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Abstract 

 

A new version of EN 1992-1-1, Eurocode 2 for Design of Concrete Structures, is under development 

and one of the most discussed topics is shear capacity for prestressed concrete beams without shear 

reinforcement, partly because shear failure occurs suddenly and can have catastrophic 

consequences. 
For the new version of Eurocode, there are a total of three proposed equations to replace the two 

equations that currently exist in EN 1992-1-1 for shear capacity of prestressed concrete beams 

without shear reinforcement. One of the proposed equations is intended to replace the equation 

intended for beam regions where bending cracks do not occur. The other two equations are 

proposed for beam regions where bending cracks occur.  

 

One of the proposed equations for beam regions with bending cracks, is based on critical shear crack 

theory and takes the normal force in consideration, while the other equation for beam regions with 

bending cracks is like the one found today in Eurocode, an empirical equation, where the 

contribution of normal force is empirical. 

In this thesis, all equations have been set against each other and compared with the help of 

nonlinear finite element analyzes and experiments which Dr. De Wilder has done in his doctoral 

thesis. The impact of the prestressing force on the shear force capacity of beams has also been 

investigated. 

The results show that the equations for beam regions that do not have bending cracks give identical 

shear force capacities. While the equation which is based on critical shear crack theory takes the 

shear span into consideration and captures the effect of the shear span correctly, which the other 

proposed equation and the one found in Eurocode today do not and are on the unsafe side for 

increasing shear spans. Furthermore, it turned out that the equation which is based on critical shear 

crack theory was rather conservative, while the equation that exists today in Eurocode gives 

approximately the same shear capacity as the other proposed equation. 

Furthermore, it was found that if the amount of longitudinal reinforcement is reduced, at the same 

time as the prestressing force is unchanged, an insignificant reduction in the shear capacity on 

prestressed concrete beams is obtained. 

Keywords: Shear force, prestress concrete, design provisions, Eurocode, carrying capacity, 

parametric study, concrete beam 
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Sammanfattning 
 

En ny version av EN 1992-1-1, Eurokod 2 Dimensionering av betongkonstruktioner, är under 

utveckling och ett av de mest diskuterade ämnena är tvärkraftskapacitet för förspända betongbalkar 

utan skjuvarmering, bland annat eftersom huvudspänningsskjuvbrott uppstår plötsligt och kan få 

katastrofala konsekvenser. 

Till den nya versionen av Eurokoden finns det totalt tre föreslagna ekvationer för att ersätta de två 

ekvationer som för närvarande finns i EN 1992-1-1 för tvärkraftskapacitet för förspända betongbalkar 

utan skjuvarmering. En av de föreslagna ekvationerna är tänkt att ersätta ekvationen avsedd för 

balkregioner där böjsprickor ej uppstår. De andra två ekvationerna är föreslagna för balkregioner där 

böjsprickor uppstår. 

En av de föreslagna ekvationerna för balkregioner med böjsprickor är baserad på kritisk 

skjuvsprickteorin och tar hänsyn till normalkraftens bidrag till tvärkraftskapaciteten, medan den 

andra föreslagna ekvationen för balkregioner med böjsprickor är likt den som idag finns i Eurokoden, 

en empirisk ekvation, där normala kraftens bidrag är baserad på ett empiriskt tillägg. 

I detta examensarbete har alla ekvationer ställts mot varandra och jämförts med hjälp utav icke-linjär 

finit-elementanalyser samt experiment som Dr. De Wilder gjort i sin doktorsavhandling. Vidare har 

också förspänningskraftens påverkan på balkars tvärkraftskapacitet undersökts. 

Resultaten visar att ekvationerna för balkregioner som ej har böjsprickor ger identiska 

tvärkraftskapaciteter. Medan ekvationen som är baserad på kritisk skjuvsprickteorinn tar hänsyn till 

skjuvspännvidd och fångar effekten av skjuvspännvidden korrekt, vilket den andra föreslagna 

ekvationen och den som finns i Eurokoden idag inte gör och är på den osäkra sidan för ökad 

skjuvspännvidd. Dessutom visade det sig att ekvationen som är baserad på kritisk skjuvsprickteori är 

tämligen konservativ, medan ekvationen som finns idag i Eurokoden ger ungefär samma 

tvärkraftskapacitet som den andra föreslagna ekvationen. 

Vidare visade det sig att ifall man minskar mängden längsgående armering, samtidigt som 

förspänningskraften är oförändrad, så fås en obetydlig minskning utav tvärkraftskapaciteten på 

förspända betongbalkar. 

Nyckelord: Tvärkraft, förspänd betong, dimensioneringsbestämmelser, Eurokod, bärförmåga, 

parameterstudie, betongbalk 
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Symbols 

 

a Shear span 

Ac Concrete cross sectional area 

acs Effective shear span 

b Beam web width 

bw Smallest width of the concrete cross-section within the tensile zone  

d Effective depth 

DMax Maximum aggregate size of the concrete element 

e Eccentricity 

EC Concrete elastic modulus 

ep Eccentricity of beam tendons with respect to the cross-sectional 

ES Reinforcement steel elastic modulus 

{F}  Force vector 

fc Compressive concrete strength 

Fc  Compressive force 

fct Tensile concrete strength 

fctd  Uniaxial tensile strength of the concrete 

Fi External load 

Fs  Force in the reinforcement 

Ft  Tensile force in the longitudinal reinforcement 

fv Formal shear strength 

Gf  Fracture energy 

h Beam height 

I  Second moment of area 

Ii Internal load 

[K]  Stiffness matrix 

Ki Tangential stiffness 

le  Length of the element 

L Span of the beam 

M Inner moment 

P Prestressing force 

∆P Load increment 

Ri Residual load 

S  First moment of area 

{u}  Displacement vector 

Va  Shear force carried due to aggregate interlock 

Vac  Shear force carried due to arch effect 

Vc   Shear force carried in the compressive zone 

Vd   Shear force carried due to dowel effect 

Vp Internal shear vector 

VRd,c Design value for the shear resistance 

Vs Reaction force 

w Displacement 
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we Crack opening 

wc Critical crack width 

z Internal lever arm 

 

αF  Correction factor 

∂ui Displacement correlation 

ε Strain 

ε1 Principal tensile strain 

ε2 Principal compressive strain 

εCrack Strain from the crack opening 

εUnCrack Elastic strain of the uncracked concrete 

ρl Longitudinal reinforcement ratio 

σ Stress 

σ1 Principal tensile stress 

σ2 Principal compressing stress 

σcp  dimensioning axial force due to normal force or prestressing 

σp,bounded Bonded prestress 

σp,unbounded Unbonded prestress 

σx  Normal stress in the horizontal direction 

σy  Normal stress in the vertical direction 

τxy  Shear stress  
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1. Introduction 

 

1.1 Background 

 
The Eurocodes are Europe's common design rules for load-bearing structures of buildings and 

infrastructures. The Eurocodes are developed on behalf of the European Commission and the 

European Free Trade Association within the framework of the European Committee for 

Standardization. The purpose of the Eurocodes is to promote the European market for products and 

services in the construction industry. The idea is that all EU countries will build in the same way and 

have a safer construction industry and construction structures. The Eurocodes are also used by a 

number of non-European countries and several other countries have expressed interest in using the 

codes (Eurocodes, 2021). 

 

Currently, the next generation of Eurocode 2 for concrete structures is being developed. The goal for 

the new EN 1992-1-1 is to be published by European Committee for Standardization in 2023. When it 

is put into use depends on how quick the different member states' standardization organizations are 

in implementing and publishing the standard in each country. The implementation can take between 

one to five years. In Sweden it is the Swedish Institute for Standards, SIS that is responsible for the 

implementation and when it is published it will be named SS-EN 1992-1-1 in Sweden.  

 

One of the most discussed topics of the new Eurocode 2 is the shear strength of prestressed concrete 

members without shear reinforcement. This is because the provisions on shear force capacity given 

in EN 1992-1-1 section six are empirical. Furthermore, as concrete has a much lower tensile capacity 

than compressive capacity, great considerations must be taken to shear force and torsion for all 

concrete elements. The failure of concrete structures due to shear force occurs often suddenly and 

does not warn in a similar way like failure due to bending force. The diagonal cracks due to shear 

force are in the failure state significantly wider than cracks due to bending force.  

 

In this report with help of experiments and nonlinear finite element analyzes, five equations will be 

compared; two used today in EN 1992-1-1 (CEN, 2004) and three proposed equations found in the 

recent draft of the revised Eurocode 2 (CEN, working draft D7 prEN 1992-1-1, 2020). But also, the 

impact of prestress on shear force capacity of simply supported concrete beams is going to be 

investigated.  

 

 

 

 



2 
 

1.2 Aim 

 

The main objective of the report was to compare the proposed equations for shear force capacity 

with the corresponding equations found in EN 1992-1-1. Moreover, the impact of prestress, shear 

span, aggregate size, beam height and concrete strength class on shear force capacity and the 

equations was investigated too. 

1.3 Scope and delimitations 

 

This thesis mainly consist of a theory part, a method part and a results part. Where in the theory part 

a description of Eurocode, prestressed concrete, shear force of concrete and non-linear finite 

element method is given. The method part describes the study's approach. After the method part, 

the results of the study are given. The thesis is finally tied together with a discussion and conclusion 

section. 

In this thesis work, many aspects were considered, but some limitations exist and are the following. 

• Only four-bending point tests have been performed. 

• Only rectangular beams and I-beams have been investigated. 

• Only simply supported beams have been analyzed. 

• Maximum shear force with respect to bending has not been considered. 

• Only beams without shear reinforcement have been analyzed. 
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2. Theory 

 

2.1 Shear capacity 

 

Shear capacity of concrete members have been for over one hundred years one of the most 

debatable topics regarding structural safety. Studies on shear behavior of beams were made as early 

as 1856 by the Russian engineer Zhuravskii (Yang, 2014). Much is still unclear today regarding 

concrete shear capacity. Since concrete has a lower tensile capacity than compressive capacity, great 

account must be taken of shear loading for all types of concrete structures, e.g. brittle shear failure 

occurs without any further warnings. 

Cracks are a consequence from stresses which can be described with help of a stress trajectory-

diagram and principal stresses. The stress trajectory-diagram shows where there are compressive 

and tensile stresses in a beam which is exposed to shear loading. 

 

 

Figure 1: Stress trajectory-diagram of a simply supported beam. Adjusted figure from (Nadir, 2020). 

 

If one infinitesimal element of the beam is zoomed in, the principal stresses can be studied. The 

principal stresses are the most extreme stresses that appear in the small element and depend on the 

normal stresses in the vertical and horizontal direction and also the shear stress. The normal stresses 

and the shear stress are calculated with classical mechanics and are oriented along the coordinates 

of the beam.  The principal stresses are calculated with Eq. (2.1) and (2.2), where the tensile stress is 

usually denoted by a positive sign, while the compression stress is denoted by a negative sign, thus σ1 

≥ σ2. When the value of σ1 exceeds the tensile strength of the concrete, a crack will grow in the 

opposite direction of σ2 and perpendicular to σ1, refer to Fig. 2. 
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𝜎1 =  
𝜎𝑥 + 𝜎𝑦

2
+ √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  

(2.1) 

 

 

𝜎2 =  
𝜎𝑥 + 𝜎𝑦

2
−  √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  

(2.2) 

 

where 

σy  Normal stress in the vertical direction 

σx  Normal stress in the horizontal direction 

τxy is the shear stress 

 

Fig. 2 shows the principal tensile stress, σ1 and principal compressing stress, σ2 pulling a small 

element in different directions, which causes cracks. 

 

Figure 2: Principal stresses acting on an infinitesimal element. 

 

Prestressed concrete beams are exposed to compressive force, due to prestressing of the 

reinforcement. The vertical component of the prestressing compressive force lowers the vertical 

shear caused by the external shear load and therefore the net shear force in a prestressed beam is 

less than a conventional one. Moreover, the compressive prestressing force reduces tensile flexural 

stresses; The outcome is smaller principal stresses in prestressed concrete beams compared to 

conventional reinforced beams. 

