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Abstract

Increasing the operational speed of trains has attracted a lot of interest in the last
decades and has brought new challenges, especially in terms of infrastructure de-
sign methodology, as it may induce excessive vibrations. Such demands can damage
bridges, which in turn increases maintenance costs, endangers the safety of pass-
ing trains and disrupts passenger comfort. Conventional design provisions should
therefore be evaluated in the light of modern concerns; nevertheless, several previ-
ous studies have highlighted some of their shortcomings. It should be emphasized
that most of these studies have neglected the uncertainties involved, which pre-
vents the reported results from representing a complete picture of the problem. In
this respect, the present thesis is dedicated to evaluating the performance of con-
ventional design methods, especially those related to running safety and passenger
comfort, using probabilistic approaches. To achieve this objective, a preliminary
study was carried out using the first-order reliability method for short/medium
span bridges passed by trains at a wide range of operating speeds. Comparison of
these results with the corresponding deterministic responses showed that applying
a constant safety factor to the running safety threshold does not guarantee that
the safety index will be identical for all bridges. It also shows that the conventional
design approaches result in failure probabilities that are higher than the target
values. This conclusion highlights the need to update the design methodology for
running safety. However, it would be essential to determine whether running safety
is the predominant design criterion before conducting further analysis. Therefore, a
stochastic comparison between this criterion and passenger comfort was performed.
Due to the significant computational cost of such investigations, subset simulation
and crude Monte-Carlo (MC) simulation using meta-models based on polynomial
chaos expansion were employed. Both methods were found to perform well, with
running safety almost always dominating the passenger comfort limit state. Subse-
quently, classification-based meta-models, e.g. support vector machines, k-nearest
neighbours and decision trees, were combined using ensemble techniques to investi-
gate the influence of soil-structure interaction on the evaluated reliability of running
safety. The obtained results showed a significant influence, highlighting the need
for detailed investigations in further studies. Finally, a reliability-based design op-
timization was conducted to update the conventional design method of running
safety by proposing minimum requirements for the mass per length and moment
of inertia of bridges. It is worth mentioning that the inner loop of the method was
solved by a crude MC simulation using adaptively trained Kriging meta-models.

Keywords: High-speed railway bridges; Bridge dynamics; Running safety; Pas-
senger comfort; Structural reliability; Meta-models; Surrogate models; Adaptive
sampling; Reliability-based design optimization.






Sammanfattning

Att oka tagens hastighet har vickt stort intresse under de senaste decennierna och
har medfért nya utmaningar, sarskilt nar det géller broanalyser, eftersom tégen
inducerar stora vibrationer. Sadana vibrationer kan Oka underhallskostnaderna,
aventyra sidkerheten for forbipasserande tag och paverka passagerarkomforten. Kon-
struktionsbestammelser bor darfér utvarderas mot bakgrund av dessa problem;
dock har flera tidigare studier belyst négra av bristerna i dagens bestdmmelser.
Det bor understrykas att de flesta av dessa studier har forsummat de osdkerheter
som &r involverade, vilket hindrar de rapporterade resultaten fran att represen-
tera en fullstdndig bild av problemet. I detta avseende syftar denna avhandling
till att utvardera prestandan hos konventionella analysmetoder, séirskilt de som ror
korsdkerhet och passagerarkomfort, med hjéalp av sannolikhetsmetoder. For att
uppné detta mal genomfordes en prelimindr studie med forsta ordningens tillforl-
itlighetstimetod fér broar med kort/medelldng spannvidd som passeras av tdg med
ett brett hastighetsspektrum. Jamforelse av dessa resultat med motsvarande deter-
ministiska respons visade att tillimpa en konstant sdkerhetsfaktor for verifieringen
av trafiksdkerhet inte garanterar att sdkerhetsindexet kommer att vara identiskt
for alla broar. Det visar ocksd att de konventionella analysmetoderna resulterar
i brottsannolikheter som &ar hogre &n malvardena. Denna slutsats belyser be-
hovet av att uppdatera analysmetoden for trafiksdkerhet. Det skulle emellertid
vara viktigt att avgora om trafiksdkerhet &r det dominerande designkriteriet innan
ytterligare analyser genomfors. Déarfor utfordes en stokastisk jamforelse mellan
detta kriterium och kriteriet for passagerarkomfort. Pa grund av den betydande
.analystiden for sadana berdkningar anvindes delméngdssimulering och Monte-
Carlo (MC) simulering med metamodeller baserade pd polynomisk kaosutvidgn-
ing. Bada metoderna visade sig fungera bra, med trafiksdkerhet som néastan alltid
dominerade Over gransningstillstandet for passagerarkomfort. Dérefter kombiner-
ades klassificeringsbaserade metamodeller som stodvektormaskin och beslutstrad
genom ensembletekniker, for att understka paverkan av jord-brointeraktion pa den
utvarderade tillforlitligheten géllande trafiksdkerhet. De erhallna resultaten visade
en signifikant paverkan och betonade behovet av detaljerade undersokningar genom
ytterligare studier. Slutligen genomférdes en tillforlitlighetsbaserad konstruktion-
soptimering for att foresla ett minimikrav pa erforderlig bromassa per langdmeter
och troghetsmoment. Det ar véirt att ndmna att metodens inre loop l6stes med en
MC-simulering med adaptivt trdnade Kriging-metamodeller.

Nyckelord: Hoghastighetsjarnvagsbroar; Brodynamik; Trafiksdkerhet; Passagerarko-

mfort; Konstruktioners tillforlitlighet; Metamodeller; Surrogatmodeller; Adaptiv
sampling; Tillforlitlighetsbaserad designoptimering.
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Chapter 1

Introduction

Increasing transportation demands along with stricter sustainability regulations
have directed many interests to rail-based options. This is especially true for
the substitution of short- and medium-distance airborne journeys with high-speed
trains. An exemplary empirical study has shown such benefits for the London-
Paris route, suggesting that similar conclusions can be derived for other conditions
(Givoni, 2007). As a result, strategic plans have been developed worldwide to in-
crease the operating speeds of existing lines or to build new high-speed lines. For
instance, the share of high-speed lines in total railways in China increased from
almost 0.8% in 2008 to nearly 16.4% in 2015 (Hailin et al., 2017). In Europe, the
same plan has been developed aiming at tripling the network with an approximate
length of 10,000 km in 2010 within a period of 20 years until 2030 (European Com-
mission. Directorate General for Mobility, 2010). It is obvious that trains with
higher speeds and/or heavier axle loads induce greater demands on infrastructure,
especially bridges. Therefore, our understanding about their dynamic behaviour
needs to be updated and new challenges should be addressed, one of which is the
resonance condition.

The phenomenon of resonance occurs when the loading frequency is equal to the
fundamental frequency of the bridge (or an integer multiple of it). Therefore, the
resonant speed (critical speed) can be calculated as (Fryba, 2001; Xia et al., 2006):

D
Unj = f’; §=1,2,3,..,1/2,1/3,1/4, ... (1.1)

where, f,, is the nth natural frequency of the bridge and D is the characteristic axle
distance.

This situation was not a problem on older railway lines, but with the increasing
speed of trains it has become one of the main problems on modern infrastructures.
These excessive vibrations may violate running safety due to the loss of contact
between the wheel and the rail or the destabilisation of the ballast, disturb the
passenger comfort, increase the possibility of fatigue occurrence and crack initi-
ation/propagation. The present study is devoted to the investigation of running
safety and passenger comfort limit states.

It is worth mentioning that ballast instability occurs when the induced inertial
forces on the particles due to their vertical acceleration exceed the resistive forces
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such as their weight, interlocking or friction. Therefore, it is implicitly controlled
by limiting the vertical acceleration of the bridge deck. This premise is justified by
conducted shaking table experiments, where it was shown that particles initiate to
displace at vertical accelerations beyond 7.0 m/s? (Zacher and Baessler, 2005). Sim-
ilar conclusions can also be derived from (Kumakura et al., 2010; Nakamura et al.,
2011). For the design objectives, a safety factor of 2.0 is assumed in CEN (2003b).
It should be emphasised here that, to the author’s knowledge, no verification exists
for this recommendation.

A general schematic representation of the various aspects involved in the analysis of
the dynamic behaviour of railway bridges is shown in Figure 1.1. As it is shown the
problem of investigating the dynamic response of bridges due to passing trains is a
combination of four general subdivisions including the bridge structure, properties
of the track, characteristics of the passing train and the boundary conditions at
the site. The earlier studies on this subject modelled the problem either as the
motion of a massless force (Ayre et al., 1950; Chen, 1978; Dugush and Eisenberger,
2002; Gbadeyan and Oni, 1995; Jeffcott, 1929; Rao, 2000; Sridharan and AK, 1979;
Timoshenko, 1922; Vellozzi, 1967; Wang, 1997; Wu and Dai, 1987; Zheng et al.,
1998) or lumped mass (with or without consideration of suspension system - the
former is called sprung mass) (Akin and Mofid, 1989; Hillerborg, 1951; Sadiku
and Leipholz, 1987; Stanisi¢, 1985; Stanisi¢ and Hardin, 1969; Stokes, 1849; Ting
et al., 1974) over a simply-supported beam. Other classical studies in which the
interested reader can follow evolutions in this field are Biggs (1964); Fryba (1996,
2013); Garg and Dukkipati (1984); Timoshenko and Young (1955). In general,
these simplified approaches neglect train-track-bridge interaction (TTBI) and the
effects of boundary conditions (soil-structure interaction - SSI).

s Secondary Suspension
Bogie Rail Irregularities
Primary Suspension Sleepers i®

Wheelset

Load Distribution

9 Ballast
Sallas in Ballast

Figure 1.1: Schematic view of modelling the dynamic behaviour of bridges due to
train passage.



Figure 1.2: Equidistant series of moving loads (articulated train) passing over a
simply-supported Euler-Bernoulli beam.

It has been found that the moving force approach can lead to acceptably accurate
response predictions when the mass of the train is negligible compared to that
of the bridge (Yang and Yau, 1998) and also if the rail is very smooth with no
irregularities. Therefore, they are often used when only the assessment of the
dynamic response of the bridge is of interest. In such circumstances, a train can
be modelled as a series of moving forces (composition of two equidistant series
of loads), neglecting the inertial effects of the coaches as shown in Figure 1.2.
Considering this simplification, analytical solutions for simply supported Euler-
Bernoulli beams representing the bridge superstructure were developed in Fryba
(2001); Yang et al. (2004, 1997). These solutions are obtained by superposition of
the previously developed analytical solutions for the single moving force problem.
The formulation proposed in Yang et al. (2004) for the deflection of the beam is
presented as:

nmwx

u(w 1) = 7 au(0)sin( ) (1.2)

(1) = o [ Fuo,0)+ Byt = dofo)] (13)

Fo(o, ) = 3 1
n (v, )—g;(l_snﬁﬂ%nb“n)

5 [A(t —tj)H(t—t;)+
(1.4)

(=)™ At —t; — L/v)H(t —t; — L/v)
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A(t) = (1 — S2)sin Q,t — 2€,5, cos Ut + exp(—Epwnt)

Sh
26, COS Wnt + ———= (262 + 52 — 1) sinwgnt

VI-&

where, u(z,t) is the deflection of the beam at location of x and time of ¢, N is
the number of coaches, S,, = nmv/w,L is the speed parameter, €2, = nmv/L is the
exciting frequency, &, is the modal damping ratio of the nth mode of vibration,
H{(+) is the Heaviside function, w, is the frequency of the nth mode of vibration of
the beam and wgy, = wn+/1 — &2 is the nth damped frequency of vibration.

(1.5)

Significant improvements in computational capabilities have led to the development
of advanced models that take into account the interaction between the train and the
bridge. Such models allow the response of both subsystems (track-bridge and train)
to be evaluated simultaneously; however, they significantly increase the complexity
and hence the computational cost of the problem. In this approach, the dynamic
response of each subsystem is computed iteratively using the governing equations
of motion (see Eq. 1.6) coupled together by dynamic interaction (contact) force
at their point of contact (Wu, 2000; Yang and Yau, 1998; Zhai et al., 2013). The
solution can be obtained by assuming a displacement at the contact point and
using the equation of motion of the train to calculate the contact force. Then it is
substituted into the equation of motion of the bridge to update the displacement
at the contact point (Liu et al., 2014; Yang and Fonder, 1996; Yang et al., 2004).
Moreover, it would be possible to solve coupled equations without iterating at
each step by accepting larger matrices. The interested reader can find detailed
information on this approach in Arvidsson (2018). Using these approaches provides
the possibility to implement possible unevenness or imperfections in the rail, known
as rail irregularity.

{MTBﬁTB + Crpurs + Krpurs = prs (1.6)

Myiy + Cyvuy + Kyuy = py

where, M, C and K are respectively mass, damping and stiffness matrices. u is
the displacement vector and p is the force vector. Moreover, the indices of TB and
V correspond to the track-bridge and vehicle (train), respectively.

In the presence of non-smooth rail at the point of contact, the vertical displace-
ment of the wheel would be equal to the sum of the track-bridge deflection at that
point and the rail irregularity (Zhang et al., 2010). The latter is generally modelled
as a stochastic Gaussian process (Fryba, 1996), whose mean and autocorrelation
functions are obtained using the irregularity profile, which is consequently fitted
to the in-situ measurements. This is generally achieved by using the power spec-
tral density (PSD) function describing the amplitude of the track profile at each
wavelength (Claus and Schiehlen, 1998).



A comprehensive review of TTBI is given in Arvidsson and Karoumi (2014); Can-
tero et al. (2016); Zhai et al. (2019). Numerical models were also constructed in
Arvidsson and Karoumi (2014) to compare the influence of each modelling strat-
egy on the captured dynamic responses. It was found that considering TTBI can
have beneficial effects on vibration reduction; however, these effects may decrease
for bridges with larger spans (Museros et al., 2002). Similarly, it was shown in Liu
et al. (2009) that the reduction is larger when the mass ratio between the coach and
the bridge is larger. Moreover, the difference between the modelling strategy with
moving load and the one considering TTBI is most evident in resonance conditions
(Arvidsson et al., 2014).

This reduction is implicitly implemented in conventional design guidelines through
the additional damping method (ADM) (CEN, 2003b; ERRI, 1999), although it has
previously been shown to lead to unsafe designs (Arvidsson et al., 2014; Calgaro
et al., 2010). Numerical experiments were performed in Arvidsson and Karoumi
(2014); Doménech et al. (2014) to distinguish the most influential parameters,
where the ratios between bogie-bridge frequency, bogie-bridge mass and coach-
bridge length are reported. The same conclusion is reported in Yau et al. (2019),
where an analytical approach is presented to consider beneficial influences of TTBI
in the moving load modelling strategy. This is called equivalent additional damping

approach (EADA) and is formulated as:
~ pary/ri + (260,)? (1.7)

T1 + vali
(1—=1r1)%2—2€,m1
where, 11 is the modal mass ratio between the coach and bridge, r; is the funda-
mental frequency ratio of the coach-bridge, and &,, is the effective damping ratio
of the suspension.

