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ABSTRACT
Can automatically authored videos of industrial operators help other operators to learn procedural
tasks? This question is relevant to the advent of the industrial internet of things (IIoT) and Industry
4.0, where smart machines can help human operators rather than replacing them in order to benefit
from the best of humans and machines. This study considers an industrial ecosystem where proce-
dural knowledge (PK) is quickly and effectively transferred from one operator to another. Assembly
tasks are procedural in nature andpresent a certain complexity that still does not allowmachines and
their sensors to capture all the details of the operations. Especially if the assembly operation is adap-
tive and not fixed in terms of assembly sequence plan. In order to help the operators, videos of other
operators executing the complex procedural tasks canbe automatically recorded and authored from
machines. This study shows by means of statistical design and analysis of experiments that expert
aid can reduce the assembly time of an untrained operator, whereas automatically authored video
aids can transfer PK but producing an opposite effect on the assembly time. Therefore, hybrid train-
ing methods are still necessary and trade-offs have to be considered. Managerial insights from the
results suggest an unneglectable impact of the choice to digitise industrial operations too early. The
experimental studies presented can act as guidelines for the correct statistical testing of innovative
solutions in industry.
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1. Introduction

The industrial internet of things (IIoT) is part of the tech-
nologies adopted by Industry 4.0 (Wollschlaeger, Sauter,
and Jasperneite 2017; Yin, Stecke, and Li 2017; Liao et al.
2017). Large fluctuations in product demand require a
new manufacturing system to have rapid reactive abili-
ties (Hwang et al. 2016). One of the opportunities offered
by IIoT is that all the production machines are intercon-
nected both among themselves and, through sensors, to
the environment (Sisinni et al. 2018). Thus, machines
can become context aware and the recognition of the
presence of human operators with their goal-oriented
behaviours opens up to new kinds of human-machine
collaborations (Di Nardo, Forino, and Murino 2020;
Gorecky et al. 2014; Zheng et al. 2019; Wang, Törngren,
and Onori 2015). Machines, for example, can directly
aid unexperienced operators and prevent human errors.
This is important because humans remain an integral
part of the current manufacturing environments despite
an attempt to automatise all that is possible to automatise
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(Mital 1997). The use of industrial sensors increases day
by day, and research fields such as computer vision and
image analysis are improving the processing of infor-
mation that can be gathered through image and depth
acquisition devices, reproducing digital twins of opera-
tors and their operations (Nikolakis et al. 2019). Some
researchers already focus on digitally tracking the work-
ers with videos for offline performance measurements
(Elnekave and Gilad 2006). Despite this, recognising the
state of a production system from cameras and sensors
requires a level of understanding that computers are par-
tially able to handle, especially in real time. Examples
of successful applications are found in automatic task
segmentation from videos (Petersen and Stricker 2012),
but the machine understanding when applied for exam-
ple to follow assembly tasks even from a depth camera
is quite limited and requires tradeoffs (Oyekan et al.
2019). Humans can fill in the gaps, when machines
have a limited understanding, especially by means of
digital servitisation of the collaborative tasks (Tronvoll
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et al. 2020), e.g. define an assembly task and its instruc-
tions, and machines can fill in the computational gap,
i.e. when humans have a limited ability to replicate pro-
duction tasks without introducing errors (Turner et al.
2019). In such a scenario, the assembly lines of the
future could become more adaptive to changes regard-
ing both production requirements and human needs.
This article aims at exploring the ability to automati-
cally transfer procedural knowledge (PK) among opera-
tors when the PK transfer medium of choice is a video
and IIoT machines and sensors mediate the PK trans-
fer. The autonomy of learning transfer is a desired out-
come among the digital transformations of the indus-
trial production (Ardolino et al. 2018). The focus is
on PK, rather than declarative knowledge (DK) because
the former is defined as knowledge how (ten Berge and
van Hezewijk 1999) to properly execute an industrial
task, and the latter is defined as knowledge that, which
mostly pertains to the ability to recognise the contextual
information.

Given the premises presented as an introduction, this
work aims at answering the following research question
(RQ):

Can operators learn PK and produce subassemblies in
shorter assembly time when aided by automatically-
authored videos of other operators or aided by expert
operators by means of vocal and gesture
instructions?

In order to answer the RQ, statistical design of experi-
mental techniques is employed as it allows to plan the
experiments so that appropriate data can be collected and
analysed by statistical methods, resulting in valid and
objective conclusions (Montgomery 2013).

The experiments ran in this study focus on auto-
matically collecting videos from several subassembly
tasks which are then used to train new operators
immediately before performing the same subassembly
tasks.

The experimental study is mediated by two technolo-
gies. The first one is an assembly guidance system (AGS)
that is in charge of eliciting and transferring the DK
components while producing an assembly sequence plan
(de Giorgio et al. 2021). The second one is a smart
recording/visualisation device, connected to the AGS,
which is in charge of transferring the PK components
of assembly knowledge through automatically authored
videos.

The article structure is as follows. A thorough litera-
ture study is summarised in Section 2. The experimental
setup and the scientific methodology are presented in
Section 3. The results are reported in Section 4. Dis-
cussions and conclusions are presented in Section 5,
together with a list of main contributions of the article,

managerial insights, limitations and suggestions for
future studies.