 

 

Figure 3:   Balancing load to counteract vertical shear. (a) Beam with harped tendon. (b) Internal shear vector Vp due to 
prestressing force P on the infinitesimal element dx. Adjusted figure from (Nawy, 2009). 
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2.2 Failure modes of reinforced concrete beams 

 

 

2.2.1 Flexural failure 

 

The flexural cracks are almost straight and occur at first where the moment force is the highest. The 

cracks initiate from the bottom part of the beam cross section, see Fig. 4(a).  The flexural cracks are 

mostly vertical and occur already at about 50 percent of the flexural failure load (Nawy, 2009). These 

cracks develop mainly due to horizontal principal stresses. With greater external loading, further 

cracks start to develop, and the old ones start to expand to the neutral axis and eventually further. 

The beam then also gets a clear deflection. There are three types of flexural failure. Namely, flexural 

tension failure, which occurs when the beam is under-reinforced, the reinforcement will reach the 

plasticity strain and fails before the concrete fails. The second type of failure is flexural compression 

failure, which occurs in over-reinforced concrete beams. In that case, concrete compression failure is 

achieved in the compression zone of the beam prior yielding of the reinforcement. The third type of 

failure is when the beam is under-reinforcement, where the reinforcement yields prior, but where 

the final failure is due to concrete compression.  

 

2.2.2 Flexural-shear failure 

 

A shear crack can arise from a flexural crack; this phenomenon is called flexural-shear crack. If the 

shear load is increased, then new cracks will occur near the supports and the old cracks will grow 

closer to the compressed zone, see Fig 4(b). When the external load reaches the failure load, an 

inclined crack develops from the flexural reinforcement and extends toward the compressed zone, 

see Fig. 4(c). This kind of failure is the most common shear failure (Yang, 2014), because flexural 

cracks in the tensile zone are very common. Beam height, concrete strength, reinforcement content, 

reinforcement bond and shear slenderness are factors that have huge effect on the flexural-shear 

failure. 

 

Figure 4: (a) Flexural cracks, (b) Cracks from increased loading, (c) Flexural-shear failure. Adjusted figure from (Ansell et 
al., 2014). 

 

2.2.3 Web shear failure 

 

Web shear failure can appear due to compression or tension in concrete beams, in other words, 
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when principal stresses exceed the tensile or compressive strength of the concrete, which is 

described in chapter 2.1. This kind of failure occurs with limited warnings; therefore, design that risks 

leading to web shear failure should be avoided. In general, flexural-shear failure occurs at lower 

loadings and therefore determines load carrying capacity. While web shear failure occurs more often 

in pre-tensioned beams. Therefore for pre-tensioned beams, the design for web shear failure is 

crucial (Ansell et al., 2014). 

 

Web shear failure due to tension 

When the web is failing due to tension, a diagonal crack begins to grow in the middle of the web; this 

is because the tensile capacity of the concrete is being reached. Thus, the tensile principal stress has 

reached the concrete tensile strength. 

 

Figure 5: Shear failure due to tension. Adjusted figure from (De Wilder, 2014). 

  

Web shear failure due to compression 

When the web is failing due to compression it is because the compression strength of the concrete 

has been exceeded. This kind of failure can happen when there is much shear reinforcement in a 

concrete beam because the concrete is crushed before the reinforcement is yield.  

 

Beams exposed to a point load are most sensitive to shear web failure due to compression when the 

L/h ratio is 2.5. For beams exposed to evenly distributed loads, the beam is most sensitive when the 

L/h ratio is less than 5.0 (Nawy, 2009). Where h is the cross-sectional height of the beam and L is the 

span of the beam. 

 

Figure 6: Shear failure due to compression. Adjusted figure from (De Wilder, 2014). 

 

2.3 Mechanisms of Shear Transfer in concrete beams 

 

Many years of research show that shear capacity of concrete elements is the result of various shear 

transfer mechanisms. Many factors affect these mechanisms independently and some mechanisms 

are correlated, this complicates the evaluation of shear capacity of concrete elements. For concrete 
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members with longitudinal reinforcement and without shear reinforcement, there are five different 

mechanisms of shear transfer. These are, 

 

• Shear stresses in the uncracked concrete. 

• The dowel effect of the longitudinal reinforcement. 

• Aggregate interlock. 

• Residual tensile stresses transmitted directly across cracks. 

• Arch action. 

 

Figure 7: The five mechanisms of shear transfer, where Vs = reaction force, Vd = shear force carried due to dowel effect, Ft 

= tensile force in the longitudinal reinforcement, Va = shear force carried due to aggregate interlock, Vc = shear force 
carried in the compressive zone, Fc = the projection of the compressive force and Vac = shear force carried due to arch 

effect. Adjusted figure from (Ismail, 2014). 

 

2.3.1 Shear stresses in the uncracked concrete 

 

After the development of the first flexural cracks, a magnitude of shear force is carried by the 

uncracked zone i.e. the compressive zone. When the boundary conditions in the compressive zone 

are known, then the shear stress distribution in the compressive zone can be approximately 

calculated with help of the elasticity theory (Yang, 2014). 

 

2.3.2 Aggregate interlock 

 
The effect of aggregate interlock was first presented by Fenwick and Pauley (Fenwick, et al 1968) 

who did studies on shear force capacity of concrete beams with different crack size and differing 

roughness of the crack surfaces. In the last 30-40 years, great progress has been made in the area (De 

Wilder, 2014). 

When concrete elements crack, the cracking surfaces are rough and uneven due to the size of the 

aggregates in the concrete. The aggregate interlock phenomenon means that aggregates in the 

cracks protrude and prevent slipping between the crack surfaces. The contact between the crack 

surfaces will contribute to the shear resistance of the concrete elements (Walraven, 1980). It is well 

known that the amount of shear force transferred by aggregate interlock highly depends on the crack 

width which is proportional to the product of the crack spacing times the horizontal strain. 

Therefore, every aspect that affects the crack spacing and horizontal strain will also affect the shear 
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strength of concrete elements. Other factors affecting the shear transmittable due to aggregate 

interlock are the concrete compressive strength, fc, fracture energy Gf, the aggregate size, DMax and 

the type of aggregate (Yang, 2014). 

 
 

 

Figure 8: Aggregate interlock, adjusted figure from (Walraven, 1980). 

 
Fracture energy 

Fracture energy Gf,in N/m is a material property concerning the amount of energy needed for a 

stress free crack to develop (Malm, 2016). The fracture energy of concrete is described with help of a 

stress-displacement curve and not a stress-strain curve. The reason for this is that when a concrete 

composition is exposed to tensile loading, the total displacement of the composition will then consist 

of two different parts, namely displacement due to elastic strain and displacement due to crack 

opening in the non-elastic part of the concrete. Therefore, a stress-strain curve is an improper way of 

describing the total displacement of the element. Thus, a tensile curve may be divided into two parts. 

One part for the uncracked part of the concrete and one part for the cracked part of the concrete. 

Fig. 9 is illustrating this, where Gf is the area under the curve and is corresponding to the integral 

 
∫ 𝑓(𝑤)𝑑𝑤

𝑤𝑐

𝑤𝑜

 

 

(2.3) 

 

 

Figure 9: Crack propagation in concrete at uniaxial tensile loading, (a) is the elastic part and is described by stress (σ) and 
strain (ε), (b) is the non-elastic part and is described by stress (σ) and displacement (w). Adjusted figure from (Malm, 

2016) and (Van Mier, 1984). 
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Furthermore, with regard to the shape of the curve, a relationship can be deduced between fracture 

energy, critical crack width wc, and the tensile strength fct. The relationship can be calculated using 

Eq. (2.4).   

 
𝑤𝑐 = 𝐶 ∙

𝐺𝑓

𝑓𝑐𝑡
 

 

(2.4) 

Where  

Gf Fracture energy 

fct Tensile strength 

C Is a contant that depends on the shape of the curve and varies between two to five 

wc Critical crack width 

If possible, the fracture energy should be determined by tests as fracture energy is not defined in 

codes and standards, such as the Eurocodes. This complicates the calculation of non-linear finite 

element analysis. But the fracture energy can be estimated according to (VOS, 1983) by Eq. (2.5) 

 𝐺𝑓 = 25𝑓𝑐𝑡 

 

(2.5) 

However, in Model Code 1990 (CEB-FIP, 1993) Eq. (2.6) was presented, where the aggregate size is 

taken into account. 

 
𝐺𝑓 = αF(

fcm

10Mpa
)0.7 

 

(2.6) 

 

DMax (mm) αF (N/m) 

8 20 

16 30 

32 50 

 

Where  

 

fcm is the mean compressive strength of concrete. 

Dmax  Is the maximum aggregate size. 

αF  is a correction factor taking maximum aggregate size into account. 

The values given by Eq. (2.5) has been proven to be too conservative for concrete with coarse 

aggregate size, while the values given by Eq. (2.6) has been proved to be too conservative for 

concrete with small aggregate size. Furthermore, it has been shown that fracture energy is not as 

dependent on stone size as previously assumed (Malm, 2016). It has also been proven that fracture 

energy is dependent on the rock used for the ballast and on hardening conditions of the concrete. 

Therefore, with the latest edition of Model Code (CEB-FIP, 2020), a new equation has been 

introduced, namely Eq (2.7). In this equation, Gf is only dependent on the compressive strength of 

the concrete fcm. 
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 𝐺𝑓 = 73 𝑓𝑐𝑚
0.18 

 

(2.7) 

 

 

2.3.3 Residual tensile stresses transmitted directly across cracks 

 

Concrete has a much smaller tensile strength than compressive strength; therefore, it is common to 

ignore the tensile concrete strength when considering the strength of concrete elements. However, 

this is not always practical, e.g. shear capacity of concrete beams without shear reinforcement 

depends, among other things, on the tensile strength of the concrete. During the 1960s, Evans and 

Marathe (Evans et al., 2014) showed that concrete cracks around 0.1 mm wide have a capacity to 

carry a small amount of tensile stress. This has been confirmed by several studies, since then (Ruiz et 

al., 2015). See Fig. 9b, where the residual strength is a function of the crack width. 

 

2.3.4 Dowel action of longitudinal reinforcement 

 

Krefeld and Thurston (Krefeld et al., 1966) were the first to investigate the dowel action during the 

1960s. When a crack arises, the crack surfaces will move in different directions. The longitudinal 

reinforcement between the surfaces will bend and create a resistance to transverse displacement; 

this will have a contributing role for the shear capacity of a concrete element. 

Studies in the subject made by, among others, Bennett and Banerjee (Banerjee et al., 1976) show 

that that the diameters of the reinforcement have a small impact on the dowel effect and the 

amount of reinforcement has a large impact. Other impacting factors are concrete cover, material 

properties of the concrete and the reinforcement steel, as well as the axial stress in the dowels. 

 

 

Figure 10: The dowel effect. Bent steel reinforcement bar in a crack. 
 

 

2.3.5 Arch action 

 

Many researchers have reported about the arch action (Jeong et al., 2011). Beams with small a/d 

ratio develop a so-called arch effect, where the tensile forces are carried by the flexural 

reinforcement and the shear load is transported by compression to the supports.  The shear load of 
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beams with an a/d ratio between 1 and 1.5 are fully supported by the arch effect (Ansell et al., 2014). 

The arch action differs between point load and evenly distributed load, according to Fig. 11(a) and 

Fig. 11(b) (Ismail, 2016). 

 

Figure 11: (a) Arch action for point load, (b) arch action for evenly distributed load. Adjusted figure from (Ismail, 2016). 

 

2.4 Parameters influencing shear capacity 

 

2.4.1 Beam height 

 
The formal shear strength fv=V/bd of concrete decreases with increased beam cross-sectional height. 

It is well-known that the formal strength of inhomogeneous and brittle material decreases with 

increased size (Ansell et al., 2014). This phenomenon is called the size effect. 

 

2.4.2 Concrete strength 

 

The strength of concrete, especially the compressive strength is an important factor regarding shear 

behavior of concrete beams without shear reinforcement (Angelakos et al., 2014). Fig. 12 shows the 

effect of concrete compressive strength on the shear force capacity of reinforced concrete beams 

without shear reinforcement (Ismail, 2016). 