A& = pyry

As mentioned earlier, the simplified approaches do not take into account the contri-
bution of the ballast in the load path from the induced axle loads on the superstruc-
ture. However, it has been shown for the ballasted tracks that the concentrated axle
loads at the rail level are converted into distributed loads at the deck level, which
can lead to a significant reduction in bridge response. In numerical simulations, it
was observed that the reduction is more remarkable for shorter bridges (Jin et al.,
2018). Therefore, reduction coefficients are proposed in ERRI (1999); Jin et al.
(2018) to implement such distributions within the track structure implicitly.

Furthermore, SSI effects are typically considered as beneficial parameters because
they add damping to the system (NIST, 2012), which leads them to be mostly
neglected. However, this view should be taken with caution. This is because taking
SSI into account can increase the flexibility of the structure, leading to a shortening
of the fundamental frequency (Stewart et al., 1999). The latter means that the
critical speed of the bridge would decrease (see Eq. 1.1) (Romero et al., 2013).
It is worth mentioning that, due to the non-proportional damping that occurs in

5
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models that take into account SSI effects, a complex eigenvalue problem must be
solved in order to obtain modal properties. For this purpose, several toolboxes
have been developed, such as polyeig (Tisseur and Meerbergen, 2001) and quadeig
(Hammarling et al., 2013); the former is readily available in MATLAB. Moreover,
closed-form expressions have been developed in Zangeneh Kamali et al. (2019) to
compute the modal properties of a simple beam resting on viscoelastic supports.

Roughly speaking, shorter span bridges may benefit from the contributions of SSI;
however, for longer span bridges, the additional damping may be negligible, re-
sulting in their dynamic behaviour being negatively affected by SSI (Lind Ostlund
et al., 2020). In this context, it has been shown in previous studies that the consid-
eration of SSI effects (or ground properties at the site) can have a great importance
in accurately predicting the vibration of high-speed railway bridges (Takemiya and
Bian, 2007; Ulker-Kaustell et al., 2010). In order to introduce SSI effects into the
assessment of railway bridges, different modelling strategies are compared in Zan-
geneh Kamali et al. (2018), where it was shown that simplified approaches using
frequency-dependent lumped springs and dashpots can acceptably reproduce the
experimentally recorded behaviour. Properly assigning spring and dashpot values
requires understanding whether foundation damping would be beneficial or not.

It is shown that the variation between these two scenarios can be distinguished
by the ratio of the fundamental frequency of the simply-supported bridge to the
fundamental frequency of the soil (as formulated in Eq. 1.8), called relative frequency
parameter. It has been observed that the damping of the foundation decreases for
small values of relative frequency, which becomes negligible for values smaller than
0.5. Therefore, the spring and dashpot parameters can be described by Eqgs. 1.9
and 1.10, respectively. On the other hand, for larger values of the relative frequency
(¢ > 1.5), the behaviour of the system becomes similar to that of the beam resting
on a half-space medium. Therefore, the spring and dashpot parameters for this case
can be represented by Egs. 1.11 and 1.12, respectively. In the range of 1 < ¢ < 1.5
(around resonance frequency of the deposit), the damping of the foundation seems
to be higher than in the case of resting on a half-space medium. At the same
time, the frequency of the systems also shortens more. The assignment of spring
and dashpot values in this range requires the construction of more detailed finite
element models (Zangeneh Kamali, 2018; Zangeneh Kamali et al., 2019).

fO,ss 4I_IfO,ss 118H7T(]- - Vs)f(),ss

= = = 1.
= T T v, (1.8)
ps V2 As Bt 34 Bi/H
= | S (). 1.54(=— 14—l 1.
Rt QBf(l—VS)(O B3+15 (Lf) ( +0.5+Bf/Lf) ( 9)
Cot = Eokist (1.10)
71-f(),ss
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where, foss is the fundamental frequency of the simply-supported bridge, f. is the
frequency of the deposit, H is the depth of stratum, Vi, is the Lysmer’s analog
wave velocity (Dobry and Gazetas, 1986), v; is the Poission’s ratio of the soil, V; is
the shear wave velocity of the soil, ps is the mass density of the soil, A is the area
of the foundation, By is the semi-width of the foundation, L¢ is the semi-length of
the foundation, and & is the damping ratio of the soil material.

1.1 State of the art

Most of the previous studies have investigated various aspects of the dynamic be-
haviour of railway bridges without considering the uncertainties involved. In this
section, a brief overview of the studies that used probabilistic approaches to this
topic is presented.

Cho et al. (2010) adopted First-Order Reliability Method (FORM) with limit state
functions approximated by polynomial response surfaces. They compared both run-
ning safety and passenger comfort limit states, with a larger safety margin given
for passenger comfort. The results proposed in this study were obtained by evalu-
ating a bridge subjected to the vibrations of a constant speed train. Therefore, the
results presented cannot be extrapolated to derive general conclusions. Similarly,
in Rocha et al. (2012), an existing short span reinforced concrete box girder bridge
was evaluated to calculate the train speed that satisfies the running safety with pre-
scribed safety margin. They constructed a 2D computational model that considers
the interactions between the train and the bridge. A wide range of operational
train speeds is considered in this study; however, the induced loads from train pas-
sage and the vertical acceleration limit were deterministic (resulting in the method
being considered semi-probabilistic). It is worth mentioning that the reliability
analyses were carried out using the extreme value theory (tail fitting) with crude
Monte-Carlo simulations. Later, the performance of using the Generalized Pareto
distribution (GPD) was compared with the sigmoid function in this procedure, both
giving acceptably accurate results and significantly reducing the computational cost
(Rocha et al., 2014). Moreover, track irregularities were also implemented in their
computational model. These authors applied the same methodology to compare
the limit states of wheel-rail contact loss and running safety, showing that running
safety dominates the design (Rocha et al., 2015, 2016).

7
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Due to the very high computational cost of the crude Monte-Carlo simulation
method, a comparison between advanced simulation-based techniques, namely line
sampling, subset simulation and asymptotic sampling, was carried out in Hirzinger
et al. (2019). In this study, two different bridges were investigated where resonance
and track irregularities control their behaviour. It was found that the considered
methods can significantly reduce the computational cost without sacrificing accu-
racy when the track irregularities are neglected. In contrast, their efficiency was
decreased in the second model, which has a very large dimensionality (due to the re-
alizations of the track irregularities). Therefore, a detailed study of the influences of
random rail irregularities was carried out in Salcher and Adam (2020); Salcher et al.
(2019). It was found that a normal distribution can be assigned for the random
dynamic deflection of the bridge, while extreme value or lognormal distributions
better describe its random acceleration. Based on these observations, stochastic
amplification factors were proposed for both deflection and acceleration. It was
highlighted that the maximum amplification of deflections due to rail irregularities
is about 5%, which may lead to its consideration as a deterministic variable using
the codified relationship in Eq. 1.13 (CEN, 2003a) in further studies. However, a
significant amplification factor should be expected for accelerations. It has been
shown that the codified equation leads to underestimated predictions.

"o « 7(L/10)2 Lfo 7(L/20)2
= — |56 50(———1
7 T 100" 5005 —Le (1.13)

a = min(v/22,1)

where, L is the bridge span length, f;y is the fundamental frequency of the bridge,
and v is the train speed. This value should be reduced by 50% for carefully main-
tained tracks (which seems to be the case for high-speed lines), and the responses
should be multiplied by 1+ ¢”.

In terms of probabilistic evaluations of railway bridges, several measures, namely
failure probabilities for a given train speed (Eq. 1.14), maximum envelope accel-
eration (Eq. 1.15), envelope of probabilities (Eq. 1.16) and weighted probability
(Eqg. 1.17) have been introduced in Hirzinger et al. (2020). The weighted probabil-
ity of failure seems to be the best measure if precise knowledge about the probability
density function of the train speed, i.e. fyv(v) was available. Since such information
is usually not available, a uniform distribution is assigned in the desired range of
train speeds, resulting in a mean probability (py,,.). In this case, py,.,. and py,..
give an upper and lower bound on the actual probability of failure, respectively. A
comparison between py,, py,.. and py is shown in Figure 1.3. It is based on the
results obtained in Paper I for bridges with a span length of 30 m.

pf, = P|:amax(vi) > alim:| (114)
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Figure 1.3: Comparison between different probability measures.

1.2 Aims and scope

The overall goal of the study is to first evaluate the reliability of current design
guidelines for high-speed railway bridges, particularly running safety, to improve
our understanding of them, and then to propose new guidelines if feasible, based
on modern objectives. These new guidelines should meet the prescribed safety
objectives and it would be much favourable if they could result in lighter bridges.

Conventional design thresholds have been proposed based on limited research,
mainly due to restricting computational resources at the time of development. Pre-
vious studies have highlighted some of the inconsistencies, deficiencies, or in some
cases unacceptable overestimates created by these standards. This licentiate thesis
is a first but important step in addressing some of these concerns. In this regard, the
focus of this thesis is to consider the uncertainties involved and to apply reliability-
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based approaches to evaluate the efficiency of the codified design methods and to
update them using reliability-based optimization tools.

Some specific objectives of the thesis are as follows:

o Collect information about contributing variables and assign the corresponding
theoretical probability distribution functions using statistical approaches.

o Assess the possibility of potential improvements in current design regulations
using simplified reliability-based methods.

¢ Reviewing advanced simulation-based reliability assessment methods, partic-
ularly subset simulation and meta-model assisted approaches (including both
regression and classification algorithms such as polynomial chaos expansion,
support vector machines, k-nearest neighbours, decision trees and Gaussian
process regression) and evaluating their performance with the purpose of re-
ducing the computational costs.

e Application of the discussed advanced methods to discriminate the dominant
design criteria (between running safety and passenger comfort) and to inves-
tigate the influence of soil-structure interaction on the probability of running
safety violation.

o Use reliability-based design optimization to propose minimum allowable mass
and stiffness for high-speed railway bridges.

This study is subjected to the following limitations. Only simply-supported single
track and single span reinforced concrete bridges are considered. The span length
of the considered bridges are in the range of [5-30] m, which represents bridges with
short to medium spans. In order to collect information on the geometric charac-
teristics of railway bridges, a limited amount of data was available for high-speed
lines. Therefore, some of the information adopted does not necessarily correspond
to high-speed lines.

There is no general consensus on whether the running safety limit state corresponds
to serviceability or ultimate limit state conditions. Although, the author believes
that it is more serviceability concern than the ultimate one. Therefore, target
reliability level of 8y = 3.1 is used in this study.

Due to the limitations of the FORM in the case of nonlinear performance functions,

the presented results in Paper I should only be considered for comparison objectives
and the absolute values of the safety indices should not be interpreted individually.

10
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At this stage of the project, the applicability of the probabilistic approaches and
possible improvements to the current rules were of primary interest. Therefore,
it was decided to simplify the physical models by considering trains as a series of
moving loads. The contribution of train-track-bridge interaction and rail irregu-
larities is implicitly taken into account by equivalent additional damping method
and probabilistic amplification factors, respectively; however, it should be admitted
that the model (epistemic) uncertainty may increase by applying this approach.

The author was unable to find comprehensive information about resistance-related
random variables, i.e. vertical acceleration for running safety and vertical deflec-
tion for passenger comfort. The assigned theoretical information for these random
variables was obtained based on limited information and judgments of the author.
Therefore, they may be subject to higher variation compared to the other variables
and are expected to be modified in future studies.

In the Paper III soil-structure interaction effects are considered; however, due to the
large uncertainties in soil properties, it was decided to classify them into several
groups (rational from the author’s point of view) and evaluate the reliability of
bridges in these groups. Therefore, presented outcomes are conditioned on the soil
properties considered in these groups. In addition, the soil-structure interaction is
implicitly modelled by assigning lumped frequency-dependent springs and dashpots
at the boundaries of the bridge. Previous deterministic studies have shown that the
adopted technique can acceptably predict the dynamic response of railway bridges;
however, the author believes that it increases epistemic uncertainties. To implicitly
deal with this type of uncertainty, a judgemental random variable (referred to as
model uncertainty) is considered. There is no background for this random variable
other than the author’s judgement and discussion with other experts in the field of
railway bridge dynamics.

1.3 Scientific contribution

The research presented in this thesis accompanied by the appended papers, has
resulted in the following scientific contributions:

¢ Distinguishing possible improvements to the conventional design approaches
and investigating the sensitivity of the dynamic response with respect to the
contributing variables using approximate probabilistic methods (study in Pa-
per I).

o Assignment of appropriate probability distribution functions for basic random
variables contributing to the dynamic behaviour of high-speed railway bridges

(study in Paper IV).

11
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o Comparison of the performance of meta-model assisted reliability assessment
using the Polynomial Chaos Expansion (PCE) surrogate model with the sub-
set simulation method in the context of dynamic problems (study in Paper
II).

e Stochastic comparison between running safety and passenger comfort design
criteria of high-speed railway bridges to distinguish operational train speeds
and spans requiring multiobjective optimization (study in Paper II).

¢ Evaluating the performance of ensemble meta-models with classification-based
heterogeneous models (Support Vector Machines, k-nearest neighbours and
Decision Trees) in reliability assessment of railway bridges (study in Paper
I1T).

o Investigating the influence of soil-structure interaction effects on the assessed
reliability of high-speed railway bridges (study in Paper IIT).

e Performing reliability-based design optimization to propose minimum mass
and stiffness of high-speed railway bridges that satisfy the desired safety level,
assisted by adaptively trained Kriging meta-models (study in Paper V).

1.4 Outline of the thesis

This thesis is based on four appended papers and mostly presents an extended
summary of the concepts discussed in those papers. Chapter 1 reviews the funda-
mentals of dynamic analysis of railway bridges and previous probabilistic studies
on the subject. An overview of applied reliability assessment methods and con-
cepts of reliability-based design optimization are presented in Chapter 2. Chapter
3 discusses meta-modelling concepts including details of the surrogate models used.
Chapter 4 summarises the main contents of the appended papers and derived con-
clusions are presented in Chapter 5. This chapter also includes suggestions for
future work.

Paper I employed FORM to perform a computationally inexpensive and prelim-
inary reliability assessment of the running safety of high-speed bridges. FORM
method was selected at this time despite its inherent limitations because the ob-
jective was to evaluate the safety index for a wide range of operating train speeds
(covering both off-resonant and critical speeds) and bridge span lengths (short to
medium). It was known from previous studies that conventional design regulations
do not prevent violation of running safety by applying unjustified safety factors.
Therefore, the resulted safety from the deterministic approach is evaluated approx-
imately to identify possible inconsistencies. Furthermore, the results of the FORM
method were used as a sensitivity measure of the evaluated reliability with respect
to the considered random variables.

12
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Paper II compares the performance of two advanced simulation-based reliability
assessment methods, namely subset simulation and meta-model based Monte-Carlo
simulations in dynamic problems. The latter was performed using polynomial chaos
expansion as a surrogate model. A set of sensitivity analyses were performed to
select the best number of samples and the predefined conditional probability for
intermediate events in the subset simulation. Moreover, the leave-one-out cross-
validation error was considered to obtain the best configuration of polynomial de-
grees and truncation scheme of the polynomial chaos expansion method. Their
performances were evaluated considering two different performance functions in
terms of the running safety and passenger comfort. Moreover, a stochastic compar-
ison between two desired limit states was performed in a wide range of operating
train speeds and for bridges with different spans.