2. Literature review

2.1. Procedural knowledge transfer with videos

The use of videos for PK transfer is an established prac-
tice to include videos in manufacturing courses (Shih
et al. 2016). In particular, learning assembly processes
through videos is not only possible (BalaSeshan and
Janardhan Reddy 2021), but improves the overall out-
come of the lessons (Dencker et al. 1999). It has also
been experimented on the ability to learn both DK and
PK through videos (Hong, Pi, and Yang 2018), though
the literature does not present a clear structure to dif-
ferentiate between them, especially when it comes to
their encodings in videos. Chen, Liou, and Chen (2019)
showed that videos can be used in the flipped classroom
strategy to improve the learning of PK. Yildirim, Yasar
Ozden, and Aksu (2001) showed that the retention of
knowledge is improved by hypermedia learning. Other
studies (Scheurwater 2017) report instead that using a
video can be less effective than providing more precise
written instructions, without clarifying what information
is important to be conveyed through videos or written
instructions. In contrast to that, Palmqvist et al. (2021)
showed in their survey that most assembly operators do
not use the instructions provided (in any form). Thilaku-
mara et al. (2018) focused their study on comparing live
demonstrations vs video demonstrations in transferring
procedural knowledge. The results were in favour of the
videos. However, the experimenters allowed the control
group to watch only one live demonstration but the study
group could watch the video demonstrations repeated
times, which could have highly affected the improved
performance of the group watching the videos.

The ability to automatically transfer PK from opera-
tor to operator with videos has been implemented and
tested in the car manufacturing industry (Dencker et al.
1999), but there is no satisfactory indication, at the best
of the authors’ knowledge, of the quality of automatically
authored videos to indirectly transfer PK among opera-
tors. On the other hand, it results not uncommon to use
videos directly and purposely authored from operators
as a medium for PK transfer to other operators (Moli-
tor et al. 2019). Once the videos are authored, e.g. cut
and saved with a title that refers to the recorded task,
there are instances in which they have been played in
automated ways, for example adapting the video speed
to the operator’s actions detected by sensors (Georgescu
et al. 2019). A fundamental result found in literature
is that even the less experienced operators can often
teach the novice operators with some advantage: Hinds,
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Patterson, and Pfeffer (2001) proved that novices are bet-
ter than experts in training other novices because they
can express knowledge in less abstract and more basic
terms.When novices try to follow the experts, they result
in spending more time on tasks and doing more errors
than when instructed by other novices. Thus, it is plausi-
ble to elicit knowledge from operators and transfer it to
other operators, even if they are not themost expert avail-
able. The latter discovery favours the choice of not study-
ing the operators’ skills related to the quality of PK trans-
fer but rather average out expert and novice operators’
contributions, in favour of a study on PK transferability
with videos automatically authored by IIoT machines.

2.2. Video recording and authoring on the shop
floor

When recording the videos, there are no studies, at the
best of the authors’ knowledge, indicating the best posi-
tioning of a fixed camera pointed at an assembly sta-
tion for the authoring of tutorial videos. However, there
is a study proving an increased quality of knowledge
transfer with a choice of a first-person perspective for
tutorial videos. This requirement is hardly met when a
camera cannot be mounted either on the operator’s hel-
met or close to their first-person perspective. A study
from Menn et al. (2017) shows that procedural instruc-
tions should make use of an international language, i.e.
a visual one, which encourages the exploration of mute
videos with respect to language-specific instructions in
this research.

Regarding the site of recording, Styhre, Josephson, and
Knauseder (2006) noted that in the construction indus-
try, the written instructions from the designers, con-
sisting of layouts and technical specifications, need to
be translated into actual practices on the construction
sites, because they are highly contextual and designers
do not know the constraints of a specific construction
site. A similar work by Brandt, Hillgren, and Björgvins-
son (2004) is done in a hospital environment for the
transfer of knowledge about medical procedures with
videos directly recorded by doctors and watched by other
doctors. The article observes that the use of the videos
recorded in the same environment where they are used
facilitates the knowledge transfer. The same implications
can be suggested for assembly tasks in which a certain
variety introduced by a changing environment and the
decisions of the operators might compromise the opti-
mality of a tutorial video; for instance, the video provided
by an instructor does not account for the assembly sta-
tion used, the possible assembly variations due to a more
and more personalised production (Lu, Xu, and Wang
2020) or the presence of different operators and levels
of expertise. Thus, adaptiveness becomes a required fea-
ture for the new assembly systems of Industry 4.0 (Molina

et al. 2005) and continual updates of the authored videos
might better suit adaptiveness over the changing assem-
bly environment.

2.3. Alternative solutions

More innovative digital technologies than videos for pro-
viding assembly instructions exist, e.g. those based on
augmented reality (Yuan, Ong, and Nee 2008); however,
they require specific designs and developments for each
product, and cannot be automatically recorded on the
shop floor and authored by machines. Although aug-
mented reality is still a technology under rapid develop-
ment and shows strong potential advantages (Chimienti
et al. 2010), it is videos that still maintain the indus-
trial preference as they faithfully reproduce the recorded
scene, can be automatically recorded and authored, and
humans can directly watch them and notice details that
machines might have missed.

3. Experimental setup and research
methodology

An assembly use case is found within a manufactur-
ing course called Tillverkningsteknik (MG1026) at KTH
Royal Institute of Technology. Circa 150 students per
course, twice a year, are requested to complete a four-
hour laboratory exercise in which they have to produce
a metal locomotive toy, see Figure 1(a). The students are
divided into groups of two to five people and each group
produces one locomotive. When the production of each
component of the locomotive is completed, the group
finishes the laboratory with an assembly task that takes
about 15 minutes to complete.

This scenario has several advantages. Firstly, the stu-
dents are not graded on the assembly task, as it is not part
of the learning outcomes of the manufacturing course.
This guarantees that the researchers can make use of the
assembly time and change the scenario for study and
control groups that receive a slightly different educa-
tion. Secondly, laboratory assistants guide the students
during the tasks and the quality of the final product is
not affected much by wrongly executed assemblies, as
the assistants will eventually fix them. This allows the
researchers to step in and replace the assistants. Note that
all the laboratory exercises are performed in groups, but
the researchers ask that only one member of the group
performs the assembly in order to simulate a real assem-
bly station scenario. The experimental setup is such that
the continuous flow of new students provides a continu-
ally renewed source of results to observe during the itera-
tion of several perfectly independent assembly processes,
at least with respect to the assembly operators and prod-
ucts. The assembly tools and the experimental equip-
ment at the assembly station are the same throughout the
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Figure 1. (a) Rendering of the assembled locomotive. (b) Locomotive assembly components and corresponding IDs.

experiment. Such an environment would be very simi-
lar to sparse and independent assembly stations with the
task of assembling low quantities of new products, ide-
ally only one exemplar for each. In such a scenario, the
operators have limited instructions and knowledge about
each new assembly process, thus they have to learn it on
the spot.