 

Figure 12: The effect of concrete strength on shear force capacity of reinforced concrete beams without shear 
reinforcement (Ismail, 2016). 
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2.4.3 Longitudinal reinforcement content 

 

Increased amount of longitudinal reinforcement has the following three effects. 

• The height of the cross-sectional compression zone expands. This enables the compression 

zone to withstand a greater shear force. 

• It becomes more difficult for the cracks to open and expand; this leads to increased friction 

in the crack surfaces. 

• The so-called dowel force increases, i.e. resistance to transverse displacement in the 

reinforcement increases. More about the dowel effect can be read in chapter 2.3.4. 

 

 

2.4.4 Bond of the longitudinal reinforcement 

 

Fig. 13 illustrates a lamella between two flexural cracks. The force gives an inner bending moment, 

which in turn can cause the cracks to grow. Ribbed reinforcement has such a high bond that can lead 

to a redistribution to more cracks close to the supports, which may become inclined shear cracks in 

regions with high shear forces. In beams with smooth bars with poor bond, large bending cracks 

grows in the middle of the beam, where is moment force is large but the shear forces are low. 

Therefore, high bond of between the reinforcement and surrounding concrete has a negative impact 

on the risk for flexural shear failure. However, one must keep in mind that reinforcement bars with 

low bond must be end-anchored (Ansell et al., 2014). 

 

  

Figure 13: A lamella between two cracks where Fs is the force in the reinforcement, Fc is the compressive force in the 
concrete and M is the inner moment. Adjusted figure from (Ansell et al., 2014). 

 

 

2.4.5 Shear slenderness 

 

Shear slenderness, also called span/effective depth ratio is defined as a/d. Where a is the distance 

between point load and support, d is the effective height of concrete beam. Research done by 

Leonhardt and Walther (Ansell et al., 2014) shows that beams with a ratio a/d ≥ 7 usually fail due to 

bending and beams with a smaller ratio fail due to shear force. Furthermore, the study showed that 

the smaller the a/d ratio is, the greater the shear capacity of the beam. This is due to the so-called 

arch effect, more about the arch effect in chapter 2.3.5. Tests on concrete beams with evenly 

distributed loads were also done, where L/d represented the shear slenderness. The same 

conclusions could be drawn from the two different studies. (Ansell et al., 2014) 
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2.5 Eurocode 

 

The Eurocodes are Europe's common design rules for load-bearing structures of buildings and 

infrastructures. The Eurocodes are developed on behalf of the European Commission and the 

European Free Trade Association within the framework of the European Committee for 

Standardization. The purposes of the Eurocodes are to promote the European market for products 

and services in the construction industry. The idea is that all EU countries will build in the same way 

and have safe construction structures and a safer construction industry. 

 

The European Commission, EC decided in 1975 a program to develop the internal European Union 

market for products and services in the construction industry. In the mid-1980s as part of the 

program the first Eurocode was published.  

 

In 1989 the European Commission and the member states of the European standardization 

organization CEN (Comité Européen de Normalisation) decided that in the future the development 

and publication of the Eurocodes would be in the CEN. CEN also included many European countries 

outside the European Union, therefore Sweden was also included in the cooperation (Westerberg, 

2010). 

 

Between 1992 and 1998, most of the Eurocodes were published as ENVs (pre-standars). Due to non-

agreements on certain factor values between the countries, the Eurocodes contained so-called 

“Boxed values”, which could be chosen freely by the individual countries. The start of replacing the 

“Boxed-values” with defined values started in 1998 and was finished in the very early 2000s. The first 

generation of the Eurocodes as full CEN standards were published between 2002 and 2007. Many 

countries around the world today have implemented the Eurocodes or are in the process of doing so. 

In Sweden the Eurocodes have been mandatory for bridges since 2009 and for house-buildings since 

2011.  

 

In the Eurocodes there are some opportunities for national adaptation trough the so-called 

Nationally Determined Parameters, NDP. But they are quite limited, and countries can no longer 

deviate to a greater extent from the content. In addition to the Eurocodes, each country has 

published a National Annex, NA stating the NDP values that apply in the country. However, the 

European Commission urges countries to use the recommended NDP values as far as possible. Other 

parameters that are nationally determined are those that depend on differences in climate, 

environmental impact, and sustainability. Currently, the next generation of Eurocode 2 for concrete 

structures is being developed. The goal for the new EN 1992-1-1 is to be published by European 

Committee for Standardization in 2023. When it is put into use depends on how quick the different 

member states' standardization organizations are in implementing and publishing the standard in 

each state. The implementation can take between one to five years. 
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2.6 Shear force according to Eurocode 

 

Various codes and standards have different formulas for shear force capacity of concrete beams. In 

the Eurocode 2 (CEN, 2004) empirical methods have been used to derive the shear capacity. The 

equation for shear capacity of concrete beams without shear reinforcement can be found in chapter 

6.2 in Eurocode 2. The equation is presented in Eq. (2.8) and has a lower bound value which is 

presented in Eq (2.9). 

Eq. (2.8) includes the contribution of the longitudinal reinforcement to shear capacity, while Eq. (2.9) 

only includes the strength of the concrete. Eq. (2.8) will hereinafter in this report be referred to as 

Eq. 1a. 

 𝑉𝑅𝑑,𝑐 = (𝐶𝑅𝑑,𝑐𝑘 √100𝜌1𝑓𝑐𝑘
3

+ 𝑘1𝜎𝑐𝑝)𝑏𝑤𝑑 

 

(2.8) 

 𝑉𝑅𝑑,𝑐,𝑚𝑖𝑛 = (𝑣𝑚𝑖𝑛 + 𝑘1𝜎𝑐𝑝)𝑏𝑤𝑑 

 

(2.9) 

Where 

CRd,c= 
0.18

𝛾𝐶
  where γC is a partial safety factor.  

k = 1 + √200/𝑑 ≤ 2.0 (d in mm) 

ρ1 = 
𝐴𝑠𝑙

𝑏𝑤𝑑
  where 𝐴𝑠𝑙  is the area of the longitudinal reinforcement  

bw is minimum width of the cross-section with the tensile zone 

σcp = 
𝑁𝑑

𝐴𝑐
 where Nd is the dimensioning axial force due to normal force or prestressing and Ac is the 

concrete cross sectional area. 

k1 = 0.15 

vmin = 0.035k3/2fck
1/2 

 

It must be stressed that Eq. (2.8) and (2.9) should only be used for beams or beam regions that are 

cracked in bending. For prestressed concrete beams without shear reinforcement and which are 

uncracked in a bending, Eq. (2.10) should be used. Eq. (2.10) will hereinafter in this report be 

referred to as Eq. 2a. 

 

 
𝑉𝑅𝑑,𝑐 =

𝐼𝑏𝑤

𝑆
√𝑓𝑐𝑡𝑑

2 + 𝛼1𝜎𝑐𝑝𝑓𝑐𝑡𝑑
2

 

 

(2.10) 

Where 

 

I is the second moment of area 

fctd is the uniaxial tensile strength of the concrete. 

S is the first moment of area above the centroidal axis of the beam cross-section. 

α1 is a factor which takes the bond characteristics of the longitudinal reinforcement into account. 

As mentioned earlier in this report, a revision of Eurocode 2 is underway, and a final draft is on the 

way for enquiry. The draft is called prEN 1992-1-1:2021 (CEN, working draft D7 prEN 1992-1-1, 2020) 
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and one or both equations (2.11) and (2.12) is intended to replace equation Eq. (2.8), where Eq. 

(2.12) is a simplification of Eq. (2.11). Eq. (2.11) is based on critical shear crack theory and Eq. (2.12) 

is empirical. It is possible that both equations will be approved and included in the new Eurocode, 

where the designer or the country may have to choose between them. 

 

However, it has to be stressed that, these equations are still proposals that may change, and the 

proposals may not yet be used other than in theoretical comparative work such as e.g. this master 

thesis. Eq. (2.11) and (2.12) will hereinafter in this report be referred to as Eq. 1b and Eq. 1c, 

respectively. 

 

 
𝑉𝑅𝑑,𝑐 = 𝑏𝑤𝑧

0.66

𝛾𝑣
(100𝑓𝑐𝑘

𝑑𝑑𝑔

𝑑𝑛𝑜𝑚
)

1/3

 

 

(2.11) 

 
𝑉𝑅𝑑,𝑐 = 𝑏𝑤𝑧 [

0.66

𝛾𝑣
(100𝑓𝑐𝑘𝜌1

𝑑𝑑𝑔

𝑑
)

1
3 − 𝐾1𝜎𝑐𝑝] 

 
 

(2.12) 

Where 

γv is a partial safety factor 

K1 = 
1.4

𝛾𝑣
(0.07 +  

𝑒𝑝

4𝑑
) ≤ 0.15 ∙

1.4

𝛾𝑣
 , where ep is the eccentricity of the tendons with respect to the 

centre of gravity of the cross section. 

dnom may be refined as: 

av = √
𝑎𝑐𝑠

4
𝑑 for members with a shear span acs shorter than 4d and otherwise d. 

For reinforced concrete members without axial force acs may be calculated as: 

 acs = 
|𝑀𝐸𝑑|

|𝑉𝐸𝑑|
≥ 𝑑 

In presence of axial force, dnom or av may be multiplied by: 

kvp = 1 +
𝑁𝐸𝑑

|𝑉𝐸𝑑|

𝑑

3𝑎𝑐𝑠
≥ 0.1 

ddg is a size parameter describing the failure zone roughness, which depends on the concrete type 

and its aggregate properties. ddg may be taken as: 

16 mm + Dlower ≤ 40 mm for concrete with fck ≤ 60 MPa 

16 mm + Dlower (60/fck)4 ≤ 40 mm for concrete with fck > 60 MPa 

Dlower is the smallest value of DMax for the coarsest fraction of aggregates in the concrete. 

According to proposals in the new Eurocode, shear resistance for shear tension failure in uncracked 

webs of prestressed, precast structural concrete members that are simply supported should be 

checked by the verification of the principal stress according to Eq. (2.13). Eq. (2.13) should not 

according to the proposals be used for beams with an effective height over 500 mm. 

 
𝜎1,𝐸𝑑 ≤  

𝑓𝑐𝑡𝑘,0,05

𝛾𝑐
 

 

(2.13) 
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Where 

σ1,Ed is the maximum value of the principal tensile stress in the cross section 

fctk,0,05 is the 5% fractile tensile strength 

γc is a partial safety factor 

From Eq. (2.13), the design value for the shear resistance VRd,c, can be derived according to Eq. (2.14). 

Eq. (2.14) will hereinafter in this report be referred to as Eq. 2b. 

 

 

𝑉𝑅𝑑,𝑐 =
𝑏𝑤 ∙ 𝐼

𝑆
(√(𝑓𝑐𝑡𝑘0,05 −

𝜎𝑥

2
)

2

− (
𝜎𝑥

2
)

2

) 

 
 

(2.14) 

It should be mentioned that in equation (2.8), (2.9) and (2.10) the compressive stress is defined with 

a positive sign, while in equation (2.11), (2.12), (2.13) and (2.14), compressive force is defined with a 

negative sign. 

 

2.7 Prestress concrete 

 

2.7.1 History of prestressed concrete 

 

The idea of prestressing goes back to ca. 2000 BC when the ancient Egyptians used prestressed boats 

(Silfwerbrand, 2019). But when it comes to concrete, it is not until 1886 when the engineer Peter H. 

Jackson patents the idea of prestressed concrete in the United States (Sehlström 2019). However, his 

ideas did not succeed, due to lack of technology and knowledge. For instance, metallurgists had not 

yet discovered high strength steel to support the ideas and conventional strength steel losses circa 

200 MPa of 275 MPa prestressing due to shrinkage and creep (Garber, 2019). Therefore Jackson’s 

ideas were on pause until the Frenchman Eugène Freyssinet resumed the ideas. Freyssinet came to 

the conclusion that in previous experiments with prestressed concrete, concrete with poor quality 

and low strength had been used. Furthermore, he also came to the conclusion that there was too 

little initial tensioning force in the reinforcement. According to (Garber, 2019) Freyssinet said the 

following three things are needed for durable prestressed concrete elements:  

 

1, Metals with very high elastic limits. 