Paper III uses the concept of ensemble modelling to train more efficient meta-
models. Classification-based models such as support vector machines, k-nearest
neighbours and decision trees are used in this study. The main objective of the
work was to investigate the influence of soil-structure interaction in the reliability-
based evaluation of running safety for high-speed railway bridges. In this context,
a simplified modelling technique is used which assigns the spring and the dashpot
at boundaries of the bridge. Moreover, due to the large uncertainties in the soil
properties, the evaluations arc conducted for different classifications. This results in
a semi-probabilistic method that gives lower and upper bounds for the probability
of failure. These results are given for a wide operating train speeds and bridges
with different spans.

Paper IV proposes minimum design requirements, namely mass per length and
stiffness (or frequency) for conventional high-speed railway bridges. To achieve
this goal, the first part of the study was devoted to collect information on differ-
ent variables and assigned corresponding probability distribution functions. Then,
reliability-based design optimization is performed to obtain the aforementioned
values. The violation probability was calculated using a meta-model based Monte-
Carlo simulation approach, where Kriging surrogates the computational model.
Adaptive sampling techniques are also applied to reduce the computational cost
and improve the performance of the meta-models.

13






Chapter 2

Reliability Analysis and
Reliability-Based Design
Optimization

Reliability assessment of a structure (either as a system or as a component) includes
procedures to ensure its safety with respect to induced actions or to measure the
violation probability of limit states. The limit state (interchangeably referred to as
performance function or failure surface) is the difference between (or ratio of) resis-
tance (capacity) and actions (e.g., forces, displacements, stresses, or strains); both
of which are functions of basic random variables (X). Therefore, the probability of
failure would be evaluated by calculating the reliability integral, which reads as:

;= P(R—S <0) = P(G(X) < 0) = /D Fx(x)dx (2.1)

where, D is the failure domain, i.e., the region where S > R and fx(x) is the joint
probability distribution of the basic random variables.

Considering this general definition, the reliability assessment can be performed in
the following levels (Madsen et al., 2006):

e Level I: is the approach generally taken by regulations, where uncertainties
are incorporated into partial safety factors and variables are modelled by their
characteristic values.

e Level II : uses only the moments (first and second) of random variables
together with their correlation coefficients. The exact probability distribution
of each random variable or their joint distribution is unknown and they are
implicitly considered as Normally distributed.

e Level III : uses the joint probability distribution functions to calculate the
reliability integral.

e Level IV : considers the consequences of the occurrence of a failure (e.g.,
monetary or fatality). This approach is known as a risk-based method.

15
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DESIGN OPTIMIZATION

In this study, the level II and III approaches are employed. Therefore, a brief
description of both approaches is given in this chapter.

2.1 First order reliability method

It is obvious that the calculation of the reliability integral in Eq. 2.1 does not follow
a straightforward approach, not only because of the computational cost, but also
because of the available information. For example, in most practical cases, the joint
probability distribution is not defined. Therefore, some approximate solutions have
been developed to provide an estimate of the violation probability (i.e., the nominal
probability). Among them, the First order reliability method (FORM) is one of
the most commonly used. The fundamental idea of the FORM is to transform the
joint probability distribution function in the reliability integral into a multivariate
Normal distribution whose solution is readily available. It is worth noting that
a brief description of the method is presented here and the interested reader is
referred to Melchers and Beck (2018); Nowak and Collins (2012); Sgrensen (2011)
for more details.

Basic FORM is a Level II reliability assessment method that requires only the
expected value (mean) and standard deviation of basic random variables. It also
assumes that they are all independent Normal random variables. The other key
assumption of FORM is that the limit state function is linear. Considering the
limit state function as Eq. 2.2 causes the joint probability distribution function to
follow a Normal distribution whose parameters can be easily calculated from the
linear combination of the parameters of the basic random variables (see Eq. 2.3).
Thus, the reliability integral reduces to the calculation of the standard Normal

distribution as Eq. 2.4.
X)=> aX; (2.2)
i=0

fX(iU) NMf,Uf ZazﬂXw Z ] 1)1/2) (23)

ps = PGEX) £0) = 8L — a(-p) (2.4)
where, 8 is denoted as safety (reliability) index (Cornell, 1969). From a geometric
point of view, it can be interpreted as the shortest distance from the point with
the largest likelihood on the joint probability distribution to the limit state func-
tion. Therefore, it can be used as a safety measure where the probability of failure
decreases with increasing distance.

It has been shown that the safety index in the original space of basic random
variables can vary depending on the definition of the limit state function (e.g., as
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2.1. FIRST ORDER RELIABILITY METHOD

a subtraction or ratio). This situation contradicts the goal of being invariant for
a safety measure. Therefore, the Hasofer-Lind transformation (Hasofer and Lind,
1974) is proposed as Eq. 2.5 to transform all random variables into the standard
Normal space, where they all have expected value and standard deviation equal to
zero and one, respectively. Note that the limit state function is changed from G(X)
to g(Y). A pictorial example of this transformation is shown in Figure 2.1.

0X,

K;:

(> Joint PDF
—g(X)=0

X Yy

Figure 2.1: Hasofer-Lind transformation.

Then the safety index would be the shortest distance from the origin to the perfor-
mance function. Therefore, FORM can be reformulated as an optimization prob-
lem with quadratic objective function and linear constraint, which is presented in
Eq. 2.6. Therefore, optimization toolboxes of programming software such as Se-
quential Quadratic Programming (SQP) of MATLAB can be used for this objective.

8= min(YTY)l/2

s.t. 9(Y)=0 (2:6)

It is worth noting that the point on the limit state function satisfying Eq. 2.6 is
called design (checking) point (Y*). Considering the shape of the joint probability
distribution function, the design point has the maximum likelihood on the limit
state function (also known as Most Probable Point - MPP). Therefore, it has the
largest contribution to the calculated violation probability. Hence, this point can
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be used for reliability-based design optimization objectives, and the procedure to
obtain this point based on the given target safety index is known as inverse FORM
problem.

As mentioned, FORM was developed assuming a linear limit state function; how-
ever, this is usually not the case in practical situations. This problem is solved
by linearising the limit state function using first-order Taylor series expansion (see
Eq. 2.7). Given the properties of the design point, the approximation around this
point will induce the smallest error in the estimated violation probability. However,
it is obvious that based on the shape of the limit state, the estimated nominal vi-
olation probability may be overestimated (for concave limit state function towards
the origin) or underestimated (for convex limit state function towards the origin).

Jg
oY;

=g(Y)+Vg(Y) (Y -Y")  (27)

9(Y) = g(Y") + Y (Y, = Y7
i=1 Y

For better illustration, dg/dY; is expressed by g. in the following equations. More-
over, g4 represents the vector of partial derivatives with respect to the basic random
variables.

Substituting Eq. 2.7 into Eq. 2.4, taking into account the point that Y* lies on
the limit state function and assuming that all random variables follow the standard
Normal distribution, the safety index can be reformulated as:

o (TiLa(g)?e)?

where, a is essentially the direction cosine of the hyperplane of the limit state
function at the design point. An important application of the direction cosine
besides the computation of the safety index is the evaluation of the sensitivity
of the measured safety with respect to each basic random variable (see Eq. 2.9).
Moreover, omission sensitivity factor is defined as the ratio of the safety index
when a basic random variable is considered deterministic to the safety index when
all variables are stochastic (Madsen, 1988). In the special case where this variable
is removed, the omission sensitivity factor would be like Eq. 2.10.

B

" Y*q
/j — 7:““9L _ Zz:l 1 gz _ 7Y*TOA (28)

gl 1
Yi = F = o2 (2.10)

Similar to Eq. 2.6, the design point in Eq. 2.8 is unknown. Therefore, an iterative
procedure should be followed to converge the design point; however, it should be
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noted that the obtained point does not necessarily correspond to the global mini-
mum (like any other optimization procedure). Therefore, it is always recommended
to check the results of FORM with higher level reliability assessment methods, such
as Monte-Carlo simulations.

Among the basic assumptions of FORM, the linearity of the limit state function is
addressed above. In later steps, the possibility to follow other probability distri-
butions and the dependence between the basic random variables should be imple-
mented in the method.

The transformation of a non-normally distributed random variable of X into a
standard normally distributed random variable of Y can be achieved by the Normal
tail transformation as shown in Eq. 2.11, where p corresponds to the probability
content of X = z, (Ditlevsen, 1981). It is obvious that there are infinite possibilities
for the equivalent Normal distribution (values of y, and o) of Fx(x) based on the
chosen probability content. One of the good candidates would be the probability
content corresponding to the design point. This is because it has a high contribution
in the calculated violation probability. In other words, only the area under the
joint probability distribution in failure domain (or tail probability) is important to
accurately evaluate the violation probability. In summary, the parameters of the
equivalent Normal distribution can be calculated using the first-order Taylor series
expansion around the design point. It is clear that the design point is initially
unknown; therefore, this transformation should be repeated at each iteration.

Fx(z,) = p = ®(—%) = a(y) (2.11)

o) [‘I)_l [FX(xp)}:|
fx (@p)
e =z, — @ [Fx (zp)] 0 (2.13)

O, =

(2.12)

The other approach may be to transform non-Normal distributions into equivalent
Normal distributions with equal mean and ¢ percentile. It is recommended to set
q as target reliability for loading variables and complement of target reliability for
resistance variables (Ayyub and Haldar, 1984). Furthermore, for highly skewed
distributions, it is recommended to consider the mean of the equivalent Normal
distribution as equal to the median of the non-Normal distribution. Then, its
standard deviation can be obtained using Eq. 2.12.

The Normal tail approximation can be extended to transform dependent random
variables into independent standardized normally distributed random variables,

which is called the Rosenblatt transformation (Rosenblatt, 1952). This method
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uses the conditional cumulative distribution function to express the required cumu-
lative distribution function of each random variable in terms of Eq 2.11. As it is
evident, the joint probability distribution is not available in many situations, which
limits its application. Therefore, we do not go into details of the method here.

To the author’s knowledge, in practical problems it is hardly possible to have in-
formation about the dependence between random variables. In general, linear cor-
relation from statistical data is the only information that exists in this context,
although it does not justify the existence of dependence. Therefore, approximate
methods are developed to transform correlated random variables into uncorrelated
ones, such as Nataf Transformation and the one based on Cholesky decomposi-
tion. The former requires transforming the correlation matrix in the original space
to that in the standard Normal space. This task requires iteratively solving the
covariance integral, where it is previously solved for certain combinations of prob-
ability distributions (Liu and Der Kiureghian, 1986). Nevertheless, it should be
evaluated for other combinations. Given these limitations, the latter method is
used here. It assumes that T is a linear and orthogonal transformation matrix (i.e.
T T = 1) that transforms correlated random variables of X into the uncorrelated
standardized normally distributed random variables of Y (see Eq. 2.14). It is worth
noting that the covariance matrix of the transformed random variables is equal to
the identity matrix. This is because they are uncorrelated and follow the standard
Normal distribution. Therefore, it can be shown that A = T is a lower triangular
matrix obtained by Cholesky decomposition (see Eq. 2.15).

Y = TX (2.14)

Cy=cov(Y,Y") = cov(TX,X'T") = Teov(X,X")T" = TCxT"

2.15
- Cx=T'CyT=T'IT=AAT (2.15)

As mentioned earlier, FORM is an iterative procedure. For this objective, the
Hasofer-Lind-Rackwitz-Fiessler (HLRF) method is widely used (Rackwitz and Flessler,
1978). It starts by assuming an initial design point and then the next one is ob-
tained by computing the Taylor series expansion around the previous point. This
linearised expression is assumed to be equal to zero since it lies on the limit state
function. Given these assumptions and Eq. 2.7, the design point at the next itera-
tion would satisfy Eq. 2.16. This algorithm is summarized in Figure 2.2.

g(Y")

vyt = o0 g0 9
LS
(9" gy )2

(2.16)

As discussed, FORM suffers from shortcomings resulting from the simplifying as-
sumptions considered, such as the linearisation of the performance function and the
consideration of only the first two moments of the random variables. It is obvious
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Figure 2.2: The Hasofer-Lind-Rackwitz-Fiessler (HLRF) algorithm.

that the aforementioned limitations may cause FORM not yielding sufficiently ac-
curate results for dynamic problems; however, it can still be used for preliminary
investigations or in conjunction with simulation-based approaches. In this context,
Paper I investigates whether or not the conventional codified design methods for
high-speed railway bridges lead to consistent safety margins.
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2.2 Simulation-based methods

As discussed, despite their advantages from a computational point of view, approx-
imate solutions can converge to unreliable predictions, which limits their applicabil-
ity for complex practical problems. Therefore, simulation-based methods are often
used. These methods are basically a numerical integration of the reliability integral
in Eq. 2.1 by extensive sampling of basic random variables in their feasible domain
(using their corresponding probability density function) and pointwise evaluation
of the performance function.

Considering the above idea, Eq. 2.1 can be reformulated as Eq. 2.17 by using
an indicator function I(-) that is equal to one if true and zero otherwise. The
reliability problem would then be to compute the expected value of the indicator
function in the regions where the performance function is violated. Therefore,
evaluating the performance function for each realization of the basic random vector
(%;, i = 1,2,...,N) and computing the arithmetic mean can result an unbiased
predictor of the violation probability. Note that due to the strong law of large
numbers with N — oo, the calculated mean resembles the true violation probability.

— 00

+oo 1 N N .
Pf = / I[[G(X) < O}fx(x)dx = E[H[G(X) < Oﬂ N Z]I[G(xi) < 0] =Py
i=1
(2.17)
From the central limit theorem, it can be concluded that the estimator of the
simulation-based method follows a Normal distribution. Furthermore, note that
I[G(X) < 0] follows a Bernoulli distribution that P |I[G(X) < 0] = 1} is equal to

py. Taking this into account, the coefficient of variation of the above estimator can
be used to assess the reliability of the measured violation probability, which reads
as:

CoVjp, = p* (2.18)

The discussed method is known as crude Monte-Carlo. This method is robust;
however, it is evident from Eq. 2.18 that the order of its error is inversely related
to the number of realizations, i.e., O(N~/2). Considering the range of violation
probabilities in the scope of this study (1073 — 107%), a significant calling number
of the computational model (finite element model) is required; which drastically
increases the computational cost of the reliability assessment. The situation would
be very exhaustive for reliability-based design optimization objectives where many
iterations are required to converge to the desired safety level.

To address this issue, several approaches have been developed, such as meta-
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modelling, advanced sampling methods, and variance reduction. Meta-models aim
to substitute the computational model with an approximate black-box and low-cost
model that can compute the desired response in a fraction of the time required by
the original model. This approach is taken in Papers II, IIT and IV. Therefore, the
next chapter is devoted to reviewing these methods used here. Then, a brief review
of the other approaches is given in the following sections of this chapter.

