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Abstract 

Battery models are used to represent batteries. For purposes like battery management systems, 

empirical based models like the equivalent circuit models are widely used. These models have 

downsides regarding for example inability to simulate internal states and parametrization time 

that make engineers look at physics-based models as an alternative. The physics-based models 

are made up of physical relationships that offer insights into what is happening inside the 

battery. These are too computationally demanding to be used for certain applications, like 

battery managements systems. The Single Particle Model (SPM) is a physics-based model 

that is utilized in this thesis project. The aim of the project is to find a method to parametrize 

the SPM for fresh commercial cylindrical HTPFR18650 1100mAh 3.2V lithium iron 

phosphate cells. Literature survey and experiments were used to extract the parameter values.  

17 parameters were selected from the literature survey since they could be used to parametrize 

the model. Geometrical parameters were found through a cell opening. Three types of non-

destructive experiments inspired by literature were performed to extract values for the other 

non-geometric parameters. A low-rate cycling test was performed to get pseudo-OCV curve 

and to extract capacity related parameters. A sensitivity analysis is done for the GITT and the 

Pulse test for the parameters that were connected to the transport and kinetic phenomena. 

Python mathematical battery modelling (PyBaMM) was used to simulate the experiments. 

The Prada 2013 parameter set was be used as default values. The default values for the 

selected parameters were replaced by the values found through experiments. 

The sensitivity analysis showed that some of the selected parameters were sensitive while 

others were not. The parameters were extracted through physical relations and through curve 

fitting procedures during discharge. Values for 14 out of the 17 parameters were extracted in 

the method. The parametrized model was validated against two potential applications, one for 

a battery electric vehicle and the other for a mild hybrid.  

The parametrized model showed that the negative particle radius cannot be found through the 

proposed parametrization procedure. The simulation matched the experimental data better for 

discharging cells than charging cells.  

Several improvements for future work have been suggested such as extending the sensitivity 

analysis, obtaining the OCV-curve from GITT instead of low-rate cycling, having stricter 

bounds for the curve fitting as well as creating more optimal tests to extract the parameter 

values.  

Key words: Parametrization, LiFePO4, Single particle model, Li-ion battery, Pseudo-OCV, 

GITT, Pulse test 
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Sammanfattning 

Batterimodeller används för att representera batterier. För ändamål som 

batterihanteringssystem används idag främst empiriska modeller som representerar ett batteri 

med en motsvarande kretsmodell. Några nackdelar för dessa modeller ligger i dess oförmåga 

att simulera interna tillstånd och en tidskrävande parametriseringsprocess. Dessa nackdelar 

motiverar ingenjörer att vända sig till modeller som är baserade på fysiska lagar som ett 

alternativ eftersom de kan ge insikt i vad som händer inuti batteriet. Batterimodellerna som är 

baserade på de fysiska lagarna har alltför krävande beräkningar för att kunna användas för 

vissa applikationer, som batterihanteringssystem. Singel-partikelmodellen (SPM) är en 

fysikbaserad modell som används i detta avhandlingsprojekt. Syftet med projektet var att hitta 

en metod för att parametrisera SPM för nya kommersiella cylindriska HTPFR18650 

1100mAh 3.2V litiumjärnfosfatceller. En litteraturundersökning och experiment användes för 

att extrahera parametervärdena. 

17 parametrar valdes från litteraturundersökningen eftersom de kunde användas för att 

parametrisera modellen. Geometriska parametrar hittades genom en cellöppning. Tre typer av 

icke-destruktiva experiment som var inspirerade av litteraturen utfördes för att extrahera 

värden för de andra icke-geometriska parametrarna. Ett cykeltest med låg strömhastighet 

utfördes för att få en pseudo-OCV-kurva och för att extrahera kapacitetsrelaterade 

parametrarna. En känslighetsanalys genomfördes för galvanostatisk intermittent 

titreringsteknik testet (GITT) och pulstestet för de parametrar som var kopplade till transport- 

och kinetiska fenomen. Python matematisk batterimodellering (PyBaMM) användes för att 

simulera experimenten. Parametersamlingen Prada 2013 användes som standardvärden. 

Standardvärdena för de valda parametrarna ersattes av de värden som hittades genom 

experiment. 

Känslighetsanalysen visade att några av de valda parametrarna var känsliga för experimenten 

medan andra inte var det. Parametrarna extraherades genom fysiska relationer och genom att 

anpassa parametervärde för simuleringen så att den passar den experimentella datan under 

urladdningsförloppet. Värden för 14 av de 17 parametrarna extraherades i metoden. Den 

parametriserade modellen validerades mot två potentiella applikationer, en för ett batteri-

elfordon och den andra för ett mild-hybridfordon. 

Den parametriserade modellen visade att den negativa partikelradien inte kan hittas med den 

föreslagna parametriseringsmetoden. Simuleringen visade sig också matchade den 

experimentella datan bättre under urladdning av cellerna jämfört till uppladdning. 

Flera förbättringar för framtida arbete har föreslagits, såsom att utvidgning av 

känslighetsanalysen, att erhålla OCV-kurvan från GITT istället för att använda pseudo-OCV-

kurvan, att använda strängare gränser vid kurvanpassningarna samt att skapa mer optimala 

tester för att extrahera parametervärdena. 

Nyckelord: Parametrization, LiFePO4, enkelpartikelmodell, Li-ion-batteri, Pseudo-OCV, 

GITT, Pulstest 
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1. INTRODUCTION 
The anthropogenic climate change is a threat to the world as it is known today. Along with the 

emissions of heat-accumulating greenhouse gases (GHG), such as carbon dioxide (𝐶𝑂2), the 

global average temperature has risen [1]. In 2019, the global average temperature had 

increased by 0.95 ℃ compared to the average during the past century [2]. To make the 

impacts of climate change less severe, our way of living needs to be adapted and mitigated 

through innovations and transitions to new solutions and lower GHG emissions. The Paris 

agreement has been signed by leaders worldwide but more need to be done [3],[4].  

One of the world’s largest GHG emitting sectors is the transport sector. The road transport 

sector is responsible for 11.9 % of global GHG emissions [3]. This is mostly due to the 

combustion of fossil fuels such as petrol and diesel for energy. By changing the source of 

energy, it is possible to decarbonize this sector which would have a large effect on the global 

emissions and by that the severity of climate change. 60 % of the road transport emissions 

comes from passenger travels (cars, motorcycles and buses) while the remaining 40 % comes 

from road freight (trucks) [3]. In Sweden, 2016, the total transport sector is the largest GHG 

emitter per sector with 20 million tonnes of 𝐶𝑂2-equivalents [4]. Fossil fuels are neither 

sustainable nor renewable and our sources of energy need to be shifted to more sustainable 

and renewable alternatives [5].  

Electrification is one way of tackling the GHG emissions from the transport sector. Other 

solutions are to use for example, biofuels or E-fuels. There is a paradigm shift taking place 

regarding the transition to non-fossil fuels and infrastructure that can support the new energy 

system. Several studies point to the use of renewable energy and new technologies in the new 

generation of transport systems. Electrochemical solutions like batteries and fuel cells are 

promising solutions to electrifying the transport sector. The powertrain will likely go towards 

more hybrid vehicles (HEV) and electrified solutions such as electrical vehicles (EV), which 

increase dependency of batteries [6].  

Even though the electric vehicle isn´t a recent invention, it has gotten a lot of interest and 

demand in the recent decade, mostly for passenger vehicles. Since the invention of the first 

kinds of electric vehicles, the technology has been competing with other technologies, most 

notable the internal combustion engine (ICE) technology that has dominated the market for 

the latest century. It is expected that it will be cheaper to own a BEV passenger car than an 

ICE within this decade [7]. With new batteries and research effort a similar development is 

expected to take place for the heavy-duty vehicles [7].  

The main advantage of transitioning from ICE cars to hybrid-electric and electric cars is to 

reduce the use of petroleum, decrease the emissions of greenhouse gases and pollutants and 

increase the energy efficiency. The falling cost and increased energy density of lithium-ion 

batteries (LiBs) over the last years has also contributed in the electrification of the transport 

sector [9]. 

Batteries are complex systems that can be described in varying level of detail by models. 

Battery models are descriptions of a system and can for example give insights for range 

predictions for EVs, safety limits for charge and discharge and optimal usage conditions [10].  
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Conventional battery management systems (BMS) commonly use empirical electrical 

equivalent circuit models (ECMs) that is made up by a voltage source, capacitors, and 

resistors in a network with the task to mimic the current-voltage response of a battery cell. 

The parameters extracted from the ECMs can vary with the state-of-charge (SOC), state-of-

health (SOH), temperature and current. To get data for a wide range of operating conditions, 

the process of extracting experimental data is time- and resource consuming. In the 

integration procedure of battery cells, the powertrain systems need to be adapted. This 

adaptation procedure is resource and time consuming and can hinder smooth technology 

development for example when a new battery cell with other characteristics is to be 

implemented. The model can only predict the behaviour of the cell within these operating 

conditions, data cannot be extrapolated, and factors such as degradation is challenging to 

capture because of the lack of electrochemical significance in the model parameters [10].  

As more research and effort is put into batteries and energy storage solutions there is a desire 

to reduce the implementation time for adjusting the systems to new battery types and use 

models with electrochemical properties. Two electrochemical battery models are the Doyle-

Fuller-Newman (DFN) and the single particle model (SPM). These models are made up of 

complex electrochemical relations and can be based on different chemistries and assumptions. 

The models need to be parametrized to accurately predict the behaviour of a specific type of 

cell. Parametrization methods and resources like PyBaMM (Python Battery Mathematical 

Modelling) that aims solve for electrochemical models might decrease the development time 

and give more accurate predictions than ECMs because of their electrochemical significance 

[11].  

1.1 Purpose and goals 

The purpose of the thesis is to acquire knowledge and about physics-based battery models, 

battery properties of the lithium-ion phosphate cell and challenges associated with 

parametrization. The vision behind the project is to transition the empirical-based models to 

electrochemical-based models to get the electrochemical significance and possibly lower the 

development time. This thesis will be a part of the vision by aiming to develop a method or 

process for parametrizing a SPM for a lithium iron phosphate and graphite (LFP/C) battery. 

PyBaMM will be used to solve the model and the parameter set Prada 2013 will be used as 

default parameter values. There are 84 parameters in the Prada 2013 parameter but not all 

parameters will be parametrized in this thesis mainly due to time restrictions but also issues 

with identifiability of the model. A selection of 17 parameters is chosen from a literature 

study and discussions with supervisors. The goals of the project are:  

• Parameterize the SPM from the open source PyBaMM modelling library for 

commercial LFP cells.  

• Parametrization will involve a literature survey as well as experimental work.  

• Validate the model parametrization against standard drive cycles. 

The target group for this report is Scania CV and others interested in models for LiBs. 

1.2 Methodology 

To fulfill the purpose of the thesis project, a literature review is done to get familiar with the 

topic and narrow down the project. The topics covered are different types of battery models, 

lithium-ion batteries, the LFP/C battery, and its characteristics followed by parametrization 

methods, sensitivity analysis and the open-source battery modelling tool PyBaMM. 
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From the literature study, three types of experiment are chosen because parameters are able to 

be extracted from the experimental data. A sensitivity analysis is conducted to confirm that 

the parameters are sensitive for the excitations in the experiments. The experiments are 

conducted to get the data from the cell. The parameter values are then extracted through 

methods found in the literature and through curve fitting. The curve fitting is done by editing 

the parameter values of the Prada 2013 parameter set to make the simulation in PyBaMM 

match the experimental data. 

The edited parameter set will be used to simulate two potential application scenarios with a 

battery electric vehicle and a mild hybrid solution in order to investigate the accuracy and 

validity of the parameter set. This is done in a qualitative manner by comparing the 

simulations from PyBaMM with experimental data for the potential applications. 

1.3 Scope and limitations 

All experiments will be done on fresh commercial LFP/C cells. Cell ageing is a process that is 

much researched but complicated to model [12]. In this test, new cells will be used and 

therefore the effect of ageing is not a focus of this study. All experiments will take place at 25 

°C. Some parameters (exchange current density and diffusion coefficient) are temperature 

dependent, but temperature dependence will not be included in the study. The parameters will 

be extracted from the discharge of the full cell only. 

The Prada 2013 parameter set will be used as default values while 17 out of these will be 

edited and changed to the identified values.  

2. BACKGROUND 
The background provides insights into a general battery introduction followed by lithium-ion 

batteries and specific characteristics of the lithium iron phosphate cell which will be used in 

this thesis. A brief overview of battery models including ECMs, the DFN and the SPM will be 

introduced to give insights in how they differ from each other. The SPM will be used for the 

simulations in this thesis. The background will also include information about parametrization 

and relevant work regarding parameter selection. The background will inform the reader 

about terms and phenomena mentioned later in the report starting off with battery 

introductions. 

2.1 Battery introductions 

Batteries are electrochemical systems that store and release energy through electrochemical 

reactions. There are several different kinds of batteries consisting of different materials, types 

and sizes. Three common types are cylindrical, pouch and prismatic [7]. Batteries are used in 

a wide range of both mobile and stationary applications, like telephones, automobiles and 

wind power plants. There are both primary and secondary systems, where the latter is 

rechargeable while the former is not. The oldest rechargeable battery, the lead acid battery, is 

still common as starter or back-up systems in vehicles [13]. 

An electrochemical cell is composed of two electrodes, connected with an electrolyte. The 

reaction that takes place at the interface between an ionically conductive electrolyte material 

and the electrically conductive electrode material is a redox reaction. The current flow is the 

opposite direction of the electron flow. 
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The chemical driving force within a battery cell is the difference in potential between the two 

electrodes. The total difference in Gibbs free energy comes out as the difference in energy of 

the electrons in each electrode. The chemical driving force drives redox reactions where 

electrons are exchanged when one reactant is oxidized, and the other is reduced. In a galvanic 

cell, energy is released during the reaction while in an electrolytic cell, energy is required to 

drive the reaction. The chemical energy is converted to electrical energy [14]. One example of 

a battery cell is the Daniel cell seen in Figure 1. 

 

Figure 1, Daniel cell 

The Daniel cell is a classic example of a battery cell. It consists of a positive copper electrode 

and a negative zinc electrode. Electrodes can have porous or non-porous structure. Porous 

structures offer a large surface area where reactions take place. The electrodes are in contact 

with an electrolyte consisting of 𝑍𝑛𝑆𝑂4(𝑎𝑞) and 𝐻2𝑆𝑂4(𝑎𝑞) on the negative electrode side 

and 𝐶𝑢𝑆𝑂4(𝑎𝑞) and 𝐻2𝑆𝑂4(𝑎𝑞) on the positive side as well as a wire with a load. A porous 

separator can be used to separate the electrolytes from each other. A salt bridge could also be 

used to transport ions. The purpose of the electrolyte is to transport ions and heat. The 

separator´s purpose is to hinder mixing of species and electrical short circuits. It also allows 

for different electrolytes in the electrode chambers. For the Daniel cell, the electrodes act as 

the current collectors. If the electrodes need support in collecting the current, the separate 

current collectors can be used. They are usually made of highly conductive material [15]. 

There is a potential difference between the positive and the negative electrode. This potential 

difference will cause a spontaneous reaction where the negative electrode, zinc in the Daniel 

cell case, will oxidize and the ions at the positive electrode surface, copper for the Daniel cell 

case, will be reduced. When oxidation takes place at an electrode it is called an anode and 

when reduction takes place, the electrode is called a cathode. See the reactions taking place 

below. 

Oxidation:   𝑍𝑛(𝑆) → 𝑍𝑛(𝑎𝑞)
2+ + 2𝑒−   

Reduction:  𝐶𝑢(𝑎𝑞)
2+ + 2𝑒− → 𝐶𝑢(𝑆)   

Total reaction: 𝑍𝑛(𝑆) + 𝐶𝑢(𝑎𝑞)
2+ → 𝑍𝑛(𝑎𝑞)

2+ + 𝐶𝑢(𝑆)  

The ions will move through the electrolyte while the electrons will move from the electrode 

through the wire to the electrode on the other side. An electric load, for example a light bulb, 

    

 

  2+

   
2    

2 

  2+
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can be connected to the wire and will light up when electrons are passed through. The reaction 

is driven by difference in potential which can be seen to the right of the above reactions. The 

open-cell voltage is described by Equation 1. 