In this article, subassemblies Sn, n ∈ N, defined and
univocally identified by the set notation Sn = {c1, . . . ,
cA}, where c1, . . . , cSn ∈ N are the identities (IDs)

of the assembly components belonging to the sub-
assembly Sn. See Figure 1(b) for an overview of
the locomotive assembly components and the corres-
ponding IDs.

3.1. Assembly guidance system and recording
device

The selection of assembly step is mediated by an AGS.
The AGS allows an operator to autonomously decide the

Figure 2. Assembly guidance system. (a) All components are selectable (in green). (b) The operator selects a screw (in blue) and two
components are further selectable (in green). (c) The operator selects three components and confirms the subassembly step; a preview
of the subassembly is shown in the bottom-right corner. (d) The subassembly is completed and the assembled parts are not selectable
any longer (in gray).
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next assembly step, without a fixed assembly sequence
plan. It does so by constraining the operator choices to
the few that do not prevent the assembly from being
executed until the end, leaving the optimisation of the
sequence to the operator. See Figure 2 for some graphical
details.

The operator’s selection of the next subassembly trig-
gers the play of the corresponding video and the subse-
quent recording of the assembly operation. The AGS is
connected to an IIoT recording device (RD) that acquires
the subassembly actions with a camera pointed at a
45 degrees angle over the assembly station. The position-
ing of the camera is set to face the operator, because of
the inability of any head-mounted cameras to capture a
stable image of the assembly station.

All the recorded videos are stored in the cloud and can
be displayed on a screen installed on the assembly station,
upon selection of the corresponding subassembly from
the AGS. The selection criteria for the best video to dis-
play with each subassembly is part of the experimental
setup and it is discussed in the next subsection.

3.2. Preparation of the experiments

The preparation of each experiment consists of resetting
the assembly station to the initial conditions and describ-
ing the task to the next group of students. The assembly
station is a large table; on a side of the table are the tools
and all the locomotive components. These are accessible
only to the researcher. The AGS is a touch screen tablet
placed on the same table and accessible to the students;
only one student is in charge of using it and performs the
assembly after its selection.

Each group receives an explanation at the beginning
of the experiment. The researcher illustrates how to use
the AGS, how the tools and components are handled to
them after each subassembly choice on the AGS, how and
where the videos are shown. The latter operation hap-
pens only in the experiments for which the videos are
effectively shown. The group is asked to complete the
assembly and to decide before starting each subassem-
bly who among the groupmembers performs themanual

operation. It is acceptable if the operator changes between
one subassembly and the other because they are recorded
independently. The researcher does not specifically ask to
perform any assembly optimisations or to perform better
than the videos in terms of time or quality of assembly.
If questions on those aspects are asked, the researcher
answers that the only requirement is completing the
assembly using the guidance from the AGS and – if the
experimental round includes videos – using the help
from a video before each subassembly.

3.3. Execution of the experiments

In order to control the variability, all the experimental
rounds share the same structure at the same assembly sta-
tion and with the same tools. The first operation consists
in planning an assembly step on the AGS. In this phase,
the whole group can be involved in the discussion; one
person operates on the AGS interface. When this person
selects a subassembly, the researcher reads the input from
the AGS, checks that the group is ready to watch, and
starts the video or provides the expert aid (only if one
of these aids is used in the given experimental round).
Videos do not contain any sounds. When the operator
in the group is ready to assemble, the researcher han-
dles the needed tools and components to them and starts
the recording. After each subassembly is completed, the
researcher retrieves the tools and the completed sub-
assembly from the operator, in order to be ready for the
next step. The operation is repeated until the whole loco-
motive is successfully assembled. See Figure 3 for further
details.

3.4. Experimental rounds

Five experiments are performed. Each experiment is
called a round (see Figure 4) to differentiate the name
from ‘group’ that is referred to each group of students
executing an assembly. For each experimental round,
eleven locomotive assemblies are recorded.

The first round (R1) is meant to provide a baseline for
the control of the experimental conditions. The focus is

Figure 3. Subassembly steps. Group and researcher repeat six steps for each subassembly, until the assembly is completed.
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Figure 4. Experimental rounds.

on monitoring quality issues in the manufactured parts,
themodality in which instructions on the use of the AGV
are given to the operators, and spotting anything that
would prevent the assembly to be executed at a regu-
lar pace. Each assembly in this round is recorded to test
the RD and provide test videos for the next round. Once
several groups have stably performed the assembly task,
the next round is started.

The second round (R2) is used to create a database of
recorded videos to be shown in the fourth round (R4). In
R2, all the groups are shown at least a previously recorded
test video from round R1. The test videos are replaced as
soon as new videos are recorded in R2. The criterion is
that shorter videos shall replace the previously recorded
ones. During R2, each time that a video is shown, the
researcher says ‘a previous group has completed this sub-
assembly in n seconds, this is how they did it’, where n
is the length in seconds of the video that is shown. The
video length is also displayed on the screen, under the
video. Thus, the videos in this round are recorded with
video aid, assuming that one short video could lead to a
shorter and qualitatively better one, an assumption that
is not necessary to verify. In fact, note that only one of
the videos for each subassembly collected in round R2
is used for round R4 and each video is selected based
on the average assembly time of all subassemblies in R2
rather than the shortest assembly time. The aim with the
shortest video rule is to give motivation to the operators
to perform successful subassemblies – and their related
videos – in a reasonably short time.