Example 2.1- FORM versus Crude MC

In this example, the probability of violating the vertical acceleration limit
state of a simply-supported Euler-Bernoulli beam with a span length of 20 m
subjected to a single moving load passing at a constant speed of 300 km /h is
evaluated (see Figure 2.3). In this example, both the FORM and the crude
MC methods are used.

!

A LEI

s

Figure 2.3: Single moving load passing over a simply-supported Euler-
Bernoulli beam.

The performance function can be formulated as Eq. 2.19, where the vertical
acceleration is calculated using the closed-form solution developed in Yang
et al. (2004).

G=R-S5=aim —max’a(x,t)|

B 2pL3 S| . onmx [—Qi sin Q,t + S,w? sin wnt]

)= —_ _
ale.t) = pre Lo sin(—-) 1-s2
(2.19)
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All basic random variables are assumed to be independent, and their prob-
ability distribution functions are defined in Table 2.1. These values were
taken from those given in Paper IV, except for the maximum acceleration
threshold which were chosen arbitrarily for illustrative purposes. It is worth
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noting that mass per length and moment of inertia are dependent in reality.
However, in this example, moment of inertia is considered as a deterministic
variable and defined based on a linear regression function fitted to the data
collected in the Paper IV (see Eq. 2.19).

Table 2.1: Basic random variables

Variable [unit]  Distribution* Truncation
ajim [m/s?] N(2.5,0.1) -
m [kg/m] LN(9.72,0.26)  [400L + 4900, oc)
» [kN] W(195,9.1) [120,00)
E [GPa) N(29.7,3.56) -

* N, LN and W correspond to Normal, Lognormal and Weibull
distributions, respectively. Parameters of Lognormal distribution
correspond to the logarithmic values. Parameters of Weibull
distribution correspond to scale and shape.

fTruncated based on recommendation of (Museros et al., 2021).

First, the sensitivity of MC with respect to sample size is evaluated in order
to sclect the appropriate sample size. For this purpose, the coefficient of
variation (CoV) is calculated as an indicator of its accuracy. Moreover, at
each iteration, the safety index is calculated along with its 95% confidence
interval. The obtained results are shown in Figure 2.4. As can be seen, the
calculated result converges to 8 = 1.872 for a sample size larger than 10°.
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S
Figure 2.4: Obtained result from crude MC and its performance as a function
of sample size.
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The comparison between the FORM and the crude MC is shown in Fig-
ure 2.5. The FORM resulted in 8 = 1.876, which agrees acceptably with the
result of MC. To illustrate both methods, the threshold (R) and maximum
acceleration (S) are transformed using the Hasofer-Lind transformation (de-
noted as Zr and Zg). The mean and standard deviation were obtained from
the generated samples.

8
4
A
S~
0 N T
-4
-8
8 4 0 4 8
ZR o All Samples
_ _ ® Failure Domain
N / —e—FORM Method
N/ _Design Point

Figure 2.5: Comparison between FORM and crude MC.

The directional cosines obtained by the FORM are shown in Figure 2.6. As
discussed earlier, directional cosine values can be used as a sensitivity mea-
sure for the calculated safety index with respect to basic random variables.
Thus, it can be seen that the mass per length and the load value are the
most important variables in this problem.

0.5

-0.5 1

-1

E im m p

Figure 2.6: Direction cosines from FORM.
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2.2.1 Conventional sampling techniques

It is obvious that the number of considered sample points and the procedure for
their generation play a key role in simulation-based approaches. Nevertheless, it
is substantially important to consider that, despite the designation of the whole
procedure of simulation-based reliability assessments as a probabilistic method, it
is not possible to generate random numbers from general meaning point of view.
In other words, the sequence of numbers is generated according to deterministic
approaches, which makes them called pseudo-random. Based on Hull and Dobell
(1962), a sequence of nonnegative integers can be computed using, for example, the
congruence relation in Eq. 2.20.

x; = ax;—1 +b (modc) (2.20)

where, a, b and c are all integers, with ¢ being much larger than the others. The
procedure starts by considering an arbitrary integer xo, which is called seed. It is
obvious that the maximum unique number generated by this method is less than
c. Then, one can transform the generated random numbers to the interval [0,1)
by dividing them by c. Afterwards, it would be possible to transform uniformly
distributed random numbers with the inverse CDF of the random variable.

This method of sampling gives no control over where each realization would be
drawn. Therefore, a significant number of them would be located in regions that do
not contribute to the reliability assessment. In this regard, stratified (space-filling)
sampling techniques have been developed, among which the Latin Hypercube (LHS)
is widely used. In this approach, the range of each random variable is partitioned
into non-overlapping intervals of equal probability and a sample is drawn from each
of these intervals. This method proves to be more efficient than the conventional
Monte-Carlo; however, it applies the constraint only to one dimension of the prob-
lem. Considering the standard deviation of the minimum distance between sample
points as an efficiency indicator of the sampling method, an improved Distributed
Hypercube Sampling (IHS) method is proposed in Beachkofski and Grandhi (2002)
, where the constraint is applied to higher dimensions. This method considers an
m-~dimensional hypercube around each of N realizations, resulting in the optimal
distance between sample points being like Eq. 2.21. It has been shown that this
method has a smaller confidence interval than the conventional MC and LHS; how-
ever, it is obvious that using this method requires solving an optimization problem.

dopr = N' 70 (2.21)

A similar stratified sampling method is proposed based on Centroidal Voronoi Tes-
sellations (CVT) (Saka et al., 2007). Voronoi diagrams partition space into convex
polytopes where the distance of each point in them to their generator is the small-
est with respect to the generators of other polytopes. When the generator of a
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Figure 2.7: Example of Centroidal Voronoi Tessellations (CVT) sampling.

polytope coincides with the mass density of it, it is called a CVT (Burns, 2009).
An example of this method is shown in Figure 2.7, where the samples are generated
using the CODES toolbox (Missoum et al., 2015). Similar to IHS, it is more effi-
cient than traditional sampling techniques and an optimization problem must be
solved to generate these random numbers. Therefore, their performance decreases
significantly as the number of required sample points increases and they may suffer
from the curse of dimensionality. Therefore, their applicability in experimental de-
sign (DOE) seems to be more advantageous for training meta-models. This aspect
will be discussed in the next chapter. It is worth noting that the dimensionality of
the problem can be reduced using sensitivity analyses. However, such analyses are
beyond the scope of the current study.

2.2.2 Copula functions

The methods discussed in the previous section generate independent random num-
bers, so this section is devoted to generating correlated random numbers. One
approach may be to use the inverse method based on the Cholesky decomposition
presented in Eq. 2.14, but here the concept of Copula functions is briefly reviewed.

Based on Sklar’s theorem, there would be a unique Copula function of C' in the
n-dimensional domain of the basic random variables X;, i = 1,2,...,n if the uni-
variate CDFs of all variables are continuous. Then their joint CDF and PDF read
as Egs. 2.22-2.23. It should be noted that the Copula function is an n-variate
joint distribution on [0 — 1]™, and from Eq. 2.22 it can be seen that its univariate
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marginals are also uniformly distributed as u; ~ U(0,1). In addition, it should be
isotonic; that is, C(X) < C(Y) for all X,Y € [0 — 1]”, where X <Y. A variety of
Copula families have been proposed in the literature, among which elliptical and
Archimedean ones are the best known. The former typically has no closed-form
expression and the number of its parameters is equal to the number of correlation
coefficients between random variables. Multivariate Gaussian distribution is one of
the widely used elliptical Copula functions; however, it should be noted that it can-
not model the dependency between the variables at the tails. On the other hand,
Archimedean Copula functions are developed using a generator function, which al-
lows them to be expressed as closed-form expressions and generally have only one
defining parameter (Durante and Sempi, 2010).

F(X17X27 7Xn) = C(UlaUZ7 7un) = C(FX1 (‘Tl)aFX2 (IQ), o Fx (xn)) (222)

n

n i=1

This approach is commonly used to generate correlated random numbers for re-
liability assessment objectives and an example of these compared to independent
random numbers is presented in Figure 2.8. The interested reader can find some of
its applications in Du et al. (2017); Lu and Zhu (2018); Papaefthymiou and Kurow-
icka (2008). In this study, the dependency between mass per length and moment
of inertia of bridges in Papers II, III and IV is modelled using the Copula concept.

As mentioned earlier, in practical situations the correlation coefficient is usually
the only available information about the dependence between random variables.
Using it with the concept of maximum likelihood leads to obtain the parameters
of the Copula function; however, it is recommended to consider rank-based corre-
lation coefficients rather than conventional linear coefficients (Lu and Zhu, 2018;
Papaefthymiou and Kurowicka, 2008). This is because rank-based correlation co-
efficients remain unchanged under nonlinear transformations.

Moreover, since the true joint distribution between random variables is unknown, it
is recommended to select the proper Copula function by computing the Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC) as Eqgs. 2.24-2.25
(Akaike, 1974; Schwarz et al., 1978). The first term in these equations represents
the difference between the expected value of the true density function when the true
density function is used for computation and the case when the log-likelihood of the
associated density function is assumed with parameter 6. The second term consid-
ers the number of parameters in the definition of the Copula functions. Therefore,
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Figure 2.8: Independent versus dependent (using Gaussian copula function) ran-
domly generated samples.

the copula function with minimum AIC and BIC should be used.

N
AIC(0) = =2 In[C(xi,y:;6)] + 2k (2.24)
N
BIC(0) = —2) In[C(x;,y::0)] + kIn(N) (2.25)

2.2.3 Variance reduction techniques

Variance reduction methods attempt to improve the performance of the crude
Monte-Carlo simulation method by reducing its variance. These methods are not
adopted in this study; therefore, only a brief overview of them is presented here.
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Important sampling

As mentioned earlier, the majority of the generated samples in the crude Monte-
Carlo method would be in the safe domain, resulting in poor performance of the
method. On the other hand, it is evident that by taking sample points around the
vicinity of the performance function (intersection of load- and resistance-related
probability density functions), the chance of generating more advantageous sample
points increases. This concept is referred to as important sampling. In this case,
the generated samples would be drawn using a different function (denoted here as
hy(x) - instrumental density) and the reliability integral reads as Eq. 2.26. It has
been shown that a carefully chosen important sampling probability density function
can reduce the variance of the measured violation probability; however, it should
be noted that there is no guarantee of such improvement due to the choice of any
function. A good candidate for this may be a multivariate Normal distribution
whose mean vector is equal to the design point (obtained from the FORM) and
covariance matrix is equal to a diagonal matrix with the variance of the random
variables (Kahn, 1956; Melchers, 1984, 1989; Melchers and Beck, 2018; Sgrensen,
2011).

pr = /+OOH[G(X) < 0] Sl i = B I[G(X) < 0] (2.26)

— 0o

Conditional expectation

According to the law of total expectation, for any given random variable Y the
expectation of conditional expected value of the random variable X is equal to the
expected value of X (Eq. 2.27). Moreover, it is evident from Eq. 2.28 that the
variance of the conditional expected value would be smaller than the variance of
the random variable.

E(X) =E[E(X|Y)] (2.27)

Var(X) = Var[E(X|Y)] + E[Var(X|Y)] (2.28)

Therefore, it would be possible to consider some control variables in the performance
function and reformulate the reliability evaluation problem as an expectation of the
conditional expectation of the basic random variables given other random variables
that can be randomly generated. It is important that the control variables should
be statistically uncorrelated with the other basic random variables. Considering X
as the control variable and Y as the vector of the other basic random variables,
the violation probability for each realization of Y, represented as y;, is as Eq. 2.29.
Then the violation probability would be represented as Eq. 2.30 (Ayyub and Chia,
1992; Ayyub and Haldar, 1984).

ps, = Fx(yi) (2.29)
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1 N
Pr= > oy, (2.30)
=1

2.2.4 Subset simulation

The main reason for the poor performance of the crude Monte-Carlo simulation is
that it attempts to measure the safety of a rare event (with a very small violation
probability). Considering this fact, the subset simulation method is developed,
which divides the failure domain into frequent intermediate failure events (with
large violation probability). In other words, each intermediate failure event is a
subset of higher ones and the union of all of them corresponds to the desired failure
domain. Then, it was shown in Au and Beck (2001) that the violation probability
can be estimated using Eq. 2.31. It is worth noting that the boundary of the
intermediate limit states are adaptively chosen based on the prescribed constant
violation probability of each failure event (denoted as pg). Assuming that N is the
number of simulations for each event, the threshold can be chosen as the one in
the rank of Npg. In summary, the performance of subset simulation would be a
function of N and pg. Small values of pg make the intermediate failure event a rare
event and a large value of it requires a large number of subdivisions, both of which
reduce the performance of the procedure (Au and Beck, 2001).

m—1

pPf = P(Gl(X) < 0) H P(GH_l(X) < 0|G7(X) < O) = Pf1 1__[ Pfi (2.31)

where, m is the number of intermediate failure events.

The first term of the product can be easily computed using a crude Monte-Carlo
simulation with a small number of realizations; however, the others require sampling
from the conditional joint probability distribution, which specifies the given viola-
tion probability at the previous failure event f(x|F;). This is the posterior distribu-
tion, which is unknown in the first place. Therefore, it is proposed to sample using
the Markov Chain Monte-Carlo (MCMC) with the modified Metropolis-Hastings
algorithm(Au and Beck, 2001).

MCMC attempts to sample a sequence of points whose density of final samples is
stationary and converges to the posterior with N — oco. The Markovian property
states that the generation of each sample depends only on the previous sample.
Therefore, the samples generated by MCMC cannot be considered as independent
and hence the so-called thining procedure can be used to overcome this issue. The
latter means selecting a sample at every given ¢t. In this approach, a new sample
is proposed based on a proposal distribution (denoted here as g(x;1]x;)); which
estimates the probability of generating x;,; from x; and, in the case of subset
simulation, is recommended as a uniform distribution centred around the previous
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sample and propagating in both directions with length equal to the standard devi-
ation of the random variable (Au and Beck, 2001). The advantage of using such a
proposal distribution is its symmetry, i.e. ¢(x;j41]%;) = q(x;|x;41) (Au and Beck,
2001; Speagle, 2019).

To satisfy the stationarity condition, the detailed balance should be valid, i.e., the
probability of moving from x; to x;41 (P(X;4+1/x;)) should be equal to the re-
verse movement (see Eq. 2.32). The posterior distribution in this equation can
be replaced by the obtained probability density from MCMC or, in the case of
subset simulation, by the joint probability distribution of the problem. Note that
this probability can be computed using the proposal distribution and a transition
probability (T'(x;+1|x;) = Tj) that accepts or rejects this movement (see Eq. 2.33)
(Speagle, 2019).

P(xj1]x;) f(x;|F:) = P(x;[xj41) f(xj41]Fi) (2.32)
P(Xj+1|Xj) = Q(Xj+1|xj)T(Xj+1|Xj) (2.33)

Considering Eqgs. 2.32-2.33 leads to the conclusion that the ratio of the transition
probability is equal to the ratio of the posterior distributions multiplied by the
ratio of the proposal distribution. Since the proposal distribution is considered
symmetric, it can be removed from further calculations.