𝐸𝑐𝑒𝑙𝑙
° = 𝜑𝑐𝑎𝑡ℎ𝑜𝑑𝑒 − 𝜑𝑎𝑛𝑜𝑑𝑒    (1) 

In Equation 1, 𝐸𝑐𝑒𝑙𝑙
°  is the open-cell voltage, 𝜑𝑐𝑎𝑡ℎ𝑜𝑑𝑒 and 𝜑𝑎𝑛𝑜𝑑𝑒 are the potential for the 

cathode and the anode. For the Daniel cell, the open-cell voltage is 1.1018 V. Batteries are 

usually arranged in modules or packs to give a higher voltage.  

The cell potential is dependent on the concentration of the dissolved species that take part in 

the redox reactions. This is described by the Nernst equation (2). 

𝐸𝑐𝑒𝑙𝑙 = 𝐸𝑐𝑒𝑙𝑙
° +

𝑅𝑇

𝑛𝐹
𝑙𝑛 (

𝑎𝑜𝑥
𝑣𝑜𝑥

𝑎𝑟𝑒𝑑
𝑣𝑟𝑒𝑑

)   (2) 

The electrode and electrolytes potential differs throughout the cell. In Figure 2, different 

sources of resistance in the cell can be seen. 

 

Figure 2, potential change in cell components recreated from [16] 

What Figure 3 visualizes can also be expressed with Equation 3. 

 

𝐸𝑐𝑒𝑙𝑙 = 𝐸𝑒𝑞,𝑐 − 𝐸𝑒𝑞,𝑎 − |𝜂𝑐| − |𝜂𝑎| − 𝐼𝑐𝑒𝑙𝑙 ∙ (𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5) (3) 

In Equation 3, 𝐸𝑒𝑞,𝑐 and 𝐸𝑒𝑞,𝑎 are the equilibrium potentials at the cathode and anode. |𝜂𝑐| 

and |𝜂𝑎| are the overpotentials connected to the cathode and anode. 𝐼𝑐𝑒𝑙𝑙 is the current in the 

cell and the R terms represent the resistance in different parts of the cell. 

The voltage change as the cell gets polarized. The cell becomes polarized when the current is 

not zero. The polarization can be seen a while after the circuit is broken or current is zero. 

Figure 3 shows the polarization curve. 

        

       2
        

        

        

     

     

  =    , +   

  =    , +   
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Figure 3, Cell polarization as a function of current [16] 

From Figure 3 three different types of polarizations takes place. The IR-drop is due to current 

that flows through the cell´s internal resistance described by Ohms law. The activation 

polarization is related to the kinetics of the electrochemical reaction where the slowest process 

determines the rate of the reaction. Concentration polarization is related to resistance during 

the mass transfer phenomena. The mass transport in an electrolytic solution can be described 

by diffusion, migration, and convection by Nernst-Planck´s equation (4) [8]. 

𝐽𝑖 = −𝐷𝑖∇𝑐𝑖 − 𝐹
𝑧𝑖

|𝑧𝑖|
𝑢𝑖𝑐𝑖∇𝜑 + 𝑐𝑖𝛾   (4) 

In Equation 4, the first term is related to the diffusion, the second to the migration and the 

third to convection. ∇𝜑 is the gradient of the potential that describe an electric field. 𝛾 is the 

bulk velocity. The other symbols are specific for species i. 𝐽𝑖 is the flow of a species, 𝐷𝑖 is the 

diffusion coefficient, ∇𝑐𝑖 is the concentration gradient, 𝐹 is Faraday’s constant, 𝑧𝑖 is the 

charge number, 𝑢𝑖 is the mobility. The Nernst Planck Equation 4 describes the flux of ions 

under the influence of both an ionic concentration gradient and an electric field [17].  

To talk about current rates (C-rates) to explain which current that the cell experiences while 

doing experiments on battery cells are usually used. A C-rate of 1C means that a fully charged 

cell is discharges after 1 hour while operating at the C-rate. A C-rate of 2 C or 
1

2
 C means that 

the fully charge cell is discharged after 0.5 and 2 hours, respectively. 

There are several other types of batteries than the Daniel cell that uses different materials and 

compositions. A Ragone plot with different battery types can be seen in Figure 4. 
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Figure 4, Ragone plot [7] 

One type that has gotten a lot of focus within the automotive market is the lithium-ion 

batteries for on-board storage solutions [13]. From the Ragone plot in Figure 4, lithium-ion 

batteries (LiB) have a relatively high specific power and specific energy density. In the next 

part, more information about lithium-ion batteries will be covered. 

2.1.1 Lithium-ion batteries 

Due to their high energy and power densities, the LiB technologies are leading in the new 

generation of EVs and plug-in hybrid electric vehicles (PHEV) [12]. Common kinds of LiBs 

found in electrical vehicles are Lithium Cobalt Oxide (LCO), Lithium Manganese Oxide 

(LMO), Lithium Iron Phosphate (LFP) and Lithium Nickel–Manganese–Cobalt Oxide (NMC) 

[6]. Different electrode materials have different advantages like lower cost, higher thermal 

stability, longer cycle life etc that makes them useful for different applications [8]. Some 

benefits and drawbacks of lithium-ion batteries compared to other types of secondary battery 

chemistries can be seen in Table 1. 

 

Table 1. Some benefits and downsides to LiBs compared to other secondary battery chemistries [8] 

Benefits Drawbacks 

High operating voltage 

High energy densities  

Less cells per applications are needed 

Low self-discharge rate  

High sensitivity to overcharging 

Special requirement of chargers 

 

The positive electrode material of LiBs is typically a metal oxide with a layered or tunnelled 

structure on an aluminium current collector. The negative electrode material is typically 

graphitic carbon on a copper current collector. The electrolyte consists of a non-aqueous 

solutions [18], [19], [20]. An overview of the cell structure can be seen in Figure 5 below.  
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Figure 5, Lithium-ion cell [21] 

Intercalation is a property of some electrode materials where the crystal structure allows the 

lithium ions to be inserted and removed without changing the materials structure significantly. 

The intercalation electrode stays intact during cycling unlike conversion electrodes where the 

electrodes are degraded and reformed upon cycling. This reversible 

intercalation/deintercalation reduces the problem of dendrite formation of lithium which 

provides improvements in safety and cyclability compared to other batteries [18], [19], [20]. 

During the charge-discharge process, the lithium ions are inserted or extracted from the layers 

of the active material [22]. This can be seen in Figure 6 below. 

 

Figure 6, Charging and discharging a LiB. During discharge the lithium ions (purple) are released and 

transported through the electrolyte to the cathode. Electrons travel through the wire to the cathode [22]. 

The electrolyte is not stable for the cell voltage and decomposes to form a passivation layer, 

called solid electrolyte interface (SEI), at the negative electrode [23]. 

2.1.2 Lithium iron phosphate and graphite characteristics 

One type of LiB has lithium iron phosphate as positive electrode material and graphite as 

negative. These lithium iron phosphate and graphite cells are usually called LFP cells. The 

lithium ions can be intercalated in the LFP and graphite structure [18], [19], [20]. 
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The main electrochemical reactions taking place in this cell during charge and discharge can 

be seen below. The reactions are stated during discharge. 

Reduction:  𝐿𝑖(1−𝑥)𝐹𝑒𝑃𝑂4 + 𝑥 ∙ 𝐿𝑖+ + 𝑒− → 𝐿𝑖𝐹𝑒𝑃𝑂4  

Oxidation:  𝐿𝑖𝑥𝐶6 → 𝑥 ∙ 𝐿𝑖+ + 𝐶6 + 𝑒− 

Overall reaction: 𝐿𝑖(1−𝑥)𝐹𝑒𝑃𝑂4 + 𝐿𝑖𝑥𝐶6 → 𝐿𝑖𝐹𝑒𝑃𝑂4 + 𝐶6 

The “x” in the reactions indicate that the material can hold a variable stoichiometry of lithium 

between 0-1. From the reactions it can be seen that only the lithium ions move between the 

electrodes during charging and discharging. The name, "lithium-ion" batteries comes from 

this mechanism [18], [19], [20]. 

Graphite is a layered compound that consists of hexagonal graphene sheets of atoms. The 

sheets are weakly bonded through van der Waals forces [24]. See the structure of a graphite 

unit cell in Figure 7. 

 

Figure 7, Crystalline structure of hexagonal graphite showing the stacking of graphene sheets and the unit cell 

[24] 

The LFP/C cell differs from most other LiBs with its flat OCV-curve. See the OCV-curves of 

LFP/C, NMC/C and NMC/LTO in Figure 8 below. 
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Figure 8, Typical OCV vs SOC for different lithium-ion batteries [21] 

The OCV curve provides important thermodynamic information of the electrode properties 

after relaxation of kinetic processes. The LFP electrode has a very flat OCV curve during 

lithium intercalation/deintercalation through most of the two-phase reaction in the range 

between x=0 to x=1 in LixFePO4 at room temperature [25], [26]. Two-phase regions are 

shown as voltage plateaus while the slopes show the phase transitions according to Gibbs’ 

phase rule. The small “bumps” that can be seen in Figure 8 comes from the graphite 

electrodes staging phenomenon when Li is intercalated into the graphite layers. The full cell 

OCV-curve mainly exhibit the graphite characteristics [27], [19]. The flat OCV-curve in 

combination with path dependence [28] and inherent hysteretic behaviour [29] [26], makes 

the SOC difficult to determine with OCV-monitoring. The relationship between SOC and 

OCV is essential for battery modelling [30] and to control cell performance in battery 

management systems (BMS) [31], [27]. 

2.2 Battery models 

When the demand for electric, hybrid electric and plug-in hybrid electric vehicles increases, 

further understanding and development of the batteries are needed to make more accurate 

predictions and estimations of the battery. Battery models are commonly used in BMS to 

make predictions and estimations about the cell. They are used to understand behaviour, 

discover new designs and usage scenarios for batteries. Information like the state of health 

(SOH), SOC and their power limits are important to understand changes in the cell like ageing 

to increase the lifetime of the cell. This information can help companies to protect and use the 

batteries in the best way and estimate the remaining performance [32]. Depending on which 

information is desired, there are different models to use, for example atomistic models for 

material optimization, continuum electrochemical engineering models to understand drive 

performance and manufacturing and techno-economical models that can be used to 

understand lifecycle impacts and costs [33]. To estimate the internal states for control 

systems, empirical ECMs are often used although there is a desire to integrate physics-based 

models with this aim. 

The physics-based models are based on parameters with electrochemical meaning which can 

provide insights in the different electrochemical phenomena inside the battery. Two examples 

of physics-based models are the Doyle-Fuller-Newman (DFN) and the Single particle model 

(SPM). A very common type of empirical models is called Equivalent circuit models (ECM).  
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2.2.1 Equivalent circuit models 

ECMs are used to mimic a cell for a set usage. ECMs can be build-up of resistors, capacitors, 

inductors, constant phase elements in different configurations. Figure 9 shows a simple 

schematic of a part of an electric circuit with resistors (R,s and R,p) and a capacitor (C). 

 

Figure 9, A simple schematic of a part of an electric circuit 

By adding more elements, the model can generate more accurate and precise simulations of 

the battery behaviour. The disadvantage of more elements in the equivalent circuit is that 

more information about the cell is needed for parameterization and the CPU time for 

calculations is increased [34]. 

The empirical model can become very well adapted to the battery and give an accurate 

description, but it needs to be tested for all possible scenarios of which the cell should be 

used. This is a time-consuming process, which can take months to years. Because of the 

simple model structure, relatively low computational burden, and rather easy parametrization 

process, ECMs are used for a wide range of industry applications [35]. The simplicity of the 

model is also restricting it from describing the physical meaning of the states and parameters 

in the cell. The model is only applicable within the scenarios that it has been tested for, it is 

hard to extrapolate from data and explain what is physically going on. Processes like ageing 

are also difficult to account for in the model which could lead to unwanted effects of 

operation. The adaptation needs to be done again and new empirical data must be collected 

[35].  

2.2.2 Doyle-Fuller-Newman model 

The Doyle-Fuller-Newman model (DFN), also called pseudo-two-dimensional (P2D) model 

or the Newman model is an electrochemical model that is based on the porous electrode 

theory and contains a large number of parameters with physical meaning. This can give a 

deeper understanding into processes taking place inside the battery than the ECMs can 

provide. Since the DFN model is based on governing physics-based relations and conditions, 

it can give more insights into the processes and internal states of the battery, and it is not 

limited by a pre-defined scenario window as the ECMs. It is also possible to extrapolate from 

these models, adapt and parametrize them to different battery chemistries since they are based 

on the same governing equations.  

The model have inputs regarding thermodynamic, geometric and kinetic properties of the cell 

to be able to describe a specific cell [36]. The accuracy of the input parameters has a large 

impact on the reliability of the DFN and other physics-based models. Not all parameter values 

can be transferred between cell type, chemistries and sizes, therefore a main challenge in 
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battery modelling is to find a set of parameters which can and cannot be transferred and how 

to find the values needed [36]. To identify electrochemical parameters in a fast and accurate 

manner is a vision of many engineers and researchers [35].  

The model is complex and is described by a set of highly coupled nonlinear partial differential 

equations. This makes it too computationally complex for some applications, like today´s 

BMS. For these cases, simpler electrochemical models are of interest. 

The governing equations of the DFN are related to charge conservation, molar conservation 

and electrochemical reactions. The boundary conditions are the current, concentration in 

electrolyte, concentration in electrode active material, reference potential and initial 

conditions [36], [37], [38]. 

2.2.3 Single particle model 

A physics-based model that is simpler than the DFN model is the Single Particle model 

(SPM). The SPM describes the main phenomena taking place in a Li-ion cell: solid state 

diffusion, intercalation and de-intercalation and conduction. It neglects the diffusion in the 

electrolyte. See a simple schematic of a battery with the SPM in Figure 10. 

 

 

Figure 10, (a) Structure of a Li-ion cell: (I) negative current collector; (II) anode; (III) separator; (IV) cathode; 

(V) positive current collector. (b) single-particle model schematic [39] 

It is assumed that all the particles in the electrode behave the same way and that it is sufficient 

to solve the model for one particle. This assumption allows for a considerable simplification 

in the model structure and dimension and is generally considered to be acceptable at current 

rates (C-rates) up to 1 – 2 C, when electrodes are thin and highly conductive. Following the 

assumption, the diffusion and intercalation phenomena occur in a uniform manner in the 

electrodes, making it possible to model the electrodes as two spherical particles. This leads to 

a simpler version of the DFN model [37]. For several applications with energy optimized 

batteries, such as electric vehicles, the average C-rates are lower than 1C [10].  

The SPM is not as computationally demanding as the DFN, but it can give more insights into 

the physics taking place inside of the cell than ECMs. 
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2.3 Parametrization of a model 

While models consist of mathematical relationships and parameters that together describe a 

system, parametrization is related to finding the values of the parameters that makes the 

model describe the system in an acceptable way.  

The accuracy of the parameters that build up the model have a strong impact on the reliability 

of the model. The parameters are specific to the cell design, geometry, and chemistry so not 

all parameters can be transferred between cells. Finding a suitable set of parameters that can 

simulate a desired aspect of a cell is a challenging task for battery modelling. To find a 

suitable set of parameter values, different methods can be used. One method is to fit the 

simulation and the model to experimental data such as terminal voltage. This method might 

not be feasible without good initial guesses because of the large number of parameters and the 

complexity of the model. Secondary, parameter values can be found in literature but there is a 

risk of poor model predictions if the values in different sources have different conditions. A 

third method would be to measure the parameters experimentally. This could potentially give 

more accurate model predictions for the cell but it needs robust approaches and might be 

technically complicated and time consuming [36]. 

