, since
it is symmetric. Additionally, this transformation simply corresponds to a change
of basis for C, which we aim to design in this section. Consider the components of
B with respect to A’s basis,

B =
n∑
j=1

bjvj ,

where vi ∈ Rq and bi ∈ R. Using this basis, we can write the output at each time
step, for each sensor i, as,

n∑
j=1

bjCivj .

The `2-difference in (6.12) can then be written as

S =
N−1∑

k=k∗+1

p∑
i=1

1

σ2
i

 n∑
j=1

bjCivj
1−

(
λ−1
j

)min(k∗+τ,k)

1− λ−1
j

λk−1−k∗
j

2

. (5.13)

Essentially, which can be seen in Equation 5.13, the sensor placements determine
which of the excited dynamics are shown in the output. In this case, the vector
product Civj determines how much of that particular dynamic mode is shown in the
output. Thus, the operator obtains a third method for enhancing privacy, namely
by placing the sensors by design.

In Section 5.2, we showed that a fast dynamical mode leaks more information
than a slow mode, under the assumption that they have the same amplitude, in
the sense of SNR. One can therefore target to remove fast modes by choosing the
row vectors in C to be perpendicular to eigenvectors corresponding to modes with
the smallest eigenvalues. The privacy breach will then be spread out over several
time steps. This might be useful in some applications, where a major security risk
only follows when the adversary obtains a good estimate of the change time almost
immediately. Thus operator might accept that the adversary learns the change
time eventually.

On the other hand, always removing the quickest mode might not be the best
strategy to hide the change time, especially if the signal amplitude when using
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the slow modes is larger, giving a larger SNR. Choosing C to be perpendicular to
eigenvectors corresponding to the slowest modes, makes the sum converge as fast as
possible. Due to the quick convergence, the privacy breach will be contained to the
first few time steps. These modes may be ideal for applications where the system
remains in steady state for longer periods of time, since all the information relevant
to the breach has already been leaked. Finally, note that C also can be chosen in
a way so that different dynamical modes cancel each other in the output, which is
possible due to the summation over all the modes inside the square in (5.13). Thus
for systems that allow for this, the adversary is able to hide certain dynamical
modes from appearing in the output by using (5.13).

However, note that the dependence on τ∗ has been omitted from this discussion.
Special care has to be taken with regards to τ∗ when designing C, especially when
short term privacy is considered, since it affects the first τ∗ outputs after the change.
Choosing a C to eliminate, for instance, the fast dynamics mode may result in a
τ∗ which decreases the lower bound, as opposed to choosing a C that lets fast
dynamics appear in the output. However, if the privacy enhancement starts from a
nominal system setup, for which there already exists an optimal τ∗ for (5.2), then it
is relatively easy to alter the nominal sensor setup to improve privacy, for instance
through gradient descent. Small changes of C, in the sense that ‖∆C‖2 is small, will
not change τ∗, whereas larger changes may cause the system to obtain a different
optimal τ∗ in (5.2). However, since the bound in (5.2) holds for all τ , the change of
the optimal τ∗ because of gradient descent will not result in an decrease of privacy.
A version of this phenomena will be seen in the next chapter, where we use the
same argument to prove that changing uk through gradient descent methods will
always improve privacy.

5.4 Zero Dynamics

In Section 5.2, we saw how the privacy increased as the dynamics became slower.
However, we can see that in the limit a → 1, we get that S → 0, which implies
that B → ∞. Thus it becomes impossible to estimate the change time. In some
sense, a → 1 represents the most private type of dynamics, namely one that does
not appear in the output. Note why the lower bound tends to infinity, namely the
way we have set b = (1−a)→ 0. In some sense, the most private system is the one
where the input does not affect the output.

Such a system is rarely desirable to use, specifically because there is no way
to influence the system through outside signals. However, there exists a class of
systems where B 6= 0, but where certain inputs provide a zero change in the output,
namely systems with zero dynamics. Using the lower bound (5.2), we will in this
section show that only inputs associated with zero dynamics will be able make
the lower bound tend to infinity. To do so, we will remove the assumption of a
single input and consider privacy for different input directions. For now, let us still
assume that the input is a step. We will need a way to compare the privacy levels
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for different step inputs. Therefore, we will use the following definition.

Definition 8. Let λτ (S) be the smallest eigenvalue of S(τ,M, k∗). The most pri-
vate input direction is defined to be the eigenvector u∗, corresponding to the λτ∗
eigenvalue, where τ∗ maximizes (5.2).

Using Definition 8 as a privacy metric for different input directions, we are able
to find privacy directions which are impossible to use for change time estimation.
We define them as follows.

Definition 9. We say that u is a fully private input direction if λτ (S) = 0, for
some τ .

Definition 8 is justified by the following proposition, which states that unit
step-changes in the direction of u∗ provide the most privacy to a system.

Proposition 6. The smallest variance for estimating change time of the step, k∗,
is maximized in the direction of u∗.

Proof. Minimizing u>S(τ,M, k∗)u for τ = τ∗ maximizes the bound in (5.2).

Note that Definition 9 also implies that λτ∗(S) = 0, since any other τ provides
a looser lower bound on (5.2). Proposition 6 provides a method to find the most
private input directions. Therefore, it also gives the controller a way to hide a
change in one of the inputs by coordinating the other possible inputs.

Remark 3. Notice that in Definition 8, we have implicitly assumed that ‖u‖2 =
1. In fact, τ∗ depends on ‖u‖2, and thus the most private step input will also
depend on ‖u‖2. For our purpose, which was to define fully private input directions,
Definition 8 is sufficient, but it can be expanded to inputs that fulfill ‖Pu‖2 = 1,
for some positive definite P .

Note that in the previous chapter, the existence of zero dynamics posed a serious
security risk, since an adversary may use them as a conduit for an undetectable
attack. Here, we will show that they could be useful in a pure privacy perspective,
in the sense that they provide full privacy to the inputs. Therefore, if an adversary
can be kept from measuring the inputs, zero dynamics can be used to fully hide the
input-output relationship from the adversary. Let us first relate the fully private
input direction to the unobservability of system (5.1).

Theorem 7. A fully private input direction exists if and only if

rank(O) < p, (5.14)

where

O =


CB
CAB
CA2B

...
CAN−1B

 . (5.15)
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Before we prove this theorem, we need to relate the null space of (5.4) to (5.15).

Lemma 2. The following holds for any τ, τ̃ ∈ N,

O(τ̃)u = 0 ⇐⇒ O(τ)u = 0,

where

O(τ) =


CÃ(k∗ + 1, τ)B

CÃ(k∗ + 2, τ)B

CÃ(k∗ + 3, τ)B
...

CÃ(N − 1, τ)B

 .

Proof. Without loss of generality, we can set τ̃ = 1, where O(1) = O in (5.15). The
proof for

Ou = 0⇒ O(τ)u = 0,

is obtained by using (5.5), which shows that CÃ(k, τ)B is a linear combination of
CAlB, ∀l ∈ {0, . . . , N − 1}. The proof for

Ou = 0⇐ O(τ)u = 0,

follows from by rewriting (5.5) as,

Ã(k, τ) =


I, k = k∗ + 1,

Ak−k
∗−1 + Ã(k − 1, τ), k∗ + 2 ≤ k ≤ k∗ + τ

Ak−k
∗−τ Ã(k∗ + τ, τ), k∗ + τ + 1 ≤ k ≤ N − 1.

Thus each CÃ(k, τ)B is a linear combination of CAk−k
∗−1B and CÃ(l, τ)B, for all

l < k, which implies
0 = O(τ)u⇒ O(τ)u = Ou = 0.

Let us return to the proof of Theorem 7.

Proof of Theorem 7. If (5.14) holds, then by Lemma 2 there is a u∗ such that

Ou∗ = O(τ)u∗ = 0,

which implies that u∗>S(τ,M, k∗)u∗ = 0 for all τ , making Bu∗(M) =∞.
If Bu∗(M) =∞, then there is a τ∗ such that

u∗>S(τ∗,M)u∗ = 0 (5.16)

for some u∗. Since Σe is positive definite, (5.16) implies that

CÃ(k, τ∗)Bu∗ = 0, ∀k.

Finally, the last step is obtained by applying Lemma 2.
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Theorem 7 states that fully private input direction exists if the input-observability
matrix, O, is rank deficient. If it is rank deficient, then the fully private input
direction is in the null space of O. Note that Theorem 7 implies that state unob-
servability also gives fully private input directions. If system (5.1) is unobservable,
then it suffices that the step input is applied in a direction that only affects the un-
observable state if B allows for it. Inputs in the direction defined by Theorem 7 do
not affect the output, which is also similar to what inputs that excite zero dynamics
do. For sample horizons that are large enough, namely N − k∗ > n, fully private
input directions are a special case of these. Recall the definition of a transmission
zero:

Definition 10. A zero, z0, is a complex number that makes the Rosenbrock system
matrix rank deficient,

rank

([
A− Iz0 B

C 0

])
< m+ n, where m ≥ p.

We denote x0 as the zero-state direction and u0 as the corresponding zero-input
direction, where

0 =

[
A− Iz0 B

C 0

] [
x0

u0

]
. (5.17)

A simpler way to determine if an input direction is fully private is by checking
the zero-state direction.

Corollary 2. Let the measurement horizon satisfy N − k∗ > n. Then an input
direction is fully private if and only if it is a zero-input direction, u0, and

C
CA

...
CAn−1

x0 = 0. (5.18)

Proof. Note that, using the Cayley-Hamilton theorem, (5.17) is equivalent to,


C
CA

...
CAn−1

x0 +


0
CB

...
n−2∑
k=0

zn−2−k
0 CAkB

u0 = 0. (5.19)

If the input direction is fully private, then the second term in (5.19) is zero. One
may then choose x0 = 0 which gives that (5.19) is zero. If the input is a zero-input
direction and (5.18) holds, then (5.19) being zero implies Ou0 = 0.
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Thus, if the number of samples, N , is larger than the number of states, n,
one may study the zeros and the respective zero-state direction. If the zero-state
direction is in the observable space of the system M , then there exists a fully private
input direction and it is parallel to the zero-input.

For the opposite case, namely when the sample horizon is shorter than the
number of states, then other fully private inputs could exist. This is illustrated in
the following example.

Example 1. Consider the following system,
xk+1 =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

xk +


0

0

0

0

1

uk
yk =

[
1 0 0 0 0

]
xk

(5.20)

Then, for all sample horizons N ≤ 6 + k∗, we get that (5.14) holds. This can be
seen from the fact that xik is non-zero for A5−iB.

The example shows that Theorem 7 does not state that private, non-trivial
inputs come exclusively from zero dynamics. If it is possible to delay the system
response, then one can delay the privacy breach into the future. In relation to the
attack considered in Chapter 4, this corresponds to an adversary needing to collect
additional samples before being able to construct an attack against the system.
By introducing delay, an operator could therefore work for longer before having to
switch the configuration. The obvious setback is that the system response now is
delayed, which would require the operator to have a good system model in order
to deal with the delay.

5.5 Estimating Occupancy Changes in the Live-In Lab

Let us now use the theoretical results which were derived in this chapter to analyze
the privacy of a smart residential building. In this section, we introduce the KTH
Live-In Lab Testbed [86], which is part of a smart residential building on the KTH
campus that contains multiple sensors that could detect occupant activity within
the building. The KTH Testbed is designed to be energetically independent, with
dedicated electricity generation systems through photovoltaic panels, heat genera-
tion system (ground source heat pumps), and storage (electricity and heat). Sensors
are used extensively to study user behavior, improve the control of the systems, and
utilize fault detection strategies to enhance the energy efficiency and to improve the
comfort of the occupants. Specifically, these objectives are realized through the use
of a digital twin, which combines an internal model of the system, created using the



5.5. ESTIMATING OCCUPANCY CHANGES IN THE LIVE-IN LAB 65

Figure 5.2: A cross-sectional view of the KTH Testbed, showing two separate apart-
ments, the hallway that separates them, the technical space below, and the HVAC
system.

IDA ICE 4.8 software program for building simulations [87], with real time data
that are supplied by the sensors [88].

The testbed comprises 120 square meters of living space, 150 square meters of
technical space and a project office of 20 square meters. A cross-sectional view
of the KTH Testbed can be seen in Figure 5.2, where the technical space can be
seen to be under the living space. The living space is fully configurable, which
enables investigations of multiple apartment layouts. For the numerical results
that are presented in this theses, the living space is be configured to contain 4
apartments, which can be seen in Figure 5.3, where each apartment contains several
sensors that measure temperature, humidity, CO2, pressure, and volatile organic
compounds. Additionally, the apartments have similar layouts and are assumed to
not be interacting with each other.

The data is obtained by sampling from the IDA ICE 4.8 software model of the
testbed once every 9 minutes for a full week. In order to resemble a real situation,
a weather model that emulates typical summer conditions was included. While
the KTH Testbed has several types of sensors that could be used for detecting
occupancy, which can be seen in Figure 5.3, we restrict ourselves to the temperature
and relative humidity sensors because they correlate well with the occupancy of a
room while being relatively highly susceptible to measurement noise. Additionally,
we will restrict ourselves to only consider one sensor of each type for illustrative
purposes. Figure 5.4 shows the temperature and relative humidity in a), and the
occupancy in b) for one of the four apartments. Note that the time series shows a
drift over the 7-day window for both types of measurements. This drift is caused
by weather effects like solar radiation, outdoor temperature and outdoor relative
humidity, that are generated from typical summer conditions.
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Figure 5.3: An overview of the apartments in the KTH Testbed.

The desired temperature and humidity levels are obtained through the HVAC
system. The controller for the HVAC system is a PI-controller with a dead-zone over
a user-specified comfortable range. Specifically, the heating and cooling systems
are turned off when the temperature is in the comfortable temperature range of
21°C−25°C, see Figure 5.4. When, for instance, the temperature exceeds these
limits, the controller turns the HVAC system on and drives the system back to the
comfortable range. Similarly, the same control strategy is applied to the humidity
level. Since the states are allowed to vary within the comfortable range, we will
assume that any changes within that range occurs purely due to the activity of the
occupant. Therefore, we are able to model the indoor occupancy through the input
to a linear system. In the next section, we will show how an attacker can use this
fact to figure out when the rooms in the apartment become empty.

Privacy Breach Examples

Let us now assume that an adversary gains access to the sensors in Apartment 2,
which is shown in Figure 5.3. We will use two different attack models in order to
analyze the privacy properties of Apartment 2. In the first privacy breach scenario,
we will limit the adversary’s access to only one sensor, in order to clearly show
the estimator’s dependency on noise and the system dynamics. The goal of this
analysis will be to determine which sensor leaks the most information. In the
second scenario, we will assume that the adversary uses several sensors to eavesdrop
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Figure 5.4: The two graphs in plot a) show the temperature and relative humidity in
the living room of Apartment 2 that were simulated for one week with the IDA ICE
4.8 simulator. The graph in plot b) shows the occupancy of the same apartment
during the week.

in order to show that a combination of measurements improves the estimation
certainty. Here, the analysis will focus on which room in the apartment is more
sensitive to privacy leaks.

Let the adversary have access to a linear time invariant model of the dynamics,

M0 :

{
xk+1 = Axk +Buk

yk = Cxk,
(5.21)

where xk ∈ Rn is a vector of system states at each time instance k, (uk)N−1
k=0 is

a sequence of signals that represent occupancy, and (yk)Nk=0 is the sequence of
measurements that the adversary uses to eavesdrop. For the first example we
consider, two sets of system matrices A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n were
determined, one relating to the temperature measurement in the living room, which
we denote as M t, and the other for the measurement of relative humidity in the
living room, denoted as Mh. For the second example, the system matrices for each
room was determined using measurements from both types of sensors. All models
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were identified by using MATLAB’s System Identification Toolbox on the input-
output data that was generated by the IDA ICE 4.8 simulator. Additionally, a
second-degree polynomial function was identified and subtracted from the data in
order to account for the weather effects.

Now consider a room in an apartment that is in the comfortable temperature
and humidity range. At time step k∗, when a person enters the room, assume that
the temperature and humidity does not exceed the comfortable ranges. Usually,
entering a room is similar to instantly adding a source of heat and humidity. One
can therefore model this change as a step input signal to system (5.21), uk = 1 for
k ≥ k∗, and zero otherwise. Since the adversary knows that the input is a unit
step, the only unknown parameter is when the step change is applied, k∗, which
the adversary wants to infer from (yk)N−1

k=0 .

In order to estimate when the occupancy changes, the adversary applies input
sequences (uk)N−1

k=0 to its known model M0 for different possible change times, k̃.

The k̃ that produces an output sequence (ỹk)Nk=1 which minimizes

J(k̃) :=
N∑
k=1

‖ỹk − yk‖22,

is chosen as the estimated change time,

k̂ = arg max
k̃

J(k̃).

The use of this particular estimator for the estimation of the change time is justified
by the fact that, as a defensive measure, the measurements will be corrupted with
additive Gaussian noise in order to reduce the information leak. In that case,
this particular estimator becomes equivalent to the Full Information Estimator
(FIE) [58]. For gaussian measurement noise, an estimator trying to minimize K(k̃)
is equivalent to the Maximum Likelihood Estimator. Remember that although we
only consider one type of estimator for the numerical results, the results which are
derived in this chapter applies to all estimators. Since the HCR lower bound (3.11)
applies to all estimators, the FIE might not achieve the lowest possible uncertainty.

Nonetheless, the adversary is able to estimate the occupancy change in the
rooms of Apartment 2 using the FIE. For instance, the results of the estimation
using the temperature sensor in the living room are shown in Figure 5.5, together
with the the true occupancy of the room. It is evident that, due to the sharp increase
in temperature, the FIE correctly predicts the time step for when the person enters
the apartment. The same tactic can be employed to the case of multiple outputs,
which will further enhance the estimation capabilities of the adversary since they
have more information to use. Note that the measurements in this example have not
been corrupted with noise, which causes the estimation uncertainty of the change
time to be very low. In the next section, we will explore how to add measurement
noise to enhance privacy.
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Table 5.1: SNR, Empirical variance V̂ and the lower bound B under different
variances of the additive noise.

Model σ2 SNR V̂ [min2] B [min2]

Temperature, M t 0.25 16.9 36.7 11.3
Humidity, Mh 0.25 204 11.9 3 · 10−8

Temperature, M t 2.25 1.87 3490 300
Humidity, Mh 2.25 22.6 48 7.74

The Noise Injection Mechanism

Typically, the operator often has the means to prohibit the adversary from ac-
cessing the sensors. For example, if it is known that the adversary is only able
to eavesdrop on wireless data transmissions, then some sensors could be made to
send data through an Ethernet cable. However, limiting sensor access in this man-
ner is typically costly or constrains the amount of sensors that could be placed
in an apartment. In the privacy breach example that we consider in this section
we consider an apartment that has two sensors in each room, where one measures
temperature and the other measures relative humidity. We assume that the oper-
ator has limited resources and may block the adversary’s access to only one of the
sensors in each room. Therefore, the operator must make a choice about which of
the sensors it should leave to be susceptible to privacy attacks.