In summary, to obtain the next sample from the previous one, an initial guess is
made and the transition probability is calculated. If this probability is greater than
a generated random number with uniform distribution and is a member of the failure
domain in the previous intermediate failure event, it would be accepted. Otherwise,
the previous point would be considered as a sample in the next state (Au and Beck,
2001; Speagle, 2019). The flowchart of this algorithm is presented in Figure 2.10.
It is worth noting that the subset simulation method has been successfully applied
to a variety of problems related to structural reliability assessment (Au et al., 2007;
Wang, 2020)

Example 2.2- Subset Simulation

In this example, the problem presented in Example 2.1 is again solved using
the subset simulation method. It should be emphasised here that these anal-
yses were performed using the toolbox UQLab (Marelli and Sudret, 2014).

As discussed, the performance of the subset simulation depends on the sam-
ple size and the given failure probability of the intermediate events. There-
fore, different values for each of these parameters are considered to evaluate
the subset simulation performance and select the best parameter configura-
tion. It is worth noting that in the case of varying sample size, the failure
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probability of the intermediate events is set to 0.1. Similarly, when the
failure probability of intermediate events changes, the sample size is set to
1000. The results are shown in Figure 2.9.
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Figure 2.9: Performance of subset simulation as a function of sample size
and failure probability of intermediate events.

It can be seen that the default configuration of the subset simulation (i.e.
Ny = 1000 and py = 0.1) leads to 8 = 1.955, which presents 4.4% difference
with respect to the result of crude MC. This is an acceptable agreement;
however, it is evident that a wider confidence interval should be expected
from the subset simulation.

Finally, the default configuration of the subset simulation spends less than
5% of the computational cost corresponding to the crude MC.

2.3 Reliability-based design optimization

It is important for any system to fulfill the objectives of its existence, but it is ob-
vious that there is always a trade-off between the gains from its operation and the
direct or indirect costs (from a general point of view) paid for its construction or
utilization. Dealing with this problem forms the soul of optimization, which is con-
sidered a decision-making process. In other words, it looks for the best (optimal)
alternative. Traditionally, this problem is considered deterministic, i.e., the optimal
solution is sought within a given feasible domain without considering the associ-
ated uncertainties. Following this approach may lead to optimal solutions, e.g.,
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Figure 2.10: The subset simulation algorithm.

minimal masses in structures; however, it was previously shown that this should
not be interpreted as being safe also. On the contrary, it has been highlighted that
unacceptable failure probabilities can be expected from deterministically optimized
structures (Agarwal and Renaud, 2004). For this reason, reliability-based design
optimization (RBDO) has been developed, which is believed to be the proper way
to solve the above problem. RBDO can be formulated as:

d* =arg dIIGIiDIt‘ J(d)

t P [Gl(dax) < O:| < pt}a;get 1=1, 27 ey g (234)
S.T. 7

h(d) <0 1=1,2,....,m
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where, d is the vector of design variables, Dy is the design (feasible) domain, J(+) is
the objective function, G;(d, x) is the ith limit state function, p?f?{get is the desired
safety level, ng4 is the number of hard constraints and h;(d) is the deterministic soft
constraint. It is worth noting that some formulations replace the probability-based

hard constraints with safety index (3).

It would be useful to formalize the objective function as the total cost of the struc-
ture (see Eq. 2.35) or as the total utility function (see Eq. 2.36). Note that the
latter should be maximized. Due to difficulties in assigning monetary values, these
objective functions are usually replaced by variables related to geometric or physical
properties (Enevoldsen and Sgrensen, 1994; Frangopol, 1985). Another approach is
to normalize the cost function with the initial cost; this removes exact cost values
from the procedure, but ultimately requires an engineering judgment for the ratios
(Dubourg et al., 2011).

Cy=Co+Cr + Cypy (2.35)

U=B-Co—Ly; (2.36)

where, C; is the total cost of the structure, Cy is its initial cost, C, is the cost of
inspection and repair, C is the cost of failure, B is the benefit of the structure’s
existence, and Ly is the expected loss from failure.

Considering the computationally intensive nature of the problem in Eq. 2.34, initial
studies led to the use of FORM due to its efficiency. Since FORM is itself an
optimization problem; hence, these methods are referred to as double-loop or nested
approaches. The outer loop is the deterministic optimization and the inner loop is
the optimization problem of solving the reliability problem.

In a special form, when there is no cost function, ¢nverse reliability problem is
introduced in Der Kiureghian et al. (1994). This method searches for an unknown
parameter on the most probable point (MPP); whose distance from the origin in
the standard Normal space is equal to the target reliability index. These methods
for solving the reliability problem in RBDO led to propose reliability index approach
(RIA) and probabilistic measure approach (PMA). The interested reader can find
their detailed description and also their application in an RBDO example in Ramu
et al. (2006).

The aforementioned approaches suffer from two main problems that make their
application to practical problems prohibitive. One is the inherent inadequacy of
the FORM in the case of highly nonlinear limit state functions and the other is
the requirement of calling computational model many times. The computational
budget in practical situations is limited; therefore, subsequent revisions of RBDO
have been aimed at improving performance from this perspective.
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The double-loop problem is reformulated as a single-loop problem in Chen et al.
(1997). This is achieved by transforming the original space into the reduced space
and using the relationship between MPP and safety index. Therefore, solving the
costly reliability estimation can be eliminated; however, the method requires the
computation of direction cosines on MPP. This is still an iterative procedure and
requires invoking a computational model to calculate the derivatives. In another
approach, the exact computation of the reliability index is approximated at each
step by its first-order Taylor series expansion around MPP; this is known as sequen-
tial approzimate programming (SAP) (Cheng et al., 2006). The examples presented
in Cheng et al. (2006) showed a significant improvement with respect to the double-
and single-loop methods; however, these methods still require the sensitivities to
be calculated using finite difference methods, which subsequently needs calling the
computational model. The idea of approximating around the MPP led Agarwal
and Renaud (2004) to use the response surface. In their method, called as second
order response surface approxzimation (RSA), the difference between the reliability
index at this iteration and the target reliability index is approximated by sampling
around MPP (Agarwal and Renaud, 2004). Considering the above discussions, the
method would not be applicable in complex problems, but the possibility of using
meta-models opens a new opportunity in this subject.

In traditional methods for solving RBDO, it was not possible to use simulation-
based techniques in the inner loop of the procedure. However, the idea of using
meta-models overcomes this issue. Meta-models approximate computational mod-
els by functions that are inexpensive to evaluate. This approach is used in much
of the current study, so various aspects of this approach are discussed in the next
chapter.

In this context, Kriging- or moving-least-square-based meta-models are proposed
in Kanakasabai and Dhingra (2014) to surrogate MPP. These meta-models are
trained outside the optimization loops with a small experimental design. Then,
their efficiency can be improved at cach iteration of the optimization. Re-training
meta-models at each iteration adds unnecessary cost to the optimization procedure
(Dubourg et al., 2011; Moustapha and Sudret, 2019). Therefore, it was recom-
mended to train a sufficiently accurate meta-model outside the procedure. The
fundamental idea behind this premise is the point that the meta-model must be
very accurate especially around the limit state function. This space is known as
the augmented reliability space; it can be conceived as a hyper-rectangular where
each dimension is equal to the range between the lower and upper bounds of corre-
sponding variable. By this approach, the RBDO procedure is changed into different
non-intrusive blocks, as shown in Figure 2.11 (Moustapha and Sudret, 2019). This
method can solve RBDO problems with very reasonable computational cost, which
is adopted in this study.
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Chapter 3

Meta-modelling

As discussed in the previous chapter, the crude Monte-Carlo simulation requires
many recalls of the computational model, which makes it prohibitively expensive to
use. In addition to the solutions discussed earlier, the introduction of meta-models
(emulator) which surrogate the computational model (simulator) has received a
significant attention in the last decade to reduce the computational cost of reliability
assessment. Meta-models are interchangeably known as surrogate models and are
also traditionally referred to as response surfaces. As stated in Dubourg et al.
(2013), "a meta-model means to a model what the model itself means to the real
world. Loosely speaking, it is the model of the model".

A computational (numerical) model - denoted here as M(:) - is a deterministic
black-box that describes the behaviour of a system (y € R®) as a function of
input variables (x € R?). It should be noted that since the input is a random
vector, the output would also be random (Sudret, 2012). Taking this into account,
meta-models - represented by M() - aim to mimic the response by approximating
the computational model (Kroetz et al., 2017). Given the approximate nature of
meta-models, their use increases the epistemic uncertainty of the assessed reliability
(Dubourg et al., 2013; Sudret, 2012). It is worth noting that it seems possible to
surrogate the violation probability as a function of the random vector; however, a
reliability analysis must be performed for each point of the training dataset, which
consequently requires significant recalls of the computational model. Therefore, in
this study, the concept of meta-modelling is limited to approximating the response
of the structure, which can be expressed as:

y = M(x) ~ M(x) (3.1)

Referring to the reliability integral in Eq. 2.17, two general approaches can be
followed to train meta-models, i.e., predicting the real value of the response (known
as the regression problem) or distinguishing the situation as failure or safe (known
as the classification problem). In other words, the latter surrogates the indicator
function in the reliability integral. Various methods such as polynomial response
surfaces, Gaussian process regression (Kriging), polynomial chaos expansion (PCE),
support vector machines (SVM), k-nearest neighbour (k-NN), decision trees and
artificial neural networks (ANN) have been used for this objective. It is worth
noting that both of these general approaches are used in this study and a brief
description of each adopted meta-model is presented in the coming sections. It
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should be emphasized here that the motivation of employing these approaches in
this study is their assistance in significant reduction of computational time. The
very expensive computational costs arise because of assessing reliability of desired
bridges in a wide range of operating train speeds. Hence, not only many recalls
of the computational model at each operating train speed is needed, but also the
occurrence of resonance phenomenon at particular speeds increases the nonlinearity
of the performance function.

The procedure of constructing meta-models is similar to that used for training
machine learning models. Therefore, a supporting or training dataset is needed,
which should be collected by designing experiments, and the model should then
be validated to ensure its accuracy when dealing with unseen data. The former
involves generating representative realizations of the input variables, feeding them
into the computational model, and computing the desired responses. This results
in obtaining a set of discrete estimates of the output as a function of the input
vector (see Eq. 3.2).

S={x"y"), i=12,.,N} (3.2)

This procedure requires calling the original computational model. Therefore, it is
obvious that the size of the training dataset should be kept as small as possible,
otherwise the main goal of using meta-models would be violated. In this context,
it is recommended to use stratified sampling techniques to generate a sample pool.
Furthermore, the initial size of the training dataset should be of the order of N =
10d as a rule of thumb, where d is the number of contributing random variables
(Jones et al., 1998).

Then, the defining parameters of the meta-model can be computed using various
techniques such as the least square method or maximum likelihood. It should
be emphasized that the trained meta-models are susceptible to both over-fitting
(high variance) and under-fitting (high bias) issues. Therefore, it is important to
evaluate their performance for unseen situations. This can be achieved by selecting
new realizations from the sample pool and revisiting the original model to create a
test set; however, it is obvious that this approach increases the computational cost.
Therefore, it is recommended to compute the cross-validation error, in particular the
leave-one-out one (erp0). This error is the special case of k-fold cross-validation,
where one point is excluded from the dataset at each step and the model is trained
with the remaining data. In other words, the number of foldings is equal to the
size of the training dataset. Then, the error is estimated using the excluded data
points. Finally, the error of the model is given as the mean of these errors (see
Eq. 3.3).
1
€L00 = 7 Z £[Y(X(l))a yfi(x(l))} (3.3)

i=1

40



3.1. ADAPTIVE ENRICHMENT

where, £ is the considered loss function, y(+) is the true response obtained from the
computational model and y_;(+) is the predicted response by the cross-validated
meta-model which in its training process the ith data point is removed from the
training dataset. It can be either the absolute residual, the square of the residuals,
or the standardized residual (Jones et al., 1998; Myers et al., 2016). If the trained
model does not meet the desired level of accuracy, the training dataset should be
enriched with new sample point(s). Obviously, it is not necessary for the meta-
model to be accurate in the subject of reliability evaluation on the whole problem
space. On the contrary, it should be more accurate near the limit state function.
This enrichment aspect is known as adaptive sampling and is discussed separately
in the next section.

It is clear that as the size of the training dataset increases, the accuracy of the
meta-model would probably increase, but on the other hand, the performance of
the reliability integral evaluation would decrease. Therefore, a fundamental ques-
tion arises, namely whether the chosen type of meta-model is suitable for the aimed
problem or not. In this regard, an extensive literature review was conducted in
Alizadeh et al. (2020), which led to general suggestions for the selection of meta-
models considering the three factors of dataset size, accuracy and computation time
for the evaluation of the trained model. A similar study was conducted in Kroetz
et al. (2017) where the performance of ANN, PCE and Kriging meta-modelling
is compared in different benchmark problems. It was found that despite good
performance of all methods, the PCE method may suffer from the curse of dimen-
sionality. Moreover, it is worth noting that the conventional polynomial response
surface method loses its advantage in the case of considerably nonlinear limit states
(Labeyrie, 1997; Sudret, 2012).

In summary, it is important to use meta-models cautiously because there is no
guarantee that the violation probability (ps) evaluated with them is equal to the
true failure probability (py). In other words, p; is not an unbiased estimate of
py (Sudret, 2012). Considering this fact, several studies combined meta-modelling
with other techniques, such as important sampling, to overcome this problem. Such
approaches are not used in this study; hence, the interested reader is referred to
Dubourg et al. (2013).

3.1 Adaptive enrichment

In this section, a brief overview of approaches that can be followed to add new sam-
ple point(s) to the initial one is presented. This procedure is called adaptive sam-
pling or sequential experimental design. The general concept of these approaches
is based on increasing our knowledge of regions about which we either have less
information (large variance) or which have a large impact on our reliability as-
sessment (close to the limit state). A comprehensive literature review on adaptive
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approaches can be found in Teixeira et al. (2021), to which the interested reader is
referred, and to the references therein.

Based on Santner et al. (2003), the amount of information in an experiment is
related to entropy. It is defined as expected value of the surprise; which in turn
is defined as logarithm of the inverse probability. Therefore, the amount of infor-
mation in the parameters of the trained model (0) after the experimental design
of § reads as Eq. 3.4, which must be maximized by selecting new sample points.
The other approach can be to minimize the standard mean squared prediction error
(MSPE). It is obvious that using these approaches requires calling a computational
model; therefore, as claimed in Santner et al. (2003), they are not so popular in
practice.

Is = /[9|S] In [0|S]d6 (3.4)
MSPE[y(x)] = E[(¥(x) — y(x))?] (3.5)
x* = arggrgnin/D Ms%gy(x)}w(x)dx (3.6)

where, D is the feasible domain of the random variables, o2 is the standard de-
viation, and w(+) is the non-negative weight functions whose sum in the feasible
domain equals one.

To overcome this issue, the well-known Efficient Global Optimization (EGO) is
presented in Jones et al. (1998). In this approach, the most uncertain points of the
trained model can be found by maximizing the expected improvement (see Eq. 3.7).
The inherent advantage of this method is that the computational model does not
need to be evaluated except for the new sample point. To facilitate solving the
optimization problem, the authors in Jones et al. (1998) made a great effort to
determine the boundaries of the problem; however, they are presented for the case
of the Kriging meta-model. Note that the procedure terminates when the expected
improvement falls below 1%.