A structural property of a model is its identifiability. That a model is identifiable means that 

the different parameter values must create different probability distributions of the model 

output. When the same model output can be attained with different parameter values, the 

model is non-identifiable. A model can be identifiable within certain restrictions. The 

requirements for the restriction are called identification conditions [40]. If there is a risk for 

co-dependency between parameters, then it can be difficult to have a model or find 

requirements where it is identifiable. 

2.3.1 Related work 

There are several papers available that describes different methods to estimate the parameters 

in ECM [41]. Methods to estimate the parameters in the DFN and SPM are scarce. Some 

parameters in these electrochemical-based models are possible to find through experiments 

but the measurements needed are complicated. The electrochemical models also involve a 

larger number of parameters compared to the ECM which makes the estimation more 

computational complex. The Gauss-Newton method for non-linear optimization and 

homotopy optimization has been used to estimate parameters in the SPM. QR factorisation is 

used in the sensitivity analysis for the DFN model in [41] where non-linear least-square 

optimization is used to parametrize the sensitive parameters. 

2.3.2 Target parameters 

While conducting analysis on electrochemical systems, the parameters describing the system 

can be grouped into different properties that they are related to, for example into physical, 

chemical and electrochemical [36]. In [41] the parameters of the DFN model is divided into 

thermodynamic and kinetic parameters. In [35] the groups are geometric, transport and 

concentration. The parameters have also been grouped regarding to which phenomena they 

are related like diffusive phenomena, intercalation and equilibrium related [39]. 

The parameter set called Prada 2013 that can be used in simulations with PyBaMM is a 

collection of parameters that can be used for LFP/C cells. The parameters in the set orgins 

from three different sources [12], [36],[42]. There are in total 84 parameters in the parameter 
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set that will give different effects on the simulations with PyBaMM [43]. A table with all 

parameter values in the Prada 2013 parameter set can be found in Appendix A.  

A collection of the parameters found in [35], [36], [39] and [41] as well as other parameters 

who are thought to be sensitive or that could be used to parameterize the SPM can be seen in 

Table 2. 

Table 2. Thermodynamic, transport and kinetic parameters with literature values 

Sign Unit Description Prada 2013 Literature values 

𝑡+ µm Electrode thickness 81 72, 52 and 80 [44] 

𝑤+ m Electrode width 1.78  

ℎ+ mm Electrode height 64.9  

𝑡𝐶𝐶,+ m Positive current collector 

thickness 

1.9e-5  

𝑡𝐶𝐶,− m Negative current collector 

thickness 

1e-5  

𝑡𝑠 m Separator thickness 1.8e-5  

𝑒+ - Active particles volume 

fraction in the positive 

electrode 

0.28485556 0.456, 0.483, and 

0.354 [44] 

𝑒− - Active particles volume 

fraction in the negative 

electrode 

0.75 0.4-0.5 [35] 

𝑋100% - Stoichiometry of lithium in 

positive electrode in 100% 

SOC 

- - 

𝑋0% - Stoichiometry of lithium in 

positive electrode in 0% 

SOC 

- - 

𝑌100% - Stoichiometry of lithium in 

negative electrode in 100% 

SOC 

- 0.676 [45] 

𝑌0% - Stoichiometry of lithium in 

negative electrode in 0% 

SOC 

- 0.126 [38] 

𝐷+ 𝑚2

𝑠⁄  Positive electrode 

diffusivity 

5.9e-18 8e-18 [46] 

1e-12 –1e-13 [47]  

𝐷− 𝑚2

𝑠⁄  Negative electrode 

diffusivity 

3.3e-14 2e-9 – 1e-10 [24] 

𝑟+ m Positive particle radius 1e-08 - 

𝑟− m Negative particle radius 5.86e-6 3-22e-6 [48] 

7.28e-6 [49] 

12.5e-6 [50] 

1-11e-6 [35] 

𝑖0,+ 𝐴
𝑚2⁄  Exchange current density in 

positive electrode 

Available as 

a function 

3.14e-6 [46] 

6.50e-3, 1-67e-2 

and 4.73e-3 [44] 

𝑖0,− 𝐴
𝑚2⁄  Exchange current density in 

negative electrode 

Available as 

a function 

2.1 [51] 

3.6e-3 [45] 
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𝑘+ 𝑚2.5𝑚𝑜𝑙0.5𝑠 Reaction rate coefficient  - 

 

- 

𝑘− 𝑚2.5𝑚𝑜𝑙0.5𝑠 Reaction rate coefficient - 1e-11 – 2e-10 [35] 

𝜎+ 𝑆
𝑚⁄  Positive electrode 

conductivity 

0.33795074 10e-7 –10e-8 [46] 

1e-7 [47] 

0.001-1 [52] 

𝜎− 𝑆
𝑚⁄  Negative electrode 

conductivity 

215.0 (2-1)e5 [47] 

2-3e5 [53] 

3e5 [46] 

100 [45] 

R Ω Cell resistance -  

 

Diffusivity 

The transport parameters are linked to the cell´s capability to transport particles and ions. 

Diffusion is the movement along concentration gradients. Atoms move in a predictable 

fashion to eliminate concentration differences and produce a uniform and homogeneous 

composition [53]. Nernst Plack equation (Equation 4) describes the diffusion in electrolytic 

solutions [47]. 

The intercalation process of lithium ions into electrodes involves several processes like the 

diffusion through the electrolyte, migration in the surface film, charge transfer at the 

electrode/electrolyte interface followed by the diffusion in electrode. While using the SPM, 

the mass transport in the electrolyte is assumed to be instantaneous and the transport in the 

electrodes are most important. In carbon electrodes the mass transport of lithium ions is 

regarded as a diffusive process and since the diffusion process in solids is generally slow, the 

rate of diffusion is limiting the overall reaction rate [24]. The diffusion coefficient, or 

diffusivity, of Li-ions in the electrode´s active material can be seen as a parameter of interest 

for a sensitivity analysis and parameter estimation of LiBs [41], [50], [35], [39], [24].  

There are several methods to determine the diffusion coefficients of lithium in solids. Some 

examples are galvanostatic intermittent titration technique (GITT), current pulse relaxation, 

potential step chronoamperometry and AC impedance spectroscopy. A precise determination 

of the diffusivity is generally difficult to conduct, and the results depend on which kind of 

material and additives that make up the electrodes and the technique that is used. For some of 

these techniques, the variation of the open-circuit potential with lithium composition and the 

surface area of the sample need to be highly accurate [24]. 

Particle radius 

The particle radius of the electrode material depends on the production. To offset the solid-

phase diffusion limitation, the particle radius of the LFP active materials are usually prepared 

in nano-size particles [47]. The reversibility of the intercalated lithium ion in graphite is 

strongly dependant on the particle size of graphite [54]. Scanning electron microscopy (SEM) 

can be used to find a particle size distribution [44]. 

Reaction rate  

The reaction rate in the electrode is an important kinetic parameter because it is linked to the 

rate limiting processes within the cell. The reaction rate is not an individual parameter in the 

Prada 2013 parameter set but is expressed through the exchange current densities in the 
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electrodes. Through the Butler-Volmer and Arrhenius equations, the connection between 

reaction rate and the exchange current density can be found.  

𝑗(𝜂) = 𝑗0 ∙ {𝑒𝑥𝑝 (
𝛼𝑎𝐹𝜂

𝑅𝑇
) − 𝑒𝑥𝑝 (

−𝛼𝑐𝐹𝜂

𝑅𝑇
)}  (5) 

The Butler Volmer equation (5) describes the current density as a function of the 

overpotential. 𝑗0 is the exchange current density. F is the Faraday constant, η is the 

overpotential, R is the ideal gas constant, T is the temperature, and α the transfer coefficient 

(one for the anode and one for the cathode) [16]. 

Arrhenius equation (6) predicts kinetics based on thermal activation [47]. 

𝑟𝑎𝑡𝑒 ≈ 𝑒
(
−∆𝐺

𝑘𝐵𝑇
)
  (6) 

In Arrhenius equation, ∆𝐺 is the change in Gibbs free energy, kB is the Boltzmann constant 

and T is the temperature. 

Exchange current density 

The exchange current density is the current density when the electrode is at equilibrium. Since 

the electrode is at equilibrium the reduction and oxidation take place at the same rate and 

there is no net current density. The exchange current density is dependent on the temperature, 

electrolyte concentration and particle surface concentration. In PyBaMM, the exchange 

current densities are expressed as functions of these parameters. 

Pulse test and Electrochemical Impedance Spectroscopy (EIS) are alternative methods to find 

information about exchange current density, activation energy and reaction rate [55]. The 

exchange current density can be obtained from Tafel plot that can be made from the Butler-

Volmer Equation (5) 

A functional form of the exchange current can be used. When assuming that 𝛼=0.5 it takes the 

form of Equation 7 [36]. 

𝑗0 = 𝑘 ∙ √𝑐𝑒 ∙ 𝑐𝑠 ∙ (𝑐𝑠
𝑚𝑎𝑥 − 𝑐𝑠)  (7) 

In Equation 7, 𝑗0 is the exchange current density, k is the reaction rate, 𝑐𝑒is the electrolyte 

concentration, 𝑐𝑠 is the electrode surface concentration and 𝑐𝑠
𝑚𝑎𝑥 is the maximum electrode 

surface concentration. 

Electrode conductivity 

The internal resistance of the cell is regarded as an important parameter in order to make a 

parametrization of a battery cell [39]. The cell resistance is not included as a parameter in the 

Prada 2013 parameter set, but it is related to the conductivities. How the resistance in a wire is 

related to its conductivity can be seen in Equation 8. 

𝑅𝑐𝑒𝑙𝑙 =
𝑙

𝜎𝐴
   (8) 

𝑅𝑐𝑒𝑙𝑙 represents the internal resistance, A represents the area, 𝜎 represents the conductivity 

and 𝑙 represents the length of the wire. 

The electrical conductivity of an electrode is a material property that determines how well the 

material will conduct electricity. LFP is known to have poor electrical conductivity [46],[47]. 
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Several ways to increase the electrical conductivity of the LFP electrode has been made such 

as adding or coating carbon to LFP electrodes and/or current collectors to increase the 

electrical conductivity of the electrode and lessen the contact resistance. Factors like the 

carbon content, the quality of the carbon coating, calendaring, and doping materials have 

impacts on the electrical conductivity. The low electrical conductivity can result in a 

considerable ohmic drop within the electrode [46], [52], [47]. 

Graphite has a higher electrical conductivity than LFP. The electrical conductivity is closely 

related to the morphology of the graphite. The smaller the particle size and the higher the 

surface area, the lower the conductivity [56]. 

3. METHOD AND THEORY 

3.1 Method overview 

In order to parametrize a LFP/C cell for the SPM, a step-wise procedure is taken. Starting 

with a literature review, followed by a simple sensitivity analysis, experiments, numerical 

simulations and parameter estimation.  

The literature values available in the Prada 2013 parameter set was be used as initial 

guesses/default values while some targeted parameters, that is found in literature, will be 

estimated in order to find more parameter values that better describe the system. This will be 

done through conducting a number of experiments form which the values will be calculated 

from or found through a curve fitting procedure. A summarized workflow can be seen in 

Figure 11. 

 

 

Figure 11, workflow to find optimal parameter values. 

 

3.1.1 Literature review 

To fulfil the purpose of the thesis project, a literature review is done to get familiar with the 

topic and narrow down the project. The topics covered are different types of battery models, 

lithium-ion batteries, the LFP/C battery, and its characteristics followed by parametrization 

methods, sensitivity analysis and PyBaMM. The databases used are mainly KTH Library and 

Google Scholar.  

Form the literature study, three types of experiment are chosen because parameters are able to 

be extracted from the experimental data or used as basis for a curve fitting procedure. 

3.1.2 Sensitivity analysis 

A sensitivity analysis was conducted to check if the parameters are sensitive for the 

experiments. 

For the experiments used to find the transport and kinetic parameters, a sensitivity analysis of 

the simulated response of a disturbance of ±10 % in each parameter was done. To disturb the 

parameters by 10 % might in reality be an unrealistic disturbance if for instance, the 

parameters could only be within a smaller range. An alternative method is to find within 
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which ranges the parameters are usually found and then disturb the parameters within that 

range. The simpler method is chosen due to the restricted amount of time.  

The SPM is based on several non-linear differential equations, like the OCV-curves and the 

Butler-Volmer equation [50]. Some equations and parameters show linear characteristics in 

some parts, but the model is mostly non-linear. To care for the non-linearity, it is possible to 

grid the problem and select several different points in the SOC or temperature to see where 

the parameters are the most sensitive. A convenient way to do this would be to check in three 

different points of the SOC. The sensitivity is taken in targeted SOC regions in the beginning, 

the centre and end of the simulation. 

3.1.3 Numerical simulation 

Simulations with the SPM were performed using the open-source software package Python 

Battery Mathematical Modelling (PyBaMM). PyBaMM can be used to solve continuum 

battery models using asymptotic analysis and numerical methods [11]. For the simulations in 

this thesis, PyBaMM v. 0.4.0 was used to solve the SPM without electrolyte. The Prada 2013 

parameter set was be used as default values for the parameters. The SPM without electrolyte 

is based on the equations described in [37]. 

3.1.4 Experimental setup 

LFP/C cells of the model HTPFR18650-1100mAh-3.2V were be used in the experiments. The 

technical parameters of the cylindrical cells received from the producers’ data sheet can be 

seen in Figure 12. 

 

Figure 12, Major technical parameters [57] 

A total of 4 cells were used in the experiments. To see if the cells were working well, the cell 

voltage is tested with a multimeter before the cells are entered into the cell holder and tests 

started. 

The cells were placed in a cell holder which is built for the experiment, see setup in Figure 13. 

This is a four-probe setup. 
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Figure 13, Cell setup 

The cells and the holder were then placed in a climate chamber which keeps a constant 

temperature of 25 °C in steady state conditions. There was a power source that can do 

potentiostatic and galvanostatic experiments, a control PC with EC-lab software which was 

used to perform the monitoring and control of the system. A booster was used to access higher 

currents. 

3.1.5 Parameter fitting 

The experiments were conducted to get the data and the parameters were extracted through 

methods found in the literature, mostly [39]. Curve fitting by editing the parameter values of 

the Prada 2013 parameter set to make the simulation in PyBaMM match the experimental data 

were also performed. A non-linear least squares method was used to fit a function to data via 

the curve fit method of the Python library scipy.optimize [58]. Scipy version 1.5.2 was used. 

The formula for a least square method for a simple line, with the form y=mx+b with m being 

the slope and b being the intercept with the y-axis, can be seen in Equation 9.  

 𝑦 =
𝑁∑(𝑥𝑦)−∑𝑥∑𝑦

𝑁(𝑥2)−(∑𝑥)2
𝑥 +

∑𝑦−𝑚∑𝑥

𝑁
  (9) 

3.2 Experimental methods 

The experiments were inspired by the ones described in [39] where experiments were 

performed on lithium-titanate cells in order to extract parameters related to the equilibrium, 

diffusive and intercalation phenomena. In the paper, a reformulation of the SPM was 

conducted to get a minimum amount of group parameters. Three non-intensive methods were 

proposed to identify the parameter values that would be sufficient to parameterize the 

reformulated SPM. The experiments were made so that parameter values could be extracted 

through curve fitting methods and equations. These procedures seemed promising and were 

adapted for the LFP/C cells investigated in this thesis. The parameters were also adapted to 

match the once available in PyBaMM.  

The geometric parameters 𝑡+, 𝑤+, ℎ+, 𝑡𝐶𝐶,+, 𝑡𝐶𝐶,− and 𝑡𝑠 will be found by measuring them 

during a cell opening. They are linked to the volume of the electrode and therefore also the 

capacity of the cell. The geometrical parameters can also be related to the resistance in the cell 
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according to Figure 2. The other thermodynamic parameters 𝑒+, 𝑒−, 𝑋100%, 𝑋0%, 𝑌100% and 

𝑌0% will be found through a curve fitting procedure similar to the one described in [39]. The 

transport and kinetic parameters will undergo a sensitivity analysis and a curve fitting 

procedure to find the parameter values. See the theoretic background behind the experiments 

chosen and the block diagrams for the cycling, GITT and pulse test in the following sections. 