The third round (R3) is the control experiment. This
is the only case in which videos are never shown.
Since there are no instructions, the researcher refrains
from aiding the group, unless a clear first unsuccessful

assembly attempt is performed, because the subassembly
has to be completed. In the control round, videos of all
the subassemblies are still recorded, even if they are not
to be shown to the operators.

The fourth round (R4) consists of eleven assemblies
aided by videos, in order to assess the validity of using
automatically authored videos to transfer PK among
operators. In this experiment, the videos that are shown
are always the same for each subassembly. The selected
videos are those with the closest length to the average
length of all the videos recorded in round R2 for each
given subassembly.

In all these rounds (R1–R4), the researcher steps in
and aids a group only if the group does not properly
perform a subassembly at the first attempt. When this
happens, the video recording is still stopped upon the
successful completion of the subassembly, unless sev-
eral minutes pass and there is a major impediment.
The latter case is eventually marked as an outlier and
excluded from the analysis. Given the same subassem-
bly, a video with an unsuccessful first attempt is clearly
longer than a video with a successful first attempt. An
average-long video might contain several attempts; how-
ever, a subsequent analysis does not reveal any dou-
ble attempts in any of the subassembly videos displayed
in round R4.

The fifth and last round (R5) consists of eleven assem-
blies aided by the researcher who acts as an expert. In
this experiment, the videos are not shown. The operator
selects the subassembly on the AGS and the researcher
provides all the explanations necessary to perform the
operation in terms of vocal and gesture instructions. The
assembly task starts afterward and the expert does not
interfere with it.
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3.5. Quantitative analysis methodology

A two-factor factorial experimental design is selected to
study the effect on the assembly time when operators
are aided by automatically authored videos from other
operators or aided by expert operators by means of vocal
and gesture instructions. Thus, the collection of videos
from rounds R3 (no aid), R4 (video aid) and R5 (expert
aid) are used to determine the assembly time of each
subassembly. In particular, subassemblies S1 = {7, 12},
S2 = {7, 9, 18}, S3 = {8, 9, 17}, S4 = {9, 10, 11, 19} and
S5 = {9, 11, 20, 21} are used for the quantitative study of
the results because by design they are performed eleven
times out of the eleven total assemblies in each exper-
imental round. The other subassemblies may vary in
number of executions because the AGS allows the oper-
ators to select customised assembly plans, thus they are
excluded. Notice that five different subassemblies from
the entire product assembly are selected because of their
different complexity of assembly. As the factors of the
experimental design are varied together, instead of one
at a time, it allows for studying whether the interaction
between aid and subassemblies is significant or not.

Thus, the factors selected are Aid with three levels
(control, expert, video) and Subassembly with five levels
(S1, S2, S3, S4, S5). Since each treatment combination is
replicated eleven times, a total of 3 ∗ 5 ∗ 11 = 156 sam-
ple data, which refers to the subassembly time expressed
in seconds, is collected for the analysis. All the sample
data collected is reported in the appendix. The analysis
of variance (ANOVA) is employed to analyse the data.
For this purpose, the statistical software Minitab, which

contains a specific toolbox for the design of experimental
methods, is selected for the data analysis.

4. Results

In order to present the results of the experiments, a statis-
tical analysis of the sampled data is needed. Each analysis
performed is presented in a separate subsection with the
relative results. The main findings from the results are
discussed in Section 5.

4.1. Qualitative analysis

The first step in the analysis of the results is checking
the sample data distribution in a qualitative way. Since
the sample size for each treatment combination is eleven,
an individual value plot is selected to identify possible
outliers and visualize the distribution of the data. From
the individual value plot shown in Figure 5, it can be
observed a possible non-constant variance in the sam-
ples. Furthermore, it indicates the presence of one pos-
sible outlier that is not removed from the analysis as
the cause was not reported with the data. The graphical
analysis shows comparable data, thus it is interesting to
proceed to the statistical analysis.

4.2. Analysis of variance

The analysis of variance (ANOVA) follows the prelim-
inary analysis in order to study the effects of the fac-
tors Aid and the interaction between the factors Aid and
Subassembly on the assembly time.

Figure 5. Individual value plot of assembly time.
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In order to assess the validity of ANOVA, the model
hypotheses have to be verified. These hypotheses are on
the residuals εij that have to be normally and indepen-
dently distributed with mean zero and constant variance
σ 2 (Montgomery 2013):

εij ∼ NID(0, σ 2)

In order to check the normality and the constant variance
assumptions, the normality test (see Figure 6) and Lev-
ene’s test (see Figure 7) are respectively conducted. Both
tests give a p-value less than 5%, thus the hypotheses can
be rejected. The residuals on the sample data are reported
in the appendix.

Since the hypothesis on ANOVA is violated, the
ANOVA results cannot be analysed. It is necessary to
use further statistical methods to overcome this prob-
lem. Data transformations are often a very effective
way to deal with the problem of non-normal responses
and the associated inequality of variance (Montgomery
2013).

4.3. Box–Cox transformation

The Box–Cox method is employed to select a form of
transformation to be applied to the sample data. The
Box–Cox results (see Figure 8) suggest a lambda value of
zero that is equivalent to use the natural log of the sam-
ple data. The transformed sample data are reported in the
appendix.

On the condition that a Box–Cox transformation
satisfies the ANOVA hypotheses, it is possible to run
ANOVA on the transformed data and analyze the sub-
sequent results.