EI(x) = E[max(fum — §(x).0)] (3.7)

where, fpin is the minimum of the trained meta-model.

Based on Echard et al. (2011), the potential points to be considered in each it-
eration of adaptive sampling should satisfy at least one of these criteria, i.e., be
close to the limit state function where a small error in the prediction will cause
them to be misclassified as safe or failed and have a large uncertainty. In this con-
text, a learning function denoted as U-criterion is proposed (see Eq. 3.8), which is
simply a reliability index of sign[y(x)] # sign[y(x)]. It should be noted that the
criterion is proposed for the Kriging meta-model, where the standard deviation of
each prediction can be easily calculated. Then, the best candidate for the next
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sample point can be determined among those in the sample pool with the smallest
U-criterion value. Furthermore, it is believed that those points with U-criterion
value greater than 2 do not have significant uncertainty to be added to the training
dataset. It worth noting that the procedure stops when the coefficient of variation
of the predicted violation probability using trained meta-model becomes less than
the prescribed limit (e.g. 0.05). For the same approach, maximum difference be-
tween evaluated safety index by the trained meta-model and those estimated by
95% lower and upper confidence bounds is introduced in Dubourg et al. (2011) as
the stopping criteria. It is proposed for the stopping limit to be about 0.1-0.01.

(3.8)

Similar to the U-criterion, a "max-min" sampling scheme is presented in Basudhar
and Missoum (2010), which assumes that the region with the largest distance to
the existing dataset has the largest uncertainty. Moreover, considering a point that
is close to the current approximated limit state has a larger impact on the change
of the trained meta-model than those that are far from it. This approach leads to
obtaining the new sample point by solving the optimization problem presented as:

min —z

|x=x]| >z i=12_..,N
s.t. g

g(x) =0

where, z is an arbitrary parameter defined to overcome non-differentiability of the
cost function.

A later revision of this approach presents a generalized form that takes into account
the joint probability between random variables. Then, the Chebychev distance was
used to construct an unconstrained optimization problem as Eq. 3.9 (Lacaze and
Missoum, 2014).It is worth mentioning that the stopping criteria in this approach
is based on the relative change of the polynomial coefficients of the trained meta-
model, which is originally considered as SVM.

N
min élogfx(x)‘F%lOg;HXXiH_q (3.9)

s.t. x € Qp

where, fx(x) is the joint probability distribution of the basic random variables, ¢
is a very big constant number such as 40 and QF is the failure domain.
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3.2 Ensemble models

The above aspects all referred to a single meta-model; however, it is possible to
combine several individual (heterogeneous) models into a committee and predict
the final outcome based on their decisions. The final prediction can be obtained by
averaging in regression problems (see Eq. 3.10), by majority voting in classification
problems (see Eq. 3.11), or by probabilistic methods in both. This approach is
commonly known as ensemble learning (Goel et al., 2007; Sammut and Webb,
2011).

M(x) = wiM;(x) (3.10)
j=1
M(x) = sign [ij/\;lj(x)} (3.11)

Note that the result of the classification model can be either +1 or -1 (i.e. categorical
discrete data type representing failure or safety classes).

Regarding the combination of the individual meta-models, mostly identical constant
weights are considered for all of them; however, three other different strategies are
proposed in Goel et al. (2007) as:

= b €j = min(€i=1,...,m) (3.12)
/ 0, Otherwise
Diny i#j €
et L R 3.13
AT S (319
, b
wj = (¢j + acave) (3.14)

2221(61' + G€ave )’

where, €; is the leave-one-out cross validation error of the i-th individual meta-
model, m is the number of considered individual meta-models and €,y is the mean
of leave-one-out cross validation errors. Furthermore, a and b are constant values
which control the importance of average model compared to that of the individual
models. They are proposed to be taken as 0.05 and -1, respectively.

It is necessary for the individual models to be diverse. In other words, they should
not make identical mistakes or their errors should be uncorrelated. To this end,
several methods have been developed, which the interested reader may refer to Sagi
and Rokach (2018) and the references therein. Among them, Bagging (Bootstrap
Aggregating) and AdaBoost are the most well-known methods. The former trains
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each individual model using a dataset sampled from the original dataset with re-
placement. This means that some points are excluded and some others can be
repeated within this dataset. In this case, the individual models would be inde-
pendent. However, the latter trains dependent models by focusing on misclassified
cases and increasing their weight in subsequent iterations, while decreasing the
weight of correctly classified cases.

The discussed methods use the identical type of model within their procedure;
however, it is possible to ensemble different model types to construct stacked models.
A schematic view of the concept is shown in Figure 3.1. In general, the original
dataset is used to train individual models in the first layer of the stacked model;
however, their cross-validated predictions create a new dataset to train the model
in the second layer (Sagi and Rokach, 2018).

Model 1

L. Second
Initial Laver Model
Training Model 2 e Prediction
Training 2nd Layer
Dataset

Dataset

Model 3

Figure 3.1: Schematic representation of the stacked models.

In summary, Cheng and Lu (2020) has applied ensemble learning of conventional
meta-models, e.g., Kriging, PCE, and SVM in benchmark reliability assessment
problems, where a very good estimate of violation probability is obtained with
much smaller number of recalling computational models. In this study, each meta-
model was adaptively trained using the U-criterion; while the stopping criteria was
based on the relative difference between the maximum and minimum estimated
violation probability from each of the models. Moreover, the weighting function
of Eq. 3.14 was adopted to ensemble the individual meta-models. It should be
emphasized that the required model evaluations of the method were even less than
previously described adaptive methods.

3.3 Gaussian process (Kriging)

In general, the Gaussian process is a stochastic process that generalizes the concept
of Normal distribution in the scale of random variables to function. Thus, it is a
collection of random variables, each subset of which also has a common Gaussian
distribution. Such models have very interesting properties that have led them to
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receive a lot of interest in machine learning and meta-modelling applications. For
example, they can be completely defined in terms of their mean and covariance
matrices. In this section, a brief overview of their concepts is presented. The inter-
ested reader can find more detailed information in Jones et al. (1998); Rasmussen
and Williams (2006); Rogers and Girolami (2020) and the references therein. It
should be noted here that the Gaussian process can be used for both regression and
classification purposes; however, only the regression process is used in this study.
Therefore, the description of its formulation for classification problems is omitted
here.

As mentioned earlier, the objective of using meta-models is to predict unseen data
given a dataset that contains true observed values corresponding to an arbitrary
input (training dataset in Eq. 3.2). Assuming the model of M(+) with a vector
of parameters as w, since the parameters are defined based on a limited informa-
tion, then they can be considered as a random variable. Considering the Bayesian
approach, the posterior distribution of the model parameters given the training
dataset would be as:

B P(y‘w,X)P(W)
P<W|X7y> N fP(y’w,X)P(w)dw

(3.15)

where, P(w) is the prior distribution of the parameters.

Then the new prediction for the unseen data of x* can be obtained using Eq. 3.16.
Since the integration is computed over all values of the parameters, the Gaussian
process is called a non-parametric model.

P(y*|x*,X,y) :/P(y*’x*,w)P(w|X,y)dw (3.16)

Now the model in its simplest form can be assumed to be similar to the linear
regression problem, leading that to be formulated as:

~

M(x) =y = g(x) + e(x,0,0%) = f(x)"w + e(x,0,02) (3.17)

where, g(x) is the noise-free prediction vector, f(x) is a matrix collecting the vector
of predefined fixed basis functions of x (usually taken as polynomials), w are the
unknown coefficients to be estimated and €(x, , 02) is a stationary Gaussian process
with zero mean and autocovariance function of k(z,z’) which reads as:

e(x,0,0%) ~ GP(0,k(x,x')) (3.18)

Unlike linear regression, the Gaussian process does not consider the errors to be
independent. On the contrary, it assumes that the confidence of the predictions is
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related to the distance of the new unseen point from the points whose true values
are known. In other words, if the unseen point is close to a point whose we know its
true value, we have more information about possible values of this point compared
to the cases far from known points. The Gaussian process implements this using
the autocovariance function (known as kernel). A variety of kernel functions are
proposed, of which the squared exponential (Eq.3.19) is the most commonly used.
To distinguish the parameters of the kernel function from the parameters of the
model, the former (represented here by ) are referred to as hyper-parameter.

N

T, — Tp,
knp(Xn,X,) = exp < — Z(e—p)2) + Jipénp (3.19)

i=1

where, d,,, is the Kronecker delta and o2 is the variance of the noise in observations.

Assuming a Normal prior distribution for the parameters (w ~ A/ (b, B)), the model
would be the sum of two normally distributed functions, leading the likelihood
to also have Gaussian distribution. Then the posterior distribution of parameters
would be conjugate of the prior distribution, meaning that the posterior distribution
would also be Gaussian. Consequently, the distribution of the prediction for unseen
data would be Gaussian given the training dataset and the input. Moreover, the
model is the sum of two Gaussian functions, hence it would be a Gaussian process
as:

M(x) ~ GP(E(x) b, k(x,x) + £(x)  Bf(x)) (3.20)

Similarly, the joint distribution between the predicted values on the training dataset
and the unseen data would be the Normal distribution according to Eq. 3.21.

Mx)] N ([F@) D K(X,X)+ 02l K(X,X*) (3.21)
M(x*) F(x*) b| ~ K(X*,X) K(X* X% '
where, K(+,+) and F(+) are the collective matrices of covariances and basis func-
tions. The equations are simplified by considering K1 = K(X,X) 4+ 0,1, K12 =
K(X,X*), Kz = K(X*,X), Kyy = K(X*,X*), F = F(x) and F* = F(x").

Then the conditional probability distribution of the predicted values at unseen data
given the training dataset and input, would be a Normal distribution with mean
and variance as Eqgs. 3.22 and 3.23, respectively.

p=FT+ KK (y-F'D) (3.22)

0" =Koy — Kn K 'K + RT(FKJF')7'R (3.23)
f=B"+FK'F) "' (B 'b+FK'y) ~ (FK'F)"'FK 'y  (3.24)
R=F" - FK[ 'Ky (3.25)
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These equations lead to a conditional distribution of the predicted response for un-
seen data. The best prediction from this distribution should minimize the expected
loss. It has been shown that the mean and median values of the distribution mini-
mize the squared and absolute losses, respectively. Since the Gaussian distribution
is symmetric, the median and mean are equal.

One of the advantages of the Gaussian process is the variance of the conditional dis-
tribution. This value measures the epistemic uncertainty of the model. Therefore,
it gives an indication of the points that can be selected in the adaptive enrichment
procedure (Dubourg et al., 2011).

Example 3.1- Crude MC assisted by Kriging Meta-Model

In this example, the problem presented in Example 2.1 is again solved using
meta-model assisted crude MC. For this objective, the kriging meta-model
surrogates the performance function.

Two different training datasets (in size) are considered, and their leave-one-
out cross-validated performance is shown in Figure 3.2. It is worth noting
that these two datasets were generated with the improved Latin Hypercube
sampling technique using different seeds. As can be seen, the trained model
with a dataset size of 40 (i.e., 10 times the number of basic random variables)
satisfies the desired leave-one-out cross-validation error, which is usually
between 0.1-0.001. Moreover, it should be emphasized that the meta-models
perform better within the range of trained values. Considering this, the
model with a data set of 20 is not able to accurately predict negative values
of the performance function (i.e. the failure domain ).

) N=20 (6L00 =2.75e-03) , N=40 (eLoo =4.93e-04)
o’
Q ﬁ Q & g
= =
< ¢ ) &
> 1 @Q 3 1 P
3 , T
5 & 35
20 ¢ 20 o’
St et
~ [-»
-1 -1
-1 0 1 2 -1 0 1 2
True Value True Value

Figure 3.2: Performance of leave-one-out cross-validated Kriging meta-
models with different training dataset sizes.
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Next, the trained Kriging meta-model is used to conduct crude MC with
a sample size of 10°; where, the result of 8 = 1.864 is obtained. As can
be seen, the computed safety index agrees acceptably with the benchmark
solution.

It is worth noting that the computational cost of the metamodel-based MC
is about 13.2% of the cost of the crude MC solution. The reported value
excludes the time spent on training the meta-model. Clearly, the more
complex the computational model, the greater the difference between these
two approaches.

3.4 Polynomial chaos expansion (PCE)

The decomposition of complicated functions as a summation of simple orthogo-
nal functions is a widely used concept in engineering problems, for example in the
Fourier transform or modal analysis in structural dynamics. Polynomial chaos ex-
pansion (PCE) applies the same methodology; therefore, it can be a candidate to
surrogate computational models with some basis functions. The concepts presented
in this section are adapted from Blatman (2009); Blatman and Sudret (2011); Su-
dret (2008); Xiu and Karniadakis (2002). The interested reader can find more
detailed information in these references and the references therein.

Two functions in Hilbert space are considered orthogonal if their inner product
satisfies Eq. 3.26.

(60 (2), b (2))us = /D G0 () (2)0(@) AT = YO — Im(@) L m(z)  (3.26)

where, w(x) is the density of measure function (also called weighting function), D
is its support, v, is the normalization constant, and §,,, is the Kronecker delta.

Considering the orthogonality condition, for certain probability functions, a system
of orthogonal polynomials can be found whose PDF is the same as the weighting
function. These polynomials satisfy a three-term recursion relation as Eq. 3.27 and
are the basis functions used in PCE.

Apdni1(x) = (Ap + By — 2)dn(x) — Bpdn—1(x) n>1 (3.27)
where, A, and B,, are nonzero constants, ¢_1(z) = 0 and ¢o(z) = 1.
PCE was originally developed for independent random variables with Gaussian dis-

tribution as weighting function. Obviously, the transformation concepts described
in Section 2.1 can be applied to use the method for non-Gaussian random variables;
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— (X)) = = =, (X) —===d,(x) D3(X) o ?4x)

Hermite Legendre

Figure 3.3: Hermit and Legendre polynomial chaos functions.

however, this method was later extended for other common probability distribu-
tions. The former is referred to as Wiener polynomial chaos and the latter as
Wiener-Askey polynomial chaos. Some of the most commonly used ones are listed
in Table 3.1. The first five curves of Hermite and Legendre polynomials are shown
in Figure 3.3.

Table 3.1: Widely used Wiener-Askey polynomial chaos
Distribution Wiener-Askey polynomial chaos  Support

Gaussian Hermite (—o0, 00)
Uniform Legendre [-1,1]
Beta Jacobi [—1,1]
Gamma Laguerre [0, 00)

It has been shown that any function in the Ly sense (finite variance, which is the
case in practical situations) can be expanded as summation of tensor product of
corresponding Wiener-Askey polynomial chaos functions. Therefore, the random
process (here the computational model of M(+)) can be decomposed as:

MX) =Y ca®a(€) (3.28)

a€eNd

where, ¢, is the set of coefficients to be determined, ¥ (£) is the tensor product of
the basis polynomial chaos functions, £ is the vector of reduced form of the basic
random variables and d is the dimensionality (number of basic random variables)
of the original function. It is worthwhile noting that the Kronecker tensor product
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of two vectors reads as:

$191  pr1dy ... P19,
P20y P2ty ... B2,

pR ¢ =[¢1 . ] ®[F .. #] = (3.29)

budy Suds . Sudh

The number of elements of the tensor product of two polynomial chaos functions
with order of 5 is schematically illustrated as crosses and circles in Figure 3.4. It
should be emphasized here that the idea of this figure is adapted from Blatman
(2009).