3.2.1 Thermodynamic parameters via low-rate cycling 

Depending on the desired resolution, the OCV can be derived from galvanostatic intermittent 

titration technique (GITT). This procedure is done by moving small steps in the SOC window 

with low currents, like C/20. This procedure can be relatively time consuming, not unusual 

with week-month periods, demanding depending on the number and sizes of the SOC steps 

that are taken. To get information of the OCV in a faster manner, a cell can be cycled at very 

low currents, such as C/25, to generate a pseudo-OCV curve [39], [27]. The low current is 

used to minimize kinetic contributions, reduce ohmic heat generation and electrode 

polarization [27]. It is assumed that the reactions happen at equilibrium state and that within a 

part of the SOC window, a pseudo OCV curve can be found [59]. Hysteresis can however still 

occur in the pseudo-OCV curves that are received from low rate cycling [60].  

In order to determine parameters such as the capacities of the two electrodes, cycling tests 

with a low C-rate was conducted in a procedure that is influenced by a method presented in 

[39]. The low-rate tests include a full discharge followed by a full charge with a constant and 

low C-rate of C/30. This experiment makes it possible to determine the capacity of the full 

cell as well as the OCV characteristics. When operating in the SOC-window it is important to 

consider the different capacities of the electrodes. SOC is the ratio between the capacity and 

the maximum cell capacity [49]. A block diagram of the cycling test can be seen in Figure 14. 

 

 

Figure 14, Low-rate cycling block diagram 

Three cells were be tested with this procedure, some at C/30 and some at C/50 to make sure 

that the cell is in equilibrium. 

3.2.2 Transport related parameters via GITT 

GITT is a procedure useful to retrieve several kinds of parameters. The GITT procedure 

consists of a series of current pulses, each followed by a relaxation time where no current 

passes through the cell. The current is positive during charge and negative during discharge. 

As mentioned in the Background several different methods can be applied to find the 

diffusion coefficient/diffusivity in the solid phase. The choice of method can also affect the 

values of the diffusion coefficient. For this thesis, only one method will be utilized. A series 
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of GITT tests can be used to find the solid diffusion coefficients of the electrodes. This is 

performed by a sequence of constant current discharge at low C-rate, followed by resting 

phases that brings the cells back to equilibrium. The experiment set up was influenced by the 

method used in [39] where test are done on a lithium titanate cell. In [39], the diffusion 

coefficient was extracted with a curve fitting procedure that assumed that the cell reaches 

equilibrium potential after a relaxation period. See Figure 15 for the desired appearance of the 

GITT pulse. 

 
Figure 15, Shape of GITT pulse [39] 

In Figure 15, the change in voltage ∆𝑉𝑡 in the pulse and ∆𝑉𝑠 which is the voltage in the 

equilibrium state after the pulse can be seen as well as 𝜏 which is the time of the pulse. 

Equation 10 shows a general way to calculate the diffusion coefficient from GITT 

experiments for half cells. 𝑅𝑖 is the internal resistance. 

𝐷𝑖 =
4

𝜋𝜏
(
𝑅𝑖

3
)
2

(
∆𝑉𝑠

∆𝑉𝑡
)
2

           (10) 

By finding ∆𝑉𝑡 and ∆𝑉𝑠 for different parts of the SOC window, the diffusivity that is 

normalized with the particle radius can be found through a curve fitting procedure. Another 

more flexible approach to find values that are related to the diffusive phenomena is by fitting 

the relaxation region from the experimental data to simulated values. To compare the 

simulated and experimental data, these conditions need to be fulfilled: 

1. The cell should be at rest in the start of the data set. 

2. The current is the same in simulation and experiment. 

3. The voltage should be the same in the start for the simulation and experiment. 

The time needed for the cell to relax depends on the cell type [49]. While the relaxation time 

used in [39] was 15 minutes, a rest time of 2 hours was initially applied for the LFP/C cell. 

After finding that the cell did not reach equilibrium within the 2 hours, the relaxation time 

was extended to 4 hours. Due to the flat OCV curve of the LFP/C cell, a relative long time is 

required to get to equilibrium conditions. Because of this the cell is found not be relaxed even 

after 4 hours of rest so the latter approach is chosen.  
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The apparent diffusion coefficients and OCV characteristics can, as mentioned earlier, be 

found by performing GITT. By making GITT at different cell configurations like full cell, 

half-cell and three electrode set-up, the parameters can be compared [36] but only full cell test 

will be done in this work as is described in [39]. 

The block diagram of the GITT test can be seen in Figure 16. The C/20 pulses are the GITT 

pulses while the C/3 pulses are used to move to another SOC level. 

 

Figure 16, GITT block diagram 

3.2.3 Kinetic parameters via pulse test 

In [39] a pulse test consisting of a series of pulses with different C-rates were proposed as a 

method to find the reaction rate in the positive electrode, negative electrode and the resistance 

in the cell. Even though the reaction rates at each electrode nor the cell resistance are 

explicitly tuneable parameters in PyBaMM, the experimental setup does seem feasible to give 

the desired information. This was because the reaction rates in the electrode was related to the 

exchange current density at each electrode and the internal cell resistance was connected to 

the electrode conductivity which was tuneable in PyBaMM. The reaction rate was a factor 

that describes the exchange current density according to Equation 7. By adding a factor 𝑘𝑓 to 

the equation, the effect on the exchange current density by changing the reaction rate can be 

found. The Equation 7 can be rewritten as Equation 11 for this purpose. 

𝑗0 = 𝑘𝑓 ∙ 𝑘 ∙ √𝑐𝑒 ∙ 𝑐𝑠 ∙ (𝑐𝑠
𝑚𝑎𝑥 − 𝑐𝑠)  (11) 

With Equation 11, it is possible to find the 𝑘𝑓 value that makes the simulation match the 

experimental data from the pulse test. The block diagram for the pulse test can be seen in 

Figure 17. 
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Figure 17, Pulse test block diagram 

In [39] the parameter values can be related to the SOC and the current rates at the pulses. In 

this thesis only the first C/2 pulses will be used for fitting the values due to time restrictions. 

3.3 Sensitivity analysis 

For the GITT and pulse test a sensitivity analysis was performed to find how sensitive 

parameters are in relation to one another. The parameter values were changed by ±10 % and 

the effect in different regions of the voltage profile will be investigated for each experiment. 

Some parameters show linear characteristics in some parts, but the model is mostly non-

linear. To care for the non-linearity, it is possible to grid the problem up and select several 

different points in the grid to see where the parameters are the most sensitive. This was done 

by selecting pulses in three different points of the grid: the beginning, centre and end. The 

sensitivity of the parameters 𝐷+, 𝐷−, 𝑟+, 𝑟−, 𝑘𝑓+, 𝑘𝑓−, 𝜎+ and 𝜎− 𝑤ill be found for GITT and 

pulse test simulations. 

3.3.1 Sensitivity analysis for GITT 

By shifting the cell from equilibrium with a small current during a long time, the ohmic and 

kinetic effect on the cell voltage want to be minimized while the effect from transport 

phenomena is maximized. The most relevant aspect to look at is the relaxation time and the 

region where the cell relaxes. In principle it would be possible to find the parameter values 

from the pulse region too. The reason why the pulse region was not included in the fit was 

because when the current is not zero, the deviation from equilibrium and the equilibrium itself 

is time-dependant which complicates the mathematical description taking place. When the 

current is zero, only the deviation from equilibrium is time-dependant. Therefore, the three 

C/20 GITT pulses were analysed based on their change in the dynamic relaxation region. A 

simulation of the GITT procedure during discharge can be seen in Figure 18. The pulses 

number 2, 6 and 9 were chosen to investigate to see the sensitivity in the beginning, middle 

and end of the SOC window. 



 

Page | 24 

 

 

Figure 18, GITT simulation based on Prada 2013 parameter set 

The period of interest was from the bottom of the pulse, where the relaxation starts, until the 

simulation have reach equilibrium at around half of the rest time until the next pulse. 

A linear first order system can be described with this differential equation: 

𝑇
𝑑𝑦

𝑑𝑡
+ 𝑦 = 𝐾𝑢  (12) 

In Equation 12, K is the system´s steady state gain and the T is the time constant. The shape 

of the relaxation is very similar to the step answer of a first order linear time invariant system, 

see Figure 19. It was therefore assumed that the dynamic relaxation region acts like a first 

order linear time invariant system. 

 
(a) 

 
         (b) [61]  

Figure 19, (a) Zoom in on dynamic relaxation region (b) The step answer from a 1st order linear time 

invariance. 

The dynamic relaxation resembles the response of a step answer which can be seen in 

Equation 13 [61]. 
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𝑦(𝑡) = 𝐾𝑢𝑠𝑡𝑒𝑝 ∙ ( − 𝑒
−𝑡

𝜏⁄ )  (13) 

By changing the parameters one by one, ± 10% from the original values, the changes of the 

disturbance can be seen for K and 𝜏. By finding the K and 𝜏 values when no disturbance is 

done and then a measurement of the sensitivity could be calculated with Equation 14.a and 

14.b. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝜏 =
|𝜏𝑝𝑎𝑟𝑎𝑚,0.9−𝜏𝑝𝑎𝑟𝑎𝑚,1.1|

𝜏𝑝𝑎𝑟𝑎𝑚,1
  (14.a) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝐾 =
|𝐾𝑝𝑎𝑟𝑎𝑚,0.9−𝐾𝑝𝑎𝑟𝑎𝑚,1.1|

𝐾𝑝𝑎𝑟𝑎𝑚,1
  (14.b) 

3.3.2 Sensitivity analysis for Pulse test 

During the pulse test, the pulse was conducted with a higher C-rate than in the GITT test and 

at a shorter time. The physical effect of this was that the overpotentials are mostly linked to 

activation and ohmic drop. The pulse duration of 10 seconds was on the limit of changing the 

cell concentration significantly. It is therefore assumed that concentration overpotentials are 

not affecting the pulses. The most interesting feature to capture for this test was the change in 

voltage during a pulse. 

From the literature review (see Background), the reaction rates (related to the current density) 

and the internal resistance in the cell (related to the conductivity in the electrodes) would 

affect the depth of the voltage drop. Therefore, the region with the instantaneous voltage 

drops is the most interesting feature for the purpose of finding the targeted parameter values. 

In [39] the parameter values can be related to the SOC and the current rates at the pulses. For 

the sensitivity analysis, three pulses will be analysed for their effect on the voltage depth 

during a pulse. 

Since the first pulse set is affected by relaxation, as seen in the steep appearance in Figure 20, 

the pulses set number 2, 6 and 10 were chosen to investigate to see the sensitivity in the 

beginning, middle and end of the SOC window. Only the first C/2 pulse in each pulse set is 

analysed.  
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Figure 20, Pulse test simulation with Prada 2013 parameter set. 

3.4 Parameter estimation method 

In order to parametrize the SPM described in [37] that is available in PyBaMM, a series of 

experimental tests are conducted in a way described in [38] and [10] so that some parameters 

can be extracted from the data and through curve fitting. Three tests that describe different 

phenomena are conducted: low-rate cycling, GITT and pulse test. The low-rate cycling test 

explores the capacity phenomenon. The diffusion phenomenon is explored in the GITT test. 

In the pulse test, it is assumed that the diffusion phenomenon do not affect the results since 

the pulse is conducted under a short time, and the reaction rates can be explored. The settings 

for the experiments can be seen under the Experiment descriptions. 

From the sensitivity analysis the parameter´s relative sensitivity is investigated for the GITT 

and pulse test. For each experiment, a few parameters have been selected since they are 

thought to be sensitive according to literature. For these chosen parameters that are taken from 

literature, a sensitivity analysis will be done on the simulations in PyBaMM to find out how 

sensitive the parameters are. The sensitivity analysis will be specific for the experiment and 

will be described in the section Sensitivity analysis. 

For the parameters that are found to be sensitive for each experiment, the parameters will be 

tuned to make the PyBaMM simulation fit the experimental data as good as possible. The 

output will be three parametrizations: one to find the optimal parameter values for the cycling, 

GITT and pulse experiments, respectively. These experimental optimal parameters will then 

be part of the new parameter set that will make up the fully parametrized model. The 

parametrized model will be validated by comparing the simulations against data that aims to 

represent use of LFP/cells in BEV and mild-hybrid vehicles. This will also be compared to the 

default parameters found in PyBaMM. The parameters for GITT and Pulse test are found 

through a curve fitting procedure. 
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In order to get optimal values for the targeted parameters, Figure 13 presents how the 

parameter values will be found. 

Figure 21 shows that the selected parameters are thermodynamic, transport and kinetic 

related. The parameter values found from the cell opening and the low-rate cycling will be 

used together with default values to find the parameter values of GITT and Pulse test that best 

match the experimental data. 

 

Figure 21, parametrization procedure* 

*An alternative parametrization procedure can be found in Appendix D. 

3.4.1 Cell opening 

One cell is opened to measure some geometrical parameters. In Figure 22 (a) and (b) the 

measurement of the electrode and current collector can be seen. In order to get the 

geometrical parameters, a cell is opened. The cell is opened in a LABmasterPro Eco glove 

box from Mbraun by Matilda Klett Hudson at Scania material technology lab.  

(a) 
 

(b) 
Figure 22 (a) and (b), measurement of geometrical parameters  
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The electrode heights and widths are measured with a mm spaced ruler seen in the lower part 

of Figure 22 b. The electrode thicknesses are measured with a micrometer that gives the result 

in micrometers on a digital display that can be seen in Figure 22 a. The electrodes in the cell 

are rolled upon itself, which is the structure of cylindrical cells, with the electrodes being a 

coated layer on top of the current collector as seen in the Figure 23. 

 

 𝑡𝑠ℎ𝑒𝑒𝑡  

 

𝑡𝐶𝐶 

    
Figure 23, Measurement of thickness of electrode and current collector. The grey and black rectangles represent 

the electrode coating layers and the current collector. 

 

In order to measure the thickness of the electrode coating layer the thickness of the whole 

sheet is measured, 𝑡𝑠ℎ𝑒𝑒𝑡. The layer of electrode coating is carefully scraped of using a 

scalpel. Some drops of dimethyl sulfoxide are used to loosen up the LFP coating layer while 

the graphite only needed the scalpel. The thickness of the current collectors is measured, 𝑡𝐶𝐶. 

The thickness of the electrode coatings is calculated as in Equation 15.a and 15.b. The 

thickness of the electrodes is considered to include the coating on both sides of the current 

collector. 

𝑡− = 𝑡𝑠ℎ𝑒𝑒𝑡,− − 𝑡𝐶𝐶,−   (15.a) 

𝑡+ = 𝑡𝑠ℎ𝑒𝑒𝑡,+ − 𝑡𝐶𝐶,+   (15.b) 

The prefix of + and - symbolizes that the sheet and current collector is linked to the positive 

and negative electrode.  

It was determined with eyesight that the electrode coating was removed from the current 

collector. There might still be coating present which will make the 𝑡𝐶𝐶 measurement prone to 

error. Therefore, several points on the scraped area are measured to get a mean value. The risk 

of damaging the current collector by creating holes in it with the scalpel is also a risk. When 

there is a visible hole, that area is excluded from the measuring points. 

3.4.2 Low-rate cycling 

The thermodynamic parameters from the cycling test are calculated in an order where the 

values found for one parameter is used to calculate the next one.  

3.4.2.1 Cell capacity 

The cell capacity at a certain c-rate can be calculated by Equation 16. 