Limiting access to only one sensor is not enough, which we saw in Figure 5.5,
since the adversary is able to estimate the occupancy change using only one sensor.
In addition, the adversary needs to corrupt the measurements of the non-secured
sensor with additive Gaussian noise in order to introduce uncertainty in the esti-
mation of the occupancy change. While adding noise to the measurements will help
to hide the input, there usually exists a utility function that the operator is trying
to optimize with the help of the sensor, such as minimizing the energy cost of the
smart building. Introducing uncertainty by injecting noise into the measurements
will generally make the operation of the system less efficient with respect to the
utility function. In this thesis however, we do not explicitly address the privacy-
utility trade-off due to the increased uncertainty on the operator’s side. Instead, we
look for which of the two sensors will achieve the smallest privacy leak with as little
corruption as possible as a way to minimize the operator’s utility loss. Therefore,
we will compare the sensors by calculating how large the SNR needs to be in order
to hide the change time.

The Privacy Level of One Sensor

Let us return to the first scenario, where the adversary gains access to one of the
sensors in the living room of Apartment 2. The adversary obtains an 8-state model
of the system that is identified from input-output data as described in Section 5.5.
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Figure 5.5: The graph shows the simulated change in occupancy and how it affects
the temperature over 20 hours. The data is used to produce an estimate of the
occupancy change time.

In Figure 5.6, we provide a realization of the noisy temperature measurements
from Apartment 2, together with the simulated step change and the estimated step
change for 1000 trials. The lower bound of the estimation uncertainty B for the
two sensors with two different noise variances σ2 are presented in Table 5.1. The
empirical variance of the estimated change time, V̂ , of 1000 trials is shown as well.
One may see that the bound holds in all cases, and the difference is less than an
order of magnitude in some cases. Also, both B and V̂ are large for small SNR, as
was predicted in Section 5.3.

Noticeably, there is also a large gap between the empirical variance V̂ and the
lower bound B for some cases in Table 5.1. One reason for this gap is that there may
be more factors corrupting the data than what is captured through the assumption
of additive Gaussian noise. For example, privacy may be somewhat increased due
to weather effects since the attacker’s weather model, which was obtained by sub-
tracting a polynomial from the time series, does not perfectly capture the impact
that the weather has on Apartment 2. The effect of the weather can further be
modelled as process noise, which in turn, adds more stochasticity to the system
and therefore further masking the input signal. On the other hand, the gap in
the variance is less than an order of magnitude smaller for the temperature when
the noise is low, which gives one an idea of how tight the bound can be. For the
humidity however, this gap is several orders of magnitude larger.

The two sensor types also show different behaviors when the noise is increased.
For instance, decreasing the SNR by an order of magnitude increases the lower
bound B by an order of magnitude, while the empirical variance V̂ increases by
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Figure 5.6: In a), temperature measurements corrupted by additive Gaussian noise
with variance σ2 = 2.25 are shown. In b), the histogram of 1000 estimates are
shown together with the occupancy change.

two orders of magnitude. Extrapolating this shows behavior implies that the lower
bound becomes tighter when the noise is low. On the other hand, decreasing
the SNR for the humidity model causes the lower bound B to increase by several
magnitudes, while the empirical variance V̂ increases by approximately a factor
of 4. This implies that the lower bound for the humidity model becomes tighter
the larger the noise variance. Therefore, we can conclude that although the lower
bound can be relatively tight for some σ2, finding a range of σ2 that produce a
tight lower bound is highly model dependent.

One may also see in Table 5.1 that the empirical variance of the change time
is much lower for the humidity sensor compared to the temperature sensor. This
large difference is also reflected in the lower bound. A designer might therefore
think that the humidity sensors are more susceptible to privacy leaks, and blocking
an adversary’s access to the humidity sensor should be prioritized, for instance by
restricting it from communicating wirelessly as we discussed before. Upon closer
inspection however, one can see that the SNR is much larger for the humidity
compared to the temperature, which is probably the main reason for the better
estimations from the humidity measurements. Comparing sensors solely on the
amount of noise that is injected is therefore not precisely fair, since the signal
strength of the two sensors are very different and the operator is not restricted
to using the same noise for the different types of sensors. Instead, a comparison
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between signals with the same SNR should be made.

In order to overcome this issue and isolate the effect that the system poles have
on the estimation, we normalize all inputs and outputs so that they are between
0 and 1. Table 5.2 presents the results of estimating the change time for a 1000
performed trials. Now, the lower bound B is lower for the temperature sensor
than the humidity sensor. This analysis suggests that the operator should use
extra resources to block the adversary’s access to the temperature sensor in order
to maximize privacy with minimal noise corruption. Note that since B is a lower
bound, this analysis may not always provide the best solution. Here however, these
results are also confirmed by the empirical variance V̂ , showing that the humidity
sensor provides better privacy in the presence of an eavesdropper.

The Rate of the Information Leak

Privacy is not an all-or-nothing concept. Instead, additional aspects can be con-
sidered. For instance, one could ask how many time steps after the change does
it take for the adversary to obtain a good estimation? By inspecting the slowest
eigenvalues of the two models, one can see that the largest eigenvalues are approx-
imately the same, meaning that the information about the change time is leaked
over approximately the same time horizon for both models. Intuitively, this should
mean that they are equally private.

Nevertheless, this phenomenon is not reflected in B or V̂ for either model. Re-
call the final discussion in Section 5.3, there it is argued that not only the largest
eigenvalue determines the variance of the estimated change time, but also the corre-
sponding eigenvectors, which should be a component of B and not be perpendicular
to C>. In fact, we have that B has a very small component in the direction of the
eigenvector with the largest eigenvalue, b1 ≈ 0, for both models. Thus, this mode
does not get excited by the step change. The eigenvectors corresponding to the sec-
ond largest eigenvalue, however, does become excited by B and is not perpendicular
to C. Eigenvalues for both models are also shown in Table 5.2, where one can see
that the humidity model should leak information much slower than the tempera-
ture model. Intuitively, this should therefore mean that the humidity sensor gives
a smaller estimation variance than the temperature sensor. In fact, the eigenvalues
only give the rate of decay of the information leak and a large eigenvalue only creates
a long tail that is summed up. However, the size of the information leak is actually

given by S(M), (CB)2

σ2 , which incidentally is also the first summand in S. Therefore,
the eigenvalue analysis only says that the information leak of the humidity sensor

persists over a long period of time, but (CB)2

σ2 of Mh says that the information leak
is small for each time step. Table 5.2 additionally shows that S(Mh) is not larger
than the first summand in S(M t). This large summand means that the privacy
leak for the first time step of the temperature measurement is larger than for all
N + 1 humidity measurements combined. Additionally, the smaller eigenvalue says
that the privacy leak for M t is concentrated on the first few time steps, since the



5.5. ESTIMATING OCCUPANCY CHANGES IN THE LIVE-IN LAB 73

Table 5.2: The two largest eigenvalues, empirical variance V̂ and the lower bound
B when noise with SNR= 4.

Model
∣∣λ1

∣∣ ∣∣λ2

∣∣ (
CB
σ

)2 S V̂ [min2] B [min2]

M t 0.995 0.84 0.134 0.142 342 101
Mh 0.996 0.97 0.018 0.088 545 184

Table 5.3: The table shows the lower bound, Bu, and the empirical variance, V̂ , in
different rooms. The last column shows the input projected onto the most private
input direction, u∗.

Room Bu [min2] V̂ [min2] u · u∗
Living Room 169 1570 1

Kitchen 5.67 277 0.002
Bathroom 18.6 145 0

tail decays much quicker. With these results, one can say that the adversary not
only can get better estimates of the change time using the temperature sensor, but
they will be able to obtain the best possible estimate relatively quicker than for the
humidity sensor, when the operator applies noise that gives the same SNR to both
sensors.

Privacy of Different Rooms using Multiple Sensors

Let us return to the second case which we want to analyse, namely which room is
the most sensitive to privacy breaches when an occupant enters or exits it. Here,
we will use both types of sensor from all three rooms in order to conduct the
detection. The adversary bases their estimator on an identified multiple-input-
multiple-output (MIMO) model of the system. Entering the different rooms as
different input channels where, for example, entering the living room is modeled as

u =
[
1 0 0

]>
. The MIMO model additionally assumes that entering one room

affects all other rooms as well, for instance, entering the kitchen will also produce
a small change in the output from the bathroom sensors.

Table 5.3 shows the variance of the estimated change time for different rooms in
the apartment. In the last column, the projection of the input to the system onto
the most private input direction, u∗, is shown. Although the empirical variance,
V̂ , increases as the input u becomes more parallel to u∗, the same is not true for
the theoretical lower bound, B. The lower bound B in Table 5.3 is largest for the
input in the most private direction, which verifies Proposition 6, however, the input
which is perpendicular to u∗ does not produce the lowest theoretical bounds. This
discrepancy will be further explained in the next chapter, where we will provide
a method that increases privacy locally to a predefined input direction. However,
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essentially it turns out that this phenomenon occurs due to the non-convexity of B.
If we start from an arbitrary u, and rotated the input vector towards u∗, we may
pass several minima during the way. These local minimas are not reflected in the
empirical variance V̂ , which might be due to the sub-optimality of the estimator
that is used.

This analysis shows that the privacy of a system highly depends the input
direction as well. If possible, the operator can use this analysis to modify the
HVAC system so that when an occupant enters a room they ensure that the system
changes along only only one input direction,

Bu = bv,

where b = B u
‖u‖2 and v = ‖u‖2. Thus, we have that v ∈ {0, 1}. In this way, the

system turns into a single-input system for which most of the privacy analysis in
this chapter has been developed. In the next chapter, we will analyze how privacy
can be further enhanced by changing the input u.

5.6 Conclusions

In this Chapter, we introduced a novel privacy notion based on a lower bound of
the estimation error variance of step input to linear dynamical systems. Due to the
difficult nature of the parameter that we are interested in hiding, namely the change
time, we have used the HCR bound as the main theoretical basis for our analysis.
We have shown how the system dynamics affects the estimation quality by first
considering a single-state system, before moving on to systems with multiple states,
inputs and outputs. The lower bound was confirmed using numerical experiments
from a software that is designed to be a digital twin of the KTH Live-In Lab, where
we assumed that a well-informed adversary tried to estimate the inputs using only
noisy measurements.

Several aspects of this privacy notion has been considered. For instance, we
showed that inputs that correspond to zero-dynamics are impossible to estimate.
Additionally, we showed that systems with integrator dynamics have poor privacy
properties, since an adversary will be able to estimate the change time perfectly,
given enough samples. We also showed how some systems’ privacy can be breached
immediately, often due to their fast dynamics or large SNR. These insights can then
be used to guide designers of systems create systems that leak less information.

Finally, we have related this novel notion of privacy with Differential Privacy,
which is more commonly used in the literature. We have shown that our notion
of privacy provides better guarantees for estimation uncertainty, compared to only
knowing the parameters that quantify Differential Privacy.



Chapter 6

Privacy-aware Optimal Control

In the previous chapter we laid the foundation of privacy for change times with
regards to abrupt changes. The abrupt change was modelled as a step change in
the input signal for some input direction, and we assumed that the adversary had
access to the outputs, or measurements, of the physical system. We saw that the
fundamental quantity which determines the privacy level of an abrupt change is
the `2-difference between the true trajectory and some other alternative trajectory
that is parametrized by the τ∗ which maximizes the HCR bound (3.11). Based on
this insight, we are able to generate additional defensive methods that the operator
could use to hide the time that the abrupt change occurs. In this chapter we will
consider extensions of the theory in several directions.

In Section 5.4, we defined the most private input direction for a step in a MIMO
system. Additionally, Definition 8 gave us a direct method to find the most pri-
vate input direction. An operator can use this information to design the physical
system, for instance by configuring the HVAC system in an apartment, so that
when someone enters the apartment, the changes in the air temperature, humidity
and CO2-levels happen along the most private input direction. This configuration
minimizes the effect of privacy breaches by giving an adversary as little information
about a change as possible. However, it might not always be desirable to use the
most private input direction. A simple example is when the most private input
direction is also fully private. Although the adversary will not be able to estimate
the change time, the same will also apply to the operator if they use the same
sensors. In a such situation, this mechanism to improve privacy might actually
impede the utility of having sensors in the first place. For instance, the operator
might need some information about the inputs for a certain task, either to guar-
antee control performance, run diagnostics or to detect attacks. Therefore, privacy
is better suited to be considered as a secondary objective, in addition to some pri-
mary goal that relies on good measurements. Formulating privacy enhancement
as a secondary problem suits most applications since an operator the wants to im-
prove privacy is willing to tolerate some amount of utility loss in exchange. In this

75
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chapter, we will explore these types of situations.
Finally, we have only considered abrupt changes in terms of step inputs previ-

ously. Here, we will be extending the concept of input privacy to more general cases,
namely by letting the operator apply arbitrary input sequences to the physical sys-
tem. The arbitrary input sequences gives the operator an additional dimension
to the generation of private inputs. For instance, a gradual increase in the input
could be applied until the desired steady state is reached, instead of immediately
changing the input to its steady state value. The gradual increase could cause the
`2-difference to be much smaller for the initial time steps after the change, and
therefore, increase the difficulty of estimating the change time in a short time hori-
zon. This type of privacy-enhancing mechanism could be applied while the CPS is
operational, without the need for stopping and redesigning the entire CPS. These
types of situations are the topics of the second part of this chapter.

6.1 Problem Formulation

Recall the linear time-invariant system where the measurements are corrupted by
a zero-mean, Gaussian noise, ek,{

xk+1 = Axk +Buk

yk = Cxk + ek.
(6.1)

We also remind the reader that we write the sequence of inputs as U = (uk)N−1
k=0 .

In Chapter 5, we obtained the most private input by finding the input directions
that minimize the quantity u>S(τ∗)u, where uk = u 6= 0 for k > k∗, and uk = 0
otherwise. This restriction simplified our analysis somewhat, since we only needed
to consider the S(τ) with the smallest eigenvalue in order to find the most private
input direction. In this chapter however, we will need to compare the privacy levels
of different inputs more explicitly. We will therefore use the following definition,

Definition 11. We say that the input sequence U∗ is more private than U if,

BU∗ > BU ,

where BU is the HCR bound of an input sequence U applied to system (6.1).

Definition 11 allows us to compare privacy for input sequences directly. The mo-
tivation to use the HCR bound as the basis for Definition 11 comes from its strong
correlation to the empirical variance, which we saw in Chapter (5). Additionally, by
restricting the input sequences to step inputs and adding the additional constraint
‖u‖2 = 1, we are able to reconstruct the results of Section 5.4. Additionally, note
that Definition 11 also shows good correspondence with the one-state system, for
instance, by letting ‖u‖2 → 0, we get that B → ∞, which is a more private input
since a step input with an infinitesimal amplitude becomes impossible to detect.
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We will assume that the operator has some primary objective they need to fulfill,
which is stated in terms of a minimization over some cost function J(X,U),

minimize
X,U

J(X,U)

subject to X ∈ X.
(6.2)

Given the objective to minimize cost function, we ask if J(X,U) could be slightly
modified so that a new input sequence that enhances privacy compared to the
solution of (6.2) is obtained. By a slight modification of J(X,U), we mean that the
new solution is close to the optimal input for (6.2). Equivalently, since we are only
looking to enhance privacy by changing the inputs, we ask how the input sequence
U can make better use of the existing noise in the system to hide when a change
occurs. Therefore, we seek to answer the following problem in this chapter,

Problem 3. Consider an estimator of k∗, ψU (Y ), that has access to the measure-
ments Y of length N such that N ≥ k∗. Is it possible to design a new U so that the
privacy is increased?

Problem 3 is a formalization of Problem 3 that was stated in Chapter 1. Building
upon the theory from Chapter 5, we will first consider how one can modify step
inputs in order to enhance privacy. This situation corresponds to CPS that are
sampled with very low frequency. In that case, the transient part of the input
dies out before the first sample is collected by the adversary. An adversary with
noncorrupted measurements will only be able see step inputs in such situations.
Additionally, the adversary can always create this situation by disregarding some
of the sampled inputs, thus artificially creating an discrete-time system that only
uses step inputs, at the cost of fidelity.

Remark 4. Note how Problem 3 relates to the defence mechanisms that were dis-
cussed in Chapter 5. When the input to a MIMO system is a step input, then we
can write Bu = B u

‖u‖2 ‖u‖2 = B̃‖u‖2, where B ∈ Rn×p and B̃ ∈ Rn. In this case,

designing the step input vector u becomes equivalent to designing the B̃ vector for
single-input systems, under some constraints on the matrix.

In the second part of this chapter, we will generalize our results to arbitrary,
nonzero input sequences. Therefore, we will answer how to enhance privacy when
the transient phase of the input is included in the adversary’s samples. In order to
account for the worst case estimator that the adversary could use, we will make an
equivalent assumption about the adversary that was made in Chapter 5. Namely,
we still assume that the adversary may know the system model and the nonzero
input sequence of U . However, the adversary does not know when the operator
applies the nonzero input, which we once again parametrize by the change time k∗.
We will also relax the first assumption, and consider the variance of the estimated
change time when the adversary does not know the nonzero part of the input
sequence a priori.
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6.2 Improving the Privacy of Step Inputs

In this section, we consider an operator that wishes to minimize the following cost
function at steady state,

minimize
x, u

J(x, u) = x>Qx+ u>Ru

subject to x = Ax+Bu,

x ∈ X,

(6.3)

where the first constraint states that the system is at steady state, and X in the
second constraint is some potential additional constraint on x, for instance a desired
reference at steady state. The cost matrices Q ∈ Rn×n and R ∈ Rp×p are positive
semi-definite.

Assume now that the operator is willing to increase the cost of (6.3) a little
bit in order to enhance privacy. In other words, we are looking for a systematic
method that slightly alters the optimal input obtained by solving (6.3), which we
will denote as u∗, so that a more private step input is obtained, which we will
denote as up. In order to enhance the input privacy, we will use the lower bound
that was derived in Chapter 5 to find a possible modification of the cost in (6.3).
Recall that the lower bound from Chapter 3 was given by,

Var(ψu(Y,M)|k∗) ≥ max
τ 6=0

τ2

eu>S(τ)u − 1
= Bu. (6.4)

As we have seen from Chapter 5, the lower bound can be used to successfully analyze
how the estimation variance depends on various properties of the system. Similarly,
we can use the HCR bound to increase the privacy of step inputs generated by (6.3)
by incorporating the lower bound into the optimization. In this chapter, we will
include the HCR bound through a regularization term that is added to the cost
in (6.3). We will show that this regularization term is equivalent to a slight mod-
ification to the cost matrix R and the regularization parameter will the intuitive
property of quantifying the privacy-utility trade-off.