2, Submit the tendons to very strong initial tensioning force, this would overthrow the loss of 

presstressing due to creep and shrinkage. 

3, Stiff concrete should be used. Because, the stiffer the concrete, the less creep and shrinkage. 

 

In 1928, Freyssinet realized how important it was with prestressed concrete members, so he 

patented his new ideas and developed the ideas in the following years. Freyssinet was the first 

person to use high strength steel wires tensioned in concrete beams. In the early 1930s, he opened 
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the world's first factory which manufactured prestressed concrete elements.  

 

Another important person in the history of prestressed concrete is the Belgian professor Gustave 

Magnel, Magnel spoke very good English and could therefore spread the ideas of prestressing. He 

desgined the Walnut Lane Bridge in Philadelphia, which is the first prestressed concrete bridge in the 

history of the US (Nasser, 2008). During World War II, the Germans did not allow Magnel to teach. 

However, he was allowed to continue his research about prestressed concrete. Magnel began to take 

a look at Freyssinet's ideas and eventually developed his own post-tensioning system, the Magnel-

Blaton system (Billington 1976).  This system was widely used in Belgium and the rest of Europe 

during the reconstruction of European cities after the Second World War. Developments of a large 

number of prestressing concrete systems have been done since then. 

 

Magnel and Freyssinet worked mainly with post-tensioning. The German engineer Ewald Hoyer was 

in 1938 the first to work with pre-tensioned concrete. Pre-tensioning was not widely used until the 

seven-wire strand came, due to bond between the wire and the surrounding concrete (Garber, 

2019). Hoyer discovered the so-called Hoyer’s effect. More about Hoyer’s effect can be read in 

chapter 2.7.4. 

 

2.7.2 Economy of prestressed concrete 

 

Prestressed concrete members are shallower than conventional reinforced concrete members for 

the same span and load. Usually the depth of prestressed concrete members is around 20-35 percent 

smaller than a comparable conventional reinforce concrete member. This saves material, less 

concrete is needed, and 65-80% less reinforcement is needed (Nawy, 2009). But the difference of the 

initial cost is still small, due to complex frameworks and the need of high quality materials in 

prestressed concrete, e.g. the reinforcement steel used in prestressed concrete is up to 3.5 times 

more expensive than in conventional reinforced concrete and type III cement is widely used, because 

it gives higher concrete strength earlier, so other elements can quicker be cast.   

 

2.7.3 The concept of prestressed concrete 

 

The tensile strength of concrete is about 8 to 15 percent of its compressive strength. Due to the low 

tensile strength, bending cracks already occur at about 50 percent of the maximum bending capacity 

of the concrete element (Nawy, 2009). To counteract bending cracks, a concentric or eccentric 

horizontal force is applied in the concrete element, this force which is also called prestressing force 

eliminates tensile stresses in the concrete and therefore reduces the risk of bending cracks.  

 

The idea of prestressed reinforcement is to subject the reinforcement in the concrete to tensile force 

in order to achieve a high compressive force in the reinforcement due to elasticity. The concrete 

element will then behave elastically, and the compressive strength of the concrete can be utilized to 

a much greater extent, but the behavior of the concrete material is unchanged. Therefore, the same 

stress-strain curve applies for concrete within a prestressed element as for conventional reinforced 
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concrete elements. Since the prestressed reinforcement is exposed to mainly higher stresses, it 

offers many advantages compared to conventional reinforcement. These advantages are reduced 

reinforcement area, reduced height and thickness of the concrete element, no or narrower cracks 

under serviceability limit condition, which reduces the risk of reinforcement corrosion, furthermore it 

is possible to have longer span for beams with less deflection, etc. 

 

According to (Nawy, 2009), when concrete beams have a length of over circa 21-27 meters (70-90 

feet), the dead weight becomes too heavy for the beam, which leads to bigger long-term deflection 

and cracking. Therefore, for long spans, prestressed concrete becomes a must. Concrete bridges 

which have a very long span can only be built with prestressed concrete. 

 

There are many different pre-stressing systems, where essentially two different principles can be 

distinguished. Pre-tensioning and post-tensioning. 

 

2.7.4 Pre-tensioning 

The pre-tensioning principle is when the reinforcement is exposed to tensile stress and at the same 

time the concrete is cast and hardened. This principle is very common in the prefab industry and is 

done in the three following steps. 

 

1, The reinforcement, which can be wires, strands or bars are placed in a precasting bed and 

stretched to between 70 to 80 percent of its ultimate strength. See Fig. 14(a). 

 

2, The concrete is poured in the precasting bed. See Fig. 14(b). 

 

3, Once the concrete has hardened and reached the required strength, the stretching forces are 

released, see Fig. 14(c). The reinforcement is now anchored by bonding to the concrete, also called 

Hoyer effect. The bed is then gradually removed from the concrete, so the beam can gradually 

withstand its own dead weight. This is done, because otherwise the beam will break due to the 

moment forces that arise due to the prestressing force. 

 

Figure 14: Pre-tensioning process. Adjusted figure from (Silfwerbrand, 2019). 
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Hoyer effect 

When reinforcing steel is stretched out, the diameter of the reinforcement decreases related to 

Poission’s ratio. When the concrete is cast and the stretched reinforcement steel is released, the 

steel wants to return to its original shape. The diameter of the reinforcing steel tries to expand while 

the concrete resists the expansion. In this way a good bond between the reinforcement and concrete 

is achieved.  

 

Figure 15: The hoyer effect. 

 

2.7.5 Post-tensioning 

 

The post-tensioning principle is when stress is applied to the reinforcement after the concrete has 

been cast and hardened, then the reinforcement is stressed by jacking devices. This principle is very 

common in the case of cast in-situ concreting. The reinforcement is placed in the formwork without 

being subjected to tensile stresses; the reinforcement is then usually in ducts, so the reinforcement 

does not bond to the cast concrete. 

 

There are two types of post-tensioning methods. Namely, bonded post-tension and unbonded post-

tension. Bonded and unbonded post-tension affects the structure in different ways. 

 

Unbonded post-tensioning 

In the case of un-bonded reinforcement, the ducts are filled with some kind of wax or de-moisturized 

air; this also protects the reinforcement from corrosion. In unbonded post-tensioned beams, the 

prestress in the reinforcement is evenly distributed over the whole length of the reinforcement, 

because the transfer of stresses occurs only at the end of the beam, where usually the anchorage 

devices are located. 

 

Bonded post-tensioning 

Bonding between the stressed reinforcement and the concrete is done by injecting cement grout into 

the ducts. 
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In bonded post-tensioned beams, there are anchor devices to transfer the stress from the 

reinforcement to the beam but a bond between the surrounding cement grout and the 

reinforcement is developed too, which gives a varying prestress along the whole reinforcement. 

 

2.7.6 Alignment of prestressed reinforcement in concrete beams 

It is not particularly difficult to determine the alignment of prestressed reinforcement in concrete 

beams. But for other concrete elements, it can be very challenging. A rule of thumb is to place the 

prestressed reinforcement where the tensile stresses develop. The idea is that with a suitable 

alignment of the prestressing reinforcement, achieve an initial moment distribution which resists 

some of the moments that occur due to dead weight and loadings, in this way an optimal material 

use and smaller deflections are obtained. 

 

Figure 16: Moment diagram for a simply supported beam, loaded with an evenly distributed load and a prestressing 
force with the distance e to the center line of the beam (Garber, 2009). 

 

For simply supported beams, the prestressed steel reinforcement should be between the kern points 

to meet all the stress checks (Garber, 2019). 

 

Figure 17: The red lines illustrate the kern points. Adjusted figure from (Garber, 2019). 

 

 

2.7.7 Prestessing losses 

 

There is different kind of tensioning force losses which weakens prestressed structures. The initial 

prestressing force of the concrete element goes through a process of reduction over a period of circa 
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five years (Nawy, 2009). Prestressed losses are as shown in Fig. 18 divided into categories and 

subcategories. 

 

Figure 18: Prestress losses and its categories and subcategories (Menon et al., 2021). 
 

It is not possible to determine exactly how large the losses will be, specially the time dependent 

losses because they depend on several interrelated factors. However, there are several estimations 

and empirical methods for obtaining an approximate value of the losses, see for instance chapter 

5.10 in EN 1992-1-1.  

 

Figure 19: Typical breakdown of prestress loss magnitudes by type for a bridge girder (Garber 2020). 

 

Losses due to elastic shortening 

When the prestressing force is applied to the concrete, the concrete and the reinforcement steel are 

shortened simultaneously. Shortened reinforcement results in losing a part of the prestress. The 

amount of shortening depends on stiffness of the concrete and magnitude of the prestressing 

compressive force. 

 

Losses due to friction 

Loss of prestressing occurs in post-tensioned concrete members due to friction between the tendons 

and the surrounding ducts. The magnitude of the loss is a function of the tendon alignment, also 

called curvature effect and local deviations in the alignment, called the wobble effect. 

 

The stress loss varies linearly and the biggest stress loss is at the far end from the jacking devise.  
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Losses due to anchorage slip 

In post-tensioned members, the wedges used to grip the reinforcement wires slip immediately over a 

small distance before the wires are properly placed, this causes stress loss. The amount of slip 

depends on the wedge type and the magnitude of the stress. 

 

Losses due to creep 

Creep is a time-dependent deformation which occurs in concrete elements under permanent loading 

and in a prestressed concrete element, the prestress compressive force is one of the permanent 

forces. Because of the creep of concrete, the prestress in the reinforcement steel is reduced. To 

counteract high prestess loss, high-strength concrete should be used because it tends creep less. 

 

Losses due to shrinkage 

Shrinkage is independent of external load. The phenomenon shrinkage is when the concrete 

decreases in volume. Due to shrinkage, the prestress is reduced in the reinforcement steel. There are 

four types of shrinkage, namely thermal shrinkage, drying shrinkage, autogenous shrinkage, and 

carbonation shrinkage. About 80% of the total shrinkage occurs during the first year of the concrete 

structure's life span (Nawy, 2009). 

 

Losses due to relaxation 

Relaxation is a time-dependent phenomenon in which stress is reduced in the reinforcement steel 

due to constant strain over time. Relaxation is the same as concrete creep, except creep is change in 

strain over time, while relaxation is change in stress over time. Larger initial stress leads to larger 

stress loss due to relaxation. Furthermore, studies show that higher temperatures lead to greater 

relaxation. A temperature increase from 20°C to 40°C doubles the relaxation and quadruples if the 

temperature increases from 20°C to 60°C (Menon et al., 2021). 

 

2.8 Finite Element Method 

 
The development of the modern finite element method within the field of structural engineering 

began as early as the 1940s (Logan, 2015) but is used basically in every engineering discipline. The 

finite element method is mainly used for complicated and time-consuming field problems and is a 

numerical method that solves differential equations approximately. In recent years finite element 

method has also been used by researchers in simulation experiments. Normally there are three 

different steps when modulating in a finite element program. Namely the following three steps,  

 

Pre-processing 

In this step all the parameters that are needed to be able to perform an analysis is defined, e.g. 

geometry, material properties, load combinations, boundary conditions, interactions and element 

size, etc.  

 

Execution and analysis 

In the execution and analysis step the numerical calculation is commenced. The behavior and 

calculation of the model can be observed and analyzed in real time. 
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Post-processing 

In this step, results can be checked, for instance strain and stresses. It should be emphasized that one 

should never rely solely on simulation results, but one should always use common sense as well. 

 

2.8.1 Elements 

 
During a finite element analysis, the modeled structure is divided into elements, this process is called 

discretization. There are many different kinds of elements; moreover, there can be hundreds of 

varieties of the same element. The choice of element depends on the type of analysis to be done. 

Each element consists of a number of nodes and the elements are connected through the nodes. 

Further, each node has a number of degrees of freedom for describing possible movements. The 

collection of nodes and elements is called mesh. 

 

In most analyzes, it is desirable to simplify the structure and at the same capture its global behavior. 

How the structure is to be simplified and what type of elements are to be used needs expertise. 

 

 

Figure 20: Commonly used element families. (Abaqus Theory Manual ver. 6.12). 