It is obvious that the computational cost of summing infinite terms is not affordable;
therefore, the highest order of the polynomials is needed to be truncated to ¢
(see Eq. 3.30). Then, the cardinality of total degree (number of expansion terms)
would be a function of the dimensionality and the highest order of the polynomials;
which can be estimated by Eq. 3.31. In this case, the elements which should be
implemented in the illustrative 2D example would decrease to circles only (see
Figure 3.4).

MX) = M(X) = Y ca¥ulé) (3.30)
la|<q
P= (d%q?)! (3.31)

A further truncation scheme is presented by Blatman (2009) named as hyperbolic
index set. In this approach a hyperbola is defined and all terms outside of this
hyperbola would be truncated. The total degree in this approach reads as:

d
o], = (Yo" 0<y<1 (3.32)

Three different truncation scenarios using this approach is shown in Figure 3.4.
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Figure 3.4: Total number of the expansion terms in PCE.

It is obvious that increasing the polynomial order can improve the accuracy of the
PCE-based meta-model; however, it should be noted that this increases the compu-
tational cost of computing the constants. Consequently, calculating more constants
requires a larger dataset (more recalls of the computational model). Therefore,
training PCE would be a trade-off between accuracy and computational cost in the
training phase.

Different methods are proposed to compute the coefficients of the polynomials,
such as projection and least square minimization. The former uses the property of
orthogonality to remove all coefficients except the one corresponding to the desired
polynomial; this follows from Eq. 3.33. The left-hand side of this equation must
be estimated using numerical integration methods; therefore, this may increase the
computational cost of training.

B[MOX)] ~ B 3 calls(0a(X)| = 3 auB | 900w,00| =,
ler|<q lo|<q

(3.33)

On the other hand, the regression method finds coefficients by minimizing the sum

of the residual squares. By collecting the true observed values from the computa-

tional model in the vector of f and the corresponding values of the polynomials in

the matrix of F, the matrix of coefficients (C) reads as:

C=(F'F)'F'f (3.34)
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Example 3.2- Crude MC assisted by PCE Meta-Model

In this example, the problem presented in Example 2.1 is again solved using
the meta-model assisted crude MC. For this objective, the PCE meta-model
surrogates the performance function. It should be emphasised here that
these analyses were performed using the toolbox U@QLab (Marelli and Sudret,
2014).

Due to the simplicity of the problem, the highest order of the polynomials is
restricted to one or two. The performance of these two cases is compared in
Figure 3.5. As can be seen, the second-order polynomials satisfy the desired
leave-one-out cross-validation error of 0.001; thus, it acceptably resembles
the performance function.

Then, using the trained meta-model, a crude MC with a sample size of 10°
is performed. The result is 8 = 2.086, which is 11.4% higher than the bench-
mark solution. Moreover, it should be highlighted that the computational
cost of the meta-model assisted crude MC was almost 0.5% of the crude
MC.
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Figure 3.5: Trained PCE model.

3.5 Support vector machines (SVM)

The meta-models discussed so far attempt to approximate the computational model.
However, considering the formulation of the simulation-based methods (Eq. 2.17),
it would be possible to surrogate the indicator function instead. This is a binary
function, which results in the meta-model problem switching from regression to
classification. In this study, the Support Vector Machine (SVM), k-Nearest Neigh-
bours (k-NN) and Decision Trees are used for this objective; therefore, an overview
of their principles are presented in forthcoming sections. The concepts presented
here for SVM are mainly adapted from Hurtado (2013), where the interested reader
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is referred to that and the references therein.

The main objective of SVM is to find a hyperplane (e.g., Eq. 3.35 in linearly sep-
arable cases) that separates different classes (in structural reliability, the safe and
the failure domains). In binary problems, the prediction is made based on the sign
of the resulting value {rom the hyper-plane definition (Eq. 3.36).

fX)=(w,X)+b=0 (3.35)
A(x*) = class(x*) = +1, Sign[f(x*)] >0
M(x") = class(x") {_1, sign [ F(x)] < 0 (3.36)

where, (+,+) is the inner product of two vectors, w represents the normal vector of
the hyper-plane and f(x*) is called classification score.

Obviously, there are many choices of hyperplanes. Therefore, the goal is to find the
best candidate, which is introduced as the one with the maximum distance to the
nearest points. Moreover, it should have an identical distance to the nearest point
in each class. It is worth noting that these points are known as support vectors
and the absolute value of their predicted response is equal to one. This premise
basically means that the method assigns unseen data in the range of two classes
the same chance of belonging to one of the two classes. Since the distance of any
point to a plane is inversely proportional to the norm of the normal vector, the
problem would change to minimizing !/2w'w (1/2 comes from the width of the
region between two classes - margin). In addition, the optimization problem is
subjected to the constraints imposed by Eq. 3.36 and the definition of the support
vectors; which is Eq. 3.37.

fx*)[(w,x*) +b] >1 (3.37)

Then training the SVM would be solving a quadratic optimization problem, which
in Lagrangian form reads as Eq. 3.38. As can be seen, solving this equation reduces
the problem to minimising only Lagrange multipliers.

N

L= % ||W||2 _ Zai |:f(£€1)(<W, Xi> + b) —1| =
Al 21:1N N (3.38)
Z o — B Z Zaz‘f(xiﬂxi,xﬁajf(xj)
=1 i=1 j=1

where, a; > 0 is the Lagrange multiplier.
The above formulation was developed for linearly separable classes; however, it is

evident from Eq. 3.38 that the problem is only related to the inner product of the
input points. As discussed earlier for Gaussian process regression, it is possible to
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implicitly handle this situation using kernel functions. In summary, an example of
SVM performance in a 2D nonlinear problem is depicted in Figure 3.6.

x 1 0 +] —SVM - - -G(X) =x-2x sin(x,)
L ‘ ‘ ‘

o — o]

2

3L

Figure 3.6: Example of SVM performance for a nonlinear limit state.

Example 3.3- Crude MC assisted by SVM Meta-Model

In this example, the problem presented in Example 2.1 is again solved using
the meta-model assisted crude MC. For this objective, the SVM meta-model
surrogates the performance function.

Three features, namely the speed parameter (S), the load to the flexural
rigidity ratio (denoted here as F - each parameter in this ratio is normalized
by its mean value), and the normalized vertical acceleration limit are con-
sidered for training the SVM meta-model. Moreover, a simple linear kernel
function is employed due to apparent distinct safe and failure domains.
Similar to the previous examples, the leave-one-out cross-validation error
is limited to a maximum of 0.001. To achieve this accuracy, the adaptive
sample enrichment method proposed in (Lacaze and Missoum, 2014) (see
Eq. 3.9) is applied. The performance of the trained model along with the
initial training dataset and the adaptively added samples is shown in Fig-
ure 3.7.

Next, crude MC with a sample size of 10° is performed using the trained
SVM-based meta-model, resulting in S = 1.977. Comparing this result
with the benchmark solution, there is a difference of about 5.6%. It should
be emphasized that the computational cost of running these simulations is
about 0.3% of the crude MC using the original computational model. It
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should be emphasized that the training time is not included in the reported
cost of the meta-model assisted crude MC.
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Figure 3.7: Trained SVM model.

3.6 K-Nearest Neighbours (k-NN)

K-NN is a classification algorithm similar to the SVM; which simply classifies the
unseen data based on its distance to the k nearest neighbours. After distinguishing
the neighbours, the class of their majority is assigned to the unseen data. A brief
overview of this algorithm is presented here and the interested reader is refereed to
Rogers and Girolami (2020) for detailed information.

It is obvious that the performance of the algorithm depends on the selected number
of ncighbours. The small numbers makes the predictions to be highly influenced by
noises and the large values may prevent the method to recognize the true patterns.
Therefore, it is recommended for the best number of neighbours to be chosen by
calculating the cross-validation error for a range of different k values. It should
be noted that in the binary classification problems (such as reliability assessment
problems), the model using even k value may fail to predict when the number of
each class at neighbours become equal. This issue can be solved by considering an
odd value for k or weighting neighbours based on their distance to the new data.
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Example 3.4- Crude MC assisted by k-NN Meta-Model

In this example, the problem presented in Example 2.1 is again solved using
the meta-model assisted crude MC. For this objective, the k-NN meta-model
surrogates the performance function.

The number of neighbours is varied between 1-20 and the best k value is
selected based on calculated leave-one-out cross validation error at each
iteration (see Figure 3.8).As can be seen, k = 2&4 result in the smallest
leave-one-out cross validation error; which the larger value is selected for
further analyses.
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Figure 3.8: Performance of the k-NN meta-model as a function of considered
neighbours.

Next, crude MC with a sample size of 10° is performed using the trained
k-NN meta-model, resulting in 8 = 2.064. Comparing this result with the
benchmark solution, there is a difference of about 10.6%. It should be em-
phasized that the computational cost of running these simulations is about
1.03% of the crude MC using the original computational model which shows
a significant reduction.

3.7 Decision Tree

Decision trees are one of the widely used classification algorithms that can be eas-
ily interpreted. It is worthwhile noting that they can be employed for regression
objectives also; however, this aspect is not used in this study. They are basically a
flowchart (set of yes/no questions) starting from the root (the initial node), subdi-
viding (breaking) the complex space of the problem through branches with simple
choices at each step and predicting the class of data at leaves.
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This is a "top-down" procedure which progresses by selecting the best splitting fea-
ture at each step of training. This feature is selected by calculating the weighted
impurity or entropy of all features at the remaining sub-space of that step. These
methods are called Gini Index (see Eq. 3.39) and Info Gain (see Eq. 3.40), respec-

tively.
GI=Y w®[1-3 pl (3.39)
k J

IN =Y w® [ - p;log(p))] (3.40)
k

where, k is the number of sub-spaces at each step, j is the number of classes, w(*)
is the weight of each sub-space (i.e. ratio of the data in that sub-space to the total
number of data in that step) and p; is the probability of a sample belonging to each
class at each sub-space.

This procedure may result in a very deep decision tree which will probably be
prone to the over-fitting issue. Therefore, a subtree of that is selected afterwards
for further predictions; which results in smaller cross-validation error than the initial
model. This procedure is known as pruning; which the interested can find detailed
information about that in James et al. (2013).

It should be highlighted here that the single decision tree models mostly present
a weak performance on complex problems. Therefore, several approaches such as
bagging, boosting and random forest have been developed; which are basically a
weighted combination of many decision trees.

Example 3.5- Crude MC assisted by Decision Tree Meta-Model

In this example, the problem presented in Example 2.1 is again solved using
the meta-model assisted crude MC. For this objective, the decision tree
meta-model surrogates the performance function.

Initially, the best maximum number of splits (branches) is obtained by cal-
culating leave-one-out cross validation error for different considered values
in the range of 1-10 (see Figure 3.9). As can be seen, the maximum 4 num-
ber of splits results in the model with the least error. This configuration is
used to train the meta-model; which is presented in Figure 3.10.

Next, crude MC with a sample size of 10° is performed using the trained
meta-model, resulting in 8 = 1.953. Comparing this result with the bench-
mark solution, there is a difference of about 4.7%. It should be emphasized
that the computational cost of running these simulations (excluding the time
spent on training the meta-model) is about 0.4% of the crude MC using the
original computational model.
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Figure 3.9: Performance of the decision tree meta-model as a function of
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Figure 3.10: Trained decision tree meta-model.

59






Chapter 4

Summary of appended papers

High-speed railway transportation systems are becoming increasingly common arou-
nd the world and are a more sustainable and reasonably time-efficient choice than
airborne or road-based options for short- and medium-distance travels. The oper-
ation of trains with higher speed and/or axle load compared to traditional trains,
brings new challenges, both for the existing infrastructure and for those to be built.
It is evident that modern high-speed trains induce larger vibration levels on bridges,
which they are not fully addressed in previous editions of design guidelines. In this
regard, many studies have been carried out in the last two decades investigating
different aspects of this problem. Nevertheless, most of them solved the problems of
interest using deterministic approaches. This led to the fact that the current design
or evaluation rules are subjective and various vague aspects can be distinguished.
The latter statement is also addressed in previous studies. Therefore, this study is
devoted to the application of probabilistic approaches to investigate some of these
vague design methods of high-speed railway bridges. The application of different
reliability assessment methods in the context of dynamic problems is evaluated and
some preliminary conclusions are derived to provide a possible roadmap for future
research. A brief overview of the appended papers are presented in this section.
For general overview, the work flow and qualitative relation between papers are
presented in Figure 4.1.

Paper I: Reliability assessment of the dynamic behavior of high-speed
railway bridges using first order reliability method

Running safety, and in particular ballast destabilization, is shown to be a dominant
design criterion for high-speed railway bridges. Previous experimental studies have
shown the direct relationship between the vertical acceleration of the deck and
this limit state (Zacher and Baessler, 2005). Therefore, design guidelines limit the
vertical acceleration of the bridge subjected to the passage of trains at targeted
operating speeds. To this end, a safety factor of 2 is assigned to the reported
threshold value from experimental studies, which results in limiting the vertical
deck acceleration of ballasted railway bridges to 3.5 m/s?.

To the authors’ knowledge, there is no scientific background other than engineering
judgement behind the selection of the above safety factor. Therefore, there is a
possibility of designing either unnecessarily heavy or unsafe bridges. In order to
identify such inconsistencies, a preliminary reliability-based evaluation is conducted
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Running safety
vs. Passenger comfort

Subset simulation

vs. MC+PCE Meta-model Paper IV

Priliminarly Collect Data
reliability assessment

FORM method Paper III

Soil-structure interaction

of current design methods Assign PDF
‘ Optimum m & I (RBDO)

SVM, k-NN &
Decision Tree
Meta-Models

Ensemble meta-models

Figure 4.1: Work flow of the appended papers.

in Paper I. The objective was to obtain the design speed of generic bridges with sim-
ilar characteristics to the existing ones, using both conventional deterministic ap-
proaches and probabilistic methods. It is necessary to evaluate the reliability of the
system (probability of failure) for each operating speed in a wide range. This range
is considered to be [200-400] km/h. In order to derive some general conclusions,
the span length of the considered bridges is assumed to be in the range of [5-30]m,
which covers short to medium spans. It is worth mentioning that in this study, 2D
Euler-Bernoulli beams were considered to model the dynamic response of bridges
and the boundary conditions were assumed to be simply supported. Moreover, rail
irregularities and train-track-bridge interactions were neglected. Considering this,
the FORM was selected for the objective of this paper. Otherwise, an expensive
computational cost should be accepted if simulation-based methods were chosen for
reliability assessment. The author was aware of the possibility that accuracy might
be compromised due to the limitations of FORM for problems of a similar nature
to Paper I; nevertheless, this method appears to be acceptable for the objective of
comparison.