One idea is to directly add the HCR bound to the cost function as a regulariza-
tion term, µ̄Bu, with a negative regularization parameter, µ̄ < 0. The parameter
needs to be negative since we are trying to maximize the lower bound while min-
imizing the cost J(x, u). However, the HCR bound is not a concave function of
u in general, due to the maximization over τ . Therefore, we will not be able to
directly use convex optimization to find an optimal privacy enhancing mechanism.
Instead, note that for each step input u ∈ Rq, we can find a corresponding τ that
maximizes (6.4). We can use these τ to parametrize subsets Uτ ⊂ Rq, such that if
u ∈ Uτ , then τ is the maximizer of (6.4) when u is applied to (6.1). Since the HCR
bound over each such subset is concave, we can split up (6.3) into an optimiza-
tion problem over each of these subsets and for each such subset add a particular
regularizing term. The concavity of the HCR bound over each such subset can be
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seen from the fact that the expression inside the maximization operator in (6.4) is
monotonically decreasing over u>S(τ)u, which is a convex function for each fixed τ .
Therefore, maximizing the HCR bound over each such subset becomes equivalent
to minimizing u>S(τ)u over the same subset. This equivalency gives us a way to
simplify the problem. Now, instead of adding a negative regularization term, we
can instead add the quadratic term µu>S(τ)u as the regularization term, where
the regularization parameter is µ > 0,

minimize
x, u

Jτp (x, u) = x>Qx+ u>Ru+ µu>S(τ)u

subject to x = Ax+Bu,

x ∈ X,
u ∈ Uτ .

(6.5)

Since S(τ) is a positive semi-definite matrix, the new minimization problem (6.5)
becomes a convex quadratic program over each subset. In the next section, we will
show how µ should be chosen so that the input fulfills certain criteria on the cost
and privacy levels.

Remark 5. Instead of trying to improve the privacy level of a currently optimal
input, a different idea is to add the HCR bound as an inequality constraint instead,
where the lower bound has to exceed some threshold. In that case, a certain pri-
vacy level will be guaranteed for the input. The operator will then need to solve
a quadratically constrained quadratic program instead. However, in order improve
the privacy of an existing solution to (6.3), the operator will still need to evaluate
the privacy of applying u∗ to system (6.1) in order to be able to set an adequate
threshold on the HCR bound.

Program (6.5) requires that a τ is chosen a priori to conduct the minimization.
Subsequently, each solution (x̂, û) that is obtained from using different τ needs to
evaluated, both by calculating the cost J(x̂, û) and the corresponding HCR bound,
B(û). The operator can then pick the solution with the most desirable combinations
of cost and privacy levels. However, solving (6.5) for each possible subset of Rq
might be computationally expensive, especially since we only want to find small
privacy improvements compared to the cost-optimal input u∗.

Instead, we can produce a privacy-enhanced modification to u∗ by using a two-
step process. First, the operator obtains u∗ by solving (6.3) and find the correspond-
ing τ∗ that maximizes the HCR bound (6.4). In the second step, the operator solves
the following minimization problem,

minimize
x, u

Jτ
∗

p (x, u) = x>Qx+ u>Ru+ µu>S(τ∗)u

subject to x = Ax+Bu,

x ∈ X,

(6.6)
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where τ∗ is the τ that maximizes (6.4) using input u∗ and µ > 0 is some sufficiently
small regularization parameter. By sufficiently small, we mean a µ that produces
an input such that both the u∗ and the new input are maximized by τ∗ in the
HCR bound. Let (xp, up) denote the solution that minimizes (6.6). Since the cost
function is a continuous function of µ as well, we have that as µ → 0, (xp, up) →
(x∗, u∗). Note that if u∗ is not on the edge between two subsets, then we can find
a small open ball, ‖u − u∗‖2 < ε, for some ε ∈ R, which is fully contained in the
same subset Uτ∗ . For all step inputs u in this ball, the same τ = τ∗ maximizes
the HCR bound (6.4). Therefore, by choosing a µ that is small enough, we will be
able to obtain a up ∈ Uτ∗ , which is also the reason why we have dropped the last
constraint in (6.5).

Note that we are only improving the privacy level locally by solving (6.5) for
only one particular τ . If u∗ happens to be on the edge between two subsets, then
the optimization can be conducted by using either one of the τ that parametrizes
the two subsets, since both choices will cause the up to move in a more private
direction. The reason for why it works for when u∗ is on the edge of several Uτ is
thanks to the maximization operator in (6.4), which implies that the HCR bound
can be equivalently written as,

Var(ψu(Y,M)|k∗) ≥ τ2

eu>S(τ)u − 1
, ∀τ 6= 0. (6.7)

By choosing either τ that maximizes the HCR bound for u∗ to plug into (6.6), we
ensure that the expression on the right hand side for at least one τ is increased,
and therefore, the privacy level will also increase.

In the next section, we will also show that the restriction that µ should be
“small” is not necessary, due to the the fact that (6.7) holds. Intuitively, if we
choose a large µ that causes up to end up in a different domain Uτp , where τp 6= τ∗,
we actually obtain a larger privacy enhancement that what is predicted by tau∗,

Var(ψu(Y,M)|k∗) ≥ (τ∗)
2

eu>S(τ∗)u − 1
.

The program (6.6) only increases the HCR bound for a fixed τ , however if τp 6= τ∗

becomes the new maximizer of (6.4) when up is applied, then the maximization
operator ensures that the HCR bound is actually larger than the lower bound
associated with the original τ∗,

Var(ψu(Y,M)|k∗) ≥
τ2
p

eu
>S(τp)u − 1

≥ (τ∗)
2

eu>S(τ∗)u − 1
.

6.3 Privacy-Utility Trade-Off for Step Inputs

In the previous section, we provided some preliminary intuition for why Pro-
gram (6.6) increases privacy through its regularization term. In this section, we
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will prove this claim. Additionally, we are also going to provide some additional
intuition with regards to how the parameter µ should be chosen. Therefore, we also
wish to understand what the privacy guarantees for the system will be when we
choose a particular µ. In fact, the next result gives us an answer that is sufficient
for step inputs and in Section 6.6, we will derive more precise results.

Theorem 8. The nominal privacy gain δ, which is the increase in the `2-difference
for τ∗, is lower bounded by the utility loss, ε ≥ 0,

µδ ≥ ε, (6.8)

where,

ε := J(xp, up)− J(x∗, u∗),

and

δ := u∗>S(τ∗)u∗ − u>p S(τ∗)up.

Proof. The inequality (6.8) is obtained by comparing the regularized costs, Jp, and
rearranging the terms:

Jτ
∗

p (x∗, u∗) ≥ Jτ
∗

p (xp, up)

⇐⇒ x∗>Qx∗ + u∗>Ru∗ + µu∗>S(τ∗)u∗

≥ x>p Qxp + u>p Rup + µu>p S(τ∗)up

⇐⇒ µ
(
u∗>S(τ∗)u∗ − u>p S(τ∗)up

)
≥ x>p Qxp + u>p Rup − x∗

>Qx∗ − u∗>Ru∗.

The last two lines is the second inequality stated in (6.8).

One may use the bound in Theorem 8 to choose a µ which fulfills some guaran-
tees. For example, if a maximum cost increase, ε̄, is tolerated, then choosing the
following µ ensures that the cost increase is upper bounded,

µ =
ε̄

u∗>S(τ∗)u∗
⇒ ε̄ ≥ ε̄u

∗>S(τ∗)u∗ − up>S(τ∗)up

u∗>S(τ∗)u∗
= µδ ≥ ε,

where the first inequality follows from u∗>S(τ∗)u∗ ≥ up
>S(τ∗)up, and the second

inequality follows from (6.8). This bound is not tight, which means that the designer
can tune the parameter µ in order to increase privacy and thus increase the cost ε
until ε̄ is reached, if the initial µ does not provide sufficient privacy.

The inequality in Theorem 8 gives an interpretation of what the regularization
parameter does. By rewriting the inequality in the following manner,

µ ≥ ε

δ
, (6.9)
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Figure 6.1: The figure shows how τ∗ in Definition 8 changes as a function of u for
a system with five states and two inputs.

one may see that µ limits the maximum privacy-utility trade-off. When the designer
chooses a specific µ, they set the maximum tolerable utility loss per privacy unit
that is gained. The bound also states that increasing the utility cost will increase
the privacy as well, and conversely, if there is no privacy gain, then there will be no
increase in the utility cost. Note the subtle detail that we denote δ as the nominal
privacy gain, and not the true privacy gain. Since δ is only the difference between
the regularized costs, and not the actual HCR bound, we use it only as a proxy for
measuring how much the privacy has increased. In fact, δ is only meaningful if τ∗

maximizes the HCR bound for both u∗ and up, since it then captures the entire
increase in privacy.

Similarly (6.9) is only meaningful if τ∗ maximizes (6.4) for both u∗ and up.
Consider the simple illustrating example that is shown in Figure 6.1, where τ3
maximizes (6.4) for u∗. The regularizer in (6.6) will push the solution up towards
the dashed, blue line, which maximizes privacy for when τ3 is the maximizer of
the HCR bound. For some values of µ, however, up ends up in a region that
is maximized by τ2. Thanks to (6.7), the HCR bound will nonetheless be larger
compared to when the input was u∗, since the following holds

Bup =
τ2
2

eu
>
p S(τ2)up − 1

≥ τ2
3

eu
>
p S(τ3)up − 1

≥ τ2
3

e(u∗)>S(τ3)u∗ − 1
= Bu∗ .
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In this case, δ only captures the second inequality, whereas the change in τ implies
that there will be an additional effect that increases privacy. The regularization
parameter µ can still be interpreted as an upper bound on the maximum privacy-
utility trade-off, however the privacy gain will be larger than what is captured by
δ, thus making the less tight in some sense.

6.4 Numerical Example - Enhancing Privacy of Step Inputs

Let us return to the example of a privacy breach of the KTH Live-In Lab, which
was described in Chapter 5. Recall that the adversary is assumed to have obtained
the same model of the system as the defender, for example, through studying input-
output data of similar apartments and using this to create a model of the system.
Now, let the adversary eavesdrop on the system by sampling temperature and CO2

measurements of the different rooms in the apartment every 9 minutes. It then
estimates the input change by using a FIE [58]. Recall that the FIE seeks to find
an input that minimizes the following object expression,

J̃(k̃) :=
N∑
k=1

(yk − ỹk)>Σ−1(yk − ỹk)

where, when the inputs are step inputs of known amplitude, the change time k̃
parametrizes the input. The minimizing k̃ is then chosen as the estimated change
time,

k̂ = arg max
k̃

J̃(k̃).

Now, consider a situation where the controller coordinates the heating of several
rooms, and the operator aims to use this coordination to hide step changes, thereby
increasing the privacy. Consider a user entering a room in their apartment. There
are two main factors that will increase the temperature in the room. The first one
comes from the activity of the user, namely their body heat, or the heat from some
activity that they are doing, for instance cooking. The second factor comes from
the fact that the heating or cooling of the room starts, causing an additional change
of the temperature. However, instead of letting the room that the user enters be
the only one that gets a change in the temperature, the controller could increase
the heating or cooling in some of the other rooms as well, thus obfuscating the
attacker’s estimation of the change time. Which rooms to cool and how to cool
them are encoded in the step input, which is given by u. This control input is
obtained by first solving (6.3) and finding τ∗, then by solving solving (6.6).

In Table 6.1, the impact of changing the regularization parameter is shown for
a numerical experiment with 1000 trials. In the first row, the controller aims to
only minimize the cost function J(x, u), which is shown in (6.3). In the other two
rows, the controller aims to both minimize the cost and to reduce the privacy leak,
by minimizing Jp(x, u) in (6.6). The private inputs are obtained for two different
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Table 6.1: The table shows how changing the maximum privacy-utility trade-off,
µ, affects ε

δ , Bu and V̂ .

µ ε
δ Bu [min2] V̂ 2 [min2]

0 - 201 6 470
2 · 10−9 0.4 · 10−9 489 45 500
4 · 10−9 1.13 · 10−9 653 732 000

values of µ, under the same measurement noise covariance. Higher values of µ did
not produce any noticeable improvements in the privacy. One may see that the
privacy-utility trade-off bound, given by (6.9), holds for all instances. By increas-
ing the µ parameter, a larger trade-off is allowed, which enables the privacy to
increase further. Additionally, one may see that both the theoretical and empirical
variance, Bu and V̂ , increase, as µ increases as well, where the former statement
verifies Theorem 8. Note how much the two quantities changed by changing the
regularization parameter. Specifically, notice how the empirical variance changes,
where even though the HCR bound changed slightly, we see that V̂ increases by
orders of magnitude.

6.5 Privacy of General Input Sequences

Here, we consider how the transient part of the input can be used to enhance privacy.
Therefore, we need to expand our theoretical tools so that they can deal with more
general input sequences. Estimating change times for non-step inputs requires a
generalized approach, for instance by considering the uncertainty of estimating
multiple parameters at once. It is straightforward to generalize the CR bound to
a multi-parameter estimation problem by looking at mixed derivatives of all the
involved parameters of interest. Since the CR bound is a special case of the HCR
bound in single-parameter estimation, it should be possible to find some equivalent
generalization to multiple-parameter estimation. The HCR bound, on the other
hand, uses maximization instead of differentials for calculating the lower bound.
Therefore, generalizations to higher dimensions are not as straightforward. In order
to understand what we are looking for in the generalized lower bound, let us first
define the input sequence we will consider.

The input sequence U = (uk)N−1
0 , where uk ∈ Rq, has the following form

uk =

{
0 for k < k∗,

vk for k ≥ k∗.
(6.10)

We require that vk∗ 6= 0 and vk ∈ Rq, ∀k > k∗ ∈ {0, . . . , N − 1}. Furthermore,
denote the nonzero sequence in (6.10) as V = (vk)N−1

k∗ . Interchangeably, V will
also denote the corresponding sequences but stacked as row vectors. With this
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notation, we can cast the unknown parameters that the adversary needs to estimate
as (k∗, V ).

One generalization of the HCR bound comes in the form of the Barankin
Bound [74]. The Barankin bound is the tightest bound that gives the optimal
local unbiased estimation variance. It is, however, difficult to compute, since it
requires that an infinite amount of test points be evaluated in order to obtain the
lower bound. A common resort is to look at Barankin-type bounds, which restrict
the number of test points r to a finite set [75], such that the lower bound becomes

Cov(θ̂) ≥ Φr(H − 1)−1Φ>r , (6.11)

where θ̂ is the estimate of the true parameter θ0, 1 is a matrix of ones and
Φr =

[
Eθ1(θ̂)− Eθ0(θ̂) · · · Eθr (θ̂)− Eθ0(θ̂)

]
. Note that the inequality between

matrices should be interpreted as A ≥ B means that the matrix A− B is positive
semi-definite. Let pθ(Y ) denote the probability density of Y that is parametrized
by θ. The matrix H is then defined by

(H)ij := Eθ0

[
pθi (Y ) pθj (Y )

pθ0 (Y )
2

]
.

The vectors θi, for i ∈ {1, . . . , r} are test vectors that can be chosen at will,
since (6.11) will hold for any choice. By fixing r and choosing test vectors which
maximize (6.11), a generalization of the Hammersley-Chapman-Robbins (HCR)
lower bound [70,71] to higher dimensions is obtained [75].

In this chapter, we will restrict our analysis to a single test vector, r = 1.
The Barankin-type bound allows us to not only compute the lower bound of the
covariance matrix for multiple parameters, but it also gives a lower bound for when
the adversary is only interested in one parameter even if it does not know the others.
For instance, the situation where the adversary does not know the nonzero part V
of the input sequence U , but it is only interested in the change time k∗. Therefore,
we will consider a test vector which provides bounds using the parameters that are
unknown to the adversary. Applying (6.11) to the dynamical system (6.1) we get
the following result.

Theorem 9. Consider an unbiased estimator ψ(Y ) of the parameters that deter-
mine (6.10), namely, k∗ and V . The covariance of any such estimator is lower
bounded by

min
ψ

Cov (ψ(Y )) ≥ sup
(τ,∆)6=0

[
τ2 τ∆>

τ∆ ∆∆>

]
e

∑
k

∥∥∥Σ−
1
2 Sk(τ,∆)(V )

∥∥∥2

2 − 1

=: B(k∗, V ), (6.12)
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where k∗+τ ∈ NN−1
0 , V +∆ ∈ V, where V is the set of possible alternative nonzero

input sequences, and

Sk(τ,∆)(V ) =

(
k−τ−1∑
i=0

CAk−1−τ−i ((Aτ − I)Bvi −B∆i)

+D(vk − vk−τ −∆k−τ ) +
k−1∑
i=k−τ

CAk−1−iBvi

)
. (6.13)

Proof. Consider the Barankin-style bound (6.11) for r = 1 and let θ1 =
[
k∗ + τ V + ∆>

]>
and θ0 =

[
k∗ V

]>
. An unbiased estimator produces the correct estimation on av-

erage

Eθ [ψ(Y )] = θ.

Using g(θ1) = Eθ1 [ψ(Y )]−Eθ0 [ψ(Y )], the bound (6.11) applied to system (6.1)
gives

Cov (ψ(Y ) ≥ sup
θ1 6=0

g(θ1)g(θ1)>

Eθ0
[(

pθ1 (Y )

pθ0 (Y ) − 1
)2
] .

Since we can write

g(θ1) = Eθ1 [ψ(Y )]− Eθ0 [ψ(Y )] = Eθ0 [ψ(Y )] +

[
τ
∆

]
− Eθ0 [ψ(Y )] =

[
τ
∆

]
,

we get the matrix in the numerator of (6.12). For the denominator we have

Eθ0

[(
pθ1 (Y )

pθ0 (Y )
− 1

)2
]

= Eθ0

[(
pθ1 (Y )

pθ0 (Y )

)2
]
− 1,

which follows from Eθ0
[
pθ1 (Y )

pθ0 (Y )

]
= 1. Taking the expectation similarly as in the

proof in [89] we get

Eθ0

[(
pθ1 (Y )

pθ0 (Y )

)2
]

= e

N−1∑
k=0

(y
θ1
k −yk)>Σ−1(y

θ1
k −yk)

, (6.14)

where yθ1k is the output that would have been generated if the true parameters were
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θ1. Note that the output can be written as yθ10
...

yθ1N−1

 =


C
CA

...
CAN−1


︸ ︷︷ ︸
ON−1

x0

+


D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAN−2B CAN−3B · · · D


︸ ︷︷ ︸

TN−1



0
...
0

vk∗ + ∆k∗

...
vN−1−τ + ∆N−1−τ


.

(6.15)

Taking the difference (yθ1k − yk), which we omit here for brevity, and using it in
Equation (6.14) yields (6.12).

If the lower bound of only one parameter is of interest, then it can be ex-
tracted by multiplying both sides with a unit vector w, thus giving the lower bound
w>Bw [73]. One can therefore choose a w that, for instance, only selects the con-
tinuous parameters of interest.

As was mentioned before, the BB is a generalization of CR bound and if ap-
propriate test vectors are chosen in (6.11), one should be able to obtain the CR
bound. A way to obtain the CR bound for the continuous parameters using only

one test vector can be done by choosing θ1 =
[
k∗ V + ∆>

]>
, which corresponds

to the situation when k∗ is known before the estimation. Then, by taking the limit,
we obtain the bound

sup
∆6=0

∆∆>

Eθ0
[(

pθ1 (Y )

pθ0 (Y ) − 1
)2
] ≥ lim

∆→0

∆∆>

Eθ0
[(

pθ1 (Y )

pθ0 (Y ) − 1
)2
] = (I(θ0))

−1
,

where I(θ0)) is the Fisher information matrix. However, taking the same limit
for (6.12) where k∗ is also unknown, gives us a different result.