 

2.8.2 Element shape functions. 

 
Between the nodes, interpolation takes place and is achieved with shape functions which is either 

linear or quadratic. The accuracy of the analysis is governed by the choice of function. 

 

 
 

Figure 21:  Linear and quadric interpolation between nodes. Adjusted figure from (Malm, 2016). 
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It should be stressed, when using linear shape functions, only linear geometric estimations can be 
made. Therefore, the four-noded element in Fig. 22(a) is a poor choice when describing bending; 
thus eight-noded element in Fig. 22(b) should be chosen for bending. However, this leads to twice as 
many nodes and freedom of degrees, which increase the process time (CPU). 
 

 
 

Figure 22: (a) four-noded element, (b) eight-noded element. For (a), a linear interpolation may be used and for (b), a 
quadric interpolation may be used. 

 

 

2.8.3 Non-linear finite element analysis 

 

In a finite element method, Eq. (2.15) is solved. The stiffness matrix [K] arranges the displacement 

and force vectors and is the major difference between linear and non-linear finite element analysis.  

 

 {𝐹} = [𝐾] ∙ {𝑢} 
 

(2.15) 

 

Where 

 

{F} is the force vector in the degrees of freedom. 

[K] is the stiffness matrix. 

{u} is the displacement vector with displacements and rotations of the degrees of freedom. 

 

 

In a non-linear analysis, it is impossible to solve Eq. (2.15) directly; this is due to the non-proportional 

relationship between load and deformation of the material or the geometry, in other words the 

relation between the force vector and the displacement vector is not linear. Instead an iteration 

procedure must be used to solve Eq. (2.15).  

 

2.8.4 Iteration procedure 

 

Each node has to be in equilibrium, i.e. the external load P must be equal to the internal load I. In 

general, the procedure is the same for all iteration processes (Malm, 2016), where a certain number 

of iterations are made per increment in order to achieve a satisfactory balance in each node.  
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Each increment in the iterative process begins with the structure being exposed to a small load 

increment ∆P and the tangential stiffness Ki is incrementally updated. In each iteration the 

displacement correlation ∂ui is determined and by using ∂ui the structures shape is updated from ui 

to ui+1, i.e. ui+1 = ui + ∂ui. The internal load Ii corresponding to the new displacement ui+1 is then 

calculated, so the residual force Ri = ∆P - Ii can be obtained. 

This process repeats until Ri is equal to zero, meaning force equilibrium is obtained in all nodes in the 

model. However, it should be emphasized that in a non-linear analysis, Ri is never equal to zero. 

Instead, Ri has a tolerance level, if Ri is less than the tolerance value and at the same time, the last 

displacement correlation ∂u is much smaller than total increment displacement u then convergence 

is assumed and next increment can start. 

 

 
 

Figure 23: Illustration of a load increment ∆P reaching equilibrium after three iterations. Adjusted figure from (Malm, 
2016). 

 
There are several different iteration procedures. The most common is the Newton-Raphson method, 
where the next loading step is sought using the slope of the curve in the previous step. The Newton-
Raphson method is a suitable method for finding a maximum on a load-displacement curve, i.e. the 
failure load. However the method fails to capture the snap-back and snap-trough behavior of the 
curve (Memon et al., 2004) In order to capture these two behavior in a proper way, the Arc-length 
method can be used where the next point on the curve is searched within a radius of an arc from the 
previous point. 
 

 
 

Figure 24: Iteration procedures, (a) Newton-Rapshon method, (b) Arc-length method. Adjusted figure from (Svenska 
Betongföreningen, 2010). 
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3. Method 

 

3.1 Concrete beams from experiment 

 

De Wilder’s (De Wilder, 2016) doctoral thesis deals with shear capacity of prestressed concrete 

beams. In De Wilder’s research 24 different beams are subjected to a four-point bending test, 

according to Fig. 26. However, only ten of these 24 beams are prestressed and without shear 

reinforcement. In this report, these ten beams (see Fig. 25) were used to compare equation (2.8), 

(2.10), (2.11), (2.12) and (2.13) when determining the shear capacity of prestressed concrete beams 

without shear reinforcement. 

 

Figure 25: The ten beams from De Wilder’s experiment, which have been used in this report. 

  

 

Figure 26: Schematic representation of the experimental setup. 
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3.1.1 Material properties of the beams 

 

All beams have the same concrete mixture composition, with a maximum aggregate size of 12 mm. 

Furthermore, all strands in the beams except beam B106 have an initial prestress of 1488 MPa, the 

strands in beam B106 have an initial prestress of 750 MPa. Beam B8 has in addition to four bottom 

strands, two conventional longitudinal reinforcement bars with 25 mm in diameter. All beams have 

in the bottom part longitudinal seven-wire strand with a nominal diameter of 12.5 mm and to 

counteract eccentric prestressing force all beams have in the top two seven-wire strands with a 

nominal diameter of 9.3 mm. All beams also have four splitting reinforcement bars with a diameter 

of 8 mm and a center-to-center distance equal to 50 mm in the beam ends. 

 

The age of the beams at the time of the experiment is between 31 to 441 days, therefore the 

properties of the beams are different, despite the same concrete mixture. The amount of 

prestressing losses in the beams is different as well. Table 1 and Table 2 show all relevant factors in 

this report for all ten beams. 

 

Table 1: Concrete beam parameters. 

Beam L 
(m) 

fc 
(MPa 

fct 

(MPa) 
Ec 

(Gpa) 
ρ 

(kg/m3) 
d  

(mm) 
bw 

(mm) 
AC 

(m2) 
ρl 
(-) 

σp 
(MPa) 

a 
(m) 

B1 6 83.5 4.61 43.1 2463 338 240 0.096 0.0046 8184 1.2 

B2 6 96.0 4.8 43.6 2381 322 240 0.096 0.0096 12350 1.2 

B4 6 71.5 - - 2463 438 240 0.12 0.0035 8184 1.2 

B5 6 75.3 - - 2381 422 240 0.12 0.0073 12350 1.2 

B8 6 75.9 4.8 43.6 2389 539 240 0.144 0.0105 8184 1.8 

B9 6 69.4 - - 2459 522 240 0.144 0.0059 12350 1.8 

B10 6 75.9 - - 2389 439 240 0.144 0.0129 8184 1.2 

B103 7 77.5 4.7 43.4 2399 511 70 0.08876 0.0208 11490 2.0 

B106 7 82.8 4.8 43.5 2369 511 70 0.08876 0.0208 5490 2.0 

B109 7 74.6 - - 2376 550 70 0.08876 0.0097 6785 2.0 
 
 
 

Table 2: Steel reinforcement parameters 

Reinforcement Type ds 
(mm) 

As 
(m2) 

Es 

(GPa) 
fy 

(MPa) 
ft 

(MPa) 
εs 

(-) 

Prestrsessed in the top 
part 

Seven-wire strand 9.3 5.2∙105 198 1737 1930 5.2 

Prestressed in the 
bottom part 

Seven-wire strand 12.5 9.3∙105 198 1737 1930 5.2 

Conventional in the 
bottom part. (B8) 

Hot-rolled 25.0 4.9∙105 212 530 635 12.9 

Splitting Cold worked 8.0 5.0∙105 203 542 603 5.97 
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3.2 Method choice 

 

The comparison between the equations in this report was made in three different forms, called Study 

A, B and C. 

 

 

3.2.1 Study A 

 

The shear load capacities for the ten selected concrete beams were calculated with the mentioned 

equations and then compared with the actual failure load obtained during the De Wilder’s 

experiment. 

 

 

3.2.2 Study B 

 

For beams B1, B2, B103 and B106, a parameter study was done with help of the non-linear finite 

element software ATENA 2D. The factors height, shear span, prestress, concrete strength, and 

aggregate size are the parameters that were varied, while all other factors were fixed in the 

parameters study. The variations of the mentioned factors are presented in Table 3. The maximum 

shear capacity for all beams with the different varying parameters were calculated with all the 

mentioned equations and compared with the maximum shear capacity according to ATENA 2D. 

 

As previously mentioned in chapter 2.4, a finite element analysis for a structure shows an 

approximate behavior of the reality. In this report when an analysis in finite element software 

differed by a maximum of 10% from reality, the modeling was considered acceptable. Therefore, the 

parameter study has been applied for beams B1, B2, B103 and B106 only when the modeled beams 

in Atena 2D showed the same type of fracture as in the experiment and showed a load-deformation 

curve that differed by a maximum of 10% from the experiment. Comparison between crack patterns 

according to modeling in Atena 2D and the experiment done be De Wilder can be found in the 

Appindex A. 

 

 

3.2.3 Study C 

 

With beam B8's material parameters, a fictitious beam I8 was created in ATENA 2D. I8 was a beam 

with identical parameters as B8 except for the smallest width of the concrete cross-section, where B8 

was a rectangular beam while I8 was an I-beam. The same kind of parameter study as in Study B has 

also been applied to beam B8 and beam I8. 

Like Study B, the parameter study was applied only when beam B8 in ATENA 2D showed the same 

type of fracture as in the experiment and a load-deformation curve that differed by a maximum of 

10% from the experiment.  
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Figure 27: Beam B8 and I8. 

 

 

Table 3: The varied parameters during the analyzes in Atena 2D. 

Beam Height  
(mm) 

Aggregate size 
(mm) 

Prestress* 
(%) 

fck  

(MPa) 
a  

(m) 

B1 400, 500, 600, 
700, 800 

6, 12, 20, 32 25, 50, 75, 100 40, 50, 60, 
83.5 

1.2, 1.4, 1.6, 
1.8 

B2 400, 500, 600, 
700, 800 

6, 12, 20, 32 25, 50, 75, 100 55, 60, 70, 96 1.2, 1.4, 1.6, 
1.8 

B8 400, 500, 600, 
700, 800 

6, 12, 20, 32 25, 50, 75, 100 40, 50, 60, 
75.9 

1.2, 1.4, 1.6, 
1.8 

I8 400, 500, 600, 
700, 800 

6, 12, 20, 32 25, 50, 75, 100 40, 50, 60, 
75.9 

1.2, 1.4, 1.6, 
1.8 

B103 430, 530, 630, 
730, 830 

6, 12, 20, 32 25, 50, 75, 100 40, 50, 60, 
77.5 

1.0, 1.4, 1.8, 
2.0 2.2 

B106 430, 530, 630, 
730, 830 

6, 12, 20, 32 25, 50, 75, 100 40, 50, 60, 
82.8 

1.0, 1.4, 1.8, 
2.0 2.2 

*Percentage of prestress at the time of the experiment. 
 

 

3.3 Beam modeling and simplifications in ATENA 2D V5.7.0 

 

ATENA 2D is a non-linear finite element program in the bi-dimensional space created by Červenka 

Consulting and is specially designed for concrete and reinforced concrete structures. Results from 

128 beam analysis are reported in this study, to reduce computation time and due to double 

symmetry of the loadings and geometry of the beams, only half of the beams were modeled in 

ATENA 2D. Steel plates with an elastic modulus of 200 GPa and with linear material properties were 

modeled as supports, this due to stress concentration and to ensure that failure occur in the 

concrete. The beams were exposed to a predescribed deformation of 0.1 mm at the top steel plate. It 

would have also been possible to expose the beams to a vertical force instead of a predescribed 

deformation, but then advanced iteration procedures, for instance Arc-length method would have 

been required. Such iteration procedure is accessible in ATENA 2D. However, in this study 

deformation-controlled loading with the Newton-Raphson method was used, which was sufficient for 

the type of analyzes done in this thesis (Červenka, 2015). 
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Figure 28: Illustration of the modeled beams in ATENA 2D. 

 

3.4 Concrete modeling in ATENA 2D V5.7.0 

 

An advantage of ATENA 2D is that the program apart from fracture energy, calculates all concrete 

material properties based on the cube strength with formulas from Model Code 1990, see Table 4. 

All material properties can later be adjusted if some are considered illogical for a specific case. In this 

report, all the parameters specified in Table 1 and Table 2 have been used, the rest is based on Table 

4 unless otherwise stated. 

Table 4: Default formulas of material parameters (Cervenka, 2020). 