4.4. Analysis of variance on transformed sample
data

The ANOVA is performed again on the transformed
sample data. The validity of the ANOVA hypotheses is
verified on the residuals of the transformed sample data
that have to be normally distributed with constant vari-
ance. To check the normality and the constant variance
assumptions, the normality test (see Figure 9) and Lev-
ene’s test (see Figure 10) are respectively conducted. In
the normality test, a p-value of 0.391 indicates that the
null hypothesis that the sample data on the residuals is
normally distributed cannot be rejected with an alpha of
5%. In Levene’s test, a p-value of 0.319 indicates that the
null hypothesis that the sample data on the residuals have
all equal variances cannot be rejectedwith an alpha of 5%.
Thus, both the hypotheses are verified.

After investigating the underlying assumptions, it is
possible to proceed with the analysis of variance on the

Table 1. Analysis of variance: subassembly time versus Aid, Sub-
assembly.

Source DF Adj SS Adj MS F-value p-value

Aid 2 9.300 4.6501 19.64 0.000
Subassembly 4 70.929 17.7323 74.90 0.000
Aid∗Subassembly 8 1.358 0.1697 0.72 0.676
Error 150 35.511 0.2367
Total 164 117.098

Table 2. Tukey pairwise comparison
results.

Aid N Mean Grouping

Video 55 3.66331 A
Control 55 3.40760 B
Expert 55 3.08313 C

subassembly time. As shown in Table 1, both the factors
Aid and Subassembly are statistically significant with a p-
value that is much less than an alpha (i.e. first type error)
of 5%. On the other hand, the interaction between Aid
and Subassembly is not statistically significant because the
p-value is 0.676, which is much greater than an alpha
of 5%.

The ANOVA results alone are not sufficient to tell
which experimental round has the best mean in terms
of assembly time. In order to compare the experimen-
tal rounds, it is necessary to perform a post-ANOVA
analysis, as shown in the following subsection.

4.5. Post-ANOVA analysis

A mean multiple comparison test is performed to verify
if the Aid means are statistically different with respect to
the assembly time. A Tukey pairwise comparison is cho-
sen and the results are shown in Table 2. All the factors
Aid have means that are significantly different because
they do not share the same letter. Note that the means
refer to the natural logarithm of the assembly time. The
expert aid turns out to be minimising the assembly time,
whereas the video aid leads to a higher assembly time.

Finally, it is possible to discuss these post-ANOVA
analysis results in section 5, as they carry statistical sig-
nificance.

5. Discussions and conclusions

In this article, statistical design and analysis of exper-
iments are employed to study whether operators can
learn procedural knowledge and produce subassemblies
in shorter assembly times when aided by automatically
authored videos from other operators or aided by expert
operators by means of vocal and gesture instructions.
Thus, a two-factor factorial design is conducted with the
factor Aid at three levels (control, expert, video) and the
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Figure 6. Normality probability plot of standardised residuals.

Figure 7. Levene’s test for equality of variance

factor Subassembly at five levels (S1, S2, S3, S4, S5). Each
treatment combination is replicated eleven times, leading
to 165 experiments. The ANOVA results on the assem-
bly time indicate that both factors Aid and Subassembly
are statistically significant with a p-value < 0.05. On the
other hand, the interaction term Aid and Subassembly
has a p-value of 0.676, indicating that this interaction is
not statistically significant.

Following the ANOVA analyses, a mean multiple
comparison test is performed to verify if the Aid means

are statistically different with respect to the assembly
time. The Tukey pairwise comparison clearly separates
the means of the aid levels video, control and expert in
three different groups, which means that they are statis-
tically different. The interpretation is that operators can
learn procedural knowledge and produce subassemblies
in shorter assembly times when aided by expert opera-
tors by means of vocal and gesture instructions. On the
other hand, it appears that the same operators cannot
learn procedural knowledge and produce subassemblies
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Figure 8. Box–Cox plot of assembly time.

in shorter assembly times when aided by automatically
authored videos from other operators.

5.1. Contributions to research

The main findings from the experimental results are that

• Operators indeed can learn PK already from one rep-
etition of a new subassembly, when this is preceded by
expert aid on the field (the expert aidmean is less than

the control mean, as reported in Table 2). The learn-
ing is confirmed by a statistically significant reduction
of the subsequent assembly time with respect to the
control group (no aid).

• Operators can learn PK from automatically authored
videos of other operators, recorded on the shop floor;
however, the experimental results show a statistically
significant increase in assembly time, with respect to
both the control group (no aid) and expert aid assem-
blies (the video aid mean is greater than the control

Figure 9. Normality test on the transformed sample data.
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Figure 10. Levene’s test and multiple comparisons on the transformed sample data.

mean, as reported in Table 2). Better methods have
to be tested to enhance the quality of these videos in
transferring PK.

• An analysis of variance might not immediately
show a statistically significant difference between the
study groups (see the ANOVA performed in Section
4.2), but subsequent analysis methods exist (see the
Box–Cox transformation in Section 4.3) and can shed
light on the nature of the results. The statistical meth-
ods applied in this study can act as guidance for the
practitioners in testing their innovative solutions in
production, especially in light of the IIoT servitisation
of Industry 4.0.

5.2. Managerial implications

Current managerial efforts to deploy digital technolo-
gies as part of the digital servitisation process do not
always go without challenges for the businesses (Alghisi
and Saccani 2015). Therefore, managers need to adopt
an experimental approach when introducing new tech-
nologies and act more collaboratively in order to support
the digital transformation within the Industrial IoT con-
text (Jocevski, Arvidsson, andGhezzi 2020; Tronvoll et al.
2020).

By studying the transfer of procedural knowledge
between operators on the assembly line, the article offers
several implications for managers

• The finding that an aid provided before each sub-
assembly by an expert is better than automatically

authored video aid, shows that introduction of certain
digital technologiesmight not pay off. Therefore, there
is an opportunity here for an alternative arrangement
where experts instead of providing direct aid to new
operators, wouldmanually author the videos automat-
ically recorded on the assembly lines, in order to have
a technological basis to train indirectly the operators
with videos.