Corollary 3. Consider the estimator in Theorem 9. Assume that the input se-
quence V produces a nonzero output. It then holds that the covariance of any such
estimator is lower bounded by

Cov (ψ(Y )) ≥
[
1 0

]
B(k∗, V )

[
1
0

]
≥ BV (k∗), (6.16)

where,

BV (k∗) = sup
τ 6=0

τ2

e

∑
k

∥∥∥Σ−
1
2 Sk(τ,0)

∥∥∥2

2 − 1

.
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Proof. Follows from (6.12) by taking ∆→ 0.

The second bound in Corollary 3 is precisely the HCR bound for when k∗ is the
sole unknown parameter. Although the variance of the estimated input sequence
V̂ is nonzero implicitly from the estimation variance of k̂, Corollary 3 shows that
letting ∆ → 0 while using this test vector will not provide any guarantee for how
large the variance of V̂ will be. Specifically, the CR lower bound for V̂ does not
show up in the second diagonal block of (6.16), implying that for our chosen test
vector, the lower bound in (6.12) will not provide the tightest possible lower bound
for the variance of V̂ . Finally, Corollary 3 also implies the intuitive property that
not knowing V increases the uncertainty of k∗.

The lower bound in (6.12) also gives us sufficient conditions for when the input
is completely private, which is obtained when B(k∗, V ) → ∞. Reconstructing the
input from the output in that case will not be possible with an unbiased estimator.
Looking at (6.12), one can see that the bound diverges if and only if

Sk(τ,∆) = 0, ∀k. (6.17)

This condition gives us the following result.

Proposition 7. Assume that D = 0 let l ∈ N. The lower bound (6.12) diverges if
and only if one of the following conditions holds,

1) The first l elements of V are not visible in the output and the observable part of
xk∗+l+1 is reachable from Alxk∗ in one time step.

2) There exists an input sequence that is not visible in the output for the first
N + l − k∗ time steps.

Proof. The two cases corresponds to when τ > 0 and τ < 0, respectively. Let us
start by proving 1). Note that the condition (6.17) is equivalent to yθ1k − yk = 0.
Using the same notation as in (6.15) and assuming τ > 0, we get that

0 =

 yθ10
...

yθ1N−1

−
 y0

...
yN−1

 = TN−1



0
...
0
v∗k
...

vk∗+τ − (v + ∆)k∗
...

vN−1 − (v + ∆)N−1−τ


.

Let τ = l. Then one may see that for the first k∗ + l rows, k ∈ {0, . . . , k∗ + l − 1},
that the expression is equivalent to

k−1∑
i=0

CAk−1−iBvi = 0. (6.18)
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Now let
∆k∗+i = −∆̃k∗+i + vk∗+i − vk∗+τ+i, i ∈ N.

Equation (6.18) implies that the first l inputs have only changed the state in a
manner that is not visible in the output up to time step k∗ + l. Thus we have that
C∆xk∗+i = 0, for i ∈ {1, . . . , l}, where ∆xk = xθ1k − x

θ0
k . The necessary condition

follows from
0 = O∆xk∗+l + T ∆̃, (6.19)

where we have dropped the subscripts of the matrices for brevity. Equation (6.19)
corresponds to a system whose inputs are zero after time step k∗ + l. For the
output to be zero after this time step, the vectors ∆xk∗+l and ∆̃ correspond to
zero dynamics of system (4.4). Thus, the observable part of the trajectories has
converged at time step xk∗+l+1. For sufficiency, we have that if 1) holds, then we
get that O∆xk∗+l = 0. By choosing ∆̃ = 0, we get that (6.19) holds.

The proof for 2) considers the case 0 > τ = −l and follows essentially the same
as for 1) The following relation is obtained

0 = T

∆̃k∗−l
...

∆̃N−1

 = Ox0 + T

∆̃k∗−l
...

∆̃N−1

 ,
which is the same as the statement in 2). The state vector x0 lies in the unobservable
subspace of the system.

Note that Proposition 7 implies that if an input sequence only excites the un-
observable part of the state space of system (4.4) for the first time steps, then
an estimator will not be able to distinguish the true input sequence from possible
alternative sequences. In this sense, Proposition 7 provides conditions that indi-
cate whether unbiased estimators for a particular change exists. Consider the case
where Sk(τ,∆) = 0, for some θ1 =

[
k∗ + τ V + ∆

]
and ∀k ∈ {0, . . . , N − 1},

which implies that there exists (at least) one alternative parameter vector θ1 which
is indistinguishable from the true parameter vector θ0. In that case, the choice
between θ1 and θ0 is ambiguous, which in turn means that an unbiased estimator
can not exist in that case. An example of such a situation would be if system (4.4)
contains transmission zeros, and the input sequence V in combination with the
state at xk∗ corresponds to the zero dynamics. Then an alternative input sequence
would be an input that moves the initial state to 0, xθ1k∗+1 = 0, and then remains
zero for all future time steps.

6.6 Privacy Utility Trade-Off for General Inputs

In Section 6.3, we showed that enhancing the control objective (6.3) with a regular-
ization term, where the input was restricted to step inputs, enhances privacy while
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potentially increasing the cost. In this section, we will derive the equivalent results
for general inputs when the input sequence is either known or unknown during the
estimation.

Known Input Sequences

Similar to Section 6.2, we assume that the operator wishes to maximize their utility
of the system, which we measure through a cost function J(x0, U). We can then
cast the main objective of the operator as,

minimize
U

J(x0, U) =
∑
k

x>k Qxk + u>k Ruk

subject to (6.1) and (6.10).

(6.20)

Now, assume that the nonzero input sequence V is known to the adversary, but
they do not know the change time k∗, which implies that we can set ∆ = 0. This
case is a first generalization of the results presented in Section 6.2, where we get the
same situation when V is a sequence of constant, nonzero inputs. Since we have
chosen to only work with one test vector, we have that the lower bound that is
presented in Theorem 9 has a relatively simple expression. Specifically, in order to
maximize the lower bound, we have to minimize the denominator in (6.12), which
we can equivalently cast as the minimization of a quadratic term, precisely as we
did in Section 6.2,

minimize
U

J(x0, U) + λ
∑
k

Sk(τ, 0)>Σ−1Sk(τ, 0)

subject to (6.1) and (6.10),

(6.21)

where λ is a regularization parameter. In order to avoid having to solve (6.21) for
every τ , which is computationally expensive if we are working with long horizons,
we will apply the same two-step methodology as in Section 6.2. Thus, we will
start from a candidate input sequence, U∗, which is obtained by solving (6.20),
find the corresponding τ = τ∗ that maximizes (6.12), and finally use it in (6.21).
Solving Program (6.21) for some λ we obtain a shifted input sequence that is more
private than U∗. Denote the sequence of inputs that solve (6.21) as u0

p and the
corresponding nonzero input as V 0

p . We then have the following result.

Proposition 8. The nominal privacy gain that is obtained by solving (6.21) is
lower bounded by the utility loss,

τ∗2
(

1

BV ∗(k∗)
− 1

BV 0
p

(k∗)

)
≥
(

1

BV ∗(k∗)
+

1

τ∗2

)(
1− e−

1
λ (J(x0,u

0
p)−J(x0,U

∗))
)
.

Proof. First, let τ∗ denote the optimal τ for the lower bound of V ∗, and similarly,
let τp denote the optimal τ for the lower bound of V 0

p . We then have that
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1

BV ∗(k∗)
− 1

BV 0
p

(k∗)
=

eS(τ∗,V ∗) − 1

τ∗2
− eS(τp,V

0
p ) − 1

τ2
p

≥ eS(τ∗,V ∗) − 1

τ∗2
− eS(τ∗,V 0

p ) − 1

τ∗2

=
eS(τ∗,V ∗)

τ∗2

(
1− e−(S(τ∗,V ∗)−S(τ∗,V 0

p ))
)

≥ eS(τ∗,V ∗)

τ∗2

(
1− e−

1
λ (J(x0,u

0
p)−J(x0,U

∗))
)

where S(τ, V ) =
∑
k

∥∥∥Σ−
1
2Sk(τ, 0)(V )

∥∥∥2

2
. The last inequality follows from

J(x0, U
∗) + λS(τ∗, V ∗) ≥ J(x0, u

0
p) + λS(τ∗, V 0

p ).

Note that for τ∗ = τp, the privacy-utility trade-off in Proposition (8) simplifies
to

λ

(∑
k

∥∥∥Σ−
1
2Sk(τ∗, 0)(V ∗)

∥∥∥2

2
−
∥∥∥Σ−

1
2Sk(τ∗, 0)(V 0

p )
∥∥∥2

2

)
≥ J(x0, u

0
p)− J(x0, U

∗),

which is the same lower bound that we produced in Section 6.2.

Remark 6. The tightness of the privacy-utility lower bound has not been investi-
gated theoretically. However, the privacy gain can in many cases be chosen so that
the lower bound exceeds the initial privacy level, by injecting noise with a larger
covariance matrix, Σ.

Unknown Input Sequence

Program (6.21) should be applied to improve the privacy of the change time k∗ if
the adversary knows V before the estimation. It is simple to extend it to the case
when the input is unknown to the adversary by changing Sk(τ, 0) to Sk(τ,∆) and
minimizing over both U and ∆. Since ∆ 6= 0, it will also be possible to lower bound
the privacy level for the nonzero input, V . We propose the following program,

minimize
U,∆

J(U, x0) + λ
∑
k

Sk(τ,∆)>Σ−1Sk(τ,∆),

subject to (6.1) and (6.10),

∆ 6= 0.

(6.22)

Denote the solution to (6.22) as up, and the corresponding nonzero input as Vp.

Note that this expression aims to improve the bound of k̂ in (6.12), namely, by
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increasing
τ2

e

∑
k

∥∥∥Σ−
1
2 Sk(τ,∆)

∥∥∥2

2

.

Using the same method we proposed before, but swapping out solving (6.21) for (6.22),
we are able to derive a similar result to Proposition 8 for (6.22).

Proposition 9. The nominal privacy gain for k∗ that is obtained by solving (6.22)
is lower bounded by the utility loss

τ∗2
(

1

w>B(k∗, V ∗)w
− 1

w>B(k∗, Vp)w

)
≥
(

1

w>B(k∗, V ∗)w
+

1

τ∗2

)(
1− e

1
λ (J(up,x0)−J(U∗,x0))

)
,

where w =
[
1 0 . . . 0

]>
.

Proposition 9 is perhaps not that surprising, given that we already have Proposi-
tion 8 and Corollary 3. However, the combination of those results does not produce
the tighter bound which is presented in Proposition 9.

6.7 Numerical Results - General Input Sequences

In this section, we will numerically verify the results obtained in the previous section
and provide an example of how they can be used on nonlinear systems. To do this,
we will use the Temperature Control Lab [90], which is a small, Arduino based
lab containing two heaters (inputs) and two sensors (outputs) in close proximity to
each other. We identified a fourth order linear black-box model for the two outputs
based on two arguments using a 0.3 seconds sampling period. First, a significant
decay in the Hankel singular values for higher order models was observed in only
the first 3-4 Hankel singular values, and secondly, the physics-based model that
is derived in [90] is a nonlinear fourth-order system. The true output from the
TCLab will be used in Section 6.7, where the input sequence is known a priori.
However, in Section 6.7, the estimation will be done using the outputs produced by
the identified linear model, since the nonlinear dynamics from the physical system
contributed to a better estimation than what is predicted by (6.12).

Recall that we assume that the estimator the adversary uses in the numerical
examples use is the FIE, given the identified linear dynamics. Thus, the estimator
tries to minimize the quantity∑

k

J̃(k̃)(yk − ỹk)>Σ−1(yk − ỹk), (6.23)

where ỹk is the predicted output given by the linear model (6.1). However, since
the physical lab is nonlinear, this estimator will not be a Maximum Likelihood
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Estimator for the true underlying system. Initially, we will assume that the nonzero
input sequence V is known to the adversary. Therefore, the estimations between
the linear and true system should not show a large difference. However, when the
nonzero input sequence is unknown to the adversary, we will instead assume that
adversary knows that the input is constrained to uk ∈ U, for some set U , which
will be incorporated into the estimator. Specifically, we will choose U so that this
constraint limits the considered inputs to values between 0 ≤ uk ≤ 100. By adding
this constraint in the estimator, we also add a bias to the estimation. The size of
the estimator bias will subsequently depend on where the true input falls in the
interval [91]. For the estimator that was used in the experiments, the bias of the
change time estimate was measured to be less that 5 time steps, or 1.5 seconds in
a time horizon of 1500 time steps using a sampling period of 0.3 seconds.

Known Input Sequence

Consider Figure 6.2 where one instance of the output of the TCLab is shown. The
output was measured when applying the open loop input sequence obtained by
solving (6.20). Additionally, one may see the adversary’s estimated change time
for 10 experiments, where adversary knows the dynamics model (4.4), and the cost
matrices Q and R that are used to calculate the input. The knowledge of the cost
matrices implies that the adversary also knows the input sequence for each possible
change time k∗. One can see that the adversary is very successful in detecting the
change at time 60s, since the sample variance of the estimated change times are
0.324s2. The lower bound BV (k∗) for this case was calculated to be 7.8 · 10−10s2

which verifies Corollary 3.
Now consider the input sequence that is generated by (6.21), where the privacy

enhancing regularization term is introduced in the cost. Again, due to the adver-
sary’s knowledge of the dynamics (4.4), cost matrices, Q, R, and that the regular-
ization term in (6.21), the adversary knows the input for all potential change times.
The chosen regularization parameter, λ, increased the lower bound to 2.26s2, which
is larger than the sample variance of the change time estimation in the previous
setup. In Figure 6.3 an instance of the output of the TCLab for the private input
is shown together with the estimated change times for 10 experiments. The change
time estimation obtained a sample variance of 8.64s2. Therefore, it is clear that the
adversary’s quality of estimation deteriorates significantly when the regularization
term is added. Once again, Corollary 3 is verified.

Note the discrepancy between the sampling variance and the lower bounds,
which is particularly large for the experiments where the operator does not use a
private input signal. There are several factors that could explain this gap. First,
according to the TCLab documentation [90], the system dynamics contain delays,
which was not modeled when generating the control signal. According to Proposi-
tion 7, a delay may contribute to the lower bound diverging and therefore, could
be used to contribute to a higher privacy signal. Second, only 10 experiments were
considered, which might not represent the actual empirical variance. Additional
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Figure 6.2: The graph shows an instance of the output of the physical TCLab,
using the input generated by (6.20). The estimated change time for 10 experiments
is also shown.

experiments might reduce the gap between the lower bound and the sample vari-
ance. The lower bound for the experiments where the input is generated by (6.20)
essentially predicts that an estimator. However, as seen in Figure 6.2, the estimator
splits its estimates evenly between the correct change at 60s and the adjacent time
step 60.3s indicating that for that particular case, it is the bias that increases the
variance.

Proposition 8 is also verified since the regularization term has increased the
lower bound (6.12). Empirically, the estimation variance also increased by 8.5s2,
indicating that Proposition 8 also could be used for the sample variance. The
theoretical lower bound and nominal privacy gain are plotted in Figure 6.4, where
one can see that an increase that the lower bound in Proposition 8 holds. In
fact, one can see that for the identified dynamics, the bound is sharp between
10−3 ≤ λ ≤ 104. Outside of this domain, we encountered large numerical errors,
which can be see by the decline of the lower bound in Figure 6.4 at λ = 105.

Unknown Input Sequence

Let us consider the same input sequence that generated the output in Figure 6.2.
Now however, the adversary does not know the sequence V a priori. Without
any constraints on the inputs, we get that the lower bound (6.12) diverges, thus
implying that there does not exist an unbiased estimator for unconstrained inputs.
This comes from the fact that the linearized dynamics of the TCLab contains non-
minimum phase zeros. Due to the prevalence of measurement noise, the possibility
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Figure 6.3: The graph shows an instance of the output of the physical TCLab,
using the input generated by (6.21). The estimated change time for 10 experiments
is also shown.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Regularization Parameter 

-1

0

1

2

3

4

5
10

5

Lower Bound on Privacy Gain

Nominal Privacy Gain

Figure 6.4: The graph shows the lower bound on the increase of privacy that is
predicted by Proposition 8. One can see that the gain is tight in a large region of
the regularization parameter λ.
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that the zero dynamics become excited cannot be ignored without adding some
bias. This is verified using the unbiased estimator in [92], where the estimated
input starts to diverge before the change. Thus, Proposition 7 is verified.

Therefore, by using the explicit constraints on the inputs, 0 ≤ uk ≤ 100 together
with the estimator (6.23) makes it explicitly ignore any potential zero dynamics
inputs until late in the time horizon. These constraints therefore become a source
of bias. In order to achieve unbiasedness, the bias should then be corrected after
the estimation. Thus, for an unbiased estimator with these constraints, we get that
the lower bound becomes 1 · 10−3s2, which is orders of magnitude larger than in
Section 6.7, however still smaller than a step size. This verifies Corollary 3, which
states that the lower bound increases when the input sequence V is unknown to
the adversary. Similarly, the sample variance of the estimated change time for 50
simulations was calculated to be 5.65s2 which implies that the empirical variance
has increased for estimator (6.23) when V is unknown.

The lower bound in (6.12) is still useful for increasing the privacy even when us-
ing a biased estimator. Since the bias only affects the numerator in (6.12), one can
still increase the privacy level by sufficiently increasing the denominator through
program (6.22). The new input provides a higher lower bound of 7.96s2 for unbi-
ased estimators and the corresponding the sample variance for the estimator (6.23)
is obtained to be 9.16s2. The new sample variance is higher compared to the in-
put generated by (6.20), indicating that the privacy level still can be increased
through (6.22) even for biased estimators.

6.8 Conclusion

In this chapter, we have proposed a method that increases the privacy of inputs
that are generated for optimal control. The method introduces a special regularized
cost into the optimization problem, which will lead to increased privacy. Using our
approach, we showed that an increase in cost will definitely lead to an increase in
privacy. Additionally, we have derived privacy-utility trade-off bounds based on the
regularization parameter, and shown that it can be interpreted as an upper bound
on the privacy-utility trade-off. This insight will help operators set good values of
the parameters quickly, without the need for much trial-and-error. These results
were verified by numerical experiments of the Live-In Lab.

Finally, in this chapter, we have also expanded the theory for general input
sequences. First, we considered the case where the adversary knows the form of the
input sequence, but not when it is applied. With minimal changes to the previously
proposed method, we showed that it is possible to increase the adversary’s estima-
tion error variance. Similar results were also obtained for the case of when the
adversary does not know the form of the input. We derived more general privacy-
utility trade-offs, where it was again showed that an increase in cost will definitely
lead to an increase in privacy with our method. Finally, these results were verified
by physical experiments on the Temperature Control Lab.



Chapter 7

Sample Dependency of Event
Detectability

In this chapter, we expand the HCR bound to nonlinear systems, with the goal of
investigating how the HCR bound changes over time while a potential adversary
samples the response after an event. Generally, this is a non-trivial question, due
to the maximization operator in the HCR bound. The maximization operator
typically implies that in order to make future predictions about the evolution of
the HCR bound, one often needs to consider all possible τ , especially when there
is some amount of noise. Here, however, we will provide conditions and methods
for simplifying this analysis, which will prove to be highly dependent on the system
dynamics.