Parameter Formula 

Cylinder strength fc = −0.85 · fcube 

Tensile strength 2 fct = 0.24 · f2/3 

Initial elastic modulus Ec = (6000 − 15.5 ∙ fcube) · (fcube)1/2 

Poisson's ratio ν = 0.2 

Softening compression wd = -0.0005 mm 

Type of tension softening 1 - exponential, based on Gf 

Compressive strength in cracked concrete c = 0.8 

Tension stiffening stress σst = 0 

Shear retention factor Variable 

Tension-compression function type Linear 

Fracture energy Gf  According to Eq. 2.5 

Orientation factor for strain localization γmax = 1.5 
 

 

3.4.1 Multi-axial behavior 

 

To represent and capture the nonlinear behavior of concrete, the concrete material in the beams 

was defined with the fracture-plastic model CC3DNonLinCementitious2, which combines and 

considers fracturing (tensile) as well as plastic (compressive) behavior (Červenka et al, 2020). The 

CC3DNonLinCementitious2 model gives a concrete behavior according to the uniaxial stress-strain 

diagram for concrete as shown in Fig. 29(a) and a biaxial failure criterion according to Kupfer et al. 

(1969) as shown in Fig. 29(b). The tensile behavior is based on the Rankine failure criterion and non-

linear fracture mechanics, see (Červenka et al, 2020). 
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Figure 29: (a) Uniaxial stress-strain law for concret, (b) Biaxial failure function for concrete. Adjusted figures from 
(Červenka et al, 2020). 

 

3.4.2 Cracking and non-linear behavior of concrete 

 

The crack opening behavior of concrete can be defined with classical fracture mechanics. A fracture 

in concrete occurs when an applied force causes stresses in the material. There are three different 

types of fractures or a combination of them and these are illustrated in Fig. 30. According to (Malm, 

2016), only failure mode I arises in its pure form for concrete, but sometimes in combination with 

mode II. 

 

Figure 30: Failure conditions according to classical fracture mechanics. 

 

There are two major approaches to describe cracking in concrete, discrete and smeared (continuum) 

crack as illustrated in Fig. 31. In the discrete crack approach, the elements are described with linear 

material properties and the crack is described by a gap between the element surfaces.  

In the smeared crack approach a crack emerges in the integration points and the element has two 

tasks, describing the elastic behavior of the uncracked concrete and the behavior of the crack. Thus 

no physical crack exists; instead the effect of the crack is distributed (smeared) all over the element. 

Therefore the total strain in that specific element is the sum of the elastic strain of the uncracked 

concrete and the strain from the crack opening. i.e. εTot = εUncrack + εCrack. εCrack is calculated as we/le, 

where we is the crack opening and le the length of the element (Malm, 2016). 
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Figure 31: (a) Smeared crack, (b) discrete crack. Adjusted figure from (Malm, 2016). 

 

For the smeared crack approach, there are two different methods to choose from in ATENA 2D. 

Namely fixed crack model and rotated crack model. In this thesis, fixed crack model has been chosen 

for CC3DNonLinCementitious2. For fixed crack model, a crack occurs in one if the integration points 

of the element when the maximum principal stress is equal to the tensile strength of the concrete. 

The direction of the crack opening is in the direction of the maximum principal stress. During 

following loadings the direction of the crack is kept, independent of how the stresses change, 

therefore shear stresses will occur at the crack surface due to the crack direction is different than the 

direction of the maximum principal stress. For the rotated crack approach, the crack initiates in the 

same way as for the fixed crack approach, but the difference is that the direction of the crack 

changes when the stress state changes. The direction of the crack will always be in the direction of 

the maximum principal stress. 

 

Figure 32: (a) fixed crack approach and b) rotated crack approach, where m1 and m2 are material axis, y and x are the axis 
of the coordinate system, ε1 and ε2 are the principal strains, σ1 and σ2 are the principal stresses (Cervenka, 2020). 

 

3.5 Reinforcement modeling in ATENA 2D 

 

As concrete, in ATENA 2D it is possible to model the reinforcement as discrete or smeared, but also 

as cyclic which is similar to smeared (Cervenka, 2020). The smeared reinforcement is modeled as 

layers of reinforcement whose nodes are connected with the nodes of the concrete elements. In this 

study since it is known where exactly the reinforcement is in the cross section, the steel 

reinforcement was modeled as discrete with truss elements with the same size as the elements of 

the concrete. The character of the reinforcement could be modeled as linear, bilinear, multilinear or 

bilinear with hardening. In this thesis, the splitting reinforcement was modeled with bilinear 

behavior; the conventional reinforcement of beam B8 and the prestressed strands of all beams were 

modeled with a behavior as bilinear with hardening according to Table 2.  
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Figure 33: Modeling of prestressed strands in ATENA 2D. 

 

3.6 Element, size and mesh convergence study 

 

As mentioned in chapter 2.7, a finite element analysis is an approximation of reality and in general 

the accuracy of a model increases the more elements a model have, i.e. smaller elements. Another 

way to increase accuracy is to go from linear to quadric interpolation. A simple model can give a 

result in a short time, but a simple model also gives an unreliable result in many cases. A complex 

analysis can give very reliable results, but the computation time can be several hours and, in some 

cases, even days. An engineer needs to balance complexity and computation time. Therefore, a mesh 

convergence should always be done during finite element analysis, where the modeler starts with a 

large mesh and reduces the mesh size, until two mesh sizes give approximately the same result and 

then the mesh with the coarser size shall be chosen.  

Belletti et al. (2010) suggests using quadratic quadrilateral elements with Gauss-integration when 

modeling concrete structures in nonlinear finite element softwares, therefore throughout this study, 

CCIsoQuad elements which are 4-noded 2D quadrilateral elements were used and Gauss-integration 

was utilized. However, the elements were characterized by bilinear interpolation. According to 

(Červenka et al, 2020) CCIsoQuad elements are suitable for plane 2D and axisymmetric problems.  

 

 

Figure 34: Beam B2 with a) 12 mm mesh size and b) with 40 mm mesh size. 

 

In this thesis, a mesh convergence study was done for the beams. Mesh of size 12 mm, 20 mm, 25 
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mm, 30 mm, 32 mm, 35 mm and 40 mm were used in the study. Anyhow, unfortunately, the 

computer was not able to perform an analysis with 12 mm mesh. However, mesh size 12 mm is not 

suitable in this thesis, which can be read more about in chapter 4.2.  
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4. Results 
 

4.1 Comparison and study of fracture energy in ATENA 2D 

 

Based on the cube strength of concrete, ATENA 2D calculates fracture energy according to Eq. (2.5), 

this turned out in some cases to not give a satisfactory result of the beam analyzes. Therefore, for 

every beam case, a comparison was made between the three mentioned equations in chapter 2.3.2 

for fracture energy and the mean value of these three equations. In every case, the equation which 

gave a value of fracture energy which led to a crack pattern and failure load closest to De Wilder's 

experiment was chosen. The comparison for beam B8 can be found in Appendix C.   

Table 5: Chosen value of fracture energy in ATENA 2D. 

Beam Experimental 
failure load 

(kN) 

Failure load according 
to Atena 2D  

(kN) 

Fracture 
energy  

(MN/m) 

Standard 

B1 195.6 190.6 1.152E-04 Vos 

B2 325.0 302.7 1.192E-04 Vos 

B8 317.9 314.1 1.110E-04 Model code 90 

I8 - 197.8 1.110E-04 Model code 90 

B103 262.8 258.0 1.630E-04 Model code 10 

B106 179.7 175.2 1.195E-04 Vos 

 

4.2 Element size, mesh convergence study and computation time 

 

The case for beam B2 is illustrated in this subchapter. Fig. 35 shows load-displacement curve for 

different mesh sizes in ATENA 2D. It is clear that the mesh sizes tested in ATENA 2D all give a shear 

capacity that differs by a maximum of 10% from the experiment done by De Wilder. 

 

 

Figure 35: Load-displacement curve for beam B2 with different mesh sizes in ATENA 2D. 
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The calculation time differed between mesh size of 12, 20 and 25 mm. While for 30, 32, 35 and 40 

mm it took basically the same amount of time. However, the computer crashed for 12 mm after 88 

minutes. Fig. 36 shows the computation time for different kind of mesh sizes of beam B2. It has to be 

stressed that beam B2 is the smallest beam in this thesis, and which also has the least number of 

elements due to its size. The other beams had longer computation times. 

 

Figure 36: Computation time in Atena for beam B2 with different mesh sizes. 

 

In this thesis, the beam models were simple and the convergence study shows that all mesh sizes 

between 20-40 mm were acceptable in terms of computation time and results. However, concrete is 

a special building material as it consists of aggregate, therefore it is proposed using a mesh two to 

three times the size of the biggest aggregate size in the concrete mixture. However, there is a lower 

bound limit to the size of the element and that is the element size shall not be smaller than the 

largest aggregate size in the concrete mixture. Smaller size of the element would be unsuitable with 

the use of fundamental relationships for ordinary concrete. Due to this, element size of 32 mm was 

used in this thesis, since aggregate size of 6, 12, 20 and 32 mm was adopted in ATENA 2D and the 

parameter study. 
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4.2.1 Load-displacement curves from experiment and ATENA 2D analyzes 

 

 

Figure 37: Load-displacement curves from De Wilder’s experiment for (a-b) beam B1, B2 and B8, measured at midspan. 
(c) for beam B103 and B106, measured at 1.2 m from support (De Wilder, 2016).  

(d-f) Load-displacement curves from ATENA 2D analyzes for beam B1, B2. B8 I8. B103 and B106, measured at midspan. 

 

4.3 Study A 

The results from study A are shown in Table 6, where the failure load according to the equations can 

be compared with each other and the observed failure load during De Wilder’s experiment. 

Table 6: Results from study A. Failure load according to the equations and the observed failure load during De Wilder’s 
experiment. 

Beam Experiment 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Eq. 2a 
(kN) 

Eq. 2b 
(kN) 

B1 195.6 168.9 149.4 165.5 - - 

B2 325.0 237.2 165.2 236.2 - - 

B4 259.2 177.9 185.1 174.4 - - 

B5 455.0 248.0 247.8 248.8 - - 

B8 317.9 300.2 195.7 286.7 - - 

B9 380.7 260.9 239.8 260.2 - - 

B10 413.0 231.2 235.1 211.1 - - 

B103 262.8 110.6 113 107.1 225.5 225.5 

B106 179.7 85.8 97.1 74.3 177.6 177.6 

B109 181.0 80.1 78.2 74.8 158.0 158.0 
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4.4 Study B 

 

In the following graphs it be can observed how the parameters height, prestress, aggregate size, 

shear span and strength class affect according to the Atena 2D analyzes the failure load of the 

beams, and how the mentioned parameters affect the failure load according to the equations.  

 

For exact failure loads, see Appendix D. For calculation procedure, see Appendix E where calculations 

for beam B103 are given. 

4.4.1 Beam B1 

 

Figure 38: Load-beam height curves for beam B1. 

  

Figure 39: Load-prestressing force curves for beam B1. 
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Figure 40: Load-aggregate size curves for beam B1. 

  

Figure 41: Load-shear span curves for beam B1. 
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Figure 42: Load-strength class curves for beam B1. 
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4.4.2 Beam B2 

 

 

Figure 43: Load-beam height curves for beam B2. 

  

Figure 44: Load-prestressing force curves for beam B2. 
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Figure 45: Load-aggregate size curves for beam B2. 

  

Figure 46: Load-shear span curves for beam B2. 
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Figure 47: Load-strength class curves for beam B2. 
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4.4.3 Beam B103 

 

 

Figure 48: Load-beam height curves for beam B103. 

 

Figure 49: Load-prestressing force curves for beam B103. 



47 
 

 

 

 

  

Figure 50: Load-aggregate size curves for beam B103. 

  

Figure 51: Load-shear span curves for beam B103. 
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Figure 52: Load-strength class curves for beam B103. 
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4.4.4 Beam B106 

 

   

Figure 53: Load-beam height curves for beam B106. 

  

Figure 54: Load-prestressing force curves for beam B106. 
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Figure 55: Load-aggregate size curves for beam B106. 