• Experiments, such as the one run in this study, are
fundamental to assess the state of the industrial-
technological advance and the possible benefits of
digitalisation.Managers can use this work as an exam-
ple to design and run experiments, in order to verify
the ability to digitise their processes (e.g. the training
of industrial operators) and in turn benefit from the
transformation.

Finally, not as a general implication, but as a general call,
this article further contributes to an opening discussion
arguing for a change in the mindset that managers have
– from an all-in approach to a more discovery-driven,
step-by-step approach of introducing new digital tech-
nologies in business operations (McGrath andMcManus
2020).

5.3. Limitations and future research directions

Some limitations of this study have to be considered.
Firstly, the assembly operators recruited for the experi-
ment are not expert assemblers but students in produc-
tion engineering courses. At the best of their abilities,
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they have learned and executed assemblies that are com-
pared with a control run without aid. A baseline run was
used to remove any unwanted effects from the exper-
iment, due to the novelty of the task for every opera-
tor, including the researchers. Secondly, the product to
assemble in the course, which is adopted as a use case
for this study, has a certain degree of complexity that
may or may not reflect the complexity of an average
assembly. In order to minimise the effect of the com-
plexity of assembly on the results, several subassemblies
and the relative assembly time have been tested. Future
research should aim at finding benchmark products to
test. However, the technical specifications of the locomo-
tive can be made available upon request and be repro-
duced for future research. Another limitation pertains to
the use of videos related to subassemblies rather than the
entire product, which is dictated by the need of keeping
the videos short and the assembly steps variable among
groups. Longer videos could trigger attention deficits
or hit memory limits. Furthermore, a complete tutorial
video of an entire assembly cannot be used for modular
and adaptive subassemblies.

Future studies should address the differences between
providing subassembly videos with variable assembly
sequence plans and entire assembly videos with a fixed
assembly sequence plan.

The nature of the expert aid is audio- and gesture-
based and a non-interactive form of aid (i.e. it does not
continue during the assembly task), comparable with
some evident differences to ideally top-quality videos.
The fact that an expert aid can transfer PK, whereas
an automatically authored video cannot, sets the outer
boundaries of the PK transferring quality that can be
achieved through videos. Future works should explore
such a range and provide insights on what kind of
setups can improve the PK of the automatically authored
videos. Another relevant question is how much artificial
intelligence algorithms can help to make automatically
authored videos resemble human expert aid.

One last limitation has to address the assumption
made in this study that successful PK transfer can be
estimated by a shorter assembly time. There is no linear
dependence between the two variables but, intuitively, if
there is any effect on the assembly time between video aid
or no aid, one can assume that PK has been transferred.
This means that even if the video-aided assembly time
turns out to be longer with respect to the case with no aid,
PK was effectively transferred to the operators. In other
words, PK can still be transferred through automatically
authored videos but not successfully applied to reduce the
assembly time during the first execution of the assembly
task.

Future studies can address the ability to use automati-
cally authored videos to transfer PK during training time,

with the possibility for the operators to perform few repe-
titions of each subassembly, assimilate the transferred PK
and transform it into a better practice.

Future studies should also address the implications of
the result found in this study that providing an expert
aid at assembly time can improve the performance of
untrained operators. Even though the results on the
automatically authored videos do not seem encourag-
ing, the fact that an operator can learn PK before their
first assembly execution and immediately apply it means
that procedural task aids can be effective even without a
training phase. This is an indication that more effective
automatically authored aids have to be studied in order
to replace the expert trainer.

Finally, future studies should be able to replicate
these experiments for different production processes,
in order to assess the quality of knowledge transfer
through the use of automatically authored videos. Pos-
sible scenarios include, but are not limited to, mainte-
nance, calibration of machinery, disassembly, and any
other procedural tasks that can be recorded by cam-
eras in order to transfer knowledge to other industrial
operators.
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Appendix

Sample data for statistical analysis

Aid
Subas-
sembly

Asse-
mbly
time FITS SRES

Ln
(Assembly

time) FITS_1 SRES_1

Control S1 12 8.909091 0.138488 2.484907 2.125306 0.775143
Control S1 10 8.909091 0.048878 2.302585 2.125306 0.382137
Control S1 4 8.909091−0.21995 1.386294 2.125306−1.59298
Control S1 9 8.909091 0.004073 2.197225 2.125306 0.155026
Control S1 7 8.909091−0.08554 1.94591 2.125306−0.3867
Control S1 11 8.909091 0.093683 2.397895 2.125306 0.587584
Control S1 9 8.909091 0.004073 2.197225 2.125306 0.155026
Control S1 11 8.909091 0.093683 2.397895 2.125306 0.587584
Control S1 12 8.909091 0.138488 2.484907 2.125306 0.775143
Control S1 9 8.909091 0.004073 2.197225 2.125306 0.155026
Control S1 4 8.909091−0.21995 1.386294 2.125306−1.59298
Control S2 35 45 −0.44805 3.555348 3.756027−0.43258
Control S2 40 45 −0.22402 3.688879 3.756027−0.14474
Control S2 17 45 −1.25454 2.833213 3.756027−1.98918

(continued).