The application that we consider in this chapter will not be directly secu-
rity related. Instead, we will apply these results to the detectability of Non-
Pharmaceutical Interventions (NPIs) during the first wave of the COVID-19 pan-
demic. We do this to show that the results we have derived in this thesis are general,
and could be used to investigate similar questions with regards to detectability.

During the first months of the pandemic, there was a lot of public discussion
whether different NPIs had any meaningful impact on the spread. This question ob-
tained a lot of attention in research as well. In [93], the impact of different NPIs on
the transmission number are measured using raw data from 11 European countries
that were dealing with the COVID-19 pandemic during the first wave in spring of
2020. A notable conclusion is that the close succession of the interventions makes
it difficult to give a clear answer as to which intervention has had most impact.
Additionally, the change in all models is captured by the final intervention, indicat-
ing that the true cumulative impact occurs much later than the intervention dates
and thus is summarized in only the last change. Finally, the Bayesian framework
they use requires an assigned prior on the estimates [94], which could be subject to
systemic error based on prior knowledge of the spread.

In this chapter, we will apply the HCR bound to try to answer a similar question,

97
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namely how large impact does different NPIs have, and study the fundamental limits
to how certain we can be that a reduction in the number of infection cases can be
attributed to a single NPI. Additionally, we try to figure out when the information
about the change is no longer present in a signal, and therefore figure out when any
additional data ceases to be useful.

7.1 Preliminaries

In this section, we go over the mathematical tools that are used in this chapter.
Specifically, we will start by stating the Susceptible-Infected-Recovered model, and
its discrete-time approximations. Then we will remind the reader about the general
HCR bound, which we will use to derive the (5.2) equivalent for nonlinear systems.

Susceptible-Infected-Removed model

In this section, we state the SIR model together with some variable changes which
will prove to be useful for the analysis in Sections 7.4 and 7.5. The continuous-time
dynamical equations are given by

Ṡ = −βSI,
İ = βSI − γI,
Ṙ = γI,

P = S + I +R,

(7.1)

where S ∈ R+ is the number of individuals who are susceptible to an infection,
I ∈ R+ is the number of infected individuals, and R ∈ R+ is the number of
individuals who have recovered or died from the disease. The parameter β denotes
the spreading rate of the disease, γ denotes the recovery rate, and P denotes the
total number of individuals in the population.

We will assume that P is constant, which means that we can write S = P−I−R.
Thus, we only need to work with a second-order system. Inserting this expression
for S and rewriting the dynamical equations we get

İ

I
= −βI − βR+ (βP − γ),

Ṙ = γI,

(7.2)

which is possible to do since I > 0. Performing a change of variables to ln(I) = i
we get {

i̇ = β(P −R− exp(i))− γ,
Ṙ = γ exp(i).
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We can also change the second state into Z = I + R, which gives the following
system {

i̇ = β(P − Z)− γ,
Ż = β(P − Z) exp(i).

(7.3)

All representations of the dynamical system will be used in this chapter. Specifi-
cally, we will determine which states give better estimation certainty and therefore,
should be measured to provide as much information as possible about a change in
the spread parameter β.

In order to obtain discrete-time dynamics, we will approximate the time deriva-
tive using the Euler forward stepping method with length h, which means that for
a signal s

ṡ(t) ≈ s(t+ h)− s(t)
h

t=kh
=

sk+1 − sk
h

.

Applying this result to the SIR model (7.2) gives the following discretized model,{
Ik+1 = −hβI2

k − hβIkRk + (1 + hβP − hγ)Ik,

Rk+1 = Rk + hγIk,
(7.4)

and for the state representation in (7.3), we have{
ik+1 = ik + hβ(P − Zk)− hγ,
Zk+1 = Zk + hβ(P − Zk) exp(ik).

(7.5)

Occasionally, we will also use a transformed representation of the susceptible state,
w = lnS. The dynamics of that new variable is given by,

ẇ = −β(P −R− expw) =⇒ wk+1 = wk − hβ(P −Rk − exp(wk)). (7.6)

7.2 Problem Formulation

Consider a nonlinear, discrete time-varying system with additive noise on the output

M(x0, η, θ) :=


xk+1 = fk(xk, η, θ),

zk = gk(xk, η, θ)

yk = zk + ek,

(7.7)

where xk ∈ Rn are internal states of the system, zk ∈ Rp is the noiseless system
output, yk ∈ Rp is the noisy system output and ek ∈ Rp is the additive zero-mean
Gaussian noise with E

[
eke
>
l

]
= Σ if k = l and zero otherwise. The system is defined

through the model parameters, which are represented by the vector η ∈ Rq and the
vector θ ∈ Rr. An observer that measures the corrupted outputs, yk, knows the
form of the model M , the initial state x0, and the known parameters η. However,
the observer does not know the unknown parameters θ.
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Now, let η = {α> α>}, where α, α ∈ Rq. Assume that the dynamics have the
following form,

fk(xk, η, θ) =

{
f(xk, α), k < θ,

f(xk, α), k ≥ θ,
and gk(xk, η, θ) =

{
g(xk, α), k < θ,

g(xk, α), k ≥ θ,
(7.8)

for some unknown time step θ ∈ Θ = {1, . . . , N}. Thus, we have that the unknown
parameter is the change time, which we denote by k∗ = θ. Let zτk be the noiseless
output of an alternative trajectory, meaning that this output follows the same model
which is described in (7.7), but with a different change time, namely θ + τ ∈ Θ.
With this notation, we can write the output of the original trajectory as z0

k, or
simply zk. Let us denote the set of models where θ is unknown as M, where
M(x0, η, ·) ∈M.

Assume that the observer uses an estimator, ψ(Y,M(x0, η, ·)), where Y = {yk}Nk=1

are the corrupted measurements from system (7.7), in order to estimate θ. We pro-
pose the following problem,

Problem 4. Consider an estimator, ψ : RpN ×M→ Θ, that takes measurements,
Y := {yk}N1 , and a partially known model, M(x0, η, ·) ∈M, that has the form (7.8),
as input in order to produce an estimate of the parameter θ. What is the lowest
possible variance for such an estimator as a function of the samples, Y ?

Remark 7. We will use the HCR bound to answer Problem 4. However, the HCR
bound is not attainable in general. The solutions which we provide will only provide
a bound to Problem 4. Therefore, we will only be able to conclude when an estimate
is not reliable.

The generality of the statement in Problem 4 means that we can apply the
answer to similar questions for a wide variety of dynamical models. Answers to
Problem 4 will naturally depend on what model type M is used, which we will
show through two examples in Section 7.3. Asymptotic properties of the estimation
uncertainty, which we will derive, will therefore depend on the dynamics of the
system. It will be shown that the SIR model fulfills these conditions and one may
therefore use those results to conduct an analysis of the mathematical model.

Remark 8. If η is also unknown, then Problem 4 would still be of interest, since
θ for dynamics like (7.8) would act as a nuisance parameter, which means that it
would need to be estimated together with η. Therefore, the necessary conditions that
we derive will still hold and the estimation uncertainty will be larger than for the
case when η is known.

Change Time Estimation for the SIR Model

In this chapter, we will illustrate the theoretical results mainly by using the SIR
model as an example. Specifically, we want to apply Problem 4 to the SIR model
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in order to quantify the quality of estimation of the change time for a change in a
model parameter. Additionally, we want to quantify how the estimation improves
as the number of samples N grow. Due to currently available data and since NPIs
affect how the virus spreads suddenly, the parameter of interest will be the spread
parameter β. For the examples where the SIR model is used, we will answer the
following question which is a special case of Problem 4.

Problem 5. Consider an estimator, ψ : RpN ×M → Θ, that takes sample mea-
surements, Y := {yk}N1 , and the discrete SIR models (7.4) and (7.5), denoted by
MSIR(x0, β, ·), as an input in order to produce an estimate of the parameter θ = k∗.
What is the lowest possible variance for such an estimator as a function of the sam-
ples, Y ?

Implicitly, Problem 5 states that in the theoretical development for the SIR
model, we will for simplicity assume that β is known both before and after the
change, β ∈ {β, β}. Therefore, the change time θ = k∗ will be the only unknown
parameter. Assuming that β is known is not a large infringement on the problem as
was discussed in Remark 8, since the change time is typically a nuisance parameter
that needs to be estimated before estimating β when it is unknown. In that case,
our results here will be relatively conservative.

7.3 A lower bound on change time estimation

We have previously in Chapter 5 and Chapter 6 successfully applied the HCR bound
to linear dynamical systems. Similarly, one can analogously derive the HCR bound
for system (7.7). For brevity, from now on we will omit the explicit dependence on
the model M(x0, η, ·). However, the reader is encouraged to keep in mind that the
results still explicitly depend on the system dynamics.

Lemma 3. Let ψ(Y ) be an unbiased estimator of the change time, k∗, where the
measurements Y are generated by (7.7). The variance of any such estimator is
lower bounded by

Var(ψ(Y )|k∗) ≥ sup
τ 6=0

τ2

eSκ(τ,k∗) − 1
=: B(κ, k∗), (7.9)

where
Sκ(τ, k∗) :=

∑
k∈κ

(zk − zτk )>Σ−1(zk − zτk ),

and κ is the set of time steps of the samples in Y .

Proof. The proof follows from a calculation of (3.11). First, note that for an unbi-
ased estimator, we have that E [ψ(x)|θ] = θ, which gives that

E2 = (E [ψ(x)|θ + τ ]− E [ψ(x)|θ])2 = τ2.
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Second, we calculate the χ2-divergence (3.13). Note that the probability density
is given by

p(Y |θ + τ) =
1√

2π|Σ|
e
− 1

2

∑
k∈κ

(yk−zτk )>Σ−1(yk−zτk )

,

which in turn implies that

(p(Y |θ + τ))
2

p(Y |θ)
=

1√
2π|Σ|

e
− 1

2

∑
k∈κ

(yk−2zτk+zk)>Σ−1(yk−2zτk+zk)+
∑
k∈κ

(zτk−zk)>Σ−1(zτk−zk)

.

Now, taking the integral of this, we get,∫
(p(Y |θ + τ))

2

p(Y |θ)
dY = e

∑
k∈κ

(zτk−zk)>Σ−1(zτk−zk)

R = e

∑
k∈κ

(zτk−zk)>Σ−1(zτk−zk)

, (7.10)

where

R =

∫
1√

2π|Σ|
e
− 1

2

∑
k∈κ

(yk−2zτk+zk)>Σ−1(yk−2zτk+zk)

dY = 1.

When combining (7.10) with (3.13), we get the denominator in (7.9). This concludes
our proof.

The lower bound (7.9) highlights a couple of interesting properties. For example,
a sampling instant that is able to lower the bound substantially may be thought of
as containing a lot of information. Necessarily, this happens for time steps k where

(zk − zτk )>Σ−1(zk − zτk ) (7.11)

is large, for some τ . The bound implies that if the difference in the weighted `2-
norm between the true and some possible trajectories is large, then it is easier
to distinguish them in the presence of measurement noise. Conversely, when the
difference (7.11) is small, the sample will not improve the lower bound substantially
since that particular sample will not help an estimator to distinguish the true
trajectory from the alternative ones.

An issue with the HCR bound is that the maximization over τ makes it difficult
to make general theoretical predictions without checking all possible values of τ .
However, we will show that if the dynamical system (7.7) fulfills some conditions, at
least asymptotically, then we can restrict τ to a subset of values. Specifically, we will
look at two cases that are exemplified by the SIR model. Consider Figure 7.1, where
a simulation of the SIR dynamics is shown and note the asymptotic properties of the
different states. The recovered and the susceptible states, Rk and Sk respectively,
converge to a non-zero steady state value, whereas the infected state Ik, generally
converges to zero. To gain some intuition behind which τ will be optimal in (7.9)
when we measure these three signals, we will now look at two corresponding, but
simpler, cases. Let us start with an example that reaches steady state.
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Figure 7.1: The plot shows the three states of a simulation of the SIR model.
Specifically, note that two of the states, Rk and Sk converge to a non-zero value
which qualitatively corresponds to Example 2. On the other hand, Ik converges to
0, which qualitatively corresponds to Example 3.

Example 2. Consider the system given by

yk = uk + ek, where uk =

{
0, k < k∗,

1, k ≥ k∗,
(7.12)

and where ek ∼ N (0, σ2). The HCR bound for an unbiased estimator is then given
by,

max
τ 6=0

τ2

e
τ2

σ2 − 1
=

1

e
1
σ2 − 1

. (7.13)

Thus, the optimal τ is given by τ∗ = ±1, ∀σ2 ∈ R+.

Example 2 illustrates two specific properties of dynamical system which converge
to steady state. First, we get that when Sκ(τ, k∗) ∝ τ2, the optimal τ will be the
smallest one that fulfills this condition, namely τ = ±1. Additionally, the optimal
τ is independent of other factors, such as the level of noise. In Section 7.5, we
will show that once Sκ(τ, k∗) starts to increase quadratically, it will be possible
to restrict which τ we need to consider. Secondly, note that Sκ(τ, k∗) does not
depend on any samples other than k∗ and k∗ − 1 (or possibly k∗ + 1). If one
was to estimate the change time in Example 2, the only important samples for
the estimation variance of the change time are the samples k∗ − 1 and k∗, where
the actual change took place. The sufficiency of these two samples shows that
eventually, additional samples will not improve the estimation.
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Now, let us consider the other asymptotic property, namely when the steady
state tends to zero.

Example 3. Consider the system given by

yk = uk + ek, where uk =

{
0, k < k∗,
1
k , k ≥ k∗,

(7.14)

and where ek ∼ N (0, σ2). The HCR bound for an unbiased estimator is then given
by,

max
τ>0

τ2

e
1
σ2

k∗+τ−1∑
k=k∗

1
k2 − 1

. (7.15)

For very small σ2, the τ which maximizes (7.15) will parametrize an alternative
trajectory that deviates the least from the true trajectory. The closest alternative
trajectory is then obtained by τ = 1, and when σ2 → 0, we get that τ∗ = 1. The
decaying input uk = 1

k limits the size of Sκ(τ, k∗) which causes τ∗ to increase as σ2

increases.

Thus, there is some value in finding the closest alternative trajectory even for
cases like the one in Example 3, since it will give the HCR bound for the low-noise
case. For larger noise levels, this |τ | will serve as a lower bound of |τ∗|, since |τ∗|
will increase as the noise variance σ2 increases. Therefore, the low-noise case will
serve as a baseline for the theoretical development and will be the topic of the next
section. Thereafter, we will use the low-noise case as a stepping stone for analyzing
systems with large noise levels.

7.4 Information content

As we have seen in Example 3, (7.11) can be used as the basis for a measure of
information that can be extracted at time step k once the optimal τ has been found.
For low noise levels, σ2 → 0, the optimal τ in (7.9) is completely determined by
the denominator, which is independent of what estimator is used. This quantity is
therefore intrinsic to the signal and forms a fundamental limit on how much infor-
mation can be extracted by an estimator. Therefore, based on the denominator,
we make the following definition:

Definition 12. The information content pertaining to the change time k∗ for a
set of samples, sampled at time steps k, where k ∈ κ ⊂ {1, . . . , N} and corrupted
by zero-mean Gaussian noise, is given by the smallest χ2-divergence, namely

I(κ, k∗) := min
τ∈T

χ2
κ,k∗,τ = min

τ 6=0
eSκ(τ,k∗) − 1, (7.16)

where 0 6∈ T . Note that since κ is finite, we have that the set of candidates τ , where
k∗ + τ ∈ κ \ {k∗}, is also finite.



7.4. INFORMATION CONTENT 105

The minimizer τI of (7.16) parametrizes an alternative trajectory which is clos-
est to the true trajectory in the `2-norm,

min
τ 6=0

∑
k∈κ

(zk − zτk )>Σ−1(zk − zτk ) =
∑
k∈κ

(zk − zτIk )>Σ−1(zk − zτIk ),

during time steps κ. Thus, one can interpret τI as the parameter for an alterna-
tive trajectory that is most easily confused with the true trajectory. Under that
interpretation, the quantity (7.16) measures the amount of information available in
the signal which can be used to discriminate between the true and its most similar
trajectory. This information measure is a special case of the Barankin Information
Matrix [95]. Specifically, it is recovered from the Barankin bound by using a single
test vector which maximizes the Barankin bound in the low-noise limit.

Evaluating the information content (7.16) requires the χ2-divergence to be cal-
culated N−1 times. For very large data sets, this can be computationally expensive,
which motivates the need for a restriction in τ . Example 2 shows that some samples
could be removed without impacting the information content. Specifically, this also
implies that the corresponding τ can be removed from the calculations. If there
exists an alternative trajectory zτk , which converges to the true trajectory, zk, dur-
ing κ for some τ ∈ T , then there must also exist a subset of T that does not need
to be considered when evaluating (7.16). The next Lemma characterizes the set of
candidates of τ which are sufficient to consider when evaluating (7.16).

Lemma 4. The set T of candidates τ which minimizes (7.16) can be restricted to
TI = {τ , τ + 1, . . . , τ̄ −1, τ̄} ⊂ T , where τ̄ = max(TI) fulfills the following condition∑

k∈κ

(2zk − (zτ̄k + zτ̄+`
k ))>Σ−1(zτ̄k − zτ̄+`

k ) ≥ 0, ∀` ≥ 1, (7.17)

and τ = min(TI) fulfills the following condition∑
k∈κ

(2zk − (z
τ
k + z

τ−`
k ))>Σ−1(z

τ
k − z

τ−`
k ) ≥ 0, ∀` ≥ 1. (7.18)

The minimizer to (7.16), τI , is then in this new set, τI ∈ TI .

Proof. First, let us consider τ̄ . The lemma states that all candidates τ ∈ TI which
are larger than τ̄ , can be removed. This is true if χ2

κ,k∗,τ̄ ≤ χ2
κ,k∗,τ̄+`, ∀` ≥ 1, which

when written out explicitly becomes

e

∑
k∈κ

(zk−zτ̄k )>Σ−1(zk−zτ̄k )

− 1 ≤ e

∑
k∈κ

(zk−zτ̄+`
k )>Σ−1(zk−zτ̄+`

k )

− 1, ∀` ≥ 1.

Simplifying this inequality gives (7.17).
The second inequality (7.18) is obtained by using the same argument. The

inequality χ2
κ,k∗,τ ≤ χ2

κ,k∗,τ−`, ∀` ≥ 1, can be written as

e

∑
k∈κ

(zk−zτk )>Σ−1(zk−zτk )

− 1 ≤ e

∑
k∈κ

(zk−zτ−`k )>Σ−1(zk−zτ−`k )

− 1, ∀` ≥ 1.
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Combining the upper and lower limits of τ , we get the set TI .

Lemma 4 is essentially a reformulation of the statement that the minimizer
to (7.16), τI , parametrizes an alternative trajectory that produces a smaller `2-
difference compared to any other τ . However, the way the condition is presented
in (7.17) gives an insight into how we can derive a useful tool for restricting τ . Let
zτ̄k > zτ̄+`

k ; then the last factor in each term is positive. The first factor, however,

is simply the difference between zk and the midpoint between zτ̄k and zτ̄+`
k . Thus,

if zk is closer to zτ̄k than zτ̄+`
k , then the first factor is also positive, thus making the

product positive. Subsequently, if the sum of all these products is positive, then
we get that τ̄ parametrizes a trajectory with a smaller `2-difference than τ̄ + `. We
use this lem to establish a sufficient condition which gives us a tool for simplifying
the calculation of information content for certain dynamical systems. Specifically,
we use the following result.