𝑄𝑐𝑒𝑙𝑙 = 𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∙ 𝐼�̅�𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  (16) 

In Equation 16, 𝑄𝑐𝑒𝑙𝑙 is the cell capacity discharged at a certain C-rate, 𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 is the time 

required to discharge the cell and 𝐼�̅�𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 is the mean current during the discharge. The cell 

capacity is calculated from the low-rate cycling test. It is also possible to calculate the cell 

capacity during charging as well but only the discharging will be considered in the further 

calculations. Figure 24 shows the data from the full cycling test while Figure 25 shows the 

discharge part and the applied current. 
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Figure 24, Low rate cycling (charge and discharge) cell D C/30 

 

Figure 25, Low-rate cycling (discharge) cell D C/30 

The nominal capacity, 1.1 Ah of the cell is obtained when the cell is discharged from fully 

charged at constant current and 1 C. In the low-rate cycling experiment the cell is discharged 

at C/30. The discharge capacity from cell D C/30 will be used for the following calculations. 

The SOC is calculated according to Equation 17. 

𝑆𝑂𝐶 =
𝐼∙𝑡

𝑄𝑚𝑎𝑥
   (17) 
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In Equation 17, I is the current, t is the time and 𝑄𝑚𝑎𝑥 is the maximum capacity of the cell. 

The equation is equivalent to finding the ratio between the capacity at a certain time and the 

maximum capacity. 

3.4.2.2 OCV curve 

In [39] it is stated that it is possible to determine the OCV curves as functions of the ion 

concentration in the electrode if the electrode material is known and literature is available. 

The OCV curves for each electrode are available as a parameter in Prada 2013, the LFP 

electrode as a function and the graphite as an array. Since these OCV curves are only for half 

cells, they need to be adapted to represent a full LFP/C cell. A wrapper function is used to 

make the LFP function to support iterables. Interpolation within the table data of the graphite 

is used to get values of the OCV. The SOC window is adapted and normalized between 0-1.  

The OCV curves are related to the maximum and minimum concentrations of the individual 

electrodes. The values of these parameters will be fitted so that the OCV curve from the 

experimental data of the low-rate cycling matches the theoretical OCV functions of the 

electrode materials. The analytical OCV curve is set up according to Equation 18. 

𝑂𝐶𝑉𝑓𝑖𝑡𝑡𝑒𝑑 = +𝑂𝐶𝑃+(𝑧+,𝑚𝑎𝑥, 𝑧+,𝑚𝑖𝑛) − 𝑂𝐶𝑃−(𝑧−,𝑚𝑎𝑥, 𝑧−,𝑚𝑖𝑛) (18) 

The difference between the electrodes OCV curves is found to describe the full cells OCV.  

In order to calculate the total available capacity of the individual electrodes the stoichiometry 

at 0% and 100 % SOC in both electrodes need to be found through curve fitting. The 

capacities of the positive LFP and negative graphite electrode can be calculated as [39]: 

𝑄+ =
𝑄𝑐𝑒𝑙𝑙

𝑧+,𝑚𝑎𝑥−𝑧+,𝑚𝑖𝑛
   (18.a) 

𝑄− =
𝑄𝑐𝑒𝑙𝑙

𝑧−,𝑚𝑎𝑥−𝑧−,𝑚𝑖𝑛
   (18.b) 

Where 𝑄+ and 𝑄− are the capacities of the positive and negative electrode, respectively. 

𝑧+,𝑚𝑎𝑥 and 𝑧+,𝑚𝑖𝑛 are the stoichiometries at 100% and 0% SOC in the positive electrode. 

Alike goes for 𝑧−,𝑚𝑎𝑥 and 𝑧−,𝑚𝑖𝑛 but for the negative electrode. These stoichiometric values 

represent how much of the individual SOC window of each electrode that is used in the cell. 

The values will be in the range between 0 and 1, where 0 is linked to the lower stoichiometric 

value and 1 to the higher. If the entire SOC window of the electrode is used in the cell, the 

values will be 0 and 1. 

This code was time-consuming to run. In order to reduce the number of times the code should 

run, bounds are found by manually changing the values until a reasonable good fit is achieved 

between the simulation and the experimental values. Smaller bounds around the manually 

found values are then used in the Scipy.optimize.curve_fit function in order to get an 

optimized fit. 

In the fitting procedure, it is assumed to be of higher importance to get a good fit for the 

graphite bumps seen in Figure 26. To accomplish this, different regions of the SOC window 

was prioritized in the curve fitting procedure. The regions with the graphite bumps were 

prioritized higher while the other regions are weighted lower. 
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3.4.2.3 Active particles volume fractions in the electrodes 

The active particles volume fractions in the electrodes can be calculated by rearranging 

equations 19.a and 19.b to equations 20.a and 20.b [41]. 

𝑄− = 𝐴+ ∙  𝑡− ∙ 𝑒− ∙  𝐶𝑚𝑎𝑥,− ∙ 𝐹  (19.a) 

𝑄+ = 𝐴+ ∙  𝑡+ ∙ 𝑒+ ∙  𝐶𝑚𝑎𝑥,+ ∙ 𝐹  (19.b) 

𝑒− =
𝑄−

𝐴+∙ 𝑡−∙ 𝐶𝑚𝑎𝑥,−∙𝐹
   (20.a) 

𝑒+ =
𝑄+

𝐴+∙ 𝑡+∙ 𝐶𝑚𝑎𝑥,+∙𝐹
   (20.b) 

In the Equations 19.a, 19.b, 20.a and 20.b 𝐴𝑝 is the area of the positive electrode in 𝑚2, 𝑡− 

and 𝑡+ are the thickness of the negative and positive electrode respectively in m, 𝑒− and 𝑒+are 

the active particles volume fractions in the negative and positive electrode, respectively. 

𝐶𝑚𝑎𝑥,− and 𝐶𝑚𝑎𝑥,+ are the maximum solid phase concentration in the negative and positive 

electrode respectively and F is the Faraday constant of 96485 C/mol.  

The values of the maximum solid phase concentration in the electrodes 𝐶𝑚𝑎𝑥,− and 𝐶𝑚𝑎𝑥,+ are 

available in the Prada 2013 parameter set as 𝐶𝑚𝑎𝑥,− =       𝑚𝑜𝑙/𝑚3 and 𝐶𝑚𝑎𝑥,+ =

22806 𝑚𝑜𝑙/𝑚3. By inserting values in Equations 20.a and 20.b, the active particles volume 

fractions in the electrodes 𝑒− and 𝑒+ are calculated. Since these values are fractions, they will 

be expected to be between 0 and 1, where 0 means that there is no active material in the 

electrode and 1 means that all the electrode is made of active material.  

4. RESULTS 

4.1 Sensitivity analysis 

The parameters relative sensitivity for the GITT and Pulse test can be found in the following 

headings. 

4.1.1 Sensitivity analysis results for GITT 

By following the parameter estimation method described in Method, the sensitivity values for 

pulse 2, 6 and 9 can be seen in Table 3 and 4. 

Table 3. The sensitivity in τ per pulse with a ± 10% change in parameter value 

Pulse 𝐷+ 𝐷− 𝑟+ 𝑟− 𝑘𝑓+ 𝑘𝑓− 𝜎+ 𝜎− 

Nr 2 1.06e-2 1.52e-1 3.19e-2 3.03e-1 0.00 0.00 0.00 0.00 

Nr 6 2.40e-05 1.86e-1 1.80e-3 3.72e-1 0.00 0.00 0.00 0.00 

Nr 9 4.68e-3 1.68e-1 5.44e-3 3.33e-1 0.00 9.00e-1 0.00 0.00 

 

Table 4. The sensitivity in K per pulse with a ± 10% change in parameter value 

Pulse 𝐷+ 𝐷− 𝑟+ 𝑟− 𝑘𝑓+ 𝑘𝑓− 𝜎+ 𝜎− 

Nr 2 -8.86e-3 -2.34e-1 -1.64e-2 -4.62e-1 0.00 0.00 0.00 0.00 

Nr 6 2.47e-04 1.89e-1 3.00-4 3.74e-1 0.00 0.00 0.00 0.00 

Nr 9 9.54e-5 2.15e-1 2.92e-4 4.25e-1 0.00 0.00 0.00 0.00 

 

The values in the tables are calculated by taking the difference in 𝜏 or K, from the two runs 



 

Page | 32 

 

where a parameter is disturbed by ± 10% from its original value, divided by the 𝜏 or K when 

the parameters are not disturbed i.e., Equations 14.a and 14.b. 

From the Tables 3 and 4 it seems like the electrode conductivities do not affect the relaxation 

time not the steady state gain since the 𝜎+ and 𝜎− are zero for all of the pulses. The negative 

reaction rate factor 𝑘𝑓− shows some sensitivity in τ for the ninth pulse but otherwise the 

reaction rates are also zero. The diffusivity and particle radiuses does seem to be sensitive for 

GITT, more for the negative electrode than the positive.  

4.1.2 Sensitivity analysis results for Pulse test 

Table 5. The difference in lowest voltage point per pulse with a ± 10% change in parameter value 

Pulse 𝐷+ 𝐷− 𝑟+ 𝑟− 𝑘𝑓+ 𝑘𝑓− 𝜎+ 𝜎− 

2 3.43e-7 2.65e-5 3.27e-5 5.37e-3 3.23e-5 5.36e-3 0 0 

6 2.62e-7 1.59e-4 1.74e-5 5.06e-3 1.74e-5 4.78e-3 0 0 

10 8.87e-9 3.36e-9 1.67e-5 4.66e-3 1.69e-5 4.70e-3 0 0 

Mean 2.05e-7 6.18e-5 2.23e-5 5.03e-3 2.22e-5 4.95e-3 0 0 

 

From the Table 5, it seems like the negative particle radius and the reaction rate have a large 

impact on the depth of the pulse because of the relatively large numbers. The change in 

conductivity does not seem to have any effect on the depth of the pulse since 𝜎+ and 𝜎− are 

zero for all the pulses. 

4.1.3 Conclusion from sensitivity analysis 

From the sensitivity analysis it can be seen that the diffusivities and particle radiuses are 

relatively sensitive for the relaxation period during GITT. The reaction rate is not relatively 

sensitive, in comparison to the other parameters, for GITT test but it is for the pulse test. For 

the pulse test, all parameters except for the conductivity are relatively sensitive. The negative 

reaction rate and the negative particle radius show the largest relative sensitivity.  

The conductivities are not sensitive for either the GITT or the pulse test. The electrode 

conductivities are connected to the cell resistance and are therefore expected to be sensitive 

for the pulse test. The model does although not seem to capture this connection.  

With this information it is determined that the parameters values for the 𝐷+, 𝐷−, 𝑟+ and 𝑟− are 

to be found through curve fitting to relaxation regions in the GITT experiment. The parameter 

value of 𝑘𝑓− will be found through curve fitting to the voltage drop in the pulse test. For the 

pulse test all the parameters 𝑘𝑓+, 𝑘𝑓−, 𝜎+ and 𝜎− will be seen individually to see how fitting 

these values change the model output. The 𝑟− is relatively sensitive for both the GITT and the 

pulse test. 

  



 

Page | 33 

 

4.2 Cell opening 

All the measured thicknesses of the current collectors can be found in the Table 6. 

Table 6. Thickness of current collectors 

Measurement 𝑡𝐶𝐶,− Aluminium current collector 

[μm] 

𝑡𝐶𝐶,+Cupper current collector [μm] 

a 15 20 

b 16 18 

c 18 20 

Mean 16.33 19.33 

 

The thickness of the sheets are 𝑡𝑠ℎ𝑒𝑒𝑡,− = 82 𝜇𝑚 and 𝑡𝑠ℎ𝑒𝑒𝑡,+ =   9 μm. Inserting the values 

into Equation 15.a and 15.b gives the following. 

𝑡𝑛 = 𝑡𝑠ℎ𝑒𝑒𝑡,𝑛 − 𝑡𝐶𝐶,𝑛 = 82 −  6.  = 6 .67 𝜇𝑚  

𝑡𝑝 = 𝑡𝑠ℎ𝑒𝑒𝑡,𝑝 − 𝑡𝐶𝐶,𝑝 =   9 −  9.  = 99.67 𝜇𝑚  

The measured parameters from the cell opening can be seen below in Table 7. 

Table 7. Measured geometrical parameters 

 LFP 

electrode 

C electrode Separator Al current 

collector 

Cu current 

collector 

Height [m] 5.7e-2 5.9e-2 - - - 

Width [m] 0.895 0.937 - - - 

Thickness [m] 9.97e-5 6.56e-5 1.6e-5 1.63e-5 1.93e-5 

 

A summary of some measured parameters and their relative value in the Prada 2013 

parameter set can be seen in the Table 8. 

Table 8. Measured geometrical parameters compared to Prada 2013 

Measured parameters [m] Prada 2013 parameter values [m] 

Negative electrode 

thickness 

6.57e-5 Negative electrode 

thickness 

3.6e-5 

Positive electrode thickness 9.97e-5 Positive electrode 

thickness 

8.1e-5 

Positive electrode height 0.057 Electrode height 0.0649 

Negative electrode height 0.059 - - 

Positive electrode width 0.895 Electrode width 1.78 

Negative electrode width 0.937 - - 

 

The positive LFP electrode has similar measured thickness as the one available in PyBaMM 

while the measured negative electrode thickness is almost double in comparison. This 

difference in cell dimensions is expected since this work uses another cell, but with same 

structure and chemistry, as the one in Prada 2013. 

In PyBaMM, there is only one electrode dimension available as “ lectrode height” and 

“ lectrode width”. The LFP electrode has smaller dimensions than the graphite electrode and 

will limit the number of Li-ions available for charge transfer. Therefor the PyBaMM electrode 

dimensions were matched with the positive LFP, i. e. the smallest, electrode. The electrode 
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areas are calculated below by multiplying the height and width since they are rectangular 

shaped. The areas were  .  ∗  0−2 𝑚2 and  . 0 ∗  0−2 𝑚2 for the negative and positive 

electrode, respectively. 

4.3 Low-rate cycling 

The results of the different calculations related to the low-rate cycling experiments can be 

found in the following sections. 

4.3.1 Cell capacity 

The cell capacity can be found for the discharging part of the cycling test but also during the 

charging. 

Table 9. Discharge, charge and mean capacity for different cell test 

Test cell 𝑄𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 [Ah] 𝑄𝐶ℎ𝑎𝑟𝑔𝑒 [Ah] 

Cell D C/30 1.21 1.20 

Cell C C/30 1.21 1.20 

Cell D C/50 1.24 1.25 

 

From Table 9, a small difference between the charge and discharge capacities can be seen. It 

is expected that the charge capacity would be a little larger than the discharge capacity due to 

irreversible side reactions. An error in the cycle test could be that the cells are not fully 

relaxed before the pulse starts. This effect could be avoided by adding a constant voltage step 

at the fully discharge state and the fully charge state. The effect from this is mostly visible in 

the charge step. 

4.3.2 OCV curve 

The best values found manually for the parameters 𝑧−,𝑚𝑖𝑛, 𝑧−,𝑚𝑎𝑥, 𝑧+,𝑚𝑖𝑛 and 𝑧+,𝑚𝑎𝑥 as well 

as the bounds used for the curve fit optimize procedure can be seen in Table 10. 

Table 10. Values from manual fit and the bounds for the optimizer. 

Parameter Best found values manually Bounds used for optimizer 

𝑧−,𝑚𝑖𝑛 0.1571 0.07 < 𝑧−,𝑚𝑖𝑛 < 0.2 

𝑧−,𝑚𝑎𝑥 0.8768 0.78 < 𝑧−,𝑚𝑎𝑥< 0.9 

𝑧+,𝑚𝑖𝑛 0.005068 0      < 𝑧+,𝑚𝑖𝑛 < 0.01 

𝑧+,𝑚𝑎𝑥 0.9988 0.98 < 𝑧+,𝑚𝑎𝑥< 1 

 

The simulations with the manually found values, the optimizers found values and the 

experimental data can be seen in Figure 26. 
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Figure 26, OCV curve fit 

From Figure 26, the values found with the optimized fit seen as the black dotted curve follows 

the red curve that is the experimental data significantly better in the region SOC > 0.7 than the 

manually found values shown as the lined blue curve. The optimized values do however have 

a higher voltage at SOC=1 in comparison to the experimental data and manually found 

values. The root-mean-square error (RMS) for cell D C/30 is about 1.08 for the optimizer fit 

and 2.17 for the manually fitted curve. This is a quantitative sign that the found values are 

better at fitting the experimental data than the manually found values. This can also be seen 

qualitatively from Figure 26. 