  

Figure 56: Load-shear span curves for beam B106. 
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Figure 57: Load-strength class curves for beam B106. 
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4.5 Study C 

4.5.1 Beam B8 

 

 

Figure 58: Load-beam height curve for beam B8. 

  

Figure 59: Load-prestressing force curve for beam B8. 
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Figure 60: Load-aggregate size curve for beam B8. 

  

Figure 61: Load-shear span curve for beam B8. 
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Figure 62: Load-strength class curve for beam B8. 
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4.5.2 Beam I8 

 

 

 

 

Figure 63: Load-beam height curve for beam I8. 

  

Figure 64: Load-prestressing force curve for beam I8. 
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Figure 65: Load-aggregate size curve for beam I8. 

  

Figure 66: Load-shear span curve for beam I8. 
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Figure 67: Load-strength class curve for beam I8. 
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5. Discussions 
 

5.1 Comparison between the equations for rectangular beams. 

 

Eq. 1a, 1b and 1c have the most important factor (100ρlfck)1/3 in common, but a big difference 

between the proposed equations 1b and 1c compared to 1c is that the proposed equations take the 

aggregate size into consideration, but also lever arm z, is used instead for effective depth d. 

Furthermore, Eq. 1b takes shear span into consideration, which none of the other equations do. 

Although all partial safety factors were omitted in this report, a poor correlation was found between 

the equations and the finite element analyzes, but also the experiments. However, it should be 

stressed that in this study, the failure mode has not been fully considered. i.e. some beams, both 

during the experiments and the ATENA 2D analyzes actually failed due to bending, which the 

equations do not take into account. Thus, maximum shear force with respect to bending has not 

been considered. 

The numerical analyzes show that Eq. 1b is the most conservative equation. Furthermore, the 

analyzes show that Eq. 1a and 1c give approximately the same failure load. 

The experiments show that Eq. 1b gives a failure load that is on average 64.0 % less than the failure 

load obtained in the experiments. The corresponding values for Eq. 1a and 1c are 44.6 % and 48.6 % 

respectively. However, it turned out that Eq. 1b reproduces the effect of shear span most correctly 

and gives a failure load on the conservative side. While Eq. 1a and 1c could, for increased shear 

spans, give a failure load higher than the failure load obtained from the finite element analyzes. 

 

5.2 Comparison between equations for I-beams. 

 

Eq. 2b and 2a are the same equation but Eq. 2b is rewritten so the equation is consistently based on 

stresses. In addition, according to the proposals the use of Eq. 2a is limited to a maximum effective 

depth of 500m. The numerical analyzes and the experiments showed that a larger effective depth 

does not impact the result of Eq. 2b compared to Eq. 2a. 

For I-shaped beams a fairly correlation is found between Eq 2a, 2b and the numerical analyzes, while 

Eq. 1a, 1b and 1c give far too conservative failure load for the I-shaped beams. But unlike the 

rectangular beams, Eq. 1b is less conservative than Eq. 1a and Eq. 1c. 

The experiment showed that Eq. 2a and 2b gives a shear failure which on average is 10.8% less than 

shear failure according to the experiment. 

 

5.3 Impacts of shear force capacity 
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The numerical analyzes showed that a higher prestressing force gives a higher shear cracking force 

and shear force capacity, but also that decreased longitudinal reinforcement while keeping the 

prestressing force unchanged does not considerably give decreased shear force capacity. 

Furthermore, the numerical parameter study showed the following impacts of shear force capacity. 

• Increased beam height gives an increased shear force capacity. 

• Increased shear span gives lower shear force capacity. 

• Higher strength classes gives an increased shear force capacity. 

• Larger aggregate size gives a slightly increased shear force capacity for beams failing due to 

shear and flexural-shear. 

• Increased longitudinal reinforcement gives an increased shear capacity. 
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6. Conclusions 

 
Both the experiments done by De Wilder and the finite element analyzes in this report show that for 

the rectangular beams, Eq. 1a is the equation that gives a failure load which is closest to the failure 

load obtained by the beams in the experiments and finite element analyzes. Eq. 1c gives 

approximately the same shear capacity as Eq. 1a. Eq. 1b proved to be too conservative throughout 

this report for the rectangular beams, but at the same time reproduces the effect of shear span most 

correctly. 

For the I-beams it turned out that Eq. 2a and 2b give identical shear capacity and a good correlation 

is found between Eq. 2a, 2b and the analyzed beams. Furthermore, Eq. 2b give identical answers as 

Eq. 2a for beams with an effective depth over 500 mm, despite the fact that the proposal states that 

equation 2b should not be used for beams with an effective height above 500 mm. 

The finite element analyzes perform better in terms of predicted failure load than the equations. 

Furthermore, the finite element analyzes were found to predict all failure modes correctly for all 

beams. However, the capacity of finite element analyzes should not be overestimated, as such 

simulations depend on the investigator's choice of elements, element size, material, iteration 

procedure, etc. Thus, expertise is needed when it comes to numerical analyzes. Therefore, both 

numerical and analytical models should be used in the design and calculations of structural safety. 

 

6.1 Proposed further research 

 

In this report, only rectangular and I-beams have been investigated, further research could be to 

investigate other form of beams, e.g. T-beams. Furthermore, only simply supported beams have 

been used, a similar study like this report can be done, however with continuous beams. 

Eq. 1a, 1b and 1c proved to be too conservative, a study looking for a factor to multiply the equations 

by is considered necessary. 

In the latest version of the draft for Eurocode 2, there is an equation for shear strength of steel fibre 

reinforced concrete (SFRC) members without shear reinforcement and with longitudinal 

reinforcement bars in the tensile zone. A parameter study similar to the one done in this thesis can 

be done for the equation for shear strength of SRFC beams. 
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Appendix A – Crack pattern at failure load from De Wilder’s 

experiment and analyzes in Atena 2D. 

 

Figure 68: Crack pattern at failure load from De Wilder’s experiment. 
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 Figure 69: Crack pattern at failure load from analyzes in Atena 2D. 
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Appindex B – Crack pattern at failure load for different shear spans according 

to ATENA 2D 
 

Beam B1 

 

Figure 70: Beam B1 with a shear span of 1.2 m. 

 

Figure 71: Beam B1 with a shear span of 1.4 m. 

 

Figure 72: Beam B1 with a shear span of 1.6 m. 

 

Figure 73: Beam B1 with a shear span of 1.8 m. 
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Beam B2 

 

Figure 74: Beam B2 with a shear span of 1.2 m. 

 

Figure 75: Beam B2 with a shear span of 1.4 m. 

 

Figure 76: Beam B2 with a shear span of 1.6 m. 

 

Figure 77: Beam B2 with a shear span of 1.8 m. 
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Beam B8 

 

Figure 78: Beam B8 with a shear span of 1.2 m. 

 

Figure 79: Beam B8 with a shear span of 1.4 m. 

 

Figure 80: Beam B8 with a shear span of 1.6 m. 

 

Figure 81: Beam B8 with a shear span of 1.8 m. 
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Beam I8 

 

Figure 82: Beam I8 with a shear span of 1.2 m. 

 

Figure 83: Beam I8 with a shear span of 1.4 m. 

 

Figure 84: Beam I8 with a shear span of 1.6 m. 

 

Figure 85: Beam I8 with a shear span of 1.8 m. 
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Beam B103 

 

Figure 86: Beam B103 with a shear span of 1.0 m. 

 

Figure 87: Beam B103 with a shear span of 1.4 m. 

 

Figure 88: Beam B103 with a shear span of 1.8 m. 

 

Figure 89: Beam B103 with a shear span of 2.0 m. 

 

Figure 90: Beam B103 with a shear span of 2.2 m. 
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Beam B106 

 

Figure 91: Beam B106 with a shear span of 1.0 m. 

 

Figure 92: Beam B106 with a shear span of 1.4 m. 

 

Figure 93: Beam B106 with a shear span of 1.8 m. 

 

Figure 94: Beam B106 with a shear span of 2.0 m. 

 

Figure 95: Beam B106 with a shear span of 2.2 m. 
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Appendix C – Failure load and crack patterns for beam B8 with different 

fracture energies in ATENA 2D analyzes 
 

Table 7: Shear force capacity and fracture energy in case of beam B8. 

 Fracture energy 
(MN/m)  

Failure load  
(kN) 

Vos 1.199E-04 327.2 

Model code 90 1.110E-04 314.1 

Model code 10 1.620E-04 343.3 

Mean value 1.310E-04 343.5 

Experiment - 317.9 

 

 

Figure 96: Crack pattern for beam B8 with a minimum of 0.5mm crack width with a fracture energy according to Vos’s 
equation. 

 

Figure 97: Crack pattern for beam B8 with a minimum of 0.5mm crack width with a fracture energy according to Model 
code 90. 

 

Figure 98: Crack pattern for beam B8 with a minimum of 0.5mm crack width with a fracture energy according to Model 
code 10. 
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Figure 99: Crack pattern for beam B8 with a minimum of 0.5mm crack width with a fracture energy according to mean 
value of equation from Vos, MC 90 and MC 10. 
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Appendix D – Failure load and failure mode according to experiment, ATENA 

2D and the equations 
 

Beam B1 

Table 8: Failure load of different beam heights for beam B1. 

Height  
(mm) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure 
mode 

400 
 

195.6 190.5 168.9 149.4 165.5 Bending 

500 
 

- 246.9 182.8 186.3 174.9 Bending 

600 
 

- 308.4 194.8 219.4 182.2 Bending 

700 
 

- 380.2 205.5 259.0 188.3 Bending 

800 
 

- 457.8 215.2 313.1 193.5 Bending 

 

Table 9: Failure load of different aggregate sizes for beam B1. 

DMax 

(mm) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure 
mode 

6 
 

- 190.6 168.9 148.6 163.8 Bending 

12 
 

195.6 190.5 168.9 149.4 165.5 Bending 

20 
 

- 191.6 168.9 150.5 167.8 Bending 

32 
 

- 187.6 168.9 152.0 170.9 Bending 

 

Table 10: Failure load of different concrete classes for beam B1. 

Concrete 
class 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure 
mode 

C40/50 
 

- 161.2 133 139.6 137.2 Bending 

C50/60 
 

- 167.8 154.5 148.2 161.9 Bending 

C60/75 
 

- 173.0 159.8 149.9 166.5 Bending 

C83.5/84.1 
 

195.6 190.5 168.9 149.4 165.5 Bending 

 

Table 11: Failure load of different shear span for beam B1. 

Shear 
span 
(m) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure 
mode 

1.20 
 

195.6 190.5 168.9 149.4 165.5 Bending 

1.40 
 

- 160.8 168.9 126.3 165.5 Bending 

1.60 
 

- 146.3 168.9 111.2 165.5 Bending 

1.80 
 

- 127.0 168.9 100.7 165.5 Bending 
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Table 12: Failure load of different prestressing force for beam B1. 

Prestress 
(%) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure 
mode 

0 
 

- 51.7 87.1 67.3 62.4 Bending 

25 
 

- 90.9 107.5 79.0 88.2 Bending 

50 
 

- 125.7 128.0 96.8 114.0 Bending 

75 
 

- 155.5 148.4 120.9 139.7 Bending 

100 
 

195.6 190.5 168.9 149.4 165.5 Bending 

 

 

Beam B2 

Table 13: Failure load of different concrete classes for beam B2. 

Height 
(mm) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

400 
 

325 302.7 237.2 165.2 236.2 Flexural-shear 

500 
 

- 405.5 257.9 209.7 251.3 Flexural-shear 

600 
 

- 498.4 275.3 268.5 262.7 Flexural-shear 

700 
 

- 585.8 290.5 356.2 271.9 Flexural-shear 

800 
 

- 646.4 304.2 494.7 279.7 Flexural-shear 

 

Table 14: Failure load of different concrete classes for beam B2. 

Dmax 

(mm) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

6 
 

- 302.4 237.2 162.1 234.8 Flexural-shear 

12 
 

325 302.7 237.2 165.2 236.2 Flexural-shear 

20 
 

- 304.6 237.2 169.1 238.0 Flexural-shear 

32 
 

- 299.9 237.2 174.6 240.5 Flexural-shear 

 

Table 15: Failure load of different concrete classes for beam B2. 