Theorem 10. Consider the noiseless, scalar, output of the dynamical system (7.7),
zk, and the alternative noiseless outputs, zτk . If either of the following holds

zi−1
k ≥ zik ≥ zi+1

k ,

or

zi−1
k ≤ zik ≤ zi+1

k ,

∀k and ∀i ∈ {−(N−1), . . . , N−1}, then it is sufficient to consider τ = ±1 in (7.16).

Proof. First, consider the case where zk ≥ zik ≥ z
i+1
k , ∀k and ∀i ≥ 1. Additionally,

let T N1 = {1, . . . , k∗ − 1, k∗ + 1, . . . , N}. Then we have that,

(2zk − (zik + zi+1
k ))(zik − zi+1

k ) ≥ 0, ∀k, (7.19)

since the first factor is non-negative and the second factor is non-negative. Letting
i = max(T N1 )− 1 = N − 1, implies that we can remove the largest value in T N1 by
using Lemma 4. Now consider T N−1

1 and redo the process until i = 1, then we will

be left with, T k
∗+1

1 . Similarly, we can remove the elements in T k
∗+1

1 from below

using (7.18), since zi−2
k ≥ zi−1

k ≥ zk, ∀k and ∀i ≥ 0, leaving us with the set T k
∗+1

k∗−1 .

Finally for the other case, namely when zk ≤ zi+1
k ≤ zi+2

k and zi−2
k ≤ zi−1

k ≤ zk,
∀k and ∀i ≥ 1, we get an analogous proof.

Remark 9. Note that the result in Theorem 10 can be generalized, simply by chang-
ing the conditions to

|zk − zτ̄k | ≤ |zk − zik|,

∀k and ∀i 6= τ̄ , for some τ̄ ∈ T , the same result will still hold.
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As a result of Theorem 10, we are able to significantly simplify the analysis
for the class of systems with parameter changes that do not cause trajectories to
cross each other, since we do not need to consider a changing |τ | > 1. Additionally,
this property extends to future samples as well, implying that the analysis of the
information content in future samples does not need to consider changing τ . The
SIR model provides two such signals that fulfill the condition in Theorem 10 which
we can choose to measure in order to detect a change in the spread parameters.
Consider one of the states of the SIR model, namely, the recovered state, Rk.
Essentially, members of that state are people in the population who are not able to
contract, nor transmit the disease to a member of the susceptible population. The
state is essentially an integrator of the infected state, Ik. An integrator typically
reduces the estimation variance of the change time, as we saw in Chapter 5, mostly
due to the fact that all alternative trajectories will typically be different from the
true trajectory for all future samples. This property allows us to state the following
result.

Theorem 11. Let the disease spread be captured by the SIR model and let the
measurement variable be the number of recovered and deceased, Rk. It is then
sufficient to only consider the closest alternative trajectories of Rk, that is, τ = ±1
in (7.16).

Proof. We will show that the conditions in Theorem 10 holds for Rk. Also, we will
only prove the theorem for the case for when the infection rate increases, β̄ > β.
However, the proof is analogous for the opposite case, β̄ < β. First, let w̄k denote an
alternative trajectory of wk, which is defined by (7.6), in the sense that w̄k changes
β → β̄ one time step earlier than wk. Similarly, we let R̄k denote an alternative
trajectory of Rk where the change happens one time step earlier. Let the change
occur at time step k∗ + τ . Then we have that w̄k∗+τ = wk∗+τ and R̄k∗+τ = Rk∗+τ
which gives that

w̄k∗+τ+1 − wk∗+τ+1 = −h(β̄ − β)(P −Rk∗+τ − expwk∗+τ ) < 0. (7.20)

Note that the last factor is positive, P − Rk − expwk > 0, ∀k, since it is simply
the number of infected, Ik. The relation (7.20) is intuitive, if the disease begins
to spread more quickly, β̄ > β, then in one time step the size of the susceptible
population will decrease more compared to the slower spreading dynamics.

Now, we need to show that these two alternative trajectories do not cross each
other during the outbreak, which is achieved by first noting that the dynamics fulfill
the following equality,

ẇ = −β
γ
Ṙ⇒ wk+1 +

β

γ
Rk+1 = wk +

β

γ
Rk = C,

where C is a constant which could be obtained from the initial conditions of Rk
and wk. Therefore, we can rewrite the dynamics for wk, as

wk+1 = (1− hγ)wk + hβ̄ expwk − hβ̄P + hγC, (7.21)
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and recall that for Rk,

Rk+1 = (1− hγ)
γ

β̄
Rk + hγ(P − expwk).

We can see that

w̄k+1−wk+1 = (1−hγ)(w̄k−wk)+hβ̄(exp w̄k−expwk)+hγ(C̄−C), k ≥ k∗+τ+1,
(7.22)

which we obtain by combining (7.21) with (7.20), and observing that R̄k∗+τ+1 =
Rk∗+τ+1 gives us C̄ −C = w̄k∗+τ+1 −wk∗+τ+1 < 0 from (7.20). From (7.22), since
all the three terms are negative, we get that w̄k −wk < 0, ∀k > k∗+ τ . For Rk, we
analogously get,

R̄k+1 −Rk+1 = (1− hγ)
γ

β̄
(R̄k −Rk) + hγ(expwk − exp w̄k),

We know from the previous expression that the last term is positive for all k >
k∗ + τ . Therefore, using the initial condition R̄k∗+τ+1 = Rk∗+τ+1, we get that
R̄k − Rk > 0, ∀k > k∗ + τ + 1. Finally, the proof is concluded by noting that
Rk(1) ≤ Rk(2) ≤ · · · ≤ Rk(N), ∀k, where Rk(l) denotes the output of R at time
step k, for a system where the change time is l.

Theorem 10 does not apply to the infected state Ik because all the alternative
trajectories using that output will cross each others’ paths. The integrating action
that the recovered state Rk introduces helps to ensure that no such crossing occurs
between its alternative trajectories. The consequence of non-crossing trajectories
is that the `2-norm increases as |τ | increases, which can be seen in Figure 7.2 for a
change in the spread parameter when Rk is measured. It shows χ2

κ,50,τ -divergence,
as a function of the time step k ∈ κ after a change in the model parameter at
time step 50 along the vertical axis, and the alternative trajectory parametrized
by τ along the horizontal axis. First, we can see that Theorem 11 is verified,
since the minimum occurs at τ = ±1, ∀k. Additionally, we can see that χ2

κ,50,τ is
larger for negative τ , as opposed to the corresponding positive τ , indicating that
τ = 1 is typically favorable in the maximization of (7.9) than τ = −1. Finally,
note that the χ2

κ,50,τ -divergence increases as we collect more samples and that it
eventually converges to some value depending on τ . This convergence indicates
that information about the change time will not forever be present in the signal,
and to obtain a good estimate of the change, one needs to start sampling relatively
early.

Another type of measurement that is typically available is the total number
of cases, Zk = Ik + Rk, which contains both the Rk state, thus it is partially an
integrator, and the current number of infected which is a measurement that changes
relatively quickly. In contrast to Rk, where the change is usually visible once the
infected people have recovered, the addition of the current number of infected means
that changes should be able to be detected earlier. In the next corollary we show
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Figure 7.2: The graph shows the χ2
κ,50,τ -divergence as a function of the alternative

change times, parametrized by τ , and the number of samples after the change, given
by k ∈ κ. The true change time occurs at time step k∗ = 50, indicated by the white
rectangle. Note that for each time step k, we have a minimum at τ = 1, which
is given by the red crosses, and that the χ2

κ,50,τ -divergence increases as we obtain
more samples k.

that this signal has the same useful property as Rk and thus is equally easy to
analyze.

Corollary 4. Let the disease spread be captured by the SIR model and let the
measurement variable be the part of the population that have at some point been
sick, Zk = Ik + Rk. It is then sufficient to only consider the closest alternative
trajectories of Zk, that is, τ = ±1 in (7.16).

Proof. The result follows from Zk = P − Sk and (7.22), where it was shown that
wk = ln(Sk) never crosses paths with any of its adjacent trajectories, wk(1) ≤
wk(2) ≤ · · · ≤ wk(N), ∀k, where wk(l) denotes the output of w at time step k,
for a system where the change time is l. Thus, the conditions of Theorem 10 are
fulfilled.

We have produced two states of the SIR model whose HCR bound of the es-
timated change time is relatively easy to analyze. During an ongoing epidemic,
coincidentally, these two states are typically measured nevertheless, in order to un-
derstand the fatality risk and the disease progression through the population. A
natural question one could ask is which of these two states provide the most cer-
tain estimate. Obviously, different levels of noise for the two signals will skew the
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estimation uncertainty in favor of one or the other. However, for similar noise con-
ditions, we have a signal that definitely performs better, at least initially. Before
we state the next result, we remind the reader that the superscript in, for instance,
Iτk , denotes the signal’s change time, k∗ + τ .

Proposition 10. Consider the measurement sequences for the number of recovered
Rk, and the total number of people that are or have been sick, Zk. For estimation of
the change time, the measurement sequence Zk is more informative than Rk until
Ik − I1

k switches sign.

Proof. First, let use the same notation as in the proof of Theorem 11, namely that,
for instance, R̄k denotes an alternative trajectory of Rk where the change happens
one time step earlier. For the first sample after the change time, R̄k∗+1−Rk∗+1 = 0,
while, using ln Ik = ik,

īk∗+1 − ik∗+1 = (β̄ − β)(P −Rk∗ − exp ik∗),

where, since the second factor is always positive, the change in Ik has the same sign
as β̄ − β. Additionally, the first sample of Zk = Rk + Ik = Ik is more informative
than the first sample of Rk = 0. Looking at the dynamics of the difference, īk − ik
for k > k∗, we see that it is an integrator of zk,

īk+1 − ik+1 = īk − ik + hβ̄(S̄k − Sk) = īk − ik + hβ̄(Zk − Z̄k). (7.23)

Note that if the spread parameter increases, β̄ > β, the difference īk − ik becomes
an integrator of a negative quantity. And since īk− ik ≥ 0 initially, then eventually
the sign will change since Corollary 4 implies that Zk does not cross paths with
its alternative trajectories. This implies that Zk is more informative than Rk until
īk − ik changes sign.

Remark 10. Actually, Zk may potentially produce more information about the
change compared to Rk, ∀k. Specifically, in the continuous time domain, Z(t) is
larger in the L2-norm compared to R(t). This can easily be seen by the relation
R+ I = R+ 1

γ Ṙ and

T∫
0

(∆Z)2dt =

T∫
0

(∆R+
1

γ
∆Ṙ)2dt =

T∫
0

(∆R)2 +
2

γ
∆Ṙ∆R+

1

γ2
(∆Ṙ)2dt

=

T∫
0

(∆R)2 +
1

γ2
(∆Ṙ)2dt+

1

γ
((∆R)2 − (∆R0)2) ≥

T∫
0

(∆R)2dt,

for some T > 0 and ∆R0 = 0. However, this useful property remains elusive when
we discretize the dynamics using the Euler forward method.
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Proposition 10 gives a time interval for when Zk definitely produces better
estimates than Rk. The time step where we can no longer guarantee a better
estimation quality for Zk turns out be important since the sample at this time step
will decrease the HCR bound the most out of all other time steps, which we will see
in the next subsection. Additionally, this time step will turn out to be important
for convergence of the information content.

Most Informative Sample

The term χ2
κ,k∗,· increases monotonically when more data points are sampled, which

implies that the information content I(κ, k∗) also increases monotonically by adding
more samples. Notice that there is subadditivity between the samples:

Lemma 5. Consider two sets of measurements, which have been sampled at time
steps K and L, then we have that

I(K, k∗) + I(L, k∗) ≤ I(K ∪ L, k∗), ∀K,L, s.t.K ∩ L = ∅. (7.24)

Additionally, we have that samples which do not increase the information content
in a sample set contain no information on their own:

I(L ∪ K, k∗)− I(L, k∗) = 0⇒ I(K, k∗) = 0, ∀K,L, s.t.K ∩ L = ∅. (7.25)

Proof. For the subadditivity, we use the Taylor expansion of an exponential func-

tion, ex =
∞∑
n=0

xn

n! . We get that

I(K ∪ L, k∗) = min
τ 6=0

eSK∪L(τ,k∗) − 1 = min
τ 6=0

∞∑
n=1

SK∪L(τ, k∗)n

n!

≥ min
τ 6=0

∞∑
n=1

SK(τ, k∗)n

n!
+
∞∑
n=1

SL(τ, k∗)n

n!
≥ min

τ 6=0

∞∑
n=1

SK(τ, k∗)n

n!
+ min
τ 6=0

∞∑
n=1

SL(τ, k∗)n

n!

= I(K, k∗) + I(L, k∗),

where, in the first inequality, we have used that (x+y)n ≥ xn+yn, for x, y ≥ 0, and,
in the second inequality, we have used min

x
f(x)+g(x) ≥ min

x
f(x)+min

x
g(x), which

proves (7.24). For the second claim, we can simply use the inequality (7.24) and
the positivity of information to obtain the result, which concludes our proof.

The set K in (7.25) corresponds to the time steps where there is no information
about the change time. In Example 2, the data set sampled at K in (7.25) represents
samples of (7.12) which are taken when k 6= {k∗ − 1, k∗}, when both the true
trajectory and the closest alternative trajectory in the weighted `2-norm have either
not had a change, or reached the same steady state after the change. Sampling when
the closest alternative trajectory has reached steady state will therefore not add any
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new information about the change time. However, this claim is a bit too strong
and can be relaxed by considering the time steps at which the trajectories have
converged to each other.

Proposition 11. The earliest time step at which no more additional information
I(k, k∗) is generated, is given by the smallest k̄, so that

(zk − zτIk )>Σ−1(zk − zτIk ) = 0, ∀k ≥ k̄, (7.26)

where τI is the minimizer of (7.16).

Proof. The result follows from the fact that we can split up any sample set κ into
two sets, L and K, where I(L, k∗) = I(κ, k∗) and {k, . . . , N} = K. Then, Lemma 5
implies that

I (K, k∗) = e

∑
κ

(zk−z
τI
k )>Σ−1(zk−z

τI
k )
− 1 = 0,

which is equivalent to (7.26).

Proposition 11 provides us with a key insight that is needed for the development
in the next section, namely, that it is possible to predict how future samples impact
the information content if the future trajectory is known. Alternative trajectories
of some dynamical systems only approach each other asymptotically. Therefore, we
need another way to determine the convergence of the information content. Since
the information content relies on the weighted `2-difference between the true and
closest alternative trajectory, we could use the time step that provides the largest
difference. Any single sample after this time step will produce a smaller information
gain due to the smaller `2-difference and thus, the information content will start
to converge. In fact, this time step will be the same one that gives the largest
increase of (7.16) compared to other samples in the set, which we use as the formal
definition.

Definition 13. The most informative sample in a set of κ, with regards to the
change time k∗, is defined as

MIS(κ) = arg max
l

I(κ, k∗)− I(κ \ {l}, k∗).

Explicitly, the most informative sample for the dynamical system (7.7) corre-
sponds to the sample l which maximizes the following expression,

max
l∈κ

(zl − zτIl )>Σ−1(zl − zτIl ), (7.27)

where τI is the minimizer of (7.16). Note that the MIS should only be compared
to other individual samples in the set. For instance, a combination of several other
less informative samples could increase the information content substantially more
than the MIS can do on its own.

For our signals of interest in the SIR system, we can show when the MIS occurs.
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Proposition 12. The most informative sample MIS(κ) = k̂, fulfills the following
necessary conditions:

• For Rk:
Ik̂ − I

1
k̂

= 0⇒ Zk̂ − Z
1
k̂

= Rk̂ −R
1
k̂
.

• For Zk:
P (Ik̂ − I

1
k̂
) < Zk̂Ik̂ − Z

1
k̂
I1
k̂
.

Thus, the first time step that fulfills these conditions is the most informative one.

Proof. The difference of the two alternative trajectories of Rk, ∆Rk, never cross
each others’ paths. Therefore, it is only necessary to find the time steps when the
two trajectories start to approach each other. Also, ∆Rk increases while ∆Ik > 0,
since it is an integrator of ∆Ik. Therefore, a maximum occurs when ∆Ik, switches
sign. For Zk we have from (7.5) that

∆Zk+1 = ∆Zk + hβ (P∆Ik −∆Zk∆Ik) .

This difference starts to decrease when the second term is negative, thus implying
that the difference is increasing up until that time step. This concludes our proof.

Given Proposition 10 in the previous section, where it was shown that Zk pro-
duces better estimates than Rk initially, it seems intuitive that most of the infor-
mation content appears much earlier in Zk. In fact, we show that this is the case
in the next proposition.

Proposition 13. Consider the measurement sequences for the number of recovered
Rk, and the total number of people that have been sick, Zk. For the estimation of
the change time, the measurement sequence Zk achieves its maximum information
content earlier than Rk. Additionally, the maximum information content for Zk is
at least as large as Rk.

Proof. The result follows from Proposition 12, where the condition for the maxi-
mum information for Rk implies that the condition for Zk becomes Zk̂ − Z

1
k̂
> 0,

which is always true. Additionally, note that the maximum information content for
Rk occurs when ∆Ik = 0, which for Zk gives the difference ∆Zk = ∆Rk + ∆Ik =
∆Rk. Thus, Zk will always produce at least one sample that has more information
content than the maximum for Rk.

Proposition 4 states that Zk will stop generating information about the change
earlier than Rk. However, its most information dense samples will have more infor-
mation than the MIS for Rk. This concentration of information also explains why
Zk produces better estimations of the change time initially, compared to Rk.
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7.5 Information usage for large noise variance

As was eluded to in Section 7.4, the numerator in (7.9) depends on the estimator
bias, and if there is no bias, the numerator is equal to τ2. In the low-noise variance
case, it acts as a scaling factor to account for the distance between k∗ and k∗ +
τI . However, as we increase the noise variance we will come to a point where,
effectively, the estimator no longer can distinguish between the true and the most
similar alternative trajectory, given the current amount of samples. In the lower
bound (7.9), this deterioration is characterized by a change in the optimal τ to a
larger integer, τI < τ∗. As was seen in Example 3, the new optimal τ corresponds
to the difference between the true and second closest trajectory that has a larger
τ than the closest trajectory. Therefore, in order to effectively distinguish the true
trajectory from an alternative one, a sufficiently large gap in the `2-difference needs
to occur.

This effect is shown in Figure 7.3, where we have plotted the HCR bound for
Rk, using the same SIR model that was used in Figure 7.2. The HCR bound is
plotted as a function of the number of samples along the vertical axis and the
alternative change times along the horizontal axis. Note that initially, when there
are few samples in relation to the noise level, we get the optimum for τ∗ = N .
Thus, the estimator will not be able to effectively distinguish between the true
and any other alternative change times. However, as the estimator collects more
information, τ∗ eventually becomes 2, before finally converging to 1, which is the
same τ that minimizes (7.16).