The stoichiometric values at 0 and 100% SOC for both the electrodes can be seen in Table 11. 

Table 11. Stoichiometry at SOC levels in electrodes 

Test cell 𝑧−,𝑚𝑖𝑛 𝑧−,𝑚𝑎𝑥 𝑧+,𝑚𝑖𝑛 𝑧+,𝑚𝑎𝑥 

Cell D C/30 0.1270 0.8141 0.001653 0.98 

Cell C C/30 0.1280 0.8158 0.001552 0.98  

Cell A C/30 0.1270 0.8251 0.002288 0.98  

STDEV 0.000452 0.004833 0.000326 0 

 

The 𝑧−,𝑚𝑖𝑛 and 𝑧−,𝑚𝑎𝑥 values represent the range of the negative graphite electrodes SOC 

window that is use in the cell. The range of 0.12 – 0.81 (12 – 81%) is assumed to be 

reasonable since it is not less than 0 or above 1. The 𝑧+,𝑚𝑖𝑛 and 𝑧+,𝑚𝑎𝑥 values represent the 

range for the positive LFP electrode. The range 0.001 – 0.98 (0.1 – 98 %) is very large. This 

would mean that most of the LFP electrodes SOC window is used in the cell.  
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4.3.3 Total available electrode capacity 

With the cell capacity and the stoichiometry in both electrodes at 0 and 100% SOC in the cell 

are known, the capacities of the individual electrodes can be calculated with Equation 18.a 

and 18.b. 

𝑄+ =
𝑄𝑐𝑒𝑙𝑙

𝑧+,𝑚𝑎𝑥−𝑧+,𝑚𝑖𝑛
=

1.212 

0.98−0.00165
=  .2 9   

𝑄− =
𝑄𝑐𝑒𝑙𝑙

𝑧−,𝑚𝑎𝑥−𝑧−,𝑚𝑖𝑛
=

1.212

0.814−0.127
=  .76   

The total available capacities of the individual electrodes are about 1.240 Ah for the positive 

one and 1.764 Ah for the negative one. 

4.3.4 Active particle volume fractions 

The factors are calculated with Equations 20.a and 20.b. 

 

𝑒− =
𝑄−

𝐴+∙ 𝑡−∙𝐶𝑚𝑎𝑥,−∙𝐹
=

1.76

0.0510∙ 6.57e−5∙ 33133∙96485∙3600
= 0. 9   

 

𝑒+ =
𝑄+

𝐴+∙ 𝑡+∙ 𝐶𝑚𝑎𝑥,+∙𝐹

1.24

0.0510∙ 9.97e−5∙ 22806∙96485∙3600
= 0. 98  

 

A factor of 3600 is added in the denominator to change the capacity from Ah to As. The 

factors of 𝑒− and 𝑒+ are unitless.  

The values of 𝑒− and 𝑒+ are between 0 and 1 and are therefore not unrealistic. A summary and 

comparison of the calculated parameters compared to the once in PyBaMM can be seen in 

Table 12. 

Table 12. Comparison between calculated parameter values and the values available in Prada 2013 

Parameter Calculated Prada 2013 

𝑒− [-] 0.593 0.75 

𝑒+ [-] 0.398 0.28485556 

 

4.4 GITT 

In the following headings, results and analysis of the parameter estimation for the GITT 

experiment can be found. 

4.4.1 Parameter estimation from GITT 

From the sensitivity analysis (see Sensitivity analysis) it is found that the parameters 𝐷+, 𝐷−, 

𝑟+ and 𝑟− is sensitive during the relaxation region after the GITT pulses. It is also determined 

that the parameter values for these parameters were found by using experimental data from 

the GITT experiment. The values were found through fitting the simulation curve to the 

experimental data from the GITT experiment. The GITT experiment during discharge of cell 

A can be seen in Figure 27. 
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Figure 27, GITT during discharge 

In Figure 27, ten C/20 pulses (smaller voltage drop) and ten C/3 pulses (larger voltage drop) 

can be seen in an alternating manner from the fully charged cell until the 2.0 V cut-off voltage 

is triggered. The smaller C/20 pulses are the GITT pulses and the larger C/3 pulses moves the 

cell into another SOC. In order to find optimal values for the parameters 𝐷+, 𝐷−, 𝑅+ and 𝑅− 

each C/20 pulse is individually fitted to the experimental data using scipy.optimix.curve_fit. 

The bounds for the parameters can be seen in Table 13. 

Table 13. Bounds for curve fitting procedure of GITT. 

Parameter Unit Prada 2013 value Lower bound Upper bound 

𝐷+ 𝑚2

𝑠⁄  5.9e-18 5.9e-19 5.9e-17 

𝐷− 𝑚2

𝑠⁄  3.3e-14 3.3e-15* 3.3e-13* 

𝑅+ m 1e-08 1e-09 1e-07 

𝑅− m 5.86e-6 5.86e-07 5.86e-05 

*The bounds of the negative particle radius will be limited to 1e-6 – 1e-5 m in a second 

iteration. 

A selection of the plots from the curve fitting can be seen in Figure 28.  
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(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 28, A selection of the fitted curves for four pulses. (a) shows the first C/20 pulse, (b) shows the eighth 

pulse, (c) shows the ninth pulse and (d) shows the tenth pulse. The fitted curves of the rest of the pulses can be 

found in Appendix C. 

As explained in Sensitivity analysis for GITT, the region when the curve relaxes back to 

equilibrium after the pulse is the most interesting feature to fit for GITT. From Figure 29, (a) 

shows a fit that does not capture the relaxation relatively well. Both the simulation with the 

Prada 2013 and the optimized values has a sharp appearance in the region where the 

experimental data shows the relaxation. With these values it seems like the simulated 

response relaxes and reaches equilibrium conditions much faster relative to the experimental 

data shows. For most of the pulses (nr 1-7) the simulation does not capture the gradual 

relaxation in a realistic way. See the fit for all the pulses in Appendix C. For the eighth, ninth 

and tenth pulses the fit can be seen in Figure 29 (b), (c) and (d). The optimized values found 

for these pulses give a better fit than the Prada 2013 values and yield the gradual relaxation 

from the experimental data in a more realistic way than the other pulses. Figure 29 (b) shows 

some disturbance in the experimental data, which is also included in the curve optimization 

procedure. An observation from Figure 29 is that the simulated curves have higher voltages 

than the experimental data, (b) and (d), and sometimes lower, (a) and (c). The values found 

through the fitting procedure for the selected pulses as well as the values available in the 

Prada 2013 parameter set can be seen in Table 14.  
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Table 14. Parameter values found via curve fitting for each GITT pulse 

Origin of 

values 
𝐷+ [𝑚

2

𝑠⁄ ] 𝐷− [𝑚
2

𝑠⁄ ] 𝑅+ [𝑚] 𝑅− [𝑚] 

Bounds 5.9e-19 − 5.9e-17 3.3e-15 – 3.3e-13 1e-9 – 1e-7 5.86e-7 – 5.86e-5 

Prada 2013 5.9e-18 3.3e-14 1e-8 5.86e-6 

Pulse 1 2.895e-18 3.317e-14 4.650e-8 6.608e-06 

Pulse 8 5.900e-17 3.300e-15 1.000e-9 2.390e-05 

Pulse 9 5.219e-17 1.716e-14 4.988e-8 2.195e-05 

Pulse 10 5.770e-17 1.104e-14 1.016e-9 3.102e-05 

Mean* 2.77e-17 4.95e-14 3.37e-08 1.66e-05 

STDEV* 2.62e-17 7.12959e-14 2.97e-08 8.84e-06 

* The mean value and the standard deviation are based on the values found for all the fitted 

pulses. See the fitted values for all the pulses in Appendix C. 

From Table 14, it shows that the pulses nr 8, 9 and 10 (whose parameter values made the 

simulation match the gradual relaxation of the experimental data) goes towards the upper 

boundary for 𝐷+, especially for pulse nr 8. The electrochemical implication of this would be 

that the diffusion goes faster at the positive electrode than the Prada 2013 values would give. 

𝐷− lays within the middle of the boundary except for pulse nr 8 who matches the lower 

bound. This would mean that the diffusion is slower at the negative electrode. The diffusivity 

in the negative electrode is however still larger than in the positive electrode. The 𝑅+ goes to 

the lower boundary value while the 𝑅− goes to the higher value. The particle radiuses are 

affected by the production process. 

To see how the parameter values found for pulse 8, 9 and 10 would impact the simulation for 

the full discharge, Figure 29 is made. All ten pulses are not able to simulate because the lower 

cut-of voltage is triggered by the ninth C/3 pulse. 

 

Figure 29, GITT experiment during discharge. The blue curve represents the experimental data, the red is the 

simulation with optimal parameters for pulse 8, the black is for pulse 9 and green is for pulse 10. 

From Figure 29, it seems like the simulated relaxation is less visible in the region around 

75000 - 125000 seconds while the slopes are more visible in the other pulses. The parameter 

values are found by fitting the simulation to the C/20 pulses. Although, since the GITT 
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experiment has both C/20 and C/3 pulses Figure 30 is created by zooming in on two different 

pulses to see the impact on fit that the C-rate gives.  

 

 
(a) 

 

 
(b) 

Figure 30, Zoom in on Figure 29 on (a) a C/20 pulse, and (b) a C/3 pulse. 

From Figure 30 it seems like the simulated values from pulse 8 and 10 matches the gradual 

relaxation of the experimental data the best. For the C/20 pulse it looks like the values from 

pulse 8 has the best match. From Figure 30 the simulations do not have as smooth appearance 

as the experimental data. This is likely due to the numerical calculations that takes place in the 

simulation where the solver fits a polynomial to the experimental data. The parameters that 

best capture the relaxation time can be seen in the Table 15 below.  

Table 15. The parameter values of the best fitted pulse (8) compared to Prada 2013 parameter set 

Parameter Unit Value Prada 2013 

𝐷+ 𝑚2

𝑠⁄  5.900e-17 3.3*10^-14 

𝐷− 𝑚2

𝑠⁄  3.300e-15 3.3*10^-14  

𝑟+ m 1.000e-09 1.00*10^-8 

𝑟− m 2.390e-05 5.86*10^-6 

 

Another run when the bound of the relatively sensitive parameter 𝑟− is limited in a tighter 

manner, 1e-6 < 𝑟− < 1e-5, can be found in Appendix D. 

4.4.2 Experiment analysis for GITT 

From Figure 29 and 30, a voltage gap can be seen after each pulse where the experimental 

data often has a higher voltage than the simulated curves. To visualize this better, the Figure 

31 below shows the experimental data and the simulation with optimized parameters from 

pulse 9 for the discharge involving nine C/20 pulses and eight C/3 pulses. 
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Figure 31, the voltage offset between the experimental data and the simulated data for the GITT experiment. 

The simulated curve operates as a lower voltage than the experimental data. The size of the 

voltage gap differs in size throughout the experiment. This difference in voltage is not closely 

related to the concentration overpotential but once again a result of the OCV curve found 

from the low-rate cycling experiment. With correct OCV curves, the simulated pulses would 

relax to the same place as the experimental data. It can also depend on that the cell is not fully 

relaxed, at equilibrium, in the beginning of the GITT pulse.  

In the GITT experiment, pulses with C/20 and C/3 are alternated. The C/3 pulses are used to 

shorten the time for the experiment but also to get data from different SO  levels by “fast 

forwarding” to the next level. Four hours of rest is used between the C/3 and C/20 pulses to 

give the cell time to go back to equilibrium conditions. The new pulse should start at 

relaxation, which might not always be correct as can be seen in the experimental data in 

Figure 32.  
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Figure 32, Unfinished relaxation before GITT pulse. 

In Figure 32 the voltage is not completely flat but that there is a slope in the mV range taking 

place before the next pulse starts. This could mean that there is still relaxation taking place 

from the last pulse that influence the appearance of the next one.  

When the cell is at equilibrium, the voltage points should be present on the OCV-curve. The 

voltage gap when the simulation is getting close equilibrium conditions, seen in Figure 31, is 

although still relatively large in the order of around 20-30 mV. This could be the result of the 

OCV curve fit that might have resulted in errors in the stoichiometric ratios for the electrodes, 

individual electrode capacity etc.  

4.5 Pulse test 

In the following headings, results and analysis of the parameter estimation for the Pulse test 

can be found. 

4.5.1 Parameter estimation from Pulse test 

From the sensitivity analysis (see Sensitivity analysis) it is determined that the values of the 

𝑘𝑓− is going to be found from the pulse test. The bounds are 0.5 < 𝑘𝑓− < 5. The pulse test 

experiment during discharge can be seen in Figure 33. 
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Figure 33, Pulse test during discharge 

In Figure 33, there are ten pulse trains consisting of four ten-seconds pulses in each with a 

five-minute rest in between (see Experiment methods for more experimental details). It is 

decided that only the C/2 pulse in each pulse train was utilized for fitting the values due to 

time restrictions. A selection of the plots from the curve fitting can be seen in Figure 34.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 34, the plots when only kf- is fitted. (a) pulse 2, (b) pulse 5, (c) pulse 8 and (d) pulse 9.  

As explained in Sensitivity analysis for the pulse test, the depth of the pulse is the most 

interesting feature to fit. From Figure 34, (a) shows a plot where the fitted kf- value give a 

relatively large improvement compared to the simulation with the default value. The 

simulation with the default value has a larger voltage drop compared to the experimental data. 

By comparing (a), (b), (c) and (d) it appears that the simulation with the default kf- value fit 

the experimental data better at lower SOC levels (higher pulse number). While the simulation 

using the default value fits the experimental data better for pulse 8 and 9, the simulation with 

the fitted kf- is lower than 0.01 V off compared to the experimental data in all the plots. By 

favouring the simulation that had a better match to the experimental data than the simulation 

with the default value, the parameter values of pulse 2 is considered the most suitable fit. It 

could be argued that the default value could also be of interest for lower SOC levels. The 

values found through the fitting procedure for the selected pulses as well as the values 

available in the Prada 2013 parameter set can be seen in Table 16.  

Table 16. The fitted parameter values from the simulation 

Origin of 

values 
𝑘𝑓− [-] 

Bounds 0.5 − 5 

Prada 2012 1 

Opt. Train 2 2.26116222 

Opt. Train 5 1.65668429 

Opt. Train 8 1.38499424 

Opt. Train 9 1.31931518 

Mean* 1.746649983 

SDEV* 0.330851661 

* The mean value and the standard deviation are based on the values found for all the fitted 

pulses. See the fitted values for all the pulses in Appendix C. 

From Table 16, it shows that the values of 𝑘𝑓− is in the lower part of the bound. As the pulses 

are found in the lower part of the SOC window, the 𝑘𝑓− value becomes closer to the default 

value. 
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4.5.2 Experiment analysis for Pulse test 

In order to follow up on the sensitivity analysis for the pulse test, the parameters 𝑘𝑓−, 𝑘𝑓+, 𝜎− 

and 𝜎+ are fitted one-by-one to see the effect on the simulation. The bounds used can be seen 

in Table 17. 

Table 17. Bounds for parameters used in the experimental analysis for the Pulse test. 

Parameter Unit Prada 2013 value Lower bound Upper bound 

𝑘𝑓− - 1 0.5 5 

𝑘𝑓+ - 1 0.5 5 

𝜎− 𝑆
𝑚⁄  215 190 250 

𝜎+ 𝑆
𝑚⁄  0.338 0 0.5 

 

Figure 35 show the fitted simulations together. 

 
(a) 

 
(b) 

Figure 35. Fitting one parameter at the time. (a) shows a pulse with all simulations. (b) show a zoom in on the lower part of 

the pulse in (a).  

Figure 35 confirms the sensitivity analysis because the simulations where the optimal values 

for the electrode conductivities are placed precisely on top of the simulation with the default 

values from the Prada 2013 parameter set. The simulation with the optimal value for the 

factor 𝑘𝑓+ shows a small change compared to the default values, but not in the same range as 

the 𝑘𝑓−does. 
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4.6 Validation 

The fitted values of the parameters can be seen in Table 18. 