Concrete 
class 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

C55/67 
 

- 260.2 178.4 162.4 183.5 Flexural-shear 

C60/75 
 

- 269.9 188.9 166.2 195.5 Flexural-shear 

C70/85 
 

- 286.0 209.4 163.3 213.2 Flexural-shear 

C88.6/96 
 

325 302.7 245.8 165.2 245.3 Flexural-shear 
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Table 16: Failure load of different concrete classes for beam B2. 

Shear 
span 
(m) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

1.20 
 

325 302.7 237.2 165.2 236.2 Flexural-shear 

1.40 
 

- 266.6 237.2 155.0 236.2 Flexural-shear 

1.60 
 

- 239.6 237.2 147.8 236.2 Bendning 

1.80 
 

- 210.4 237.2 142.3 236.2 Bending 

 

Table 17: Failure load of different concrete classes for beam B2. 

Prestress 
(%) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

0     
 

- 112.9 112.5 66.0 79.1 Bending 

25     
 

- 171.7 138.5 87.7 143.6 Bending 

50     
 

- 227.1 174.8 126.2 157.7 Flexural-shear 

75     
 

- 260.7 206.0 157.8 196.9 Flexural-shear 

100     
 

325 302.7 237.2 165.2 236.2 Flexural-shear 

 

Beam B8 

Table 18: Failure load of different concrete classes for beam B8. 

Height 
(mm) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

400 
 

- 201.7 211.9 127.0 198.8 Bending 

500 
 

- 272.8 231.2 159.2 211.1 Bending 

600 
 

317.9 314.1 248.0 195.7 221.0 Flexural-shear 

700 
 

- 352.0 263.2 238.6 229.2 Flexural-shear 

800 
 

- 423.6 277.2 290.1 236.4 Flexural-shear 

 

Table 19: Failure load of different concrete classes for beam B8. 

DMax 

(mm) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

6 
 

- 310.2 248.0 192.4 216.6 Flexural-shear 

12 
 

317.9 314.1 248.0 195.7 221.0 Flexural-shear 

20 
 

- 322.7 248.0 199.9 226.3 Flexural-shear 

32 
 

- 342.6 248.0 205.8 233.5 Flexural-shear 
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Table 20: Failure load of different concrete classes for beam B8. 

Concrete 
class 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

C40/50 
 

- 267.1 217-0 186.9 208.8 Flexural-shear 

C50/60 
 

- 295.1 227.1 192.6 216.4 Flexural-shear 

C60/75 
 

- 311.1 235.9 197.7 212.6 Flexural-shear 

C75.9/89.3 
 

317.9 314.1 248.0 195.7 221.0 Flexural-shear 

 

Table 21: Failure load of different concrete classes for beam B8. 

Shear 
span 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

1.20 
 

- 437.1 248.0 317.6 221.0 Shear 

1.40 
 

- 365.0 248.0 256.6 221.0 Flexural-shear 

1.60 
 

- 341.7 248.0 219.7 221.0 Flexural-shear 

1.80 
 

317.9 314.1 248.0 195.7 221.0 Flexural-shear 

 

Table 22: Failure load of different concrete classes for beam B8. 

Prestress 
(%) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

0     
 

- 231.8 161.1 121.8 111.4 Bendning 

25     
 

- 285.0 182.8 133.9 138.8 Flexural-shear 

50     
 

- 289.9 204.5 149.8 166.2 Flexural-shear 

75     
 

- 307.2 226.1 170.5 193.6 Flexural-shear 

100     
 

317.9 314.1 248.0 195.7 221.0 Flexural-shear 

 

Beam I8 

Table 23: Failure load of different concrete classes for beam I8. 

Height 
(mm) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

400 
 

- 128.7 87.9 95.7 80.7 Anchorage 

500 
 

- 161.1 100.7 112.7 91.6 Anchorage 

600 
 

- 197.8 112.0 129.7 100.8 Shear 

700 
 

- 242.5 122.1 147.5 108.8 Flexural-shear 

800 
 

- 285.7 131.3 166.8 115.8 Flexural-shear 

 

Table 24: Failure load of different concrete classes for beam I8. 

DMax 

(mm) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

6 
 

- 198.0 112.0 125.4 98.9 Shear 

12 
 

- 197.8 112.0 129.7 100.8 Shear 

20 
 

- 198.7 112.0 135.1 103.2 Shear 

32 
 

- 199.6 112.0 142.3 106.4 Shear 
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Table 25: Failure load of different concrete classes for beam I8. 

Concrete 
class 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

C40/50 
 

- 165.2 87.4 118.0 81.7 Anchorage 

C50/60 
 

- 183.0 99.4 125.6 94.6 Anchorage 

C60/75 
 

- 190.9 106.6 132.3 97.1 Anchorage 

C75.9/89.3 
 

- 199.0 112.0 129.7 100.8 Shear 

 

Table 26: Failure load of different concrete classes for beam I8. 

Shear 
span 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

1.20 
 

- 298.5 112.0 163.3 100.8 Shear 

1.40 
 

- 231.7 112.0 146.7 100.8 Shear 

1.60 
 

- 210.6 112.0 136.6 100.8 Shear 

1.80 
 

- 197.8 112.0 129.7 100.8 Shear 

 

Table 27: Failure load of different concrete classes for beam I8. 

Prestress 
(%) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Failure mode 

0.00 
 

- 120.0 70.8 53.6 49.0 Flexural-shear 

25.00 
 

- 139.3 81.1 68.2 62.0 Flexural-shear 

50.00 
 

- 154.2 91.4 93.0 74.9 Anchorage 

75.00 
 

- 170.4 101.6 125.4 87.9 Anchorage 

100.00 
 

- 197.8 112.0 129.7 100.8 Shear 

 

Beam B103 

Table 28: Failure load of different concrete classes for beam B103. 

Height 
(mm) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Eq. 2a and 2b 
(kN) 

Failure 
mode 

430     
 

- 174.6 78.0 75.8 73.8 157.5 Anchorage 

530     
 

- 209.8 94.6 93.5 91.1 190.3 Anchorage 

630     
 

262.8 258.0 110.6 113.0 107.1 225.5 Shear 

730     
 

- 305.5 126.2 136.0 122.7 275.5 Shear 

830     
 

- 348.4 136.5 164.3 131.8 312.2 Shear 
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Table 29: Failure load of different concrete classes for beam B103. 

DMax 

(mm) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Eq. 2a and 2b 
(kN) 

Failure 
mode 

6 
 

- 252.7 110.6 110.3 105.6 225.5 Shear 

12 
 

262.8 258.0 110.6 113.0 107.1 225.5 Shear 

20 
 

- 261.9 110.6 116.5 108.8 225.5 Shear 

32 
 

- 264.8 110.6 121.2 111.3 225.5 Shear 

 

Table 30: Failure load of different concrete classes for beam B103. 

Concrete 
class 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Eq. 2a and 2b 
(kN) 

Failure 
mode 

C40/50 
 

- 214.4 74.3 105.2 71.3 188.7 Anchorage 

C50/60 
 

- 233.7 85.0 110.2 83.0 206.1 Anchorage 

C60/75 
 

- 241.7 95.2 114.7 94.4 214.6 Shear 

C77.5/87.1 
 

262.8 258.0 110.6 113.0 107.1 225.5 Shear 

 

Table 31: Failure load of different concrete classes for beam B103. 

Shear 
span 
(m) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Eq. 2a and 2b 
(kN) 

Failure 
mode 

1.00 
 

- 442.1 110.6 259.9 112.1 225.5 Shear 

1.40 
 

- 312.4 110.6 152.7 112.1 225.5 Shear 

1.80 
 

- 288.3 110.6 121.1 112.1 225.5 Shear 

2.00 
 

262.8 258.0 110.6 113.0 112.1 225.5 Shear 

2.20 
 

- 255.5 110.6 107.2 112.1 225.5 Shear 

 

Table 32: Failure load of different concrete classes for beam B103. 

Prestress 
(%) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Eq. 2a and 2b 
(kN) 

Failure 
mode 

0     
 

- 177.1 57.0 41.6 39.5 109.1 Bending 

25     
 

- 186.3 71.4 63.3 57.7 147.1 Shear 

50     
 

- 225.2 85.9 98.5 76.0 177.2 Shear 

75     
 

- 237.0 100.4 104.8 94.2 202.8 Shear 

100     
 

262.8 258.0 110.6 113.0 107.1 225.5 Shear 
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Beam B106 

Table 33: Failure load of different concrete classes for beam B106. 

Height 
(mm) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Eq 2a and 2b 
(kN) 

Failure 
mode 

430 
 

- 125.5 66.2 53.3 58.2 122.6 Anchorage 

530 
 

- 147.4 76.6 73.4 67.2 149.0 Anchorage 

630 
 

179.7 175.2 85.8 97.1 74.3 177.6 Shear 

730 
 

- 202.0 93.9 110.6 80.5 218.2 Shear 

830 
 

- 229.2 101.4 124.2 86.0 248.5 Shear 

 

Table 34: Failure load of different concrete classes for beam B106. 

DMax 

(mm) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Eq 2a and 2b 
(kN) 

Failure 
mode 

6 
 

- 173.6 85.8 94.4 73.2 177.6 Shear 

12 
 

179.7 175.2 85.8 97.1 74.3 177.6 Shear 

20 
 

- 176.4 85.8 97.8 75.8 177.6 Shear 

32 
 

- 177.4 85.8 99.0 77.8 177.6 Shear 

 

Table 35: Failure load of different concrete classes for beam B106. 

Concrete 
class 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Eq 2a and 2b 
(kN) 

Failure mode 

C40/50 
 

- 138.0 73.2 88.2 69.9 145.6 Shear 

C50/60 
 

- 152.0 76.7 94.3 72.6 160.7 Shear 

C60/75 
 

- 159.9 79.8 97.5 75.0 168.1 Shear 

C82.8/88.9 
 

179.7 175.2 85.8 97.1 74.3 177.6 Shear 

 

Table 36: Failure load of different concrete classes for beam B106. 

Shear 
span (m) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Eq 2a and 2b 
(kN) 

Failure mode 

1.00 
 

- 278.2 70.2 144.3 74.3 177.6 Shear 

1.40 
 

- 214.9 70.2 112.9 74.3 177.6 Shear 

1.80 
 

- 184.8 70.2 101.3 74.3 177.6 Shear 

2.00 
 

179.7 175.2 70.2 97.1 74.3 177.6 Shear 

2.20 
 

- 169.8 70.2 87.3 74.3 177.6 Shear 

 

 

 



90 
 

Table 37: Failure load of different concrete classes for beam B106. 

Prestress 
(%) 

 
Experiment 

(kN) 
Atena 
(kN) 

Eq. 1a 
(kN) 

Eq. 1b 
(kN) 

Eq. 1c 
(kN) 

Eq 2a and 2b 
(kN) 

Failure mode 

0 
 

- 143.1 58.2 41.6 40.3 109.1 Bending 

25 
 

- 151.0 65.1 49.3 49.0 129.7 Flexural-shear 

50 
 

- 159.2 72.0 61.4 57.0 147.4 Shear 

75 
 

- 164.7 78.9 77.8 65.7 163.2 Shear 

100 
 

179.7 175.2 85.8 97.1 74.3 177.6 Shear 
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Appindex E – Calculations for beam B103 
 

  

    

  

Area of strands 

  

Number of strands 

 

Total area of longitudinal strands in the 
bottom part 

  

Prestressing loss at the time of the 
experiment 

 

Initial prestress 

 

 

 

Axial force due to prestressing 

 

Height 

 

Width 

  

Effective depth 

 

Lever arm for shear stress 

  

Aggregate size 

 

Cross sectional area 

 

Shear span 

 

Second moment of area 

 

First moment of area 

 

Characteristic cylinder 
compressive strength 

 

Design compressive strength 

 

Mean tensile strength 
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95% fractile tensile strength 

 

Design tensile strength 

 

Longitudinal reinforcement ratio 

  

< 

  

  

Iteration for Eq. 1b 

 
 

 
 

 

 

 
 

< 

 
 

 

 

Eq. 1a 

 

Eq. 1b 

 

Eq. 1c 
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Eq. 2a 

 

Eq. 2b 
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