Figure 7.3 shows that Lemma 4 cannot always be used to restrict the set of pos-
sible τ for (7.9) although the conditions of Theorem 10 are still fulfilled. However,
we may be able to recover a similar result if we let the number of samples become
large enough. Specifically, recall Example 2, where we obtained a restriction in τ
because Sκ(τ, k∗) started to increase quadratically in τ . In this section, we show
that this property holds generally for the HCR bound of all dynamical systems.
In order to prove it, we will first need an equivalent result of Lemma 4 for the
large-noise variance case.

Lemma 6. The set T of candidates τ which maximize (7.9) can be restricted to
T ∗ = {τ , τ + 1, . . . , τ̄ − 1, τ̄} ⊂ T , where τ̄ = max(T ∗) fulfills

e

∑
k∈κ

(zk−zτ̄+`
k )>Σ−1(zk−zτ̄+`

k )

− 1

e
1
σ2

∑
k∈κ

(zk−zτ̄k )>Σ−1(zk−zτ̄k )

− 1

≥ (τ + `)2

τ2
, ∀` ≥ 1, (7.28)

and τ = min(T ∗) fulfills

e

∑
k∈κ

(zk−zτ−`k )>Σ−1(zk−zτ−`k )

− 1

e
1
σ2

∑
k∈κ

(zk−zτk )>Σ−1(zk−zτk )

− 1

≥ (τ̄ − `)2

τ̄2
, ∀` ≥ 1.

The maximizer to (3) is then in this new set, τ∗ ∈ T ∗.
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Figure 7.3: The plot shows how the lower bound of the change time estimation
variance for each time step as a function of τ . The red crosses indicate τ∗, which
determines the HCR bound lower bound.

Proof. Let us again start by considering τ̄ . Plugging it into the HCR bound (7.9)
we find that in order to remove every τ that is larger than τ̄ , the following must
hold,

τ̄2

e

∑
k∈κ

(zk−zτ̄k )>Σ−1(zk−zτ̄k )

− 1

≥ (τ̄ + `)2

e

∑
k∈κ

(zk−zτ̄+`
k )>Σ−1(zk−zτ̄+`

k )

− 1

, ∀` ≥ 1,

which is the same as (7.28). Similarly, for the lower bound, we have that

τ2

e

∑
k∈κ

(zk−zτk )>Σ−1(zk−zτk )

− 1

≥ (τ − `)2

e

∑
k∈κ

(zk−zτ−`k )>Σ−1(zk−zτ−`k )

− 1

, ∀` ≥ 1,

which is the same as inequality (7.5).

Note that the set T ∗ contains the elements from the set T ∗I that were given by
Lemma 4, which contained τI that minimized (7.16), T ∗I ⊆ T ∗. This fact follows
from

(τ̄ + `)2

τ̄2
> 1, and

(τ − `)2

τ2
> 1, ∀l ≥ 1,
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which is a consequence of the extra importance the unbiased estimator puts on the
early and late measurements. Recall that τ < 0, which is why the second inequality
holds. These inequalities give us a clear starting point for finding the maximizer τ
for (7.9),

Proposition 14. The set of candidates of τ ∈ T , can be restricted to |τ | ≥ |τI |,
where τI minimizes (7.16).

Proof. If χ2
κ,τI ,k∗

≤ χ2
κ,τ,k∗ for |τ | ≤ |τI |, then

τ2

χ2
κ,τ,k∗

≤ τ2
I

χ2
κ,τI ,k∗

.

In other words, the τ which parametrizes the alternative trajectory that is used
to calculate the information content (7.16) also acts as the smallest |τ | that should
be considered when evaluating the HCR bound. Thereafter, one can iterate the
calculations of (7.28) for increasing τ to get a tighter lower bound until a maximum
has been reached. The information content is therefore a good starting point to
perform a first analysis of how the uncertainty evolves over time in order to gain
intuition for when the quality of the estimation will improve. After that, one can
use the information content as a stepping stone for calculating tighter lower bounds
until the HCR bound is obtained.

Remark 11. For completeness, we present two algorithms in Appendix B to fur-
ther restrict τ for dynamical systems. These results could be used to simplify the
calculations on how future samples affect the HCR bound.

Proposition 6 gives us a property which enables us to project how the HCR
bound will evolve asymptotically when future samples are collected.

Corollary 5. Consider the noiseless, scalar, output of the dynamical system (7.7),
zk, and the alternative noiseless outputs, zτk . If the same conditions as in Theo-
rem 10 hold and additionally

min |zk − z±1
k | < min |zk − zik|, ∀k ≥ ¯̀,

and ∀i ∈ {−(N − 1), . . . ,−2, 2, . . . , N − 1}. Then, as N → ∞, it is sufficient
to consider τ = ±1, which represents the trajectory closest to the original in the
weighted `2-norm, when evaluating (7.9).

Corollary 5 is the final piece of information that is needed for simplifying the
analysis of the SIR model. With it, we obtain the following result.

Corollary 6. The HCR bound for the estimator ψ(Y ) using measurement Zk is
equal or less than the HCR bound using Rk until time step k̄ > k∗, where Ik̄−Iτ

∗

k̄
=

0, if the noise variance is the same for both types of measurements.
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Proof. Let us prove this claim by contradiction. First, note that the `2-norm for
Zk−Zτk is larger than Rk−Rτk, ∀τ before Ik−Iτk changes sign for the first time. Now
let τ∗Z maximize the HCR bound for when Zk is used and similarly, let τ∗R maximize
the HCR bound for Rk. Assume that the HCR bound using Rk is smaller than the
HCR bound using Zk,

(τ∗R)
2

eS
R
κ (τ∗R,k

∗) − 1
<

(τ∗Z)
2

eS
Z
κ (τ∗Z ,k

∗) − 1
, (7.29)

where SZκ and SRκ correspond to the `2-differences using outputs Zk and Rk, re-
spectively, and max(κ) = k̄ − 1. Then, since SZκ (τ∗Z , k

∗) > SRκ (τ∗Z , k
∗), we have

that
(τ∗Z)

2

eS
Z
κ (τ∗Z ,k

∗) − 1
≤ (τ∗Z)

2

eS
R
κ (τ∗Z ,k

∗) − 1
,

which implies that τ∗R is not the optimizer of (7.9). Therefore, we conclude that (7.29)
must be false.

Corollary 6 gives an answer to which measurement one should use to most reli-
ably estimate a change time during the first time steps. Similarly as in Remark 10,
the time-continuous SIR model again gives that ∆Z(t) is larger than ∆R(t) for
any interval of time in the L2-norm. Therefore, it is possible that, at least for fast
sampling, the discrete version of the SIR model would exhibit similar properties.

In Section 7.4, we defined the notion of MIS, which is a single sample in the
sample set that increases (7.16) the most. However, the sample that is obtained
by that specific definition might not be useful in the large-noise case. Fortunately,
an equivalent notion may be defined for the sample that decreases the HCR bound
the most:

Definition 14. The most useful informative sample in a set of κ, with regards to
the change time k∗, is defined as

MUIS(κ) = arg min
l

B(κ, k∗)−B(κ \ {l}, k∗),

where B(·, ·) is defined in (7.9).

For dynamical systems, the most useful informative sample has the same ex-
pression as (7.27), with the difference that τ∗ maximizes (7.9) instead of mini-
mizing (7.16). By useful, we mean that it is the information which the estimator
actually extracts from the signal, which could be less than the total amount of
information that is present in the signal.

For the SIR model, equivalent results to Propositions 12 and 13 can be derived
using the τ that maximizes the HCR bound (7.9). The results will only differ
through the change of τI → τ∗. Similarly to MIS, MUIS will not necessarily reduce
the variance by a significant amount. If the MUIS occurs late during the sampling,
then it will not play a major role in reducing the variance since the estimator has
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Figure 7.4: The HCR bound for Rk is shown together with the MUIS for both Rk
and Zk, as a function of the size of the parameter change. First, note that the
HCR bound stops decreasing approximately where the MUIS occurs if it has not
converged. Secondly, note that the MUIS for Zk always occurs earlier than for Rk.

already gained a lot of information from the previous samples to conclude when
the change happened. In Figure 7.4, one can see the impact of the MUIS for Rk.
Notice that the improvements in the HCR bound quickly become slower after the
MUIS, unless it has already converged. Since the MUIS is able to represent the
boundary between large and small changes in the HCR bound, one may therefore
use the MUIS as a measure of the sample horizon length that is sufficient to ensure
that the HCR bound starts to converge.

For comparison, the most useful informative sample for Zk is also shown in
Figure 7.4. It verifies Proposition 13, which states that the sample set of Zk is
more informative than Rk, if they are sampled with the same amount of noise. The
most useful informative sample for Zk occurs much earlier than the most useful
informative sample for Rk, which means that the lower bound may converge sooner
for Zk than for Rk.
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7.6 Application to COVID-19 Data

We will now apply our theoretical results to real data of the COVID-19 infection
process. The data in this section is taken from the European Center of Disease
Prevention and Control [96]. The two signals, Zk and Rk, were based on the cu-
mulative number of cases, (dZk )Nk=1, and the cumulative number of deaths, (dRk )Nk=1,
where the sampling period is one day and the first time step k = 1, corresponds
to March 1st, 2020. However, before we can apply our results, we have to address
two major systematic artifacts. First, the dynamic model (7.1) requires knowledge
of the size of the population in which the virus is spreading. Typically within one
country, only certain geographical areas are affected by the disease at a time. In
Italy, for instance, the regions that were affected the most in the first wave managed
to have a relatively small number of cases in the second wave [97]. To deal with
this discrepancy, we let the population number in (7.1), P , be a tunable variable.
Additionally, the data is missing a large number of unreported cases, both for the
cumulative cases, and recovered or deceased cases. In order to account for this de-
ficiency, a scaling of the signals Zk and Rk is needed, which is equivalent to tuning
P similarly as for the previous artifact. However, the choice of P for the two sig-
nals Zk and Rk needs to be made separately to account for the different number of
undetected cases for the two measurements. The population P was chosen so that
the output trajectory of the estimated SIR model using data for the entire horizon
is able to follow the physical data. Finally, the equivalent susceptible population
was chosen to be PZ = 168000, and PR = 36000. These choices of P resulted in
the estimated removal rate γ being the same magnitude as the recovery rate of the
disease, namely 1 to 6 weeks, which could be used as a verification that the choices
of PZ and PR are reasonable.

The second artifact which has to be addressed is that many infection cases and
deaths which are discovered during weekends are typically not reported until the
following one or two weekdays. This phenomenon of under and over reporting of
cases affects the variance of the time series notably, as seen in Figure 7.5, where we
have plotted the histogram of

êk = dZk − d̄Zk ,

where (d̄Zk )Nk=1 is the 7-day rolling average of (dZk )Nk=1. A similar noise distribution
appears for dRk . One can see that there are two small peaks in addition to the
central bell-like histogram; one to the left of the origin (under-reporting), and one
to the right of the origin (over-reporting). Figure 7.5 illustrates that the error
could approximated by Gaussian, zero-mean measurement noise with some data
contamination which gives rise to the additional small peaks. In order to accurately
estimate the variance of the measurement noise, we use êk as the estimated instance
of the noise, thus making the variance estimation not depend on the model of the
underlying process. Additionally, to deal with the contaminated part of the data, we
use a robust estimator called the Median Absolute Deviation (MAD)-estimator [98],
which has historically proven to be able to be more resistant against a small number
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Figure 7.5: Histogram of the difference between the raw data signal of dZk and its
corresponding rolling 7-day average, d̄Zk , which is used to estimate the Gaussian
noise variance.

of outliers. The variance is then calculated as

V̂ar(ek) =
median (|dk −median(dk)|)

Φ
(

3
4

) , (7.30)

where Φ(·) is the cumulative distribution function for a normal distribution.

Now that these artifacts have been handled, we are ready to proceed with the
parameter identification of the spread model. The following minimization problem
is solved in order to obtain the parameters using Rk

minimize
β, β, γ, I0, R0

∑
k

∣∣dRk −Rk∣∣ ,
subject to (7.4),

(7.31)

and for Zk,

minimize
β, β, γ, I0, Z0

∑
k

∣∣dZk − Zk∣∣ ,
subject to (7.4).

(7.32)
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We choose to minimize the `1-norm in order to reduce the impact of outliers which
are caused by the over and under estimation. The programs (7.31) and (7.32) are
solved by using line search in combination with simulated annealing [99], which
adds stochasticity to the line search. Since the programs are not convex, first-order
methods may not converge to the global minimum. However, simulated annealing
is able to exit suboptimal minima with a higher probability than for the global
minimum. Therefore, if the variance of the stochastic part of the optimization
search is initialized to be large and thereafter decreased slowly enough, then simu-
lated annealing is able to converge to the global minima irrespective of the initial
parameters [100].

Certainty of Non-Pharmaceutical Interventions

We use the data for infection spread in France to perform the analysis. The rea-
son for this choice is that the French government implemented their NPIs in quick
succession over 5 days. The quick succession means that we can model these multi-
ple NPIs with a single NPI corresponding to the cumulative change. Additionally,
we only consider the first 80 days of the breakout in the first wave since the SIR
model (7.4) does not take geographical spread into account. If we consider longer
periods of time, the infection spread will behave in a way that is not perfectly
captured by the single-population SIR model (7.4). For instance, by spreading to
geographically remote populations of a country which have not come into contact
with the virus before an entirely new infection cycle could start. An additional fac-
tor is that an increase in the rate of testing also leads to an increase in the number of
infected in the data. This increase is another effect that is not captured by the SIR
model and therefore introduces additional modeling error for longer time horizons.
Finally, we mention that the estimated variance, 2 ·10−5, of the measurement noise
was low enough so that only τ = ±1 was needed to be considered when conducting
the analysis, which verifies Corollary 5.

Consider Figure 7.6, which shows the temporal evolution of the removed state
Rk, and the cumulative state Zk, together with the NPIs of case-based self-isolation,
encouraged social distancing, banning of public events, school closures, and lock-
down. Again, one can see that all the NPIs were implemented within 5 days. In
Figure 7.7 one may see the running estimated change time based on the two signals.
For the first 35 days, one can see that the plot has a trend that is increasing, indi-
cating that the estimator has not detected a significant change of the viral spread
in the population and therefore does not produce a consistent result as the number
of samples grows. However, once time step 36 is reached (April 5th), the change
time estimates starts becoming consistent at around time step 32 for Zk. However,
for Rk both the estimated change time and the volatility decrease a few days after
the change time settles for Zk (k > 60).

In Figure 7.7, the HCR bound for the removed Rk and cumulative state Zk
is shown in addition to the estimated change time. Notice that the measurement
of the total number of infections, Zk, has a much lower HCR bound than for
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Figure 7.6: Data showing the total number of recovered/deceased, dRk , and infected
dZk , counted from March 1st. Additionally, the implementation dates for the four
different NPIs are shown.

Figure 7.7: The plot shows the running estimates of change times for the total
number of recovered/deceased, Rk, and the total number of infected, Zk. The
HCR bound for the two corresponding signals are shown, where the lower bound
on estimation variance tends to zero as the number of time steps grows.
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the removed state, Rk. The fact that Zk provides better estimates than Rk is
consistent with Proposition 10, which states that it should, at least initially, provide
more informative samples. Additionally, one can see that the fluctuations of the
estimations correlate closely with how large the HCR bound is. For instance, at
day 60, the large fluctuations in Rk stop, which coincides with when the HCR
bound becomes small. Thus, the HCR bound successfully predicts that Rk will
fluctuate heavily based on the realization of the noise up until day 60. On the other
hand, the HCR bound for Zk does not predict that it will have large fluctuations
and the estimates of the change time reflect this. Therefore, during most of the
time steps for Zk and after time step 60 for Rk, the limitation on the estimation
certainty disappears, implying that there could be an efficient estimator that is
able to perfectly estimate the change time and thus is better than the one defined
by (7.31) and (7.32).

Finally, note that the estimated change time is shifted 2-3 weeks compared to
when the actual implementation of the NPIs occurred. This delay seems intuitive,
since most testing was done once an individual shows symptoms, which can happen
up to 2 weeks after exposure. Similarly, since recovery and death from the disease
is additionally delayed from the time step when symptoms start, the change in
Rk due to the NPIs is delayed further compared to Zk. Parts of the delay may
be captured by using an SEIR model, where the additional Ek state constitutes
members of the population that have been in contact with the disease but not yet
started to show symptoms. In practice, however, people who are detected while in
the asymptomatic phase are typically put into the infected state Ik (with regards
to reporting confirmed cases). Therefore, an NPI could immediately show up as a
change in Ik due to the (small) portion of the population that are asymptomatic
and have been detected. This effect could explain why Zk also seems to estimate
a change time early on with a relatively low HCR bound, at roughly time step 15,
which fits well with when the NPIs were actually implemented in France. Thus,
an estimator that detects this early change with high certainty could potentially
exist. Additionally, this estimation persists until 2-3 weeks after the change, which
corresponds to when the asymptomatic phase ends for people that were infected
after the implementation of the NPIs. However, in the latter time steps Rk becomes
more prevalent than Zk, skewing the result closer to the detected change time for
Rk.

As was previously mentioned, the detected change is actually made up of 4
smaller changes that occurred over 5 days. A key question we posed was if it was
possible to separate the effects of these NPIs to attribute reductions in the spread
parameter to particular NPIs. Consider Figure 7.8, where we have plotted the HCR
bound for Zk as a function of the time step after the change and percentage of the
total change, based on the estimation at time step 70. One may see that if the total
change is attributed to one NPI, then it may be possible to estimate the change
time the very next day, since the HCR bound says that the estimation uncertainty
is lower bounded to the order of ±10−1 days. However, since there were 4 NPIs in
quick succession, at least one of them will contribute to at most 25% of the total
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Figure 7.8: The plot shows the HCR lower bound for signal Zk of the estimated
change time as a function of the relative size of the change, β/β̄, for up to 15 days
after the change. For instance, for a change that is half of the total detected one,
β/β̄ = 0.5, this plot shows that the earliest day we can detect it is on the second
day after the change, where the HCR bound is ≈ 1 prompting an uncertainty of
±1 day.

change. Figure 7.8 implies that a change of that magnitude will at the earliest be
reliably detected (variance less than ±1 day2) after three days. Furthermore, if one
of the NPIs had no effect on the spread, then some of the remaining will at most
affect 33% of the total change, which corresponds to an earliest detection at least
2 days after the implementation according to Figure 7.8. The results are confirmed
by using Rk as well, as seen in Figure 7.9, where the full change (100%) is detectable
only after 4 days. For the worst case scenario, where each NPI contributes equally
to the change, the change time could potentially be reliably estimated only 7 days
after the change. Hence, we have obtained another confirmation of Corollary 6,
which stated that the HCR bound for Zk would be lower than the HCR bound for
Rk.