Table 18. Estimated parameter values found from parametrization 

Parameter Unit New value Prada 2013 value 

Negative electrode thickness m 6.57e-5 3.6e-5 

Positive electrode thickness m 9.970e-5 8.1e-5 

Electrode height m 5.7e-2 0.0649 

Electrode width m 0.895 1.78 

Negative current collector thickness m 1.633e-5 1e-5 

Positive current collector thickness m 1.933e-5 1.9e-5 

Separator thickness m 1.6e-5 1.8e-5 

Positive electrode active material volume 

fraction 

- 0.399 0.285 

Negative electrode active material volume 

fraction 

- 0.593 0.75 

Positive electrode diffusivity 𝑚2

𝑠⁄  5.9e-17 5.9e-18 

Negative electrode diffusivity 𝑚2

𝑠⁄  3.3e-15 3.3e-14 

Positive particle radius m 1e-09 1e-8 

Negative particle radius m 2.39e-05 5.86e-6 

Reaction rate factor 𝑘𝑓− - 1.747 1 

Reaction rate factor 𝑘𝑓+ - Unchanged 1 

Positive electrode conductivity 𝑆
𝑚⁄  Unchanged 0.33795074 

Negative electrode conductivity 𝑆
𝑚⁄  Unchanged 215.0 

 

The parameter values were used in two different scenarios to validate in a qualitative manner 

to evaluate the simulation matches experimental data. For both validation scenarios, the cell 

capacity will have a large impact on how well the simulation matches the experimental data. 

4.6.1 BEV application 

The found parameter values were used to simulate a possible BEV application and is then 

compared to experimental data. The block diagram for the BEV application can be found in 

Figure 36. 

 

Figure 36, Potential BEV application block diagram 

When trying to use the found value for the negative particle radius, the CasADI solver in 

PyBaMM fails due to exceed interpolation bounds. A trial is done by using the parameter 

values from the ninth and tenth GITT pulse, where the relaxation time is also reasonable, but 
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the same error message appeared. To be able to plot the simulation, the default value for the 

negative particle size is used instead of the fitted value.  

The experimental data of the BEV application is compared with two simulations. One where 

only the thermodynamic values are changed from the default values and another where all the 

found parameter values are used (except for the negative particle radius where the default is 

used). See Figure 37 for the plots. 

 
(a) 

 
(b) 

 

 
(c) 

Figure 37, (a) shows the BEV application experimental data compared to a simulation with the thermodynamic 

values changed from default, (b) shows the same as (a) but when the simulation includes changed values for all 

the found parameters except for r- which is default. (c) is a zoom in on the constant voltage and rest region in 

(a). The red curve is the experimental data, and the blue curve is the simulation.  

From the Figure 37 (a) the full run can be seen. As Figure 37 (b) shows, the simulation has a 

longer resting phase between about 3000-10500 s compared to the experimental data where 

the phase is only between around 3500-4000 s. The flat part of the red curve is the constant 

voltage step that moves on to the next part of the sequence when limit |I|< 0.55 A is triggered 

or after 1 hour. The slope following the flat part of the red curve represents the 1-hour rest 

period when the cell relaxes to around 3.37 V. After that hour it can be seen that the slope is 

not flat and that the cell has not reached equilibrium yet. The experimental data and the 
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simulation indicate that the |I|-limit is triggered before the 1 hour had passed. In the 

simulation, this limit is triggered earlier and that the cell relaxes in a fast manner to around 

3.56 V for the rest.  

By moving in the simulated SO  window and plotting the experiment starting from the “ est 

for   minute”-segment Figure 38 is made for the shortened experiment. The non-equilibrium 

state of the cell that exists in the experimental data before the segment is a bit difficult to 

account for in the simulation and will cause some difference between the graphs. 

 

Figure 38, BEV application. The simulation with the found parameter values and with the negative particle 

radius value set to default. 

From Figure 38 the simulation has similar curvature as the experimental data. The simulated 

curve matches the experimental data relatively well for the discharge parts of the run until 

around 17500 s, but that the voltage gap increases significantly as the cell is charged. At the 

endpoint, the voltage difference is clearly seen. It is unexpected since the same current is used 

which would result in a similar change in capacity and that the cell starts at the same voltage. 

This might be a result of that the cell is not at relaxed state in the start of these segment. The 

cell could continue to relax in the red curve which would give the endpoints different values. 

This could be tested by performing the test once again but letting the cell rest for more than 1 

hour to reach equilibrium before starting the potential BEV application activities. Another 

theory is that the cell capacity is different in the experiment and simulation which would be 

the result of errors in the OCV-curve fitting and the found vales for the active particle fraction 

in the electrodes. A third theory to why there is a voltage in the end of the simulation is that 
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more capacity is entered into the cell in the experiment during the charge period than in the 

simulation as seen in Figure 38. 

In Figure 39 (a), (b) and (c) below the thermodynamic, transport and kinetic parameters 

values are changed from the default to the new values one by one to see how the shape of the 

simulation changes. 

 
(a) 

 
(b) 

 
(c) 

Figure 39, (a), (b) and (c). Red curve is the experimental data. All simulated curves have the negative particle 

radius set as default.  

From Figure 39 (b) it can be seen that the simulation with the found thermodynamic and 

transport parameter values relaxes more than the simulation that  only uses the found 

thermodynamic values at the 1-hour rest between the discharge and charge phase, around 

17000 seconds. From Figure 39 (c) it can be seen that the simulation that uses the found 

thermodynamic, transport and kinetic parameter values fits closer to the experimental data 

than the other simulations for most of the discharge part but is further away during the charge 

part. 

Alternative parameter values 

By limiting the bounds of the negative particle radius and repeating the method but with some 

modifications seen in Appendix D, the BEV run is done with another set of parameter values 

to compare. For these parameter values, the simulation does not stop due to the negative 

particle radius but the simulation becomes infeasible since the maximum positive particle 
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surface concentration is triggered. The error lies in the new value of the 𝑘𝑓−. If all the 

parameter values are changed while the default value for 𝑘𝑓− is used, Figure 40 is created. 

 

Figure 40, BEV run with alternative parameter values. 

In comparison to Figure 38, Figure 40 shows a relatively deep discharge, almost down to the 

cut-off voltage.  

4.6.2 Mild hybrid application 

The found parameter values are used to simulate a possible mild hybrid application and is 

then compared to experimental data. The block diagram for the potential mild hybrid 

application can be found in Figure 41. 

 

 

Figure 41, potential mild hybrid application block diagram 

By plotting the full run with only the thermodynamic parameters, the beginning of the plot 

looks similar to the one for the BEV application. See Figure 42 below. 
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(a) 

 
(b) 

Figure 42, full Mild hybrid run (a) with only thermodynamic values changed (b) with all new values except for 

the negative particle radius. 

Since the negative particle radius causes the simulation to stop in the potential BEV 

application, a simulation with the default value of that parameter can be seen in Figure 43 

while the other found parameter values are used. 

 

Figure 43, Potential mild hybrid application with the red curve representing experimental data and the blue 

curve the simulation with the found parameter values except for negative particle radius. 

Figure 43 shows a better match between the simulation and experimental data, although the 

simulation does not reach the experimental end points of each charge and discharge phase. 

The experimental data moves higher up in voltage for each charging phase while the 

simulation reaches about the same voltage level. 

In Figure 44 below, the difference from adding a set (thermodynamic, transport and kinetic 

parameters) of found parameter values can be seen. Figure 44.a shows the experimental data 
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and the simulation where the thermodynamic parameter values has been changed from the 

default. Figure 44.b shows the difference in appearance when the other parameter sets are 

used in the simulation. 

 
(a) 

 
                                     (b)  

 
(c) 

 
                                       (d) 

Figure 44. a, b, c, d. All simulated curves have the negative particle radius excluded. 

Figure 44.c and 44.d it seems like the simulation comes closer to the end points of charge and 

discharge pulses of the experimental data when the kinetic parameter is not included. The 

voltage at the end of discharge is reached with only the thermodynamic parameters but the 

transport parameters make the relaxation more similar the experimental data. The simulation 

with all parameters except for the negative particle radius influences which voltage the 

simulation reaches after charge and discharge. 

Alternative parameter values 

Just as for the BEV application, the alternative parameter set found by limiting the bounds of 

the negative particle radius and repeating the method just as but with some modifications seen 

in Appendix D, the mild hybrid run will also be investigated. If all the parameter values are 

changed to the alternative parameter values while the default value for 𝑘𝑓− is used, Figure 45 

is created. 
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Figure 45, Mild hybrid run with alternative parameter values 

In comparison to Figure 43, Figure 45 has a rather similar appearance. 

5. DISCUSSION 
From the sensitivity analysis, to disturb the parameters by ±10 % might be an unrealistic 

disturbance if the parameters values would pass outside of a physical boundary. An 

alternative method is to find within which ranges the parameters are usually found and then 

disturb the parameters within that range. The risk of using the simpler method is assumed to 

be acceptable in order to get a quick and simple overview of the parameter’s sensitivity. 

From the sensitivity analysis, it seems like the electrode conductivities are not sensitive to the 

small changes of ± 10 % in the parameter values. This is an unexpected result since the 

conductivity is related to the resistance in the cell which would give linear dependence 

according to Ohms law. The lowest conductivity in the LFP electrode should reasonably limit 

the reaction rate more than the graphite electrode, although no difference is found. The effect 

is looked at in the Sensitivity analysis and in the Mild hybrid application and they gave 

similar outputs. The exchange current density for the LFP is lower than for graphite. From the 

Butler-Volmer equation, the largest exchange current density has the largest impact. It might 

be that the effect from the changed reaction rate for the LFP cannot be seen after 10 seconds 

and that the effect is visible first after a longer rest. This might also be something that the 

SPM does not capture. 

The cell´s geometric parameters were measured in a reasonable accurate way to values that 

are comparable to the Prada 2013 parameter values. Even more points could have been used 

to measure the thickness of the current collector. 

From the low-rate cycling curve fitting seen in Figure 26, the fitted simulation curve has a 

higher voltage at 100 % SOC compared to the experimental data. This error could lead to 
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unrealistic voltage values when the cell is working on high SOC levels. The OCV-curve is 

weighted extra to the graphite bumps in the middle of the SOC window while the endpoints 

are weighted less. In real applications, the full SOC window of the battery cell is rarely used 

because the risk is higher for irreversible side reaction, shorter lifetime etc. The LFP/C has a 

rather flat OCV curve and the change in voltage is concentrated at the higher SOC value. By 

operating up to around 83% SOC, the simulation fits reasonably well to the experimental data. 

The stochiometric values within the electrodes are found through the OCV-curve fitting. For 

the LFP electrode these values are between 0.001-0.98 which would mean that a very large 

part of the SOC window of the LFP electrode is also used in the cell. This is a large usage of 

the LFP´s SOC window since the maximum range was 0-1. The method used gave these 

values but maybe another could be used to compare and validate the values. During 

conversation with Alexander Bessman and Pontus Svens, these ranges seem realistic.  

Since thermodynamic parameters (geometric and found through the low-rate cycling test) are 

set before the transport and kinetic parameters are found, an error in them would cause errors 

in the other parameter values as well. The thickness of the geometrical parameters were 

measured in micrometers, and is sensitive to errors. When the electrode coating was scarpaed 

of, eyesight was used to determine when the surface was free of coating. Small rest pieces that 

were not visible with the eye might still be present on the surface which generate an error in 

the measurement. 

In Table 9, there is a small difference between the charge and discharge capacity. It is 

expected that the charge capacity would be smaller than the discharge capacity due to 

irreversible side reactions. When the cell was cycled at C/50, this was seen. For the 

experimental tests, it would be good to make sure that the cell is at equilibrium condition 

before the comparison or fitting procedure begins. The risk is otherwise that possible 

relaxation from a previous activity on the cell can disturb and make it difficult to use as has 

been seen in the thesis. 

In relation to Figure 37, the lack of relaxation in the simulation is likely due to errors in the 

OCV-curve from the low-rate cycling experiment. The OCV-curve is fitted with weights 

around the graphite “bumps” in the middle of the curve while the endpoints, when the cell is 

or is near fully charged or discharged, is weighted less to promote the fit of the bumps. This 

could be a reason why equilibrium points in the simulation does not fit the experimental data 

very well compared to other parts of the curve.  

In relation to Figure 37. This difference could be a result of that all the parameter values has 

been found and fitted to experimental data when the cell is discharged. This is a weakness in 

the method that could be investigated in future work. Physically, the found parameters should 

be the same for charge and discharge but because of this validation, it seems reasonable to 

question if that is really the case. It might have been better to find mean values for the found 

and fitted parameters for both charge and discharge. 

From the BEV application validation, the negative particle radius hit the upper bound in 

PyBaMM which stopped the simulation. This means that the parametrization is not optimal 

for this parameter and that the bounds are set too freely. The interpolation ranges within the 

literature that PyBaMM bases its values on could not work with the parameter value. From 

the mild hybrid application validation, it is seen that the negative particle radius affected the 
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fit in an unwanted way and gave unrealistic results. This is a further indicator that the 

parametrisation of the negative particle radius is not effective. A solution to this would be to 

limit the bounds more. The bounds for the negative particle radius were limited more, and an 

alternative method where the values from both the cell opening, low-rate cycling and GITT 

are used before the values of the factor to the negative electrodes reaction rate is found. The 

negative particle radius and reaction rate seem to be tightly connected when they aim to be 

fitted to the GITT or pulse test. When the bounds are less restricted, the negative particle 

radius finds its optimal value above the interpolation limit during the BEV run while the 

factor of the negative reaction rate stays in the middle of the bounds. The negative electrode 

radius bounds are limited, the factor to the negative electrodes reaction rate hits goes to the 

upper bound value and makes the BEV run unfeasible. A theory is that there are some other 

phenomenon taking place that is related to the negative particle radius and the negative 

electrode reaction rate that the adapted parameters does not capture. There can be some other 

unknown parameter that better represents the phenomena.  

For the mild hybrid validation run, a theory why the experimental data and simulation look 

different from charge and discharge is related to the voltage level used. Around 3.3 V is the 

position of a graphite “bump” in the O   curve which can be seen in Background. 

The negative particle radius is shown to be relatively sensitive for both the GITT and the 

pulse test. The initial procedure is to find the parameter values from GITT and Pulse test 

when using the default and thermodynamic values. An alternative method when the parameter 

for the Pulse test is found when using both the default, thermodynamic and transport 

parameters is also tested. From both the procedures, it seems like the values for negative 

particle radius and negative electrode reaction rate are not successfully found. A conclusion 

can be made that the negative particle radius cannot be estimated accurately with this method. 

From the BEV and Mild hybrid validation runs, the simulation appeared to fit better during 

discharge than charge. The physical parameter values should be the same for discharge and 

charge. A way to investigate this could be to make the parametrization for the charge part of 

the experiment, or to use data from both scenarios. 

5.1 Future Work 

For future work, the literature review could be extended in order to set even tighter bounds for 

the curve fit procedure. The reasonability of changing the parameters by 10% or more within 

the fitting procedure would also be relevant to investigate. 

It would be interesting to fit even more parameters for every test to see which are sensitive for 

different experiments. By finding which parameters that are sensitive under which conditions, 

optimal tests could be formulated and tested to parameters experimentally. The particle radius 

could for example be analysed through scanning electron microscope.  

The OCV has a big impact on the simulations. In the pseudo OCV-fitting (see Results) the 

experimental data, which the fitting is made on, is weighted to fit the graphite “bumps” in 

order to capture the phenomena well. In order to get a satisfying fit over the bumps, a lower 

weight is given to the endpoints of the experimental data. This gives a less accurate fit in the 

simulation when being in high and low SOC-regions. In order to get more accurate OCV-

curves a GITT experiment with many more GITT pulses that maps up the equilibrium voltage 
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along the SOC window would be recommended. This is a time-consuming process that can 

take months and is not included in this thesis but could be done in future work. 