At the Paper I stage, a limited information was available to the author on the
properties of bridges. Therefore, it was decided to assign very simple distributions
compatible with the case of limited knowledge. Therefore, mean, lower and upper
bounds of the values were determined and probability distributions were assigned
based on them. Obviously, some random variables were correlated. This aspect
was neglected in this study; however, they were all tied to the bridge span length.
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The author has a sense that this may compensate for simplification in terms of
dependence.

Deterministic assessments were then performed using means and averages plus/mi-
nus one standard deviation of the basic random variables. The first speed at which
the maximum vertical acceleration of the deck surpasses 3.5 m/s? was assumed to
be the deterministic design speed. The probabilistic design speed was determined
by calculating the average failure probability for each operating speed and then
finding the first one at which the violation probability exceeds the target value of
1073, Also, the deterministic design speeds were used to find the corresponding
safety index. This is an approximate method, but it can give an idea of what
safety would be expected if the bridge were subjected to the passage of a train at
deterministic design speed.

For the reasons stated above, the absolute values of the safety indices were not an
important conclusion of this work. The main point was the observation of a con-
siderable difference between the deterministic design speeds and the corresponding
probabilistic speeds. A similar pattern was observed for the corresponding safety
indices. Furthermore, it was found that despite the use of a constant safety factor in
the conventional design methodology, it cannot be guaranteed that the final design
will meet the desired safety level.

As a side conclusion, a sensitivity analysis was performed for basic random variables
using direction cosine in the FORM. It was found that the coach length, the flexural
rigidity, the geometry of the bridge (or its mass per length) and the damping of the
system are the most important variables (Allahvirdizadeh et al., 2020).

Paper II: Surrogate-assisted versus subset simulation-based stochastic
comparison between running safety and passenger comfort design crite-
ria of high-speed railway bridges

In order to propose reliable and consistent design methods for future applications,
it is important to investigate the relationship between established limit states with
others. In other words, modifying a method without considering its impact on the
overall performance of the system may cause other limit states to become dominant.
In this context, a stochastic comparison is made between the running safety criteria
(discussed in Paper I) and passenger comfort.

Passenger comfort refers to the acceleration experienced by the passenger, which
is implicitly related to the deflection of the bridge. In this study, a moving load
problem on simply-supported bridges is solved to model their dynamic behaviour.
In addition to Paper I, an equivalent additional damping method and a stochastic
amplification factor were used to account for the effects of train-track-bridge inter-
action and rail irregularities, respectively. Bridge span lengths are limited to 10 m,
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20 m and 30 m. In addition, dynamic analyses were performed for operating train
speeds in the range of [200-300] km/h.

The assigned probability distributions were taken from Paper IV, where statistical
methods are applied to a more extensive database. Therefore, the dependencies
between random variables, in particular mass per length and moment of inertia,
were modelled using Copula functions. Then, simulation-based methods were used
to compare these two limit states. For similar reasons as explained in Paper I, the
crude Monte-Carlo simulation method was not applicable. Therefore, two different
approaches, namely subset simulation and meta-model based crude MC were con-
sidered. It should be noted that the polynomial chaos expansion (PCE) method
was chosen to surrogate the computational model.

First, the sensitivity of the subset simulation with respect to the sample size (Nj)
and the conditional probability at intermediate events (pg) was investigated in order
to select the best configuration of the parameters. For this objective, the values
(1000, 2000, 3000, 4000, 5000) and (0.05, 0.1, 0.2) were considered for Ny and po,
respectively. It was observed that Ny = 4000 and py = 0.1 give acceptably accurate
results. Similarly, the best performing meta-models were obtained by considering
different polynomial degrees up to the maximum value of 10 and the hyperbolic
truncation scheme in the range of [0.5-1.0]. The best meta-model should have
a lower polynomial degree while its leave-one-out cross-validation error does not
exceed 0.001.

Then, a crude MC with a sample size of 10 was performed for both performance
functions on bridges with a span length of 20 m and an operating train speed of
240 km/h. The resulting safety index and elapsed time were used as a benchmark
solution to compare the performance of the subset simulation and the surrogate-
based MC. Both approaches were found to result in safety indices very similar to
those reported by crude MC, while the computational cost was only about 2% of
that. Both methods worked well, but the subset simulation was chosen for further
investigation.

Using the subset simulation, the variation of the safety index as a function of the
operating train speed was calculated for both performance functions. Based on
the obtained results, the running safety limit state dominates over the passenger
comfort; however, their difference becomes smaller for longer bridges and slower

trains (Allahvirdizadeh et al., 2021b).

Paper III: Ensemble meta-models for running safety assessment of high-
speed railway bridges considering soil-structure interaction effects

Papers I and II neglected the effects of soil-structure interaction (SSI) in the con-
struction of computational models. SSI effects shorten the frequency of the system,

64



which consequently reduces the critical speed at resonance. On the contrary, they
can increase the damping of the structure, which reduces the amplitude of the
vibrations experienced. Considering these two contradictory conditions, it would
be essential to evaluate violation probability of the running safety considering the
effects of SSI. For this objective, a similar moving load problem was solved as in
Paper II, substituting the boundary conditions with lumped springs and dashpots.
It was previously shown that the properties of these springs and dashpots are a
function of the soil properties, the depth of the stratum, the dimensions of the
foundation and, most importantly, the bridge-soil frequency ratio.

The properties of the basic random variables were adapted from Paper IV. Due to
the considerable uncertainty of the soil properties, it was decided to consider differ-
ent groups of deterministic values that can resemble the real conditions. Therefore,
the shear wave velocity, the depth of the stratum and the width-to-length ratio of
the foundations were considered as (150, 300, 600) m/s, (0.5, 5.0, 10.0) m and (0.5,
1.0), respectively. It should be noted that bridge span lengths and operational train
speeds varied in the range of [10-30] m and [200-300] km/h, respectively.

In this paper, classification-based meta-models (such as support vector machines, k-
nearest neighbours and decision trees) were used as surrogates for the computational
models. To improve the performance of the meta-models, the concept of stack
modelling was used. The input to the second layer of the model is the weighted
posterior probability of the weak models in the first layer. It is worth noting
that the accuracy of the model was considered acceptable if the cross-validated
misclassification error of it was less than 0.01. This approach led to the training of
a single meta-model for the entire range of operational train speeds. Subsequently,
the performance of one meta-model was compared with the corresponding results
of crude MC, and acceptable agreement was observed.

Then, the trained models were employed to conduct crude MC reliability analyses
in the above mentioned range of operating train speeds. Next, the maximum and
minimum of the obtained results from semi-probabilistic approach of each bridge
length is reported as the possible boundary of safety. Comparing the obtained
results in Paper II with those obtained in this study, revealed that neglecting SSI
effects in short span bridges may lead to an underestimated evaluation of the safety
index for running safety. However, it would be possible to have an overestimated
safety index by increasing the span length (Allahvirdizadeh et al., 2022).

Paper IV: Minimum design requirements of high-speed railway bridges
using reliability-based optimization

In the papers previously discussed, probabilistic approaches were used to investigate

various aspects of running safety on high-speed railway bridges. It was found that
conventional design methods need to be modified. One approach that is probably
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most relevant is to update the safety factor of the method. At the time of writing
Paper IV the author was not sure whether the current vertical acceleration limit
was accurate or not. There is very limited knowledge on this subject. Then,
a different approach was taken by using the reliability-based design optimization
(RBDO) method to keep the vertical acceleration limit value as it is, neglecting
the traditional safety factor from the design methodology and proposing minimum
bridge design values for mass per length and moment of inertia (stiffness) instead.

In the first stage an extensive review of data available in the literature on various
aspects of the problem (bridge geometry, material properties, train properties, and
ballast destabilization) was conducted. In this context, 458 bridges in the Swedish
railway network were surveyed to extract their geometrical properties. This in-
formation did not necessarily correspond to high-speed lines; however, it gives an
idea of the possible range of values. Regarding the axle load of the trains, infor-
mation from 49 conventional high-speed trains operating at European Union was
considered. In addition, information on the bogie, suspension and coaches of 62
high-speed trains from around the world was extracted to perform modal analysis
to obtain a dataset of high-speed train dynamic characteristics (including funda-
mental frequency, modal mass and damping ratio). As mentioned earlier, only one
study was specifically devoted to investigate the problem of ballast instability using
experimental programs, but results of two other shaking table tests were found from
which the relationship between acceleration and lateral motion of ballast particles
can be derived.

Statistical approaches were then followed to assign the best theoretical probability
distribution function for each basic random variable. The procedure included con-
sidering the nature of the variable (e.g., is it always positive or not), calculating
higher moments, performing statistical tests with 5% significance level, plotting
quantile-quantile graphs and calculating goodness of fit using mean square error.
This approach led to the selection of the best theoretical distribution, or in other
words the least bad distribution. Then, its parameters were calculated using the
maximum likelihood method. It is worth noting that in the case of the vertical
acceleration limit, a Gaussian distribution is assigned without following the above
approaches and only due to the central limit theorem. This assignment is due to
the fact that it seems to be a function of many parameters. Then, the parame-
ters of the distribution are obtained from the mean and standard deviation of the
extracted data. Gathering a reliable amount of information allowed the calcula-
tion of parameters of the Copula functions for those basic random variables that
were assumed to be dependent, in particular mass per length and moment of iner-
tia. First, the best type of Copula function was selected by calculating the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC). Then,
their parameters were calculated by the maximum likelihood method.

In this study, a non-intrusive nested reliability-based design optimization was per-
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formed. Gaussian process regression (Kriging) was selected for the meta-models
due to its robust performance and their performance were adaptively enriched us-
ing U-criterion. The accuracy of the trained surrogate models were assured by
controlling the coefficient of variation of the estimated violation probability by
them, calculating the generalized safety indices and also limiting their leave-one-
out cross-validation error to 0.01. Then, minimum allowable mass per length and
moment of inertia was obtained for bridges with different span lengths. Similarly,
these values were used to propose maximum allowable fundamental frequency of
single span simply-supported high-speed railway bridges. In order to use these val-
ues in further applications, an exponential equation is fitted to minimum mass per
length and maximum fundamental frequency (Allahvirdizadeh et al., 2021a).
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Chapter 5

Concluding remarks

5.1 Discussion

Running safety is a specific terminology in the design of high-speed railway bridges.
It refers to the prevention of derailments or any phenomena which endangers safe
passage of trains over the bridge. Safety does not mean that failure will not occur in
a component or system during its service life. Rather, it means that the probability
of failure will not exceed a desired value during a specified period of time. This
limit value depends on a large number of parameters, in which the consequences of
a failure (risks) play a role above all. The latter can be categorized as fatalities/in-
juries, monetary, social and legal consequences of failure. Therefore, any study
that aims to update the design rules in terms of running safety should first evalu-
ate the probability of violating limit states and then calculate the consequences of
exceeding these thresholds. It is obvious that this requires the consideration of the
associated uncertainties in the problem. In other words, probabilistic approaches
should be used.

This licentiate thesis aims to provide the basis for updating the current design
regulations of high-speed railway bridges, especially with respect to their running
safety. The ultimate goal is to propose new design methods that lead to both op-
timal and safe solutions. At this stage of the project, the consequences of failure
are neglected. Then, the author has tried to understand the nature of the problem,
collect information on its various aspects to assign appropriate probability distribu-
tion functions, evaluate the performance of various reliability assessment methods
in this subject, study the effects of different parameters on the calculated failure
probability or different limit states on the final design, and use reliability-based
design optimization to propose minimum design requirements. Following this path
resulted in papers with chronological order as below:

1. Feasibility study to conduct detailed research on the subject of running safety.

2. Conduct a stochastic comparison between running safety and passenger com-
fort to find the dominant design criteria.

3. Investigate the influence of soil-structure interaction.

4. Propose minimum design requirements for running safety.
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5.2 Conclusions

The main conclusions that emerge from the attached papers are summarized below:

o Performing preliminary reliability evaluations on generic short to medium
span bridges using the FORM revealed that applying a constant safety factor
to all bridges with any conditions does not guarantee that they will all have
an equivalent safety margin. It also highlighted the point that still the final
design may violate the desired level of safety.

e The results of the FORM showed that the coach length, flexural rigidity,
bridge geometry, and system damping are the most important variables in
evaluating the running safety of high-speed railway bridges.

o It has been shown that both subset simulation and meta-model based MC
using PCE can significantly reduce the computational cost of reliability as-
sessment of railway bridges. Moreover, their computed failure probabilities
agree well with the benchmark solution from crude MC.

e It has been proved by stochastic comparison between the limit states of run-
ning safety and passenger comfort that the former dominates the design al-
most in all conditions. It should be noted that the difference between these
two performance functions decreases for shorter span bridges or trains passing
at lower speeds.

e It was found that the use of the stacked model can significantly improve
the performance of the weak models in the reliability evaluation of railway
bridges. This conclusion is obtained by comparing the violation probability of
the MC assisted by stacked classification-based meta-models with the crude
MC for a wide range of operating speeds.

o It was found that neglecting SSI effects can result in an underestimated safety
index for shorter span bridges; however, it is possible for the evaluated safety
index of longer simply-supported bridges to be an overestimated value.

o It was shown that it would be possible to assure a consistent safety level for
running safety limit state of bridges with different span lengths by neglect-
ing the conventional safety factor of 2 and using minimum allowable mass
per length or maximum permissible fundamental frequency obtained from
reliability-based design optimization methods.

5.3 Further research

In this licentiate thesis, reliability-based assessment methods have been applied
to investigate various aspects of running safety of high-speed railway bridges, and
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the reliability-based design optimization approach used in a later step to propose
minimum bridge design requirements. Some suggestions for possible future studies
on this topic are given below.

e More bridges should be surveyed, especially those on high-speed lines, to ob-
tain a more realistic feasible domain and to assign a more reliable probability
distribution for the geometric properties of the bridge.

e The use of modification factors to implement effects of load distribution within
ballast, rail irregularity, and train-track-bridge interaction can improve the
performance of moving load models; however, these are still approximate
methods. Complex finite element models should be constructed that explicitly
account for these parameters.

o Discrete element models of the track can be constructed to numerically inves-
tigate the ballast destabilization problem. This will lead to a better under-
standing of the nature of this phenomenon. Also, a more reliable probability
distribution for the vertical acceleration limit can be extracted.

¢ Updating the partial safety factor of the vertical acceleration limit seems to
be the simplest possible modification of the conventional design approaches.
It is easier to apply and well accepted in design practice. Therefore, it is
recommended to aim for a uniform (consistent) safety factor in conjunction
with the previous point.

e The concepts presented in this study are limited to ballasted bridges; how-
ever, similar concerns exist for non-ballasted bridges. Therefore, a systematic
approach should be taken to investigate various aspects of this issue for such
bridges and update existing partial safety factors.

o Consideration of the consequences of each failure mode is very important when
updating design codes. Therefore, it is recommended to collect information
about possible costs and implement them in the followed procedure of this
study.
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