Aid
Subas-
sembly

Asse-
mbly
time FITS SRES

Ln
(Assembly

time) FITS_1 SRES_1

Control S2 45 45 9.55E-16 3.806662 3.756027 0.109149
Control S2 57 45 0.537658 4.043051 3.756027 0.618699
Control S2 54 45 0.403243 3.988984 3.756027 0.502154
Control S2 36 45 −0.40324 3.583519 3.756027−0.37185
Control S2 48 45 0.134414 3.871201 3.756027 0.248265
Control S2 56 45 0.492853 4.025352 3.756027 0.580547
Control S2 43 45 −0.08961 3.7612 3.756027 0.011152
Control S2 64 45 0.851292 4.158883 3.756027 0.868382
Control S3 37 30.63636 0.285122 3.610918 3.323671 0.619179
Control S3 20 30.63636−0.47656 2.995732 3.323671−0.70689
Control S3 9 30.63636−0.96941 2.197225 3.323671−2.42813
Control S3 57 30.63636 1.181218 4.043051 3.323671 1.550669
Control S3 36 30.63636 0.240317 3.583519 3.323671 0.560118
Control S3 35 30.63636 0.195512 3.555348 3.323671 0.499394
Control S3 30 30.63636−0.02851 3.401197 3.323671 0.167113
Control S3 18 30.63636−0.56617 2.890372 3.323671−0.934
Control S3 29 30.63636−0.07332 3.367296 3.323671 0.094036
Control S3 42 30.63636 0.509146 3.73767 3.323671 0.8924
Control S3 24 30.63636−0.29734 3.178054 3.323671−0.31389
Control S4 79 65.18182 0.619121 4.369448 4.135852 0.503532
Control S4 84 65.18182 0.843145 4.430817 4.135852 0.635816
Control S4 51 65.18182−0.63541 3.931826 4.135852−0.43979
Control S4 39 65.18182−1.17307 3.663562 4.135852−1.01805
Control S4 66 65.18182 0.036658 4.189655 4.135852 0.115976
Control S4 72 65.18182 0.305487 4.276666 4.135852 0.303535
Control S4 51 65.18182−0.63541 3.931826 4.135852−0.43979
Control S4 42 65.18182−1.03866 3.73767 4.135852−0.85831
Control S4 58 65.18182−0.32178 4.060443 4.135852−0.16255
Control S4 70 65.18182 0.215878 4.248495 4.135852 0.242811
Control S4 105 65.18182 1.784047 4.65396 4.135852 1.116816
Control S5 52 47.81818 0.187366 3.951244 3.697152 0.54771
Control S5 37 47.81818−0.48471 3.610918 3.697152−0.18588
Control S5 19 47.81818−1.29119 2.944439 3.697152−1.62252
Control S5 44 47.81818−0.17107 3.78419 3.697152 0.187615
Control S5 55 47.81818 0.32178 4.007333 3.697152 0.668615
Control S5 38 47.81818−0.4399 3.637586 3.697152−0.1284
Control S5 31 47.81818−0.75354 3.433987 3.697152−0.56727
Control S5 158 47.81818 4.936677 5.062595 3.697152 2.943298
Control S5 31 47.81818−0.75354 3.433987 3.697152−0.56727
Control S5 36 47.81818−0.52951 3.583519 3.697152−0.24494
Control S5 25 47.81818−1.02236 3.218876 3.697152−1.03095
Video S1 8 15.36364−0.32993 2.079442 2.625269−1.17657
Video S1 13 15.36364−0.1059 2.564949 2.625269−0.13002
Video S1 7 15.36364−0.37473 1.94591 2.625269−1.4644
Video S1 14 15.36364−0.0611 2.639057 2.625269 0.029721
Video S1 37 15.36364 0.969414 3.610918 2.625269 2.124627
Video S1 13 15.36364−0.1059 2.564949 2.625269−0.13002
Video S1 13 15.36364−0.1059 2.564949 2.625269−0.13002
Video S1 14 15.36364−0.0611 2.639057 2.625269 0.029721
Video S1 13 15.36364−0.1059 2.564949 2.625269−0.13002
Video S1 25 15.36364 0.431756 3.218876 2.625269 1.279556
Video S1 12 15.36364−0.15071 2.484907 2.625269−0.30256
Video S2 66 50.90909 0.676146 4.189655 3.803013 0.83343
Video S2 29 50.90909−0.98163 3.367296 3.803013−0.93922
Video S2 40 50.90909−0.48878 3.688879 3.803013−0.24602
Video S2 35 50.90909−0.7128 3.555348 3.803013−0.53386
Video S2 79 50.90909 1.258608 4.369448 3.803013 1.220986
Video S2 78 50.90909 1.213803 4.356709 3.803013 1.193526
Video S2 50 50.90909−0.04073 3.912023 3.803013 0.234978
Video S2 23 50.90909−1.25046 3.135494 3.803013−1.43888
Video S2 48 50.90909−0.13034 3.871201 3.803013 0.146983
Video S2 95 50.90909 1.975486 4.553877 3.803013 1.618534
Video S2 17 50.90909−1.51929 2.833213 3.803013−2.09046
Video S3 17 33 −0.71688 2.833213 3.401031−1.22397
Video S3 81 33 2.150632 4.394449 3.401031 2.141375
Video S3 29 33 −0.17922 3.367296 3.401031−0.07272
Video S3 23 33 −0.44805 3.135494 3.401031−0.57238
Video S3 51 33 0.806487 3.931826 3.401031 1.144161
Video S3 29 33 −0.17922 3.367296 3.401031−0.07272
Video S3 27 33 −0.26883 3.295837 3.401031−0.22675
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time) FITS_1 SRES_1