The value of the diffusivity in the solid can vary depending on the choice of method as 

described in the Background. This makes it tricky to get an accurate value of the parameter. A 

comparison could be done by conducting tests with other methods such as current pulse 

relaxation, potential step chronoamperometry and AC impedance spectroscopy and compare 

the values received from GITT. The parameters gotten from the other tests could be used as 

parameter values in order to which value, and method, that is most suitable to use. This can be 

a part of future work since it did not fit within the time frame of this thesis. 

During the curve fitting procedure of the simulation to the experimental data, the pulses in the 

end of the discharge, pulses eight, nine and ten with the low SOC levels, are the once that 

showed the most relaxation and matched the experimental data the best. A future work could 

be to investigate why the simulation showed that behaviour for these pulses and not for the 

others. 

The pulse test is related to the SOC but not to the current rate since only the C/2 pulses are 

investigated due to time restrictions. The pulses with the lowest current rates are chosen to 

look at because they had a longer relaxation time before them. The effect of current rates is 

interesting to investigate in future work. 

The long time needed for the cell to reach equilibrium conditions in the GITT test is likely 

due to the flat OCV-curve of the LFP/C cell. By running the time consuming GITT test first 

with 2-hour rest period and then the 4-hour rest took over half a month to conduct. A setting 

on the instrument that could sense when the variation in voltage is acceptably small would 

have been useful in this scenario. For future work, it would be recommended to be able to use 

this setting when performing GITT tests on LFP/C cells to make sure that equilibrium 

conditions are reached. 

It would be interesting to investigate how parameters change due to degradation mechanisms 

with PyBaMM simulations. This could be done in future work. 

When a method of parametrization has been found to be successful, there are computational 

problems that need to be solved in order to take the next step and use electrochemical battery 

models instead of empirical models for applications like BMS. To tackle the computational 

problems is a future work. 

6. CONCLUSION 
The goals of the thesis were to parameterize the SPM from the open source PyBaMM 

modelling library for commercial LFP cells. 17 parameters are investigated, and 14 parameter 

values are adapted from the Prada 2013 parameter set. Another goal is to use literature survey 

as well as experiments in the parametrization procedure. This took form as Table 2 as well as 

the methods used. Three types of experimental tests are done to be able to estimate the 

parameter values from the data. The third goal is to validate the model against drive cycles. 

Two potential applications for a BEV and Mild hybrid are tested experimentally and used as 

validation cycles.  

The validation shows that this method and model cannot be used to find parameter values for 

the negative particle radius. 
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Physics-based models have several advantages towards empirical models when it comes to 

describing electrochemical systems. Parametrization is a time-consuming process but 

necessary to make the model describe the system in an accurate way. A method to 

parameterize a battery cell is complicated and more research is needed in the field. 
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8. APPENDIX 
Appendix A – Parameter values in the Prada2013 parameter set 

Table 19. Prada 2013 parameter values. 

Parameter Value Unit Parameter Value Unit 

1 + 

dlnf/dlnc 

 

1.0 - Ambient 

temperature 

 

298.15 K 

Cation 

transference 

number 

 

0.2594 - Cell capacity 

 

1.1 Ah 

Current 

function 

4.4 A Electrode height 

 

0.0649 m 

Electrode 

width 

1.78 m Electrolyte 

conductivity 

function 

electrolyte_cond

uctivity_Nyman

2008 at 

0x000002D24C

482D30 

S.m-1 

Electrolyte 

diffusivity 

function 

electrolyte_diffusi

vity_Nyman2008 

at 

0x000002D24C4

82DC0 

m2.s-1 Heat transfer 

coefficient 

 

10.0 W.m-

2.K-1 

Initial 

concentratio

n in 

electrolyte 

1200.0 mol.m-

3 

Initial 

concentration in 

negative 

electrode 

28831.45783 mol.m-

3 

Initial 

concentratio

n in positive 

electrode 

35.3766672 mol.m-

3 

Initial 

temperature 

298.15 K 

Lower 

voltage cut-

off 

2.0 V Maximum 

concentration in 

negative 

electrode 

33133.0 mol.m-

3 

Maximum 

concentratio

n in positive 

electrode 

22806.0 mol.m-

3 Negative current 

collector 

conductivity 

58411000.0 S.m-1 

Negative 

current 

collector 

density 

8960.0 kg.m-3 Negative current 

collector 

specific heat 

capacity 

385.0 J.kg-

1.K-1 

Negative 

current 

collector 

401.0 W.m-

1.K-1 

Negative current 

collector 

thickness 

1e-05 m 
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thermal 

conductivity 

Negative 

electrode 

Bruggeman 

coefficient 

(electrode) 

1.5 - Negative 

electrode 

Bruggeman 

coefficient 

(electrolyte) 

 

1.5 - 

Negative 

electrode 

OCP 

entropic 

change 

0.0 V.K-1 

Negative 

electrode active 

material volume 

fraction 

0.75 - 

Negative 

electrode 

cation 

signed 

stoichiometr

y 

-1.0 - 

Negative 

electrode charge 

transfer 

coefficient 

0.5 - 

Negative 

electrode 

conductivity 

215.0 S.m-1 Negative 

electrode 

density 

 

1657.0 kg.m-3 

Negative 

electrode 

diffusivity 

 

3.3e-14 m2.s-1 Negative 

electrode 

double-layer 

capacity 

 

0.2 F.m-2 

Negative 

electrode 

electrons in 

reaction 

1.0 - 

Negative 

electrode 

exchange-

current density 

function 

graphite_LGM5

0_electrolyte_ex

change_current_

density_Chen20

20 at 

0x000002D24C

4073A0 

A.m-2 

Negative 

electrode 

porosity 

0.25 - Negative 

electrode 

specific heat 

capacity 

700.0 J.kg-

1.K-1 

Negative 

electrode 

thermal 

conductivity 

1.7 W.m-

1.K-1 Negative 

electrode 

thickness 

3.6e-05 m 

Negative 

particle 

radius 

5.86e-06 m Negative tab 

centre y-

coordinate 

 

0.06 m 
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Negative 

tab centre z-

coordinate 

 

0.1369999999999

9998 

m Negative tab 

width 

0.04 m 

Number of 

cells 

connected 

in series to 

make a 

battery 

1.0 - 

Number of 

electrodes 

connected in 

parallel to make 

a cell 

1.0 - 

Positive 

current 

collector 

conductivity 

36914000.0 S.m-1 

Positive current 

collector density 

2700.0 kg.m-3 

Positive 

current 

collector 

specific 

heat 

capacity 

897.0 J.kg-

1.K-1 

Positive current 

collector 

thermal 

conductivity 

237.0 W.m-

1.K-1 

Positive 

current 

collector 

thickness 

1.9e-05 m Positive 

electrode 

Bruggeman 

coefficient 

(electrode) 

1.5 - 

Positive 

electrode 

Bruggeman 

coefficient 

(electrolyte) 

1.5 - 

Positive 

electrode OCP 

function 

LFP_ocp_ashfar

2017 at 

0x000002D24C

4B1160 

V 

Positive 

electrode 

OCP 

entropic 

change 

0.0 V.K-1 

Positive 

electrode active 

material volume 

fraction 

0.28485556 - 

Positive 

electrode 

cation 

signed 

stoichiometr

y 

-1.0 - 

Positive 

electrode charge 

transfer 

coefficient 

0.5 - 

Positive 

electrode 

conductivity 

0.33795074 S.m-1 Positive 

electrode 

density 

2341.17 kg.m-3 

Positive 

electrode 

diffusivity 

5.9e-18 m2.s-1 Positive 

electrode 

double-layer 

capacity 

0.2 F.m-2 

Positive 

electrode 

1.0 - Positive 

electrode 

function 

LFP_electrolyte

A.m-2 
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electrons in 

reaction 

exchange-

current density 

_exchange_curr

ent_density_kas

hkooli2017 at 

0x000002D24C

4B10D0 

Positive 

electrode 

porosity 

0.12728395 - Positive 

electrode 

specific heat 

capacity 

1100.0 J.kg-

1.K-1 

Positive 

electrode 

thermal 

conductivity 

2.1 W.m-

1.K-1 Positive 

electrode 

thickness 

8.1e-05 m 

Positive 

particle 

radius 

1e-08 m Positive tab 

centre y-

coordinate 

0.147 m 

Positive tab 

centre z-

coordinate 

0.1369999999999

9998 

m 

Positive tab 

width 

0.04 m 

Reference 

OCP vs 

SHE in the 

negative 

electrode 

nan V 

Reference OCP 

vs SHE in the 

positive 

electrode 

nan V 

Reference 

temperature 

298.15 K Separator 

Bruggeman 

coefficient 

(electrode) 

1.5 - 

Separator 

Bruggeman 

coefficient 

(electrolyte) 

1.5 - 

Separator 

density 

397.0 kg.m-3 

Separator 

porosity 

0.47 - Separator 

specific heat 

capacity 

700.0 J.kg-

1.K-1 

Separator 

thermal 

conductivity 

0.16 W.m-

1.K-1 Separator 

thickness 

1.8e-05 m 

Typical 

current 

30.0 A Typical 

electrolyte 

concentration 

1000.0 mol.m-

3 

Upper 

voltage cut-

off 

 

4.4 V Negative 

electrode OCP 

 

graphite_LGM5

0_ocp_Chen202

0 

V 
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Appendix B – Potential Mild hybrid application validation plots with the positive particle 

radius 

 

Figure 46, full run of mild hybrid potential application.  

Just as for the potential BEV application plot, the constant voltage phase is ended since the |I| 

limit is reached in the experimental data while not in the simulation. The simulation also 

misses the relaxation during the one hour rest phase. In a similar way as the potential BEV 

application, the potential mild hybrid application run will also be shorten in Figure 47. 

 

Figure 47, Potential mild hybrid application. The blue curve the simulation with the found parameter values.  
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Figure 47 shows a bad match between the simulated and experimental data. For this 

simulation PyBaMM did not stop the run because of interpolation issues as for the potential 

BEV application. The simulated blue curve moves in a large voltage range than the 

experimental data. In order to see each parameter types effect, Figure 48 is made. 

 
(a) 

 
(b) 

 
(c) 

Figure 48 a, b and c.  

  



 

Page | 69 

 

Appendix C – Curve fit plots for each pulse 

GITT version 1 

 
(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  
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(g)  

 
(h)  

 
(i)  

 
(j)  

Figure 49, the experimental data, simulation with the Prada 2013 parameters as well as a simulation with fitted 

parameter values for each of the ten GITT pulses. The order of the plots represents the order of the pulses in the 

experiment. 

Table 20. Parameter values found via curve fitting for each GITT pulse 

Orgin of 

values 
𝐷+ [𝑚

2

𝑠⁄ ] 𝐷− [𝑚
2

𝑠⁄ ] 𝑟+ [m] 𝑟− [m] 

Prada 2013 5.9e-18 3.3e-14 1e-08 5.86e-06 

Pulse 1 2.89e-18 3.32e-14 4.65e-08 6.61e-06 

Pulse 2 2.78e-18 4.43e-15 4.70e-08 4.01e-06 

Pulse 3 5.90e-17 1.73e-14 7.90e-09 8.02e-06 

Pulse 4 5.90e-19 6.68e-14 9.99e-08 2.49e-05 

Pulse 5 1.08e-17 2.42e-13 2.86e-08 1.39e-05 

Pulse 6 2.60e-17 3.71e-14 2.35e-08 1.45e-05 

Pulse 7 6.28e-18 6.31e-14 3.17e-08 1.72e-05 

Pulse 8 5.90e-17 3.30e-15 1.00e-09 2.39e-05 

Pulse 9 5.22e-17 1.72e-14 4.99e-08 2.20e-05 

Pulse 10 5.77e-17 1.10e-14 1.02e-09 3.10e-05 

Mean 2.77e-17 4.95e-14 3.37e-08 1.66e-05 

STDEV 2.62e-17 7.13e-14 2.97e-08 8.84e-06 
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Pulse test version 1 

 
(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  
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(g)  

 
(h)  

Figure 50, the experimental data, simulation with the Prada 2013 parameters as well as a simulation with fitted 

kf- for eight of the C/2 pulses. The order of the plots represents the order of the pulses in the experiment starting 

with pulse nr 2. 

Table 21. The fitted parameter values from the simulation 

Orgin of values kf- [-] 

PyBaMM 1 

Opt. Train 2 2.26116222 

Opt. Train 3 2.12878617 

Opt. Train 4 1.96182209 

Opt. Train 5 1.65668429 

Opt. Train 6 1.81734881 

Opt. Train 7 1.44308686 

Opt. Train 8 1.38499424 

Opt. Train 9 1.31931518 

Mean 1.746649983 

SDEV 0.330851661 
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Appendix D – Parametrization with changed r- bounds 

 

 

Figure 51. Alternative parametrization process 

By changing the bounds for the negative particle radius from 5.86e-7 - 5.86e-5 m to1e-6 – 1e-

5 m the results below are given.  

GITT version 2 

 
(a) 

 
(b) 
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(c)  

 
(d)  

 
(e)  

 
(f)  

 
(g)   

(h)  
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(i)  

 
(j)  

Figure 50, the experimental data, simulation with the Prada 2013 parameters as well as a simulation with fitted 

parameter values for each of the ten GITT pulses. The order of the plots represents the order of the pulses in the 

experiment. 

Table 22. Parameter values found via curve fitting for each GITT pulse 

Orgin of 

values 
𝐷+ [𝑚

2

𝑠⁄ ] 𝐷− [𝑚
2

𝑠⁄ ] 𝑟+ [m] 𝑟− [m] 

Prada 2013 5.9e-18 3.3e-14 1e-08 5.86e-06 

Pulse 1 1.85e-18 3.30e-15 5.32e-08 6.44e-06 

Pulse 2 7.32e-18 9.33e-15 4.64e-08 4.11e-06 

Pulse 3 5.90e-17 3.30e-13 3.14e-08 7.81e-06 

Pulse 4 5.90e-19 3.30e-15 9.99e-08 9.99e-06 

Pulse 5 7.91e-19 1.42e-14 9.86e-08 9.92e-06 

Pulse 6 6.27e-19 9.92e-15 9.56e-08 9.79e-06 

Pulse 7 5.90e-19 3.30e-15 1.00e-07 1.00e-05 

Pulse 8 5.90e-19 3.30e-15 1.00e-07 1.00e-05 

Pulse 9 5.90e-19 3.30e-15 9.99e-08 9.99e-06 

Pulse 10 9.50e-19 5.15e-15 9.90e-08 9.95e-06 

Mean 7.29e-18 3.85e-14 8.24e-08 8.80e-06 

STDEV 1.73e-17 9.72e-14 2.59e-08 1.94e-06 

 

The simulation for the ninth pulse had the best fit to the experimental data. 
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Pulse test version 2 

 
(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  
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(g)  

 
(h)  

 

Table 23. The fitted parameter values from the simulation 

Orgin of values kf- [-] 

PyBaMM 1 

Opt. Train 2 4.99 

Opt. Train 3 4.99 

Opt. Train 4 4.78 

Opt. Train 5 3.41 

Opt. Train 6 4.07 

Opt. Train 7 3.02 

Opt. Train 8 2.43 

Opt. Train 9 2.56 

Mean 3.78 

SDEV 1.00 

 

The simulation of the third pulse showed the best match with the experimental data.  
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BEV validation curve version 2 

 

Figure 52, Stopped simulation for alternative parameter values 

The simulation is stopped since the experiment was infeasible. The maximum positive particle 

surface concentration' is triggered during 'Discharge at C/5.625 for 4.5 hours or until 2 V'. 

The error lies in the 𝑘𝑓− value now. Before the bounds of 𝑟− is tightened this error message is 

shown and the problem is related to the negative particle radius. 
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With kf- from pulse 6 instead 

 

Figure 53, BEV simulation with alternative values except the k_f- is default. 

Mild hybrid validation curve version 2 

 

Figure 54. Mild hybrid run with alternative parameter values. 