Most Informative Sample

As previously discussed, it is important to be able to know if the HCR bound
has converged, implying that additional samples will no longer improve the lower
bound. In Section 7.3, we show through an example that once the most informative
sample has been collected, then no major improvements to the HCR bound can be
expected. Figure 7.10 shows when the most informative sample is expected to occur,
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Figure 7.9: The plot shows the HCR lower bound for signal Rk of the estimated
change time as a function of the relative size of the change, β/β̄, for up to 15 days
after the change. For instance, for a change that is half of the total detected one,
β/β̄ = 0.5, this plot shows that the earliest day we can detect it is on the fifth day
after the change, where the HCR bound is ≈ 1 prompting an uncertainty of ±1
day.

based on the current samples, namely at day k̄, {dZk : ∀k < k̄} and {dRk : ∀k < k̄}.
Throughout the time window, one can see that the most informative sample is
expected to occur after 29 days for both types of measurements. From the plot for
Zk, one may see that the most informative sample is eventually estimated to be
between days 40-45. Note that the curve for the estimated change time using dZk
has converged well before day 40, implying that the information collected before the
MIS is sufficient for some estimator to perfectly estimate the change. Therefore, the
MIS does not add any additional information about the change compared to what
has already been collected. For Rk, the most informative sample happens a few
time steps later than for Zk, verifying Proposition 13. The MIS for Rk is eventually
estimated to be between time steps 50-60. Here, however, the impact of the MIS is
very noticable. In Figure 7.7, one can see that the HCR bound converges shortly
after time step 60, which is a few time steps after the MIS has been collected.
We can therefore conclude that the MIS is a sufficient indicator of when the HCR
bound starts to converge, if it has not converged yet.
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Figure 7.10: The figure shows the running estimated change times (in black) to-
gether with an estimation of when the MIS (in red) occurs. For instance, the MIS
for Zk converges at day 42, indicating that the HCR bound for Zk should start to
converge by then. However, one may see that the HCR bound for Zk already has
converged at day 37.

7.7 Conclusions

We have analyzed the detectability of multiple change times for sudden parame-
ter changes in nonlinear systems using the Hammersley-Chapman-Robbins lower
bound. Through the bound, we defined the notion of information content per-
taining to change time in a measurement signal, which determines the quality of
estimation in a low-noise scenario. The information content is identical to the Ney-
man χ2-divergence between the true signal and the most similar alternative signal.
Typically, both the lower bound and the information content are calculated by
solving a combinatorial problem. We presented results that reduced the number of
candidates that are needed to be evaluated. We then gave conditions for dynamical
systems that only need one candidate to be considered when calculating the HCR
bound, which enabled us to compare how the quality of detection evolves over time.
Additionally, we defined the notion of Most Informative Samples which, according
to simulations, seems to be a good indicator of when the information content and
Hammersley-Chapman-Robbins bound starts to converge.

This theoretical framework was then applied to detecting changes to the in-
fection parameter in the Susceptible-Infected-Removed model, where it was shown
that the measurements of the total number of infected, Z = I +R generates more
information and provides a higher quality estimate of the change time than mea-
surements of the number of recovered or deceased R. These changes could be
interpreted as detecting the effects of non-pharmaceutical interventions (decrease
in β) or new variants (increase in β) on the spread of an epidemic. The theory
was then applied to real data from the COVID-19 pandemic in France during the
first wave in spring 2020. It was verified that measuring Z gave a higher quality
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of the estimate than R in multiple instances. For instance, there exists no esti-
mator which is able to separate the four non-pharmaceutical interventions which
were implemented over a 5-day period. However, the calculations show that for
Z, an estimator would at the earliest be able to separate the events if they had
been implemented with at least a 3-day delay between them. For R, estimating
the corresponding change would need to have at least a 7-day delay between the
implementations.





Chapter 8

Conclusions and Future Work

In this chapter, we will conclude the thesis and consider possible future research
directions.

8.1 Conclusions

In this thesis, we have investigated the importance of information, in terms of input-
output pairs, with regards to security of CPS. We showed that with relatively little
knowledge, an adversary that is able to gather a few input-output pairs can use these
to construct an undetectable attack. Specifically, we showed that once an adversary
is able to generate an undetectable attack, the operator is not able to defend itself
anymore, unless the physical system is reconfigured so that it exhibits different
dynamics or complementary security solutions which blocks the adversary’s access
to the system is implemented. Any probing attempt by the operator is futile, since
a clever adversary that is able to detect these attempts can stop their attack, cover
up their tracks, and possibly gather additional information about the dynamics.

Instead, we proposed a defensive mechanism that corrupts the information which
is leaked to the adversary during its phase of disclosure attacks. The corruption is
achieved by injecting measurement noise in the data, thus making it difficult for the
adversary to detect when an event that excites the system dynamics occurs. The
uncertainty on the adversary’s part is quantified in terms of the sensor placements,
system dynamics and the input directions that are applied to the physical system.
Our proposed privacy metric was also briefly compared to differential privacy. We
showed that differential privacy does not ensure the same level of privacy for the
detectability of events compared to our privacy metric. We also showed how the
privacy level decreases as the sampling frequency of the system increases.

We also proposed additional defensive mechanisms that are easily implemented
from the operator’s point of view. Specifically, we proposed a privacy-enhancing
mechanism through the introduction of a regularization term in optimal control
problems. This allows the operator to determine online when the privacy level
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should be enhanced. Finally, we also quantified privacy-utility trade-offs, which
can aid the operator to determine which level of privacy is guaranteed when they
enhance the privacy.

In Chapter 7, we considered how information about events is generated as a
function of time for nonlinear systems. Specifically, we show that in the low noise
case, the analysis simplifies to the `2-difference between the true and most simi-
lar alternative trajectory, measured in the `2-norm. For the large noise case, an
analysis generally needs to consider all possible alternative trajectories. However,
we provided sufficient conditions so that a subset of these alternative trajectories
can be considered instead. Finally, we provided necessary conditions for when the
certainty of an event begins to converge.

8.2 Future Work

This thesis has addressed several research questions, which could be extended sev-
eral directions. Here, we will list some possible future research direction that could
be considered.

Extensions of Data Driven Attacks

The undetectable data driven attacks which were introduced in Chapter 4 could
be extended in several directions. For instance, one could extend the method to
generate undetectable attacks to stochastic and nonlinear systems. One could use
the approaches that are suggested in [85], such as introducing slack variables to the

program in (4.11) or by using low-rank approximations of
[
H>u H>y

]>
to generate

these attacks. Since this most likely implies that the adversary has to work with
model errors, a future research direction would then be how an adversary’s model
error affects the set of stealthy attacks that it can conduct. Additionally, the results
of a such investigation could show how an operator could use the model error to
defend the system from these attacks.

Secondly, the data driven attack which we consider here generate attacks by
performing operations on sampled data. If this data is encrypted, then the adver-
sary can only perform operations on the encrypted data. Recently, homomorphic
encryption has become popular in the control community since a computer can
perform simple operations on the encrypted data such that the resulting signal be-
comes the same as if the operations were performed on the unencrypted data. This
implies that the construction of attacks which was considered in Chapter 4 would
also be possible to use on homomorphic encrypted data. In that case, the attack
generation scheme should be able to bypass the encryption and an adversary would
still be able to construct an attack. If that is the case, then an interesting research
question would be which attacks that are considered in Chapter 4 would be able to
be constructed in this situation as well.
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Incorporating Adversary Uncertainty

In the ideal estimation case that we have considered here, we have assumed that
the adversary is able to use a perfect model of the system to estimate the change.
However, the reason behind why an adversary would want to figure out the input
was because they wanted to improve their model of the physical system. There-
fore, a future possible research direction would be to consider offline estimation
of changes when an adversary does not have a perfect model of the system. This
would correspond better to the core problem we are have considered here, namely
to keep the adversary from being able to generate a model of a system by keeping
the input private.

Another way to increase the uncertainty would be to consider the effects that
process noise has on the adversary’s uncertainty of the change time estimation.
Process noise might become more difficult to deal with for the adversary, especially
since it does not know the dynamics that the process noise is filtered through. How-
ever, introducing process noise deteriorates the control performance of a physical
system, which defeats the purpose of trying to control the system in the first place.
In that case, new privacy-utility trade-offs would be interesting to derive.

Tighter Bounds

In Chapter 6 we derived a lower bound of the estimation covariance for the case of
when the adversary does not know the input sequence using a Barankin-type bound.
These bounds consider a finite number of test points in order to derive a lower
bound on the estimation uncertainty. The HCR bound that we have considered
here actually a special instance of a Barankin-type bound, namely the best lower
bound with one test point. Instead, a future research direction would be to consider
several test points to investigate whether large improvements to the uncertainty
could be made. The limit case, when the number of test points tend to infinity, is
the original Barankin bound and it is the tightest lower bound of the estimation
variance that is possible to achieve. Another research direction would be to try to
find this lower bound and design defensive mechanism around that result.

Quantifying Uncertainty in Different Estimation Approaches

Here, we have only considered adversary’s that employ offline point estimation al-
gorithms. Instead, one could consider other types as well. For instance, it might be
more likely that an adversary uses online detection algorithms to estimate changes
in order to quicker react to said changes. A reason behind this could be because the
attack they are considering could be time sensitive. An adversary might also use
Bayesian estimation methods, which would make them be able to deal with changes
that might happen periodically plus some stochastic variation in time. An adver-
sary of this sort would be able to eavesdrop on the system for longer time horizons,
while updating their beliefs of when the change typically occurs. Exploring and
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developing defensive methods against these types of adversaries would yield in a
more versatile protection design scheme that operators could employ to discourage
adversaries from launching attacks.



Appendix A

Proof of Theorem 5

Here, we provide the proof for Theorem 5 in Chapter 5.

Proof of Theorem 5. The estimator, ψu(Y,M), uses the measurements Y and the
model M in order to estimate the change time k∗. Here, k∗ is a parameter which de-
termines the probability distribution of Y . The minimum variance of the estimator
is given by the Chapman-Robbins bound [71],

Var(ψ(Y,M)
∣∣k∗) ≥ sup

τ 6=0

(
E
[
ψ(Y,M)

∣∣k∗ + τ
]
− E

[
ψ(Y,M)

∣∣k∗])2
E
[(

p(Y |k∗+τ)
p(Y |k∗) − 1

)2
∣∣∣∣k∗] ,

where τ ∈ Z and p(Y |k∗) is the probability of obtaining measurements Y , condi-
tioned on the change time is k∗. Evaluating the expectation in the denominator
gives

Var(ψ(Y,M)
∣∣k∗) ≥ sup

τ 6=0

(
E
[
ψ(Y,M)

∣∣k∗ + τ
]
− E

[
ψ(Y,M)

∣∣k∗])2∫
RN

p (Y |k∗ + τ)
2

p (Y |k∗)
dY − 1

. (A.1)

Since p(Y |k∗+τ)2

p(Y |k∗) = e2 log p(Y|k∗+τ)−log p(Y|k∗), we write for τ ≥ 1,

log p(Y|k∗ + τ)− log p(Y|k∗) =

− 1

2

N∑
k=1

(
yk − CAkx0 −

k−1∑
l=k∗+τ

CAk−l−1Bu

)>
Σ−1
e

(
yk − CAkx0 −

k−1∑
l=k∗+τ

CAk−l−1Bu

)

+
1

2

N∑
k=1

(
yk − CAkx0 −

k−1∑
l=k∗

CAk−l−1Bu

)>
Σ−1
e

(
yk − CAkx0 −

k−1∑
l=k∗

CAk−l−1Bu

)
=

133



134 APPENDIX A. PROOF OF THEOREM 5

− 1

2

N∑
k=k∗+1

(

min(k∗+τ−1,k−1)∑
l=k∗

CAk−1−lBu)>Σ−1
e

(2yk − (2CAkx0 +
k−1∑
l=k∗

CAk−l−1Bu+
k−1∑

l=k∗+τ

CAk−l−1Bu)).

Continuing, we see that,

2 log p(Y|k∗ + 1)− log p(Y|k∗) = 2(log p(Y|k∗ + 1)− log p(Y|k∗)) + log p(Y|k∗) =

− 1

2

N∑
k=k∗+1

(

min(k∗+τ−1,k−1)∑
l=k∗

CAk−1−lBu)>Σ−1
e

(2yk − (2CAkx0 +
k−1∑
l=k∗

CAk−l−1Bu+
k−1∑

l=k∗+τ

CAk−l−1Bu))−

− 1

2

N∑
k=1

(
yk − CAkx0 −

k−1∑
l=k∗

CAk−l−1Bu

)>
Σ−1
e

(
yk − CAkx0 −

k−1∑
l=k∗

CAk−l−1Bu

)
=

− 1

2

N∑
k=k∗+1

(yk −G)
>

Σ−1
e (yk −G) +

N∑
k=k∗+1

min(k∗+τ−1,k−1)∑
l=k∗

CAk−1−lBu

>Σ−1
emin(k∗+τ−1,k−1)∑

l=k∗

CAk−1−lBu


− 1

2

k∗∑
k=1

(
yk − CAkx0 −

k−1∑
l=k∗

CAk−l−1Bu

)>
Σ−1
e

(
yk − CAkx0 −

k−1∑
l=k∗

CAk−l−1Bu

)
,

where,

G = CAkx0 +
k−1∑
l=k∗

CAk−l−1Bu− 2

min(k∗+τ−1,k−1)∑
l=k∗

CAk−1−lBu

 .

Inserting this expression into the bound in (A.1), evaluating the integral, and setting
E
[
ψ(Y,M)

∣∣k∗] = k∗ + g(k∗), we obtain

Var(ψ(Y,M)
∣∣k∗) ≥ max

τ≥1

(τ + g(k∗ + τ)− g(k∗))
2

eu>S(τ,M)u − 1
, (A.2)

where,

S(τ,M) =
N∑

k=k∗+1

min(k∗+τ−1,k−1)∑
l=k∗

CAk−1−lBu

> Σ−1
e

min(k∗+τ−1,k−1)∑
l=k∗

CAk−1−lBu

 .
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For τ ≤ −1, an equivalent calculation can be made giving the same expression
as (A.2), but replacing S with

S−(τ,M) =
N∑

k=k̂+τ+1

min(k̂−1,k−1)∑
l=k̂+τ

CAk−1−lBu

>Σ−1
e

min(k̂−1,k−1)∑
l=k̂+τ

CAk−1−lBu

 .

However, note that for SISO systems, we have

S(|τ |,M) ≤ S−(−|τ |,M),

for each positive integer |τ |, due to the time-invariant property. This essentially
means that the `2-difference for negative τ will always be larger than the corre-
sponding positive τ , since the former have summed the same series but with some
additional summands. Therefore, we can ignore the τ ≤ −1 in those cases.





Appendix B

An Additional Algorithm for
Restricting τ

Lemma 4 may still be useful however, since it quantifies when the weighted `2-norm
of the difference between the true and alternative trajectories starts to increase. One
may use this τ̄ in order to try to estimate when the HCR bound starts to increase
again, which is done in the next proposition.

Proposition 15. The set of candidates of T can be restricted to T +, where τ∗ ∈
T + is the τ which maximizes (7.9), such that τ̄ = max(T +) = τ̄I + bεc. Here,
τ̄I = max(TI) from Lemma 4 and ε > 0 fulfills the following equation

τ̄2
I

e

∑
k∈κ

(zk−z
τ̄I
k )>Σ−1(zk−z

τ̄I
k )

− 1

=
(τ̄I + ε)2

e
ε∆+

∑
k∈κ

(zk−z
τ̄I
k )>Σ−1(zk−z

τ̄I
k )

− 1

,

where

∆ := min
`≥1

1

`

(∑
k∈κ

(zk − zτ̄I+`
k )>Σ−1(zk − zτ̄I+`

k )− (zk − zτ̄Ik )>Σ−1(zk − zτ̄Ik )

)
.

(B.1)
If there is no ε that fulfills this equation, then we can set τ̄ = N Similarly, the set
can be restricted from below using the same expressions, but by replacing τ̄I , `, and
ε with τ I , −`, and −ε, respectively.

Proof. We will only prove this proposition for the upper bound, τ̄ . The proof for
the lower bound τ I is analogous. First, note that we want to find for which l ≥ 1,
the following inequality holds,

τ̄2
I

e

∑
k∈κ

(zk−z
τ̄I
k )>Σ−1(zk−z

τ̄I
k )

− 1

≤ (τ̄I + ε)2

e

∑
k∈κ

(zk−z
τ̄I+ε

k )>Σ−1(zk−z
τ̄I+ε

k )

− 1

,
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which implies that the lower bound in Theorem 3 is obtained for τ̄I + ε instead of
τ̄I . Using ∆ from (B.1), we can bound the expression on the right hand side,

(τ̄I + ε)2

e

∑
k∈κ

(zk−z
τ̄I+ε

k )>Σ−1(zk−z
τ̄I+ε

k )

− 1

≤ (τ̄I + ε)2

e
ε∆+

∑
k∈κ

(zk−z
τ̄I
k )>Σ−1(zk−z

τ̄I
k )

− 1

=: B(ε).

(B.2)
If we let ε→∞, then the upper bound tends to zero, B(ε)→ 0. This limit implies
that a restriction of the candidates T exists, if the number of samples N is large
enough.

The set that is given by Proposition 15 can be very large, which is a consequence
of trying to find a restriction in one step. Instead, one may use an iterative process
with a smaller step size which may give a better restriction. An approach like this
is presented in the next algorithm.

Algorithm 1 Restricting τ

0. Initialization; Start by setting τs := 1.

1. Find the smallest τc > τs which fulfills the following∑
κ

(2zk − (zτck + zτc+`k ))>Σ−1(zτck − z
τc+`
k ) ≤ 0, ∀` ≥ 1.

2. Find all ε that solve the following expression:

(2− τc − ε)eε∆ = 2e
−
∑
k∈κ

(zk−zτck )>Σ−1(zk−zτck )

, (B.3)

where ∆ is given by (B.1).

3. If no ε > 0 is found, then τ̄s = τc. Otherwise, set τs = τc + bεc and return to
step 1.

Proposition 16. The set of candidates of τ ∈ T can be restricted to a set T +,
where τ∗ ∈ T + is the τ which maximizes (7.9) using Algorithm 1. Then the largest
τ which needs to be considered is τ̄s = max(T +). Similarly, the set can be restricted
from below using the same algorithm, but by replacing τ̄I , ` and ε with τ I , −` and
−ε, respectively.

Proof. Note that in the first iteration, we obtain τc = τ̄ from Lemma 4 in Step
1. Through Step 1 we enforce that ∆ > 0. In the proof of Proposition 15, it was
shown that if τc < τ∗, then the following holds

τ2
c

e

∑
k∈κ

(zk−zτck )>Σ−1(zk−zτck )

− 1

≤ B(ε),
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where B(ε) is defined in (B.2). Since it was also shown that B(ε) → 0 as ε → 0,
then there must be at least one maximum for τc ≤ τc + ε ≤ τ̄ , where τ̄ is the upper
bound which is shown in Proposition 15. The maximum is found by the first-order

necessary condition for optimality, dB(ε)
dε = 0, which gives the expression in (B.3).

Setting τs = τc + bεc, repeating this process and obtaining no maximum for ε > 0,
implies that the upper bound decreases, B(0) > B(ε).

Note that we have not provided any guarantee that the method which is pre-
sented in Proposition 16 is better than the one presented in Proposition 15. How-
ever, due to its smaller step size, we conjecture that it may find a smaller set.
Also, its computational time is larger due to the iteration and therefore may be less
favorable to use.
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