Video S3 24 33 −0.40324 3.178054 3.401031−0.48064
Video S3 31 33 −0.08961 3.433987 3.401031 0.071039
Video S3 27 33 −0.26883 3.295837 3.401031−0.22675
Video S3 24 33 −0.40324 3.178054 3.401031−0.48064
Video S4 52 85.63636−1.50707 3.951244 4.339685−0.83731
Video S4 98 85.63636 0.553951 4.584967 4.339685 0.528722
Video S4 131 85.63636 2.03251 4.875197 4.339685 1.154331
Video S4 58 85.63636−1.23824 4.060443 4.339685−0.60192
Video S4 167 85.63636 3.645484 5.117994 4.339685 1.677694
Video S4 82 85.63636−0.16293 4.406719 4.339685 0.144497
Video S4 59 85.63636−1.19344 4.077537 4.339685−0.56507
Video S4 74 85.63636−0.52137 4.304065 4.339685−0.07678
Video S4 137 85.63636 2.301339 4.919981 4.339685 1.250865
Video S4 50 85.63636−1.59668 3.912023 4.339685−0.92185
Video S4 34 85.63636−2.31356 3.526361 4.339685−1.75317
Video S5 39 72.36364−1.49485 3.663562 4.147564−1.0433
Video S5 136 72.36364 2.851216 4.912655 4.147564 1.649202
Video S5 82 72.36364 0.431756 4.406719 4.147564 0.558626
Video S5 42 72.36364−1.36044 3.73767 4.147564−0.88355
Video S5 107 72.36364 1.551876 4.672829 4.147564 1.132242
Video S5 35 72.36364−1.67407 3.555348 4.147564−1.27656
Video S5 59 72.36364−0.59876 4.077537 4.147564−0.15095
Video S5 143 72.36364 3.16485 4.962845 4.147564 1.757389
Video S5 43 72.36364−1.31563 3.7612 4.147564−0.83283
Video S5 75 72.36364 0.118122 4.317488 4.147564 0.366283
Video S5 35 72.36364−1.67407 3.555348 4.147564−1.27656
Expert S1 31 9 0.985706 3.433987 1.902377 3.301483
Expert S1 2 9 −0.31363 0.693147 1.902377−2.60657
Expert S1 5 9 −0.17922 1.609438 1.902377−0.63145
Expert S1 14 9 0.224024 2.639057 1.902377 1.587961
Expert S1 8 9 −0.0448 2.079442 1.902377 0.381675
Expert S1 5 9 −0.17922 1.609438 1.902377−0.63145
Expert S1 3 9 −0.26883 1.098612 1.902377−1.73256
Expert S1 4 9 −0.22402 1.386294 1.902377−1.11245
Expert S1 6 9 −0.13441 1.791759 1.902377−0.23844
Expert S1 14 9 0.224024 2.639057 1.902377 1.587961
Expert S1 7 9 −0.08961 1.94591 1.902377 0.093839
Expert S2 67 26.72727 1.804413 4.204693 3.18624 2.195338
Expert S2 20 26.72727−0.30141 2.995732 3.18624 −0.41065
Expert S2 16 26.72727−0.48063 2.772589 3.18624 −0.89165

(continued).
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time FITS SRES
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(Assembly

time) FITS_1 SRES_1

Expert S2 22 26.72727−0.2118 3.091042 3.18624 −0.2052
Expert S2 17 26.72727−0.43583 2.833213 3.18624 −0.76097
Expert S2 17 26.72727−0.43583 2.833213 3.18624 −0.76097
Expert S2 25 26.72727−0.07739 3.218876 3.18624 0.070348
Expert S2 18 26.72727−0.39102 2.890372 3.18624 −0.63776
Expert S2 29 26.72727 0.101829 3.367296 3.18624 0.390277
Expert S2 39 26.72727 0.549877 3.663562 3.18624 1.028896
Expert S2 24 26.72727−0.12219 3.178054 3.18624 −0.01765
Expert S3 33 21.09091 0.533585 3.496508 2.928849 1.223624
Expert S3 24 21.09091 0.130341 3.178054 2.928849 0.537177
Expert S3 11 21.09091−0.45212 2.397895 2.928849−1.1445
Expert S3 15 21.09091−0.2729 2.70805 2.928849−0.47595
Expert S3 11 21.09091−0.45212 2.397895 2.928849−1.1445
Expert S3 14 21.09091−0.31771 2.639057 2.928849−0.62466
Expert S3 10 21.09091−0.49693 2.302585 2.928849−1.34995
Expert S3 14 21.09091−0.31771 2.639057 2.928849−0.62466
Expert S3 27 21.09091 0.264756 3.295837 2.928849 0.791066
Expert S3 30 21.09091 0.39917 3.401197 2.928849 1.018177
Expert S3 43 21.09091 0.981633 3.7612 2.928849 1.794185
Expert S4 35 59.81818−1.11197 3.555348 3.96309 −0.87891
Expert S4 97 59.81818 1.665925 4.574711 3.96309 1.318387
Expert S4 35 59.81818−1.11197 3.555348 3.96309 −0.87891
Expert S4 68 59.81818 0.366585 4.219508 3.96309 0.552724
Expert S4 57 59.81818−0.12627 4.043051 3.96309 0.172361
Expert S4 25 59.81818−1.56002 3.218876 3.96309 −1.6042
Expert S4 35 59.81818−1.11197 3.555348 3.96309 −0.87891
Expert S4 35 59.81818−1.11197 3.555348 3.96309 −0.87891
Expert S4 51 59.81818−0.3951 3.931826 3.96309 −0.06739
Expert S4 124 59.81818 2.875655 4.820282 3.96309 1.847729
Expert S4 96 59.81818 1.62112 4.564348 3.96309 1.296049
Expert S5 41 32.09091 0.39917 3.713572 3.4351 0.600263
Expert S5 37 32.09091 0.219951 3.610918 3.4351 0.378986
Expert S5 21 32.09091−0.49693 3.044522 3.4351 −0.84192
Expert S5 24 32.09091−0.36251 3.178054 3.4351 −0.55408
Expert S5 28 32.09091−0.18329 3.332205 3.4351 −0.2218
Expert S5 21 32.09091−0.49693 3.044522 3.4351 −0.84192
Expert S5 28 32.09091−0.18329 3.332205 3.4351 −0.2218
Expert S5 36 32.09091 0.175146 3.583519 3.4351 0.319926
Expert S5 30 32.09091−0.09368 3.401197 3.4351 −0.07308
Expert S5 44 32.09091 0.533585 3.78419 3.4351 0.752484
Expert S5 43 32.09091 0.48878 3.7612 3.4351 0.702